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Abstract

Understanding how biological visual systems process information is challenging
because of the nonlinear relationship between visual input and neuronal responses.
Artificial neural networks allow computational neuroscientists to create predictive
models that connect biological and machine vision. Machine learning has bene-
fited tremendously from benchmarks that compare different models on the same
task under standardized conditions. However, there was no standardized bench-
mark to identify state-of-the-art dynamic models of the mouse visual system. To
address this gap, we established the SENSORIUM 2023 Benchmark Competition
with dynamic input, featuring a new large-scale dataset from the primary visual
cortex of ten mice. This dataset includes responses from 78,853 neurons to 2 hours
of dynamic stimuli per neuron, together with behavioral measurements such as
running speed, pupil dilation, and eye movements. The competition ranked mod-
els in two tracks based on predictive performance for neuronal responses on a
held-out test set: one focusing on predicting in-domain natural stimuli and an-
other on out-of-distribution (OOD) stimuli to assess model generalization. As
part of the NeurIPS 2023 Competition Track, we received more than 160 model
submissions from 22 teams. Several new architectures for predictive models were
proposed, and the winning teams improved the previous state-of-the-art model by
50%. Access to the dataset as well as the benchmarking infrastructure will remain
online at www . sensorium-competition.net.

38th Conference on Neural Information Processing Systems (NeurIPS 2024) Track on Datasets and Bench-
marks.
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1 Introduction

Understanding visual system processing has been a longstanding goal in neuroscience. One way
to approach the problem are neural system identification approaches which make predictions of
neuronal activity from stimuli or other sources quantitative and testable (reviewed in Wu et al., 2006).
Various system identification methods have been used in systems neuroscience, including linear-
nonlinear (LN) models (Simoncelli et al., 2004; Jones & Palmer, 1987; Heeger, 1992a,b), energy
models (Adelson & Bergen, 1985), subunit models (Liu et al., 2017; Rust et al., 2005; Touryan
et al., 2005; Vintch et al., 2015), Bayesian models (Walker et al., 2020; George & Hawkins, 2005;
Wu et al., 2023; Bashiri et al., 2021), redundancy reduction models (Perrone & Liston, 2015), and
predictive coding models (Marques et al., 2018). In recent years, deep learning models, especially
convolutional neural networks (CNNs) trained on image recognition tasks (Yamins et al., 2014;
Cadieu et al., 2014; Cadena et al., 2019; Pogoncheff et al., 2023) or predicting neural responses
(Cadena et al., 2019; Antolik et al., 2016; Batty et al., 2017; Mclntosh et al., 2016; Klindt et al.,
2017; Kindel et al., 2019; Burg et al., 2021; Lurz et al., 2021; Bashiri et al., 2021; Zhang et al.,
2018b; Cowley & Pillow, 2020; Ecker et al., 2018; Sinz et al., 2018; Walker et al., 2019; Franke
et al., 2022; Wang et al., 2023; Fu et al., 2023; Ding et al., 2023), have significantly advanced
predictive model performance. More recently, transformer-based architectures have emerged as a
promising alternative (Li et al., 2023; Azabou et al., 2024; Antoniades et al., 2023).

In machine learning and beyond, standardized large-scale benchmarks foster continuous improve-
ments in predictive models through fair and competitive comparisons (Dean et al., 2018). Within
the realm of computational neuroscience, several benchmarks have been established recently. An
early effort was the Berkeley Neural Prediction Challenge', which provided public training data and
secret test set responses to evaluate models of neurons from primary visual cortex, primary auditory
cortex and field L in the songbird brain. More recent efforts include Brain-Score (Schrimpf et al.,
2018, 2020), Neural Latents *21 (Pei et al., 2021), Algonauts (Cichy et al., 2019, 2021; Gifford
et al., 2023) and SENSORIUM 2022 (Willeke et al., 2022). However, except for the Berkeley Neural
Prediction Challenge, which is limited to 12 neurons, no public benchmark existed that focused on
predicting single neuron responses in the early visual system to video (spatio-temporal) stimuli.

Since we all live in a non-static world, dynamic stimuli are more relevant and our models should
be able to predict neural responses over time in response to these time-varying inputs (Sinz et al.,
2018; Wang et al., 2023; Batty et al., 2017; Mclntosh et al., 2016; Zheng et al., 2021; Qiu et al.,
2023; Hoefling et al., 2022; Vystr¢ilova et al., 2024). Even though recent high-throughput recording
techniques have led to the release of large datasets like the MICrONS calcium imaging dataset
(MICrONS Consortium et al., 2021) and Neuropixel datasets from the Allen Brain Observatory
(de Vries et al., 2020; Siegle et al., 2021), the absence of a withheld test set and the corresponding
benchmark infrastructure hinders a fair comparison between different models.

To fill this gap, we established the SENSORIUM 2023 competition, with the goal to compare large-
scale models predicting single-neuron responses to dynamic stimuli. The NeurIPS 2023 competition
received over 160 model submissions from 22 teams and resulted in new state-of-the-art predictive
models that improved over the competition baseline by 50%. Moreover, these models also led to
a 70% improved predictions on out-of-domain stimuli, suggesting that more predictive models on
natural scenes also generalize better to other stimuli.

2 Sensorium Competition Overview

The goal of the competition was to advance models that predict neuronal responses of several thou-
sand neurons in mouse primary visual cortex to natural and artificially generated movies. We col-
lected and released a comprehensive dataset consisting of visual stimuli and corresponding neuronal
responses for training (Section 3). This dataset included a dedicated test set, for which we released
only the visual stimuli but withheld the neuronal responses to be able to compare models in a fair
way (Fig. 1A). To assess model performance, participants submitted their predictions on the test
set to our online benchmark website for evaluation and ranking against other submissions.? The

'nttps://neuralprediction.org/npc/con.php
2Our benchmark webpage is based on Codalab Competitions (Pavao et al., 2022) available under the Apache
License 2.0 https://github.com/codalab/codalab-competitions
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Figure 1: A schematic illustration of the SENSORIUM competition. A: Competition idea. We
provide large-scale datasets of neuronal activity in the mice visual cortex in response to natural
videos. The competition participants were tasked to find the best models to predict neuronal activity
for a set of videos for which we withheld the ground truth. B: Tracks and leaderboard. C: Timeline.

test set consisted of two parts: a live test set and a final test set. The live test set was used during
the competition to give feedback to the participants on their model’s performance via a leaderboard.
The final test set was used only after the end of submissions to determine the final winners (Fig. 1C).
From each team only the best-performing submission on the live test set was evaluated on the final
test set. To facilitate participation from both neuroscientists and machine learning practitioners, we
developed user-friendly APIs that streamline data loading, model training, and submission.>

The competition consisted of two tracks: The main track and the bonus track (Fig. 1B). The main
track entailed predicting responses on natural movie stimuli, the same type of stimuli available
for model training, but different movie instances. The bonus track required predicting out-of-
distribution (OOD) stimuli for which no ground truth responses of the neurons were provided in
the training set. This bonus track tests a model’s ability to generalize beyond the training data.

The competition ran from June 12 to October 15, 2023, culminating in a NeurIPS 2023 conference
workshop where the winning teams presented their approaches and insights. The benchmark plat-
form will continue to track advancements in developing models for the mouse primary visual cortex.
In the following, we describe the dataset (Section 3) and evaluation metrics (Section 4), the baseline
(Section 5) and winning models (Section 6) and report on the results and learnings (Section 7).

3 Dataset

We recorded* neuronal activity in response to natural movie stimuli as well as several behavioral
variables, which are commonly used as a proxy of modulatory effects of neuronal responses (Niell
& Stryker, 2010; Reimer et al., 2014). In general terms, neural predictive models capture neural
responses r € R™*! of n neurons for ¢ timepoints as a function fy(x, b) of both natural movie
stimuli x € R¥*"*t where w and h are video width and height, and behavioral variables b € RExt,
where k = 4 is the number of behavioral variables (see below).

Movie stimuli. We sampled natural dynamic stimuli from cinematic movies and the Sports-1M
dataset (Karpathy et al., 2014), as described by MICrONS Consortium et al. (2021). Following ear-
lier work (Wang et al., 2023), we showed five additional stimulus types for the bonus track (Fig. 2b):
directional pink noise (MICrONS Consortium et al., 2021), flashing Gaussian dots, random dot
kinematograms (Morrone et al., 2000), drifting Gabors (Petkov & Subramanian, 2007), and natural

*https://github.com/ecker-lab/sensorium_2023
*Full neuroscience methods are available in a technical report (Turishcheva et al., 2023).
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Figure 2: Overview of the data. a, Example stimulus frames, behavior (pupil position not depicted)
and neural activity. b, Representative frames from natural video and five OOD stimuli. ¢, Stimulus
composition (color) and availability for all five scans in ten animals. n is number of neurons per
scan. The crossed elements were used for live and final test sets in the competition evaluation.

images from ImageNet (Russakovsky et al., 2015; Walker et al., 2019). Stimuli were converted to
grayscale and presented to mice in clips lasting ~ 8 to 11 seconds, at 30 frames per second.

