
ElasTST: Towards Robust Varied-Horizon
Forecasting with Elastic Time-Series Transformer

Jiawen Zhang∗

DSA, HKUST(GZ)
Guangzhou, China

jiawe.zh@gmail.com

Shun Zheng†

Microsoft Research Asia
Beijing, China

shun.zheng@microsoft.com

Xumeng Wen
Microsoft Research Asia

Beijing, China
xumengwen@microsoft.com

Xiaofang Zhou
CSE, HKUST

Hong Kong SAR, China
zxf@ust.hk

Jiang Bian
Microsoft Research Asia

Beijing, China
jiang.bian@microsoft.com

Jia Li†
DSA, HKUST(GZ)
Guangzhou, China
jialee@ust.hk

Abstract

Numerous industrial sectors necessitate models capable of providing robust fore-
casts across various horizons. Despite the recent strides in crafting specific ar-
chitectures for time-series forecasting and developing pre-trained universal mod-
els, a comprehensive examination of their capability in accommodating varied-
horizon forecasting during inference is still lacking. This paper bridges this
gap through the design and evaluation of the Elastic Time-Series Transformer
(ElasTST). The ElasTST model incorporates a non-autoregressive design with
placeholders and structured self-attention masks, warranting future outputs that
are invariant to adjustments in inference horizons. A tunable version of rotary
position embedding is also integrated into ElasTST to capture time-series-specific
periods and enhance adaptability to different horizons. Additionally, ElasTST
employs a multi-scale patch design, effectively integrating both fine-grained and
coarse-grained information. During the training phase, ElasTST uses a horizon
reweighting strategy that approximates the effect of random sampling across mul-
tiple horizons with a single fixed horizon setting. Through comprehensive ex-
periments and comparisons with state-of-the-art time-series architectures and con-
temporary foundation models, we demonstrate the efficacy of ElasTST’s unique
design elements. Our findings position ElasTST as a robust solution for the
practical necessity of varied-horizon forecasting. ElasTST is open-sourced at
https://github.com/microsoft/ProbTS/tree/elastst.

1 Introduction

Time-series forecasting plays a crucial role in diverse industries, where it is essential to provide
forecasts over various time horizons, accommodating both short-term and long-term planning re-
quirements. This includes predicting COVID-19 cases and fatalities one and four weeks ahead to
allocate public health resources [7], estimating future electricity demand on an hourly, weekly, or
monthly basis to optimize power management [16], and projecting both immediate and long-term
traffic conditions for efficient road management [2, 27], among others.

∗This work was done during the internship at Microsoft Research Asia.
†Corresponding Author.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

119174 https://doi.org/10.52202/079017-3786

https://github.com/microsoft/ProbTS/tree/elastst

Despite this, a majority of advanced time-series Transformer [30] variants developed in recent years
still necessitate per-horizon training and deployment [37, 40, 33, 32, 22, 20, 39]. These models
struggle to handle longer inference horizons once trained for a specific horizon, and may yield sub-
optimal performance when assessed for shorter horizons. These constraints lead to the practical
inconvenience of maintaining distinct model checkpoints for different forecasting horizons required
by real-world applications.

Even though recent studies on pre-training universal time-series foundation models have made some
progress in facilitating varied-horizon forecasting [26, 9, 8, 31], they primarily concentrate on as-
sessing the overall transfer performance from pre-training datasets to zero-shot scenarios. However,
they lack an in-depth investigation into the challenges of generating robust forecasts for different
horizons. To be specific, TimesFM [9], a decoder-only Transformer, is capable of arbitrary-horizon
forecasting, but this approach could potentially lead to substantial error propagation in long-term
forecasting scenarios due to autoregressive decoding. DAM [8], though free from this issue thanks
to a novel output design composing sinusoidal functions, cannot effectively capture abrupt changes
in time-series data, thereby limiting its utility in critical domains such as energy and traffic. More-
over, while MOIRAI [31] employs a full-attention encoder-only Transformer architecture and sup-
ports arbitrary-horizon forecasting via a non-autoregressive manner by introducing mask tokens into
forecasting horizons, it remains uncertain how well MOIRAI adapts to different horizons. For ex-
ample, its architecture design does not ensure the horizon-invariant property: the model output for
a specific future position should be invariant to arbitrary extensions in forecasting horizons beyond
that. Besides, its performance could drop significantly for moderate context lengths.