Neuronal responses. Using a wide-field two-photon microscope (Sofroniew et al., 2016), we
recorded the responses of excitatory neurons at 8 Hz in layers 2-5 of the right primary visual cortex
in awake, head-fixed, behaving mice using calcium imaging. Neuronal activity was extracted as
described previously (Wang et al., 2023) and upsampled to 30 Hz to be at the same frame rate as the
visual stimuli. We also released the anatomical coordinates of the recorded neurons.

Behavioral variables. We measured four behavioral variables: locomotion speed, recorded from a
cylindrical treadmill at 100 Hz and resampled to 30 Hz, and pupil size, horizontal and vertical pupil
center position, each extracted at 20 Hz from video recordings of the eye and resampled to 30 Hz.

Datasets and splits. Our complete dataset consists of ten recordings from ten different animals, in
total containing the activity of 78,853 neurons to a total of ~1200 minutes of dynamic stimuli, with
~120 minutes per recording. Five out of the ten recordings contributed to the live and final test sets.
The recordings were collected and released explicitly for this competition. None of them had been
published before. Each recording had four components (Fig. 2¢):

Training set: 60 minutes of natural movies, one repeat each (60 minutes total).
Validation set: 1 minute of natural movies, ten repeats each (10 minutes total).

Live test set: 1 minute of natural movies and 1 minute of OOD stimuli, ten repeats each (20 min-
utes total). Each OOD stimulus type is presented only in one of the five recordings.

Final test set: 1 minute of natural movies and 2 minutes of OOD stimuli, ten repeats each (30
minutes total). Each OOD stimulus type is presented in two of the five recordings.

For the training set and validation set, the stimulus frames, neuronal responses, and behavioral
variables are released for model training and evaluation by the participants, and are not included in
the competition performance metrics. For the five mice included in the competition evaluation, the
train and validation sets contain only natural movies but not the OOD stimuli. For the other five
mice, all stimuli and responses, including test sets and OOD stimuli, were released.
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Code and data availability. The competition website and data are available at https://www.
sensorium-competition.net/. Starter kit and benchmark code are available at https://
github.com/ecker-lab/sensorium_2023.

4 Competition evaluation

Similar to SENSORIUM 2022, we used the correlation coefficient between predicted and measured
responses to evaluate the models. Since it is bounded between —1 and 1, the correlation coefficient
is straightforward to interpret. Because neuronal responses fluctuate from trial to trial, the correla-
tion between model predictions and single-trial neuronal responses typically do not reach the upper
bound of 1 even for a perfect model. This trial-to-trial variability can be reduced by averaging over
repeated presentations of the same stimulus. However, in this case, also the contributions from be-
havioral states are reduced since these cannot be repeated easily during uncontrolled behavior. We
therefore computed two metrics: single-trial correlation and correlation to average.

Single-trial correlation, py, on the natural video final test set was used to determine competition
winners for the main track. We also computed the single-trial correlation metric for each of the
five OOD stimulus types in the test sets separately. The average single-trial correlation across all
five final OOD test sets was used to determine the competition winner for the bonus track. Single
trial correlation is sensitive to variation between individual trials and computes correlation between
single-trial model output (prediction) 0;; and single-trial neuronal responses r;;, as

) = Zi,j(rij —7)(0s5 — 0)
\/Z” (rij — T)? Zz] (0ij — 6)27

where 7;; is the i-th frame of j-th video repeat, o;; is the corresponding prediction, which can vary
between stimulus repeats as the behavioral variables are not controlled. The variable 7 is the average
response to all the videos in the corresponding test subset across all stimuli and repeats, and o is the
average prediction for the same videos and repeats. The single-trial correlation py was computed
independently per neuron and then averaged across all neurons to produce the final metric.

ey

pst = corr (T, Oy

Correlation to average, p,, provides a more interpretable metric by accounting for trial-to-trial vari-
ability through averaging neuronal responses over repeated presentations of the same stimulus. As a
result, a perfect model would have a correlation close to 1 (not exactly 1, since the average does not
completely remove all trial-to-trial variability). However, correlation to average does not measure
how well a model accounts for stimulus-independent variability caused by behavioral fluctuations.

We calculate py, in the same way as pg, but we first average the responses and predictions per frame
across all video repeats, where 7; is a response averaged over stimulus repeats for a fixed neuron:
>_i(ri —7)(0; — 0)
Pta = COI‘I‘(I‘[a, Ota) = L 2

V-2 - 02

The initial 50 frames of predictions and neuronal responses were excluded from all metrics calcula-
tions. This allowed a “burn-in” period for models relying on history to achieve better performance.

5 Baseline models

SENSORIUM 2023 was accompanied by three model baselines, representing the state of the art in the
field at the beginning of the competition:

GRU baseline is a dynamic model with a 2D CNN core and gated recurrent unit (GRU) inspired
by earlier work (Sinz et al., 2018), but with more recently developed Gaussian readouts (Lurz et al.,
2021), which improves performance. Conceptually, the 2D core transforms each individual frame
of the video stimulus into a feature space which is subsequently processed by a convolutional GRU
across time. The Gaussian readout then learns the spatial preference of each neuron in the visual
space (“receptive field”), by learning the position at which a vector from the feature space is ex-
tracted by bilinear interpolation from the four surrounding feature map locations. This latent vector
is multiplied with a weight vector learned per neuron (“embedding”) and put through a rectifying
nonlinearity to predict the activity of the neuron at each time step.
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Main track Bonus track
Model single-trial ps; T average p:, T | single-trial ps; T  average p:o T
DwiseNeuro 0.291 0.542 0.221 0.429
Dynamic-V1FM 0.265 0.493 0.183 0.336
VivIT 0.243 0.457 0.178 0.333
Ensemble baseline 0.197 0.371 0.129 0.241
Factorized baseline 0.164 0.321 0.121 0.223
GRU baseline 0.106 0.207 0.059 0.106

Table 1: Model performance of competition winners and baselines on both tracks.

Factorized baseline is a dynamic model (Vystréilova et al., 2024; Hoefling et al., 2022) with a 3D
factorized convolution core and Gaussian readouts. In contrast to the GRU baseline, where the 2D
CNN core does not interact with the temporal component, the factorized core learns both spatial and
temporal filters in each layer.

Ensembled baseline is an ensembled version of the above factorized baseline over 14 models. En-
sembling is a well-known tool to improve the model performance in benchmark competitions (Allen-
Zhu & Li, 2023). As we wanted to encourage participants to focus on novel architectures and train-
ing methods beyond simple ensembling, only entries outperforming the ensembled baseline were
considered candidates for competition winners.

Training. All baseline models were trained with batch size 40 in the following way: For each of
the 5 animals 8 video snippets consisting of 80 consecutive video frames starting at a random loca-
tion within the video were passed and the gradient accumulated over all animals before performing
optimizing step. We used early stopping with a patience of 5.

6 Results and Participation

In the four-month submission period, out of 44 registered teams, 22 teams submitted a combined
total of 163 models (main track: 22 teams, 134 submissions, bonus track: 5 teams and 29 submis-
sions). The strong baseline models were surpassed in both tracks by 48% and 70%, respectively
(Table 1). Notably, the winning model — DwiseNeuro — outperformed all other models on both
tracks by a fairly decent margin, and the difference seemed even stronger on the out-of-domain data
than on the main track. In contrast, the runner-up solution — Dynamic-V1FM — had somewhat of an
edge over the third place — ViVIT — on the main track, but both were on par on the out-of-domain
data (Table 1). In the following we describe the three winning teams’ approaches.

6.1 First place: DwiseNeuro

Architecture. DwiseNeuro consists of three main parts: core, cortex, and readouts. The core
consumes sequences of video frames and mouse behavior activity in separate channels, processing
temporal and spatial features. Produced features are aggregated with global average pooling over
space. The cortex processes the pooled features independently for each timestep, increasing the
channels. Finally, each readout predicts the activation of neurons for the corresponding mouse.

Core. The first layer of the module is the stem. It is a point-wise 3D convolution for increasing the
number of channels, followed by batch normalization. The rest of the core consists of factorised in-
verted residual blocks (Tan & Le, 2019; Sandler et al., 2018) with a narrow -> wide -> narrow
channel structure (Fig. 3A). Each block uses (1) absolute positional encoding (Vaswani et al., 2017)
to compensate for spatial pooling after the core, (2) factorized (1+1) convolutions (Tran et al., 2018),
(3) parameter-free shortcut connections interpolating spatial sizes and repeating channels if needed,
(4) squeeze-and-excitation mechanism (Hu et al., 2018) to dynamically recalibrate channel-wise fea-
tures, (5) DropPath regularization (Larsson et al., 2016; Huang et al., 2016) that randomly drops
the block’s main path for each sample in the batch. Batch normalization is applied after each layer.
SiLU activation (Elfwing et al., 2018) is used after expansion and depth-wise convolutions.