To address this research gap, we introduce a comprehensive study to explore how to construct a
time-series Transformer variant that can yield robust forecasts for varied inference horizons once
trained. We name the developed model as Elastic Time-Series Transformer (ElasTST). ElasTST
adopts a non-autoregressive design by incorporating placeholders into forecasting horizons, which
is inspired by diffusion Transformers [24] and the success of SORA [3] in video generation. Here
we impose structured self-attention masks, only allowing placeholders to attend to observed time-
series patches. This design ensures the aforementioned horizon-invariant property by blocking the
information exchange across placeholders. Additionally, we devise a tunable version of rotary posi-
tion embedding (RoPE) [28] to capture customized period coefficients for time series and to learn
the adaptation to varied forecasting horizons. Furthermore, we introduce a multi-patch design to
balance fine-grained patches beneficial to short-term forecasting with coarse-grained patches pre-
ferred by long-term forecasting, and use a shared Transformer backbone to handle these multi-scale
patches. Alongside core model designs, during the training phase, we deploy a horizon reweight-
ing approach that approximates the effects of random sampling across multiple training horizons
using just one fixed horizon, eliminating the need for additional sampling efforts. Collectively, these
key customizations facilitate ElasTST to produce consistent and accurate forecasts across various
horizons.

Our extensive experiments affirm the effectiveness of ElasTST in varied-horizon forecasting. First,
we evaluated ElasTST, trained with a fixed horizon and employing a reweighting scheme, against
state-of-the-art models trained for specific inference horizons. The results demonstrate that ElasTST
delivers competitive performance without requiring per-horizon tuning. Then, we examined varied-
horizon forecasting for these models, and the advantages of ElasTST are much more outstand-
ing, demonstrating remarkable extrapolations to longer horizons while preserving robust results for
shorter ones. Moreover, we also compared ElasTST with some pre-trained time-series models, such
as TimesFM and MOIRAI, and found that dataset-specific tuning still offers prominent advantages
over zero-shot inference in challenging datasets, such as Weather and Electricity, and that ElasTST
can provide more robust performance across different forecasting horizons. At last, we conducted
comprehensive ablation tests to highlight the significance of each unique design element of ElasTST.

In summary, our contributions comprise:

• Conducting a systematic study on varied-horizon forecasting, a critical requirement across
various domains, yet an underexplored area in time-series research.

• Developing a novel Transformer variant, ElasTST, which incorporates structured atten-
tion masks for horizon-invariance, tunable RoPE for time-series-specific periods, multi-
patch representations to balance fine-grained and coarse-grained information, and a horizon
reweighting scheme to effectively simulate varied-horizon training.

2

119175https://doi.org/10.52202/079017-3786

• Demonstrating the effectiveness of ElasTST through experiments comparing it with state-
of-the-art time-series architectures and some up-to-date foundation models. Our ablation
tests further reveal the importance of its key design elements.

2 Related Work

Traditional Neural Architecture Designs for Time-Series Forecasting The field of time-series
forecasting has witnessed a significant evolution of neural architectures, transitioning from early
multi-layer perceptrons [23], convolutional [5], and recurrent networks [6], to a more recent focus
on various Transformer variants [37, 40, 33, 32, 22, 20, 39]. However, the challenge of varied-
horizon forecasting remains underexplored in these studies, as these models often require specific
tuning to optimize performance for each inference horizon. Additionally, many models, including
PatchTST [22], iTransformer [20], and MTST [39], utilize horizon-specific projection heads, which
inherently complicates the extension of their forecasting horizons.