Cortex. Spatial information accumulated through positional encoding was compressed by spatial
global average pooling after the core, while the time dimension was unchanged. The idea of the
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Figure 3: Architectures of winning solutions. Across all subplots: C: number of output channels in
convolution layers, C;,: number of input channels, K: size of convolution kernels, S: stride, G: num-
ber of groups for convolution channels, B: batch size. Core: green, readout: blue. A: DwiseNeuro.
The core is based on 3D factorised convolutions. The only solution whose readout was not based
on the Gaussian readout (Lurz et al., 2021). B: Dynamic-V1FM. The core is transformer-based, the
Gaussian readout is extended to look in different resolution to the core output, then to fuse different
resolutions. Here w represents the readout linear weights learnt for each neuron. C: ViVI1T. The
idea is to replace the core with a spatiotemporal transformer. D: Ensembled factorized baseline.

“cortex” is to smoothly increase the number of channels before the readout and there is no exchange
of information across time. First, the channels are split into two groups, then each group’s channels
are doubled as in a fully connected layer. Next, the channels are shuffled across the groups and
concatenated. The implementation uses 1D convolution with two groups and kernel size one, with
shuffling as in Zhang et al. (2018a). This procedure is repeated three times. Batch normalization,
SiLU activation, and shortcut connections with stochastic depth were applied similarly to the core.

Readout. The readout is independent for each session, represented as a single 1D convolution with
two groups and kernel size 1, 4096 input channels and the number of output channels equal to the
number of neurons per mouse. It is followed by softplus activation as in Hoefling et al. (2022).

Training. The main changes compared to the baseline are introducing CutMix data augmentation
(Yun et al., 2019), removing normalization, and padding the frames to 64 x 64 pixels. For more
details on the training recipe, see Appendix A.l.

Code. Code is available at https://github. com/1Romul/sensorium

6.2 Second place: Dynamic-V1FM

Architecture. Dynamic-V1FM (Dynamic V1 Functional Model), follows the pipeline proposed by
Wang et al. (2023). It incorporates a shared core module across mice and an unshared readout
module for individual mice. The shared core module comprises four blocks of Layer Norms and
3D window based multi-head self-attention (MSA), inspired by the 3D swin transformer block (Liu
et al., 2022) combined with a two-layer behavioral multi-layer perceptron (MLP) module (Li et al.,
2023). The readout module is a Hierarchical Gaussian Readout Module (HGRM), which extends
the Gaussian readout module (Lurz et al., 2021) by introducing a multi-layer design before the final
linear readout (Fig. 3B).

Ensemble Strategy. As the readout module could support up to five levels of features and original
layer is not downsampled and is always used as a base, four combinations of low-resolution features
were traversed, resulting in C§ +C3+C%+C1 = 1+4+6+4 = 15 models, where C¥ is a binomial
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Model \ GPU | GPU memory | Batch Size | Wall Time

DwiseNeuro 2 x RTX A6000 48 Gb 32 12h
Dynamic-V1FM 8 x 2080Ti GPU 11 Gb 32 24h
ViviT 1 x Nvidia A100 40 Gb 60 20h
Factorized baseline | 1 x RTX A5000 24 Gb 40 8h
GRU baseline 1 x RTX A5000 24 Gb 40 10h

Table 2: Training time for a single model (before ensembling).

coefficient CF = ﬁlk)‘ with n elements and k& combinations. Feature enhancement modules
were also added to the low-resolution part of these 15 models, but the performance improvement
was insignificant. As another set of 15 candidate models, they were included in the subsequent
average ensemble strategy. A model with the original Gaussian readout module was also trained as
a baseline. The aforementioned 31 models were trained with a fixed random seed of 42, followed by
an average ensemble of their predictions. For the final results of both competition tracks (the main

track and the out-of-distribution track), the same model and ensemble strategy were used.

Code. Code is available at https://github.com/zhuyu-cs/Dynamic-VFM.

6.3 Third place: ViV1iT

Architecture. The Vision Transformer (ViT, Dosovitskiy et al. 2021) was shown to be competitive
in predicting mouse V1 responses to static stimuli (Li et al., 2023). Here, a factorized Transformer
(ViVIT) core architecture was proposed, based on the Video Vision Transformer by Arnab et al.
(2021), to learn a shared visual representation of dynamic stimuli across animals. The ViVIT core
contains three main components: (1) a tokenizer that concatenates the video and behaviour variables
over the channel dimensions and extracts overlapping tubelet patches along the temporal and spatial
dimensions, followed by a factorized positional embedding which learns the spatiotemporal location
of each patch; (2) a spatial Transformer which receives the tubelet embeddings and learns the spa-
tial relationship over the patches within each frame; (3) a temporal Transformer receives the spatial
embedding and learns a joint spatiotemporal representation of the video and behavioural informa-
tion. This factorized approach allows to apply the self-attention mechanism over the space and time
dimensions separately, reducing the size of the attention matrix and, hence, compute and memory
costs. Moreover, the vanilla multi-head attention mechanism is replaced by FlashAttention-2 (Dao,
2023) and parallel attention (Wang, 2021) to further improve model throughput.

Training. The model was trained on all labeled data from the five original mice and the five com-
petition mice. To isolate the performance differences solely due to the core architecture, the same
shifter module, Gaussian readout (Lurz et al., 2021), data preprocessing and training procedure as
the factorized baseline were employed. Finally, a Bayesian hyperparameter search (Akiba et al.,
2019) of 20 iterations was performed to find an optimised setting for the core module (see Table 3).

Ensemble. The final submission was an average output of 5 models, initialized with different seeds.

Code. Code is available at https://github.com/bryanlimy/ViV1T.

7 Discussion

Different competition submissions explored different architectures. All winners employed architec-
tures distinct from the baseline, but stayed roughly within the core-readout framework (Antolik et al.,
2016; Klindt et al., 2017). Successful strategies included:

* Two out of three winning teams utilized transformer-based cores.

* Two teams also modified the readouts, but no team explicitly modeled temporal processing or
interaction between neurons in the readout.

» However, the “cortex”” module of the winning solution introduced several layers of nonlinear pro-
cessing after spatial average pooling, effectively allowing all-to-all interactions.

* The winning solution kept the factorized 3D convolutions while introducing methods from com-
puter vision models, such as skip connections and squeeze-and-excitation blocks.
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These observations suggest that classic performance-boosting methods from computer vision are
also helpful to boost the performance for neural predictive models. However, the impact of such
architectural changes on the biologically meaningful insights, such as in Franke et al. (2022); Burg
et al. (2021); Ustyuzhaninov et al. (2022), still needs to be validated and requires additional research.

Another observation is that all three winning solutions included a mechanism for all-to-all interac-
tion: the winning solution in the “cortex”, the other two by using a transformer-based core. Thus, al-
though the CNN has originally been modeled after primary visual cortex (Fukushima, 1980), it does
not seem to provide the best inductive bias for modeling, at least mouse V1. Long-range interac-
tions appear to be important. The current data does not allow us to resolve whether these long-range
interactions actually represent visual information, as expected from lateral connections within V1
(Gilbert & Wiesel, 1983, 1989), or from more global signals related to the animal’s behavior (which
is also fed as input to the core). This will be an interesting avenue for future research.

Moving from static images to dynamic inputs in SENSORIUM 2023 increased the participation thresh-
old markedly because of the higher demands on compute and memory. As a result, many models
cannot be trained on freely available resources such as Colab or Kaggle anymore (Table 2).

8 Conclusion

Predictive models are an important tool for neuroscience research and can deliver important insights
to understand computation in the brain (Doerig et al., 2023). We have seen that systematically
benchmarking such models on shared datasets can boost their performance significantly. With the
SENSORIUM benchmark we have successfully established such an endeavor for the mouse visual
system. The 2023 edition successfully integrated lessons from 2022, such as including an ensemble
to encourage participants to focus on new architectures. However, there are still ways to go to
achieve a comprehensive benchmark for models of the visual system. Future iterations could include,
among others, the following aspects:

* Use chromatic stimuli in the mouse vision spectrum (Hoefling et al., 2022; Franke et al., 2022).

* Establish a benchmark for combining different data collection protocols (Azabou et al., 2024) or
modalities (Antoniades et al., 2023).

* Focus not only on the predictive performance on natural scenes, but also on preserving biologically
meaningful functional properties of neurons (Walker et al., 2019; Ustyuzhaninov et al., 2022).

* Extend beyond the primary visual cortex.

* Include more comprehensive measurements of behavioral variables.

* Include active behaviors of the animals.

We invite the research community to join us in this effort by continuing to participate in the bench-
mark and contribute to future editions.

Acknowledgments and Disclosure of Funding

The authors thank GWDG for the technical support and infrastructure provided. Computing time
was made available on the high-performance computers HLRN-IV at GWDG at the NHR Center
NHR @Gottingen. The project received funding by Deutsche Forschungsgemeinschaft (DFG, Ger-
man Research Foundation) via Project-ID 454648639 (SFB 1528), Project-ID 432680300 (SFB
1456), Project-ID 276693517 (SFB 1233) and Project-ID 390727645 (Cluster of Excellence Ma-
chine Learning New Perspectives for Science, EXC 2064/1); the European Research Council (ERC)
under the European Unions Horizon Europe research and innovation programme (Grant agreement
No. 101041669); the German Federal Ministry of Education and Research (BMBF) via the Collab-
orative Research in Computational Neuroscience (CRCNS) (FKZ 01GQ2107); National Institutes
of Health (NIH) via National Eye Insitute (NEI) grant RO1-EY026927, NEI grant T32-EY002520;
National Institute of Mental Health (NIMH) and National Institute of Neurological Disorders and
Stroke (NINDS) grant U19-MH114830, NINDS grant U0O1-NS113294, and NIMH grants RF1-
MH126883 and RF1-MH130416; National Science Foundation (NSF) NeuroNex grant 1707400;
Intelligence Advanced Research Projects Activity (IARPA) via Department of Interior/Interior Busi-
ness Center (Dol/IBC) contract no. D16PC00003; Defense Advanced Research Projects Agency
(DARPA), Contract No. N66001-19-C-4020.

118915 https://doi.org/10.52202/079017-3777



The US Government is authorized to reproduce and distribute reprints for governmental purposes
notwithstanding any copyright annotation thereon. The content is solely the responsibility of the
authors and does not necessarily represent the official views of any funding agency.

FHS is supported by the Carl-Zeiss-Stiftung and an AWS Machine Learning research award. MFB
and KFW were supported by the International Max Planck Research School for Intelligent Sys-
tems. BML and WDW were supported by the United Kingdom Research and Innovation (grant
EP/S02431X/1), UKRI Centre for Doctoral Training in Biomedical Al at the University of Edin-
burgh, School of Informatics.

References

Adelson, E. H., & Bergen, J. R. (1985). Spatiotemporal energy models for the perception of motion.
J. Opt. Soc. Am., 2(2), 284-299.

Akiba, T., Sano, S., Yanase, T., Ohta, T., & Koyama, M. (2019). Optuna: A next-generation hy-
perparameter optimization framework. In Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining.

Allen-Zhu, Z., & Li, Y. (2023). Towards understanding ensemble, knowledge distillation and self-
distillation in deep learning. arXiv.

Antolik, J., Hofer, S. B., Bednar, J. A., & Mrsic-Flogel, T. D. (2016). Model constrained by visual
hierarchy improves prediction of neural responses to natural scenes. PLoS computational biology,
12(6), €1004927.

Antoniades, A., Yu, Y., Canzano, J., Wang, W., & Smith, S. L. (2023). Neuroformer: Multimodal
and multitask generative pretraining for brain data. arXiv preprint arXiv:2311.00136.

Arnab, A., Dehghani, M., Heigold, G., Sun, C., Lucié, M., & Schmid, C. (2021). Vivit: A video
vision transformer. In Proceedings of the IEEE/CVF international conference on computer vision,
(pp- 6836-6846).

Azabou, M., Arora, V., Ganesh, V., Mao, X., Nachimuthu, S., Mendelson, M., Richards, B., Perich,
M., Lajoie, G., & Dyer, E. (2024). A unified, scalable framework for neural population decoding.
Advances in Neural Information Processing Systems, 36.

Bashiri, M., Walker, E., Lurz, K.-K., Jagadish, A., Muhammad, T., Ding, Z., Ding, Z., Tolias, A.,
& Sinz, F. (2021). A flow-based latent state generative model of neural population responses to
natural images. Advances in Neural Information Processing Systems, 34.

Batty, E., Merel, J., Brackbill, N., Heitman, A., Sher, A., Litke, A., Chichilnisky, E., & Paninski,
L. (2017). Multilayer recurrent network models of primate retinal ganglion cell responses. In
International Conference on Learning Representations.

Burg, M. F,, Cadena, S. A., Denfield, G. H., Walker, E. Y., Tolias, A. S., Bethge, M., & Ecker, A. S.
(2021). Learning divisive normalization in primary visual cortex. PLOS Computational Biology,
17(6), e1009028.

Cadena, S. A., Denfield, G. H., Walker, E. Y., Gatys, L. A., Tolias, A. S., Bethge, M., & Ecker,
A.S. (2019). Deep convolutional models improve predictions of macaque v1 responses to natural
images. PLOS Computational Biology, 15(4), e1006897.

Cadieu, C. F,, Hong, H., Yamins, D. L. K., Pinto, N., Ardila, D., Solomon, E. A., Majaj, N. J., &
DiCarlo, J. J. (2014). Deep neural networks rival the representation of primate IT cortex for core
visual object recognition. PLoS Comput. Biol., 10(12), e1003963.

Chen, Y., Dai, X., Liu, M., Chen, D., Yuan, L., & Liu, Z. (2020). Dynamic convolution: Attention
over convolution kernels. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, (pp. 11030-11039).

Cichy, R. M., Dwivedi, K., Lahner, B., Lascelles, A., lamshchinina, P., Graumann, M., Andonian,
A., Murty, N. A. R., Kay, K., Roig, G., & Oliva, A. (2021). The algonauts project 2021 challenge:
How the human brain makes sense of a world in motion. arXiv.

https://doi.org/10.52202/079017-3777 118916



Cichy, R. M., Roig, G., Andonian, A., Dwivedi, K., Lahner, B., Lascelles, A., Mohsenzadeh, Y.,
Ramakrishnan, K., & Oliva, A. (2019). The algonauts project: A platform for communication
between the sciences of biological and artificial intelligence. arXiv.

Cowley, B., & Pillow, J. (2020). High-contrast "gaudy" images improve the training of deep neural
network models of visual cortex. In H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, & H. Lin
(Eds.) Advances in Neural Information Processing Systems 33, (pp. 21591-21603). Curran Asso-
ciates, Inc.

Dao, T. (2023). Flashattention-2: Faster attention with better parallelism and work partitioning.
arXiv preprint arXiv:2307.08691.

de Vries, S. E. J., Lecoq, J. A, Buice, M. A., Groblewski, P. A., Ocker, G. K., Oliver, M., Feng, D.,
Cain, N., Ledochowitsch, P., Millman, D., Roll, K., Garrett, M., Keenan, T., Kuan, L., Mihalas,
S., Olsen, S., Thompson, C., Wakeman, W., Waters, J., Williams, D., Barber, C., Berbesque, N.,
Blanchard, B., Bowles, N., Caldejon, S. D., Casal, L., Cho, A., Cross, S., Dang, C., Dolbeare,
T., Edwards, M., Galbraith, J., Gaudreault, N., Gilbert, T. L., Griffin, F., Hargrave, P., Howard,
R., Huang, L., Jewell, S., Keller, N., Knoblich, U., Larkin, J. D., Larsen, R., Lau, C., Lee, E.,
Lee, F, Leon, A., Li, L., Long, F,, Luviano, J., Mace, K., Nguyen, T., Perkins, J., Robertson, M.,
Seid, S., Shea-Brown, E., Shi, J., Sjoquist, N., Slaughterbeck, C., Sullivan, D., Valenza, R., White,
C., Williford, A., Witten, D. M., Zhuang, J., Zeng, H., Farrell, C., Ng, L., Bernard, A., Phillips,
J. W, Reid, R. C., & Koch, C. (2020). A large-scale standardized physiological survey reveals
functional organization of the mouse visual cortex. Nat. Neurosci., 23(1), 138-151.

Dean, J., Patterson, D., & Young, C. (2018). A new golden age in computer architecture: Empower-
ing the machine-learning revolution. IEEE Micro, 38(2), 21-29.

Ding, Z., Tran, D. T., Ponder, K., Cobos, E., Ding, Z., Fahey, P. G., Wang, E., Muhammad, T., Fu,
J., Cadena, S. A., et al. (2023). Bipartite invariance in mouse primary visual cortex. bioRxiv.
URL https://www.biorxiv.org/content/10.1101/2023.03.15.532836v1

Doerig, A., Sommers, R. P., Seeliger, K., Richards, B., Ismael, J., Lindsay, G. W., Kording, K. P,,
Konkle, T., van Gerven, M. A. J., Kriegeskorte, N., & Kietzmann, T. C. (2023). The neurocon-
nectionist research programme. Nat. Rev. Neurosci., 24(7), 431-450.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani,
M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., & Houlsby, N. (2021). An image is
worth 16x16 words: Transformers for image recognition at scale. In International Conference on
Learning Representations.

URL https://openreview.net/forum?id=YicbFdNTTy

Ecker, A. S., Sinz, F. H., Froudarakis, E., Fahey, P. G., Cadena, S. A., Walker, E. Y., Cobos, E.,
Reimer, J., Tolias, A. S., & Bethge, M. (2018). A rotation-equivariant convolutional neural net-
work model of primary visual cortex. arXiv.

Elfwing, S., Uchibe, E., & Doya, K. (2018). Sigmoid-weighted linear units for neural network
function approximation in reinforcement learning. Neural networks, 107, 3-11.

Franke, K., Willeke, K. F., Ponder, K., Galdamez, M., Zhou, N., Muhammad, T., Patel, S.,
Froudarakis, E., Reimer, J., Sinz, F. H., & Tolias, A. S. (2022). State-dependent pupil dilation
rapidly shifts visual feature selectivity. Nature, 610(7930), 128-134.

URL https://doi.org/10.1038/s41586-022-05270-3

Fu, J., Shrinivasan, S., Ponder, K., Muhammad, T., Ding, Z., Wang, E., Ding, Z., Tran, D. T., Fahey,
P. G., Papadopoulos, S., Patel, S., Reimer, J., Ecker, A. S., Pitkow, X., Haefner, R. M., Sinz, F. H.,
Franke, K., & Tolias, A. S. (2023). Pattern completion and disruption characterize contextual
modulation in mouse visual cortex. bioRxiv.