Developing Foundation Models for Time-Series Forecasting Inspired by the remarkable suc-
cesses in the creation of foundational models in the language and vision domains [4, 25, 3], the
trend of pre-training universal foundation models has emerged in time-series forecasting research.
Notable works in this area include Lag-Llama [26], DAM [8], TimesFM [9], and MOIRAI [31].
These studies employ unique designs to address the challenges posed by varied variate numbers and
forecasting horizons when adapting to new scenarios. Lag-Llama, DAM, and TimesFM adopted
the univariate paradigm to circumvent the difficulties associated with handling different variates. In
contrast, MOIRAI has taken a different approach by flattening multi-variate time series into a single
sequence to facilitate cross-variate learning. While this method has its merits, it is worth noting that
it may introduce efficiency issues when handling a substantial number of variates and long forecast-
ing horizons. As a result, this paper also adopts the univariate setup to maintain efficiency. When it
comes to varied forecasting horizons, Lag-Llama and TimesFM both utilized the decoder-only Trans-
former and relied on autoregressive decoding to manage arbitrarily long horizons. DAM introduced
a novel output scheme that comprises numerous sinusoidal basis functions, enabling it to project into
arbitrary future time points. MOIRAI, on the other hand, used a composite input scheme, combin-
ing observed time-series patches with variable placeholders that indicate forecasting horizons, and
built a full-attention encoder-only Transformer on top of this. Interestingly, this non-autoregressive
generation paradigm originates from diffusion transformers used in video generation [24, 3]. In this
paper, we also embrace this paradigm for generating variable-length time-series. Unlike MOIRAI,
which has made considerable strides in time-series pre-training using a moderately designed Trans-
former variant, our focus lies in systematically examining critical architectural enhancements to
improve robustness in time-series forecasting across various horizons. We believe that constructing
a more robust, resilient, and universal architecture will pave the way for more powerful foundational
time-series models to be pre-trained in the future.

Position Encoding in Time-Series Transformers Position encoding plays a pivotal role in Trans-
formers as both self-attention and feed-forward modules lack inherent position awareness. The
majority of existing time-series Transformer variants have roughly adopted absolute position en-
coding [30] with minor modifications across different studies. For instance, Informer [40] and
Pyraformer [19] have combined fixed absolute position embeddings with timestamp embeddings
such as day, week, hour, minute, etc. Meanwhile, Autoformer [33] and Fedformer [41] have omitted
absolute position embeddings and relied solely on timestamp embeddings. Other models like Log-
Trans [18] and PatchTST [22] have explored learnable position embeddings. However, the challenge
with absolute position embedding is its inability to extrapolate into unseen horizons, posing a signif-
icant challenge for varied-horizon forecasting. To address this issue, MOIRAI has utilized a relative
position embedding technique, RoPE [28], which has been broadly adopted in the language domain
to handle variable-length sequences [29]. In our work, we also adopt RoPE to introduce relative
position information into self-attention operations. What we uniquely reveal is that the direct appli-
cation of the RoPE configuration from the language domain to time-series forecasting is not ideal.
The reason being that the predefined coefficients do not align well with the typical periodic patterns
observed in time-series data. As a solution, we suggest redefining the period range encompassed by
the initial RoPE coefficients and making data-driven adjustments to these coefficients.

3

119176 https://doi.org/10.52202/079017-3786

Multi-Patch Assembly

Enc.

Patching

Enc.Enc.

Dec.Dec.Dec.𝑴 ∈ ℝ𝑁×𝑁

Transformer Block

𝐾 ×

Feed Forward

Layer Norm

Masked Self-Att.

Layer Norm

Structured
Attention Mask

(a)

(b)

𝑓𝒫TRoPE(⋅,⋅)

𝑓𝒫∗
TRoPE(⋅,⋅)

Tuning

Initialized Period
Coefficients 𝒫𝑗

Tuned Period
Coefficients 𝒫𝑗∗

(c)

ElasTST

Reweighting
Function 𝜔(𝜏)

(d)

Loss Func.

ℒ

𝑿 ∈ ℝ𝐿+𝑇

Placeholder

Model Inputs

෡𝑿 ∈ ℝ𝐿+𝑇Model Outputs

Figure 1: Overview of the ElasTST Architecture. ElasTST employs (a) structured attention masks
for placeholders to ensure consistent outputs across varied forecasting horizons. It incorporates (b)
tunable RoPE customized to time series periodicities, enhancing its robustness. The architecture
also integrates a (c) multi-scale patch assembly that merges fine-grained and coarse-grained details
for improved forecasting accuracy. Furthermore, we implement (d) training horizon reweighting
scheme during the training phase, which effectively simulates random sampling of forecasting hori-
zons, reducing the need for additional sampling efforts.