URL https://www.biorxiv.org/content/early/2023/03/14/2023.03.13.532473

Fukushima, K. (1980). Neocognitron: A self-organizing neural network model for a mechanism of
pattern recognition unaffected by shift in position. Biological cybernetics, 36(4), 193-202.

118917 https://doi.org/10.52202/079017-3777


https://www.biorxiv.org/content/10.1101/2023.03.15.532836v1
https://openreview.net/forum?id=YicbFdNTTy
https://doi.org/10.1038/s41586-022-05270-3
https://www.biorxiv.org/content/early/2023/03/14/2023.03.13.532473

George, D., & Hawkins, J. (2005). A hierarchical bayesian model of invariant pattern recognition in
the visual cortex. In Proceedings. 2005 IEEE International Joint Conference on Neural Networks,
2005., vol. 3, (pp. 1812-1817). IEEE.

Gifford, A. T., Lahner, B., Saba-Sadiya, S., Vilas, M. G., Lascelles, A., Oliva, A., Kay, K., Roig, G.,
& Cichy, R. M. (2023). The algonauts project 2023 challenge: How the human brain makes sense
of natural scenes. arXiv preprint arXiv:2301.03198.

Gilbert, C. D., & Wiesel, T. N. (1983). Clustered intrinsic connections in cat visual cortex. Journal
of Neuroscience, 3(5), 1116-1133.

Gilbert, C. D., & Wiesel, T. N. (1989). Columnar specificity of intrinsic horizontal and corticocorti-
cal connections in cat visual cortex. Journal of Neuroscience, 9(7), 2432-2442.

Heeger, D. J. (1992a). Half-squaring in responses of cat striate cells. Vis. Neurosci., 9(5), 427—-443.

Heeger, D. J. (1992b). Normalization of cell responses in cat striate cortex. Vis. Neurosci., 9(2),
181-197.

Hoefling, L., Szatko, K. P., Behrens, C., Qiu, Y., Klindt, D. A., Jessen, Z., Schwartz, G. S., Bethge,
M., Berens, P, Franke, K., et al. (2022). A chromatic feature detector in the retina signals visual
context changes. bioRxiv, (pp. 2022-11).

URL https://www.biorxiv.org/content/10.1101/2022.11.30.518492.abstract

Hu, J., Shen, L., & Sun, G. (2018). Squeeze-and-excitation networks. In Proceedings of the IEEE
conference on computer vision and pattern recognition, (pp. 7132-7141).

Huang, G., Sun, Y., Liu, Z., Sedra, D., & Weinberger, K. Q. (2016). Deep networks with stochastic
depth. In Computer Vision—-ECCV 2016: 14th European Conference, Amsterdam, The Nether-
lands, October 11-14, 2016, Proceedings, Part IV 14, (pp. 646—661). Springer.

Jones, J. P., & Palmer, L. A. (1987). The two-dimensional spatial structure of simple receptive fields
in cat striate cortex. J. Neurophysiol., 58(6), 1187-1211.

Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., & Fei-Fei, L. (2014). Large-Scale
video classification with convolutional neural networks. In 2014 IEEE Conference on Computer
Vision and Pattern Recognition, (pp. 1725-1732).

Kindel, W. F,, Christensen, E. D., & Zylberberg, J. (2019). Using deep learning to probe the neural
code for images in primary visual cortex. Journal of vision, 19(4), 29-29.

Klindt, D. A., Ecker, A. S., Euler, T., & Bethge, M. (2017). Neural system identification for large
populations separating “what” and “where”. In Advances in Neural Information Processing Sys-
tems, (pp. 4-6).

Larsson, G., Maire, M., & Shakhnarovich, G. (2016). Fractalnet: Ultra-deep neural networks with-
out residuals. arXiv preprint arXiv:1605.07648.

Li, B. M., Cornacchia, I. M., Rochefort, N., & Onken, A. (2023). V1t: large-scale mouse v1 response
prediction using a vision transformer. Transactions on Machine Learning Research.
URL https://openreview.net/forum?id=qHZs2p4ZD4

Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A., & Talwalkar, A. (2017). Hyperband: A
novel bandit-based approach to hyperparameter optimization. The Journal of Machine Learning
Research, 18(1), 6765-6816.

Liu, J. K., Schreyer, H. M., Onken, A., Rozenblit, F., Khani, M. H., Krishnamoorthy, V., Panzeri,
S., & Gollisch, T. (2017). Inference of neuronal functional circuitry with spike-triggered non-
negative matrix factorization. Nature communications, 8(1), 149.

Liu, Z., Ning, J., Cao, Y., Wei, Y., Zhang, Z., Lin, S., & Hu, H. (2022). Video swin transformer.
In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, (pp.
3202-3211).

https://doi.org/10.52202/079017-3777 118918


https://www.biorxiv.org/content/10.1101/2022.11.30.518492.abstract
https://openreview.net/forum?id=qHZs2p4ZD4

Loshchilov, 1., & Hutter, F. (2017). Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101.

Lurz, K.-K., Bashiri, M., Willeke, K., Jagadish, A. K., Wang, E., Walker, E. Y., Cadena, S. A.,
Muhammad, T., Cobos, E., Tolias, A. S., Ecker, A. S., & Sinz, F. H. (2021). Generalization in
data-driven models of primary visual cortex. In Proceedings of the International Conference for
Learning Representations (ICLR), (p. 2020.10.05.326256).

Marques, T., Nguyen, J., Fioreze, G., & Petreanu, L. (2018). The functional organization of cortical
feedback inputs to primary visual cortex. Nature neuroscience, 21(5), 757-764.

Mclntosh, L. T., Maheswaranathan, N., Nayebi, A., Ganguli, S., & Baccus, S. A. (2016). Deep
learning models of the retinal response to natural scenes. Adv. Neural Inf. Process. Syst., 29(Nips),
1369-1377.

MICrONS Consortium, Alexander Bae, J., Baptiste, M., Bodor, A. L., Brittain, D., Buchanan, J.,
Bumbarger, D. J., Castro, M. A., Celii, B., Cobos, E., Collman, F., da Costa, N. M., Dorken-
wald, S., Elabbady, L., Fahey, P. G., Fliss, T., Froudakis, E., Gager, J., Gamlin, C., Halageri, A.,
Hebditch, J., Jia, Z., Jordan, C., Kapner, D., Kemnitz, N., Kinn, S., Koolman, S., Kuehner, K.,
Lee, K., Li, K., Lu, R., Macrina, T., Mahalingam, G., McReynolds, S., Miranda, E., Mitchell, E.,
Mondal, S. S., Moore, M., Mu, S., Muhammad, T., Nehoran, B., Ogedengbe, O., Papadopoulos,
C., Papadopoulos, S., Patel, S., Pitkow, X., Popovych, S., Ramos, A., Clay Reid, R., Reimer, J.,
Schneider-Mizell, C. M., Sebastian Seung, H., Silverman, B., Silversmith, W., Sterling, A., Sinz,
F. H., Smith, C. L., Suckow, S., Tan, Z. H., Tolias, A. S., Torres, R., Turner, N. L., Walker, E. Y.,
Wang, T., Williams, G., Williams, S., Willie, K., Willie, R., Wong, W., Wu, J., Xu, C., Yang, R.,
Yatsenko, D., Ye, F,, Yin, W,, & Yu, S.-C. (2021). Functional connectomics spanning multiple
areas of mouse visual cortex. bioRxiv, (p. 2021.07.28.454025).

Morrone, M. C., Tosetti, M., Montanaro, D., Fiorentini, A., Cioni, G., & Burr, D. C. (2000). A
cortical area that responds specifically to optic flow, revealed by fMRI. Nat. Neurosci., 3(12),
1322-1328.

Niell, C. M., & Stryker, M. P. (2010). Modulation of visual responses by behavioral state in mouse
visual cortex. Neuron, 65(4), 472-479.

Pavao, A., Guyon, 1., Letournel, A.-C., Bard, X., Escalante, H., Escalera, S., Thomas, T., & Xu, Z.
(2022). CodaLab Competitions: An open source platform to organize scientific challenges. Ph.D.
thesis, Université Paris-Saclay, FRA.

Pei, F, Ye, J., Zoltowski, D., Wu, A., Chowdhury, R. H., Sohn, H., O’Doherty, J. E., Shenoy, K. V.,
Kaufman, M. T., Churchland, M., et al. (2021). Neural latents benchmark’21: evaluating latent
variable models of neural population activity. arXiv preprint arXiv:2109.04463.

Perrone, J. A., & Liston, D. B. (2015). Redundancy reduction explains the expansion of visual
direction space around the cardinal axes. Vision Research, 111, 31-42.

Petkov, N., & Subramanian, E. (2007). Motion detection, noise reduction, texture suppression, and
contour enhancement by spatiotemporal gabor filters with surround inhibition. Biol. Cybern.,
97(5-6), 423-439.