Input Patches in Time-Series Transformers PatchTST [22] spearheaded the concept of segment-
ing time-series data into patches instead of feeding raw time-series values directly into Transformer
models. This straightforward yet effective approach has been widely adopted in subsequent studies,
including MTST [39], TSMixer [10], HDMixer [17], and MOIRAI. It noteworthy that MOIRAI has
been trained with a diverse range of time-series patches with varying patch sizes. When adapting
it to a new dataset, practitioners need to search through a range of patch sizes and rely on valida-
tion performance to select a single patch size. In our work, however, we have demonstrated that
segmenting time series into multiple patch sizes to create multi-scale patch representations is more
advantageous. This approach further aids in stabilizing accurate forecasting across various horizons.

3 Elastic Time-Series Transformers

In Figure 1, we present an overview of ElasTST. Different from other encoder-only Transformer ar-
chitectures, ElasTST equipped three core designs to facilitate varied-horizon forecasting: structured
self-attention masks for placeholders, tunable rotary position embedding (TRoPE) with custimized
period coefficients, and a multi-scale patch representation learning. Additionally, we utilize a hori-
zon reweighting scheme to achieve the effects of varied-horizon training.

Notations We define a univariate time series as x1:T = {xt}Tt=1, with xt ∈ R indicating the
value at time index t. The learning objective of a varied-horizon forecasting can be formulated as:
maxϕ Ex∼p(D),(t,L,T)∼p(T) log pϕ(xt+1:t+T |xt−L+1:t), where p(D) is the data distribution from
which time series samples are drawn, and p(T) is the task distribution, from which the timestamp t,
look-back window L, and the prediction horizon T are sampled.

Model Inputs To accommodate varied forecast horizons, our model combines the historical
context series xt−L+1:t with placeholders 0 ∈ RT through concatenation, forming the input
X = Concat(xt−L+1:t,0). This approach allows for flexible adjustment of the input and output di-
mensions to suit different forecasting scenarios. We further segment X into non-overlapping patches
Xp ∈ RN×P , where P is the patch length and N = (L+T)

P represents the number of patches. Each
input patch is then transformed into latent space by the encoder H = Enc(Xp),H ∈ RN×D.

4

119177https://doi.org/10.52202/079017-3786

Masked Self-Attention A robust varied-horizon forecasting method should deliver consistent out-
puts across different forecasting horizons while maintaining high accuracy on unseen horizons. Ex-
isting time series Transformers, however, typically directly adapt techniques from video genera-
tion and natural language processing without considering the unique characteristics of time series.
To address this deficiency, ElasTST modifies a standard Transformer Encoder with two crucial en-
hancements: structured attention masks and a tunable RoPE to encode relative position information
effectively. We formulate the attention scores within a masked self-attention as

am,n = 〈fTRoPE(hmW q,m), fTRoPE(hnW
k, n)〉 ·Mm,n, (1)

where W q,W k ∈ RD×d denote the linear mappings for the query and key, respectively. A tunable
RoPE fTRoPE dynamically adjusts the relative position encoding manner to best suit each dataset,
with further details provided in the following subsection. The structured attention mask M·,n is set
to 0 for patches Xp

n consisting solely of placeholders and 1 otherwise, ensuring that tokens attend
only to context-carrying patches. This structured masking, in conjunction with the relative position
encoding, prevents the influence of placeholders on prediction outcomes, thus ensuring consistent
outputs across varied forecasting horizons.

Tunable Rotary Position Embedding Position embedding is crucial for the attention mecha-
nism to maintain accuracy over unseen horizons. To overcome the limitations of absolute posi-
tion embedding in extrapolation scenarios, RoPE has been widely adopted in the NLP domain for
handling variable-length sequences. It rotates a vector x ∈ Rd onto an embedding curve on a
sphere in Cd/2, with the rotation parameterized by a base frequency b. The function is defined as
fRoPE(x, t)j = (x2j−1 + ix2j)e

ib−2(j−1)/dt, where j ∈ [1, 2, ..., d/2] [34]. Typically in NLP, the
base frequency b is set to a constant, such as 10,000. However, due to the unique characteristics of
time series data, specific adaptations of RoPE are necessary. In this paper, we propose to use the
period coefficients Pj =

2π
b−2(j−1)/d for parameterization:

fTRoPE(x, t)j = (x2j−1 + ix2j)e
i 2π
Pj

t (2)

Pj = Pmine
2α(j−1), α =

1

d− 2
ln

(
Pmax

Pmin

)
(3)

where Pmin and Pmax represent the predefined minimum and maximum period coefficients, respec-
tively. This formula maintains an exponential distribution but adjusts the range to better align with
the periodic characteristics of time series data. By setting Pmin = 2π and Pmax = 2πb1−

2
d , this

approach mirrors the original RoPE setup.

In addition to adjusting the period range, the distinct and varying periodicities inherent in time series
data necessitate more flexible period coefficients. Therefore, in ElasTST, we consider period coef-
ficients P as tunable parameters, optimizing it along with varied datasets and forecasting horizons.
This adaptive approach allows for more precise and effective forecasting across diverse conditions.
We provide a detailed exploration of this design in Section D.4, and illustrate the optimized period
coefficients for each dataset in Appendix E.2.

Multi-Scale Patch Assembly To ensure robust performance across various forecasting horizons,
integrating both fine-grained and coarse-grained features from time series data is essential. Different
from earlier multi-patch models that utilize separate processing branches for each patch size [39],
ElasTST features a multi-scale patch design within a shared Transformer backbone, capable of both
parallel and sequential processing. We chose sequential processing for our implementation, keeping
the memory consumption comparable to baselines such as PatchTST. The implications of this design
on memory usage are further discussed in Appendix F. Specifically, we define each patch size as
p = {p1, . . . , pS}, with each size corresponding to a dedicated MLP encoder fEnc

pi
: Rpi 7→ RD

and decoder fDec
pi

: RD 7→ Rpi . The outputs from each size are flattened and then averaged to
produce the final forecast X̂ . During training, losses under individual patch size are calculated and
averaged with the assembled forecast losses, to enhance accuracy and consistency across different
scales. Further details on the effectiveness of this design is provided in Section 4.2.

Training Horizon Reweighting To effectively manage varied forecasting horizons, training mod-
els across multiple horizon lengths, rather than using fixed ones, is a practical approach [31]. In

5

119178 https://doi.org/10.52202/079017-3786

this study, we propose to use reweighting scheme for loss computation that simulates this process,
without the need for additional sampling efforts. Formally, in the conventional implementation, at
each training step s, a forecasting horizon Ts is randomly selected from the range [1, Tmax].1 Then
the loss Ls at step s is computed as:

Ls =

Ts∑
τ=1

ω(τ)(xt+τ − x̂t+τ)
2, ω(τ) =

1

Ts
. (4)

Theoretically, the expectation of this random sampling process can be represented as a weighted loss
over a fixed horizon Tmax. To be specific, the expected value of ω(τ) is calculated as: E[ω(τ)] =
1

Tmax

∑Tmax
T=1

1
T . We further approximate the reweighting function by harmonic series as:

ω(τ) ≈ 1

Tmax
(ln(Tmax)− ln(τ)). (5)

By employing this weighted loss ω(τ) during training, we replicate the effect achieved by randomly
sampling horizons at an infinite number of training steps. In addition, the function ω(τ) can be
adapted to follow any desired distribution family and can be made differentiable.

4 Experiments

To validate the effectiveness of ElasTST, we systematically assess its performance across various
forecasting scenarios, benchmarking it against established models. The results, detailed in Sec-
tion 4.1, showcase ElasTSTs adaptability to diverse forecasting horizons. Subsequently, we perform
an extensive ablation study in Section 4.2 to examine the impact of its key designs.2

Datasets Our experiments leverage 8 well-recognized datasets, including 4 from the ETT series
(ETTh1, ETTh2, ETTm1, ETTm2), and others include Electricity, Exchange, Traffic, and Weather.
These datasets cover a wide array of real-world scenarios and are commonly used as benchmarks
in the field. Detailed descriptions of each dataset are provided in Appendix C.1. Following the
setup described in [33], all models use a standard lookback window of 96, except TimesFM [9] and
MOIRAI [31], which utilize extended lookback windows of 512 and 5000, respectively.