Pogoncheff, G., Granley, J., & Beyeler, M. (2023). Explaining v1 properties with a biologically
constrained deep learning architecture. Advances in Neural Information Processing Systems, 36,
13908-13930.

Qiu, Y., Klindt, D. A., Szatko, K. P., Gonschorek, D., Hoefling, L., Schubert, T., Busse, L., Bethge,
M., & Euler, T. (2023). Efficient coding of natural scenes improves neural system identification.
PLOS Computational Biology, 19(4), e1011037.

Reimer, J., Froudarakis, E., Cadwell, C. R., Yatsenko, D., Denfield, G. H., & Tolias, A. S. (2014).

Pupil fluctuations track fast switching of cortical states during quiet wakefulness. Neuron, 84(2),
355-362.

118919 https://doi.org/10.52202/079017-3777



Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla,
A., Bernstein, M., Berg, A. C., & Fei-Fei, L. (2015). ImageNet large scale visual recognition
challenge. Int. J. Comput. Vis., 115(3), 211-252.

Rust, N. C., Schwartz, O., Movshon, J. A., & Simoncelli, E. P. (2005). Spatiotemporal elements of
macaque v1 receptive fields. Neuron, 46(6), 945-956.

Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., & Chen, L.-C. (2018). Mobilenetv2: Inverted
residuals and linear bottlenecks. In Proceedings of the IEEE conference on computer vision and
pattern recognition, (pp. 4510-4520).

Schrimpf, M., Kubilius, J., Hong, H., Majaj, N. J., Rajalingham, R., Issa, E. B., Kar, K., Bashivan,
P., Prescott-Roy, J., Geiger, F., et al. (2018). Brain-score: Which artificial neural network for
object recognition is most brain-like? BioRxiv, (p. 407007).

Schrimpf, M., Kubilius, J., Lee, M. J., Ratan Murty, N. A., Ajemian, R., & DiCarlo, J. J. (2020).
Integrative benchmarking to advance neurally mechanistic models of human intelligence. Neuron,
108(3), 413-423.

Siegle, J. H., Jia, X., Durand, S., Gale, S., Bennett, C., Graddis, N., Heller, G., Ramirez, T. K., Choi,
H., Luviano, J. A., Groblewski, P. A., Ahmed, R., Arkhipov, A., Bernard, A., Billeh, Y. N., Brown,
D., Buice, M. A., Cain, N., Caldejon, S., Casal, L., Cho, A., Chvilicek, M., Cox, T. C., Dai, K.,
Denman, D. J., de Vries, S. E. J., Dietzman, R., Esposito, L., Farrell, C., Feng, D., Galbraith,
J., Garrett, M., Gelfand, E. C., Hancock, N., Harris, J. A., Howard, R., Hu, B., Hytnen, R., Iyer,
R., Jessett, E., Johnson, K., Kato, I., Kiggins, J., Lambert, S., Lecoq, J., Ledochowitsch, P., Lee,
J. H., Leon, A, Li, Y., Liang, E., Long, FE., Mace, K., Melchior, J., Millman, D., Mollenkopf, T.,
Nayan, C., Ng, L., Ngo, K., Nguyen, T., Nicovich, P. R., North, K., Ocker, G. K., Ollerenshaw,
D., Oliver, M., Pachitariu, M., Perkins, J., Reding, M., Reid, D., Robertson, M., Ronellenfitch,
K., Seid, S., Slaughterbeck, C., Stoecklin, M., Sullivan, D., Sutton, B., Swapp, J., Thompson,
C., Turner, K., Wakeman, W., Whitesell, J. D., Williams, D., Williford, A., Young, R., Zeng, H.,
Naylor, S., Phillips, J. W., Reid, R. C., Mihalas, S., Olsen, S. R., & Koch, C. (2021). Survey of
spiking in the mouse visual system reveals functional hierarchy. Nature, 592(7852), 86-92.

Simoncelli, E. P., Paninski, L., Pillow, J., Schwartz, O., et al. (2004). Characterization of neural
responses with stochastic stimuli. The cognitive neurosciences, 3(327-338), 1.

Sinz, F., Ecker, A. S., Fahey, P., Walker, E., Cobos, E., Froudarakis, E., Yatsenko, D., Pitkow, Z.,
Reimer, J., & Tolias, A. (2018). Stimulus domain transfer in recurrent models for large scale
cortical population prediction on video. Advances in neural information processing systems, 31.

Sinz, F. H., Pitkow, X., Reimer, J., Bethge, M., & Tolias, A. S. (2019). Engineering a less artificial
intelligence. Neuron, 103(6), 967-979.
URL https://doi.org/10.1016/j.neuron.2019.08.034

Sofroniew, N. J., Flickinger, D., King, J., & Svoboda, K. (2016). A large field of view two-photon
mesoscope with subcellular resolution for in vivo imaging. elife, 5, e14472.

Tan, M., & Le, Q. (2019). Efficientnet: Rethinking model scaling for convolutional neural networks.
In International conference on machine learning, (pp. 6105-6114). PMLR.

Touryan, J., Felsen, G., & Dan, Y. (2005). Spatial structure of complex cell receptive fields measured
with natural images. Neuron, 45(5), 781-791.

Tran, D., Wang, H., Torresani, L., Ray, J., LeCun, Y., & Paluri, M. (2018). A closer look at spatiotem-
poral convolutions for action recognition. In Proceedings of the IEEE conference on Computer
Vision and Pattern Recognition, (pp. 6450-6459).

Turishcheva, P., Fahey, P. G., Hansel, L., Froebe, R., Ponder, K., Vystr¢ilovd, M., Willeke, K. F,,

Bashiri, M., Wang, E., Ding, Z., et al. (2023). The dynamic sensorium competition for predicting
large-scale mouse visual cortex activity from videos. ArXiv.

https://doi.org/10.52202/079017-3777 118920


https://doi.org/10.1016/j.neuron.2019.08.034

Ustyuzhaninov, 1., Burg, M. F,, Cadena, S. A., Fu, J., Muhammad, T., Ponder, K., Froudarakis, E.,
Ding, Z., Bethge, M., Tolias, A. S., & Ecker, A. S. (2022). Digital twin reveals combinatorial
code of non-linear computations in the mouse primary visual cortex.

URL https://doi.org/10.1101/2022.02.10.479884

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., & Polo-
sukhin, I. (2017). Attention is all you need. Advances in neural information processing systems,
30.

Vintch, B., Movshon, J. A., & Simoncelli, E. P. (2015). A convolutional subunit model for neuronal
responses in macaque v1. Journal of Neuroscience, 35(44), 14829—14841.

Vystréilova, M., Sridhar, S., Burg, M. E., Gollisch, T., & Ecker, A. S. (2024). Convolutional neural
network models of the primate retina reveal adaptation to natural stimulus statistics. bioRxiv.
URL https://www.biorxiv.org/content/early/2024/03/09/2024.03.06.583740

Walker, E. Y., Cotton, R. J., Ma, W. J., & Tolias, A. S. (2020). A neural basis of probabilistic
computation in visual cortex. Nature Neuroscience, 23(1), 122-129.

Walker, E. Y., Sinz, F. H., Cobos, E., Muhammad, T., Froudarakis, E., Fahey, P. G., Ecker, A. S.,
Reimer, J., Pitkow, X., & Tolias, A. S. (2019). Inception loops discover what excites neurons
most using deep predictive models. Nat. Neurosci., 22(12), 2060-2065.

Wang, B. (2021). Mesh-Transformer-JAX: Model-Parallel Implementation of Transformer Lan-
guage Model with JAX. https://github.com/kingoflolz/mesh-transformer-jax.

Wang, E. Y., Fahey, P. G., Ponder, K., Ding, Z., Chang, A., Muhammad, T., Patel, S., Ding, Z., Tran,
D., Fu, J., Papadopoulos, S., Franke, K., Ecker, A. S., Reimer, J., Pitkow, X., Sinz, F. H., & Tolias,
A. S. (2023). Towards a foundation model of the mouse visual cortex. bioRxiv.

URL https://www.biorxiv.org/content/early/2023/03/24/2023.03.21.533548

Willeke, K. F., Fahey, P. G., Bashiri, M., Pede, L., Burg, M. F., Blessing, C., Cadena, S. A., Ding,
Z., Lurz, K.-K., Ponder, K., Muhammad, T., Patel, S. S., Ecker, A. S., Tolias, A. S., & Sinz, F. H.
(2022). The sensorium competition on predicting large-scale mouse primary visual cortex activity.
arXiv.

Wu, M. C.-K., David, S. V., & Gallant, J. L. (2006). Complete functional characterization of sensory
neurons by system identification. Annu. Rev. Neurosci., 29, 477-505.

Wu, N., Valera, 1., Ecker, A., Euler, T., & Qiu, Y. (2023). Bayesian neural system identification with
response variability. arXiv preprint arXiv:2308.05990.

Yamins, D. L. K., Hong, H., Cadieu, C. F., Solomon, E. A., Seibert, D., & DiCarlo, J. J. (2014).
Performance-optimized hierarchical models predict neural responses in higher visual cortex. Pro-
ceedings of the National Academy of Sciences, 111(23), 8619-8624.

URL https://doi.org/10.1073/pnas.1403112111

Yun, S., Han, D., Oh, S. J., Chun, S., Choe, J., & Yoo, Y. (2019). Cutmix: Regularization strategy
to train strong classifiers with localizable features. In Proceedings of the IEEE/CVF international
conference on computer vision, (pp. 6023-6032).

Zhang, X., Zhou, X., Lin, M., & Sun, J. (2018a). Shufflenet: An extremely efficient convolutional
neural network for mobile devices. In Proceedings of the IEEE conference on computer vision
and pattern recognition, (pp. 6848—6856).

Zhang, Y., Lee, T.-S. T. S., Li, M., Liu, F, Tang, S., Sing, T., Ming, L., Fang, L., Shiming, L.,
Lee, T.-S. T. S., Li, M,, Liu, F,, & Tang, S. (2018b). Convolutional neural network models of V1
responses to complex patterns. J. Comput. Neurosci., (pp. 1-22).

Zheng, Y., Jia, S., Yu, Z., Liu, J. K., & Huang, T. (2021). Unraveling neural coding of dynamic
natural visual scenes via convolutional recurrent neural networks. Patterns, 2.

118921 https://doi.org/10.52202/079017-3777


https://doi.org/10.1101/2022.02.10.479884
https://www.biorxiv.org/content/early/2024/03/09/2024.03.06.583740
https://github.com/kingoflolz/mesh-transformer-jax
https://www.biorxiv.org/content/early/2023/03/24/2023.03.21.533548
https://doi.org/10.1073/pnas.1403112111

A Appendix

A.1 First place —- DwiseNeuro

Analysis of Improvements. All of the score numbers are in for the main track during the compe-
tition live phase. An early model with depth-wise 3D convolution blocks achieved a score of ~0.19.
Implementing techniques from the core section, tuning hyperparameters, and training on ten mice
instead of five data boosted the score to 0.25. Removing normalization improved the score to 0.27.
The cortex and CutMix (Yun et al., 2019) increased the score to 0.276. Then, the 3 value of Softplus
was tuned, resulting in a score of 0.294. Lastly, adjusting drop rate and batch size parameters helped
to achieve a score of 0.3. The ensemble of the basic and distillation A.1 training stages achieved a
single-trial correlation of 0.2913. This is just slightly better than the basic training.

* Learning rate warmup for the first three epochs from O to 2.4e-03
* cosine annealing last 18 epochs to 2.4e-05

* Batch size 32, one training epoch comprises 72000 samples

* Optimizer AdamW with weight decay 0.05

* Poisson loss

* Model EMA with decay 0.999

* CutMix with alpha 1.0 and usage probability 0.5

* The sampling of different mice in the batch is random by uniform distribution

A.2  Second place — The Runner-up Solution Dyramic-V1FM
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Figure 4: The overall architecture of Dynamic-V1FM. The core module consists of four 3D-SBBMs
that process video and behavioral information, as detailed in the lower left. The unshared readout
module includes five levels of features before linear readout in the lower right.
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A.2.1 Experiments

Training Details. We trained Dynamic-V1FM using the training set of ten mice data provided by
the competition, and tested it with only five mice data required for submission. Note that we did not
employ any pre-training strategy and directly performed the evaluations required by the competition
after training. During training, we used truncated normal initialization for the core module and
the same initialization strategy for the readout module as Lurz et al. (2021). The whole model
was optimized by AdamW optimizer (Loshchilov & Hutter, 2017) with (51, 82) = (0.9,0.999),
weight_decay = 0.05, and a batch size of 32. Each batch contained 30 frames of randomly sampled
data. The peak learning rate was le ™2, linearly warmed up with ratio % for the first 600 iterations,
then kept constant for the first 80 epochs and decreased to 10~ in the last 100 epochs with a cosine
strategy. All the models used in the ensemble strategy shared the same training setting.
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Experimental Results. On the live-test evaluation, the improvement of the core module, replacing
3D convolution with 3D swin transformer, resulted in an R? improvement of 0.045 (from 0.188 to
0.233). Enhancements in the readout module, replacing Gaussian readout to Hierarchical Gaussian
readout, further improved the model by 0.018 (from 0.233 to 0.251). The final ensemble strategy
yielded an overall prediction score of 0.276.

Parameter Search: The participants did a limited hyperparameter search; they manually adjusted
only the learning rate (le-4,5e-4,1e-3,2e-3,5¢e-3) and the number of channels in the Core module
(32,64,128,160,224). As for the batch size, the GPU utilization was maximized, therefore, batch
size was 32 consistently throughout the experiments. All other hyperparameters were left at their
default values without further optimization.

A.2.2 Discussions

We shall provide some thoughts on the V1FM design. Using combined data sets from multiple mice
and a shared core module for training is an efficient approach, although the subject-specific readout
module strategy increases the difficulty of training the core module. This design could be viewed
as a stronger regularization that may weaken the performance of the whole model. This problem
might be alleviated by designing a new shared readout module that also relies on subject-specific
information, such as mice identities and behavioral data. Specifically, we can use a readout module
with dynamic weights (Chen et al., 2020) which is adjusted by mice identities and pupil size.

A.3 Third place - ViV1T

Table 3: ViVIT core hyperparameter search space and their final settings. We performed Hyperband
Bayesian optimization (Li et al., 2017) with 20 iterations to find the setting that yield the best single
trial correlation in the validation set. The resulting ViV1T model contains 12M trainable parameters,
about 13% more than the factorized baseline.

HYPERPARAMETER  SEARCH SPACE FINAL VALUE
CORE

EMBEDDING DIM. UNIFORM, MIN: 8, MAX: 512, STEP: 8 112
LEARNING RATE UNIFORM, MIN: 0.0001, MAX: 0.01 0.0048
PATCH DROPOUT UNIFORM, MIN: 0, MAX: 0.5 0.1338
DROP PATH UNIFORM, MIN: 0, MAX: 0.5 0.0505
POS. ENCODING NONE, LEARNABLE, SINUSOIDAL LEARNABLE
WEIGHT DECAY UNIFORM, MIN: 0, MAX: 1 0.1789
BATCH SIZE UNIFORM, MIN: 1, MAX: 64 6
SPATIAL TRANSFORMER

NUM. BLOCKS UNIFORM, MIN:1, MAX: 8, STEP: 1 3
PATCH SIZE UNIFORM, MIN: 3, MAX: 16, STEP: 1 7
PATCH STRIDE UNIFORM, MIN: 1, MAX: PATCH SIZE, STEP: 1 2
TEMPORAL TRANSFORMER

NUM. BLOCKS UNIFORM, MIN:1, MAX: 8, STEP: 1 5
PATCH SIZE UNIFORM, MIN: 1, MAX: 50, STEP: 1 25
PATCH STRIDE UNIFORM, MIN: 1, MAX: PATCH SIZE, STEP: 1 1
MULTI-HEAD ATTENTION (MHA) LAYER

NUM. HEADS UNIFORM, MIN: 1, MAX: 16, STEP: 1 11
HEAD DIM. UNIFORM, MIN: 8, MAX: 512, STEP: 8 48
MHA DROPOUT UNIFORM, MIN: 0, MAX: 0.5 0.3580
FEEDFORWARD (FF) LAYER

FF DIMm. UNIFORM, MIN: 8, MAX: 512, STEP: 8 136
FF ACTIVATION TANH, SigMoID, ELU, GELU, SWIGLU GELU
FF DROPOUT UNIFORM, MIN: 0, MAX: 0.5 0.0592
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HYPERPARAMETER  IMPORTANCE  CORRELATION

batch size 0.374 -0.663
core learning rate 0.099 -0.411
weight decay 0.063 0.259
drop path 0.041 -0.353
embedding dim. 0.039 0.040
FF dropout 0.031 -0.358
patch dropout 0.030 -0.339
FF dim. 0.026 0.251
temporal patch size  0.026 0.104
learning rate 0.024 -0.265

Table 4: The top 10 most important hyperparameters estimated in the Bayesian hyperparam-
eter search for the ViV1T solution (3rd place). The importance score is the feature importance
values of a random forest model trained on the hyperparameters as inputs and the hyperparameter
search objective (single trial correlation on the validation set) as the target output. The correlation
value is the linear correlation between the hyperparameter and search objective.

Baseline Core Layers | Channels | Input Spatial | Spatial
Kernels Kernels

GRU Rotation-equivariant 4 8 9x%x9 TxT

3D Factorized 3D factorized 3 32,64, 128 11 x 11 5xb

Table 5: Core parameters for the baseline architectures. Compared to the GRU baseline, the
amount of channels in the core was increased sequentially.

A.4 Baseline architectures parameters

The GRU baseline used rotation-equivariant core from Ecker et al. (2018) with 8 rotations, resulting
in 64 channels totally (8 channels x 8 rotations = 64). Inspired by Sinz et al. (2019) we used the
GRU module after the core. It had 64 channels, and both input and recurrent kernels were 9 x 9.

For the 3D Factorized baseline, we used the core inspired by Hoefling et al. (2022); Vystréilova
et al. (2024). The temporal kernels were 11 x 1 in the 1st layer and 5 x 1 afterwards, same as the
spatial ones (Tab. 5).

The Ensembled baseline cores were same as for the 3D Factorized baseline.
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A.5 Stability analysis

Main track
Seed single-trial ps; 1T average piq T
8 0.1932 0.3650
16 0.1642 0.3210
42 0.1887 0.3569
64 0.1780 0.3380
128 0.1839 0.3479
512 0.1799 0.3402
1024 0.1865 0.3528
2048 0.1672 0.3178
4096 0.1734 0.3305
16384 0.1880 0.3571
32768 0.1933 0.3661
131072 0.1852 0.3513
262144 0.1839 0.3488
1048576 0.1943 0.3674
mean 0.1828 0.3472
std 0.0094 0.0159

Table 6: We used seeds 8, 16, 42, 64, 128, 512, 1024, 2048, 4096, 16384, 32768, 131072, 262144,
104857 to ensemble the factorized benchmark. Here we provide the individual performance of the
models on the final test set to analyse how much performance depended on the seed.

A.6 Discussion on what is crucial to create the best performing model

Indeed hyperparameter tuning is an important part of succeeding in a competition. Unfortunately,
it is really hard to compare the degree of hyperparameter tuning across different models, especially
when it comes to hyperparameters such as number of layers or layers width because the solutions
used fundamentally different architectures (CNN vs transformers). Two of the winning teams varied
the batch size, dropout and weight decay, therefore, we believe this is not the main factor determining
the winner.

Usage of data augmentation is still very limited in the neuronal predictive modeling community
because it is not clear how augmenting the image should change the neurons responses. In fact, this
is the first time we saw data augmentation (CutMix) used for this task and we are happy to report
it, though its improvement was fairly limited according to appendix Al (+0.006). The biological
meaning of CutMix also requires further investigation.

Tuning the nonlinearity is an interesting strategy. Tuning the softplus seemed to be quite helpful
(+0.018). This result is not entirely unexpected: Cadena et al. (2019) also "found that optimizing the
final nonlinearity, f(x), of each neuron was important for optimal performance of the data-driven
CNN'". However, this adds parameters, therefore, it is partially an architectural change as well.
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A.7 Existing datasets comparison

SOURCE GOAL RECORDING SPECIES BRAIN AREA NEURONS STIMULI / TASK TEST SET
Sensorium  Model comparision Calcium 7 mice V1 >28,000 Natural images +
2022 for static stimuli imaging
responses in mice V1
Allen Brain Study how mouse Calcium 243 V1,LM, AL, ~60,000 Drifting/Static gratings —
Observatory visual cortex works imaging mice PM, AM, RL, Natural images/movies;
layers 2-6 Spontaneuos activity;
Locally sparse noise;
MICrONS  Study how mouse Calcium 1 V1,RL, AL, ~75,000 Natural Movies; Local -
visual cortex works imaging mouse LM; layers 1-6 /Global Directional
Parametric Stimulus
Berkeley Compare neural Electro- Macaque primary visual & 208; Natural movies/images; +
Neural predictive models physio- songbird auditory cortex, only 12 for  birdsong or 3-sec
Prediction  for different systems  logy ferret field L V1 movies  natural vocalizations
Challenge
Brain- Evaluate how well Electro- Human & V1, V2, 2018: 2018 & 2024: natural 2018 +
Score task-pretrained com-  physio- non-hum. V4, IT 256 neurons. 2022 had a few videos 2022 +
puter vision models logy & primates 2022 & 2024 but images were 2024 -
match the neural fMRI included the main focus
representations fMRI
Neural Predict held-out Electro- monkeys dorsal premotor, 431 motor tasks: maze; +
Latents neurons’ activity physio- primary motor cortex random target;
21 from other neurons logy Brodmann’s area 2, bump task;
dorsomedial frontal cort. ready-set-go tasks
Algonauts  Model comparison fMRI 8 whole - Natural +
23 for fMRI responses Humans  brain scenes
(used The Natural
Scenes Dataset (NSD))
Sensorium  Models comparision ~ Calcium 10 V1 78,853 Natural movies/images; +
2023 for dynamic stimuli imaging mice Global Directional
(Ours) responses in mice V1 Parametric Stimulus;

Random/Gaussian Dots;
Drifting Gabor

Table 7: Comparing existing datasets. None of the previously existing datasets could be used for
Sensorium 2023 competition as they do not have enough neurons, image different species or brain
areas, do not have single-neuron resolution or do not have held-out test set. Data source can be a
competition, agregating several datasets or a standalone dataset.
PS: Brain Score *24 focused on creating benchmarks, while 18 and 22 compared models.
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A.8 Supplementary materials
A.8.1 Dataset documentation and intended uses

Dataset documentation is available at https://gin.g-node.org/pollytur/sensorium_2023_
dataset (dataset stucture) and in the whitepaper (Turishcheva et al., 2023) (data collection methodol-
ogy). Intended usage examples (loading of the data and models training) are available here: https:
//github.com/ecker-lab/sensorium_2023/tree/main/notebooks.

A.8.2 URL for data download

Five competition mice: https://gin.g-node.org/pollytur/sensorium_2023_dataset
Five mice with ood responses https://gin.g-node.org/pollytur/sensorium_2023_data/src/
798baB8ad041d8£0£0ce879a£396d52c7238c2730.

A.8.3 Croissant url

As the croissant library currently does not support the Video and List data types (https:
//github.com/mlcommons/croissant/issues/690), we generated the high-level meta file us-
ing kaggle interface: https://github.com/ecker-lab/sensorium_2023/blob/croissant_file/
sensorium-2023-metadata. json

A.8.4 Author statement

Author bear all responsibility in case of violation of rights. Both data and code are available under Creative
Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

A.8.5 Hosting, licensing, and maintenance plan

Following SENSORIUM 2022, data is hosted at https://gin.g-node.org, which is a publicly available
platform, where data can be downloaded both via GUI or command line. The code is hosted in a public
repository via https://github.com. The data does not need maintenance. Both data and code are avail-
able under Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. In case
of any problems with the data hosting webpage, the authors have local copies of data and would re-release
1t.
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Checklist

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s contri-
butions and scope?
[Yes] Yes, we introduce a competition to predict single neuron activity in visual cortex in
response to dynamic stimuli. The competition is accompanied with a unique dataset and then
stay as a benchmark after the competition end. We report the improvements achieved during
the competition.

(b) Did you describe the limitations of your work?
[Yes] In Sec.7 we discuss that openly available training infrastructure might not be enough
for our competition and in Sec.8 we provide the ways to extend our benchmark.

(c) Did you discuss any potential negative societal impacts of your work?

We do not think there are potential negative societal impacts of our work. The bench-
marks have shown to improve the machine learning field and the model needed for the sake
of this competition/benchmark are small and do not require a lot of resources in comparision
with modern LLM, picture or video generation models, etc.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to them?
[Yes] We read and followed NeurIPS Code of Ethics. Moreover, as our dataset involved
animal experiment, all procedures were approved by the Institutional Animal Care and Use
Committee of Baylor College of Medicine.

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results?
[N/A] Paper does not provide theoretical results.

(b) Did you include complete proofs of all theoretical results?
[N/A] Paper does not provide theoretical results.

3. If you ran experiments (e.g. for benchmarks)...

(a) Did you include the code, data, and instructions needed to reproduce the main experimental
results (either in the supplemental material or as a URL)?
[Yes] We include URL for the data access and for the benchmark code and participants also
provided URL for their code (Sections 3 and 6).

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they were
chosen)?
[Yes] The data split is fixed with the dataset. The training procedure is described in Sec.5.
The winners training procedures are decribed in Sec.6 if different and in appendix.

(c) Did you report error bars (e.g., with respect to the random seed after running experiments
multiple times)?
[Yes] We do not provide error bars but we do provide the analysis of seed impact in appendix,
section "Stability analysis" (Tab. 6)

(d) Did you include the total amount of compute and the type of resources used (e.g., type of
GPUs, internal cluster, or cloud provider)?
[Yes] . See table 2.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators?
[Yes] We used Codalab Competition to self-host our competition webpage and the Codalab
Competition is mentioned and cited in ’Sensorium Competition Overview’ section (section 2).
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(b) Did you mention the license of the assets?
[Yes] . Yes, Apache License 2.0 is mentioned at the same place as Codalab Competition is
cited.

(c) Did you include any new assets either in the supplemental material or as a URL?
[Yes] We include URL for the data access and for the benchmark code and participants also
provided URL for their code (Sections 3 and 6).

(d) Did you discuss whether and how consent was obtained from people whose data you’re us-
ing/curating?
[N/A] We do not use any data from people.

(e) Did you discuss whether the data you are using/curating contains personally identifiable infor-
mation or offensive content?
[N/A] The dataset we provide does not contain any personally identifiable information or
offensive content.

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if applicable?

[N/A] We did not used crowdsourcing or research with human subjects

(b) Did you describe any potential participant risks, with links to Institutional Review Board (IRB)
approvals, if applicable?
[N/A] We did not used crowdsourcing or research with human subjects

(c) Did you include the estimated hourly wage paid to participants and the total amount spent on
participant compensation?
[N/A] We did not used crowdsourcing or research with human subjects
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