Baselines For our comparative analysis, we select 6 representative forecasting models as baselines:
(1) Advanced but non-elastic forecasting models, such as iTransformer [20], PatchTST [22], and
DLinear [36]; (2) Autoformer [33], which supports varied-horizon forecasting but requires horizon-
specific tuning; (3) the cutting-edge time series foundation model like TimesFM [9] and MOIRAI
[31], which are pre-trained for general-purpose forecasting across varied horizons. Our analysis pri-
marily assesses the varied-horizon forecasting capabilities, considering their pre-training on subsets
of the datasets used.

Implementation ElasTST is implemented using PyTorch Lightning [12], with a training regimen
of 100 batches per epoch, a batch size of 32, and a total duration of 50 epochs. We use the Adam
optimizer with a learning rate of 0.001, and experiments are conducted on NVIDIA Tesla V100
GPUs with CUDA 12.1. To ensure fairness, we conducted an extensive grid search for critical
hyperparameters across all models in this study. The range and specifics of these hyperparameters
are documented in Appendix C.2. For parameters not mentioned in the table, we adhered to the best
practice settings proposed in their respective original papers. For evaluation, we use Normalized
Mean Absolute Error (NMAE) and Normalized Root Mean Squared Error (NRMSE) as they are
scale-insensitive and widely accepted in recent studies [23]. More details are in Appendix C.3.

4.1 Main Results

Comparing ElasTST with Horizon Reweighting to Neural Architectures Tuned for Specific
Inference Horizons Experimental results demonstrate that ElasTST consistently delivers excep-
tional performance across all horizons without the need for per-horizon tuning. As evidenced in Ta-
ble 1, ElasTST outperformed SOTA models on diverse datasets including ETTm1, ETTh1, ETTh2,

1The look-back window L is fixed.
2Unless stated otherwise, horizon reweighting scheme is deactivated in ablation study.

6

119179https://doi.org/10.52202/079017-3786

Traffic, Weather, and Exchange, despite these models undergoing specific horizon-based training
and tuning. This clearly demonstrates ElasTST’s inherent robustness and its remarkable capacity to
generalize effectively across varied forecasting scenarios.

Table 1: Results (meanstd) on long-term forecasting scenarios with the best in bold and the second
underlined. Each result contains three independent runs with different seeds. During the training
phase, ElasTST utilizes a loss reweighting strategy where a single trained model is applied across all
inference horizons, where the Hmax is set to 720. Other baseline models undergo horizon-specific
training and tuning. Additional baseline results are detailed in Appendix D.1.

pred ElasTST iTransformer PatchTST DLinear Autoformer
len NMAE NRMSE NMAE NRMSE NMAE NRMSE NMAE NRMSE NMAE NRMSE

E
T

T
m

1 96 0.273.000 0.488.000 0.271.000 0.568.000 0.272.001 0.565.001 0.282.002 0.573.001 0.388.001 0.711.003
192 0.289.000 0.520.000 0.301.000 0.614.000 0.295.001 0.602.005 0.309.004 0.617.003 0.442.001 0.820.003
336 0.314.000 0.575.000 0.333.000 0.668.000 0.323.001 0.645.003 0.338.008 0.654.007 0.429.000 0.774.001
720 0.346.000 0.645.000 0.376.000 0.741.000 0.353.001 0.700.005 0.387.006 0.737.005 0.440.000 0.793.000

E
T

T
m

2 96 0.150.000 0.227.000 0.137.000 0.227.000 0.132.001 0.220.002 0.138.000 0.226.000 0.158.000 0.254.000
192 0.174.000 0.264.000 0.161.000 0.266.000 0.157.001 0.259.002 0.163.003 0.264.001 0.175.000 0.283.000
336 0.191.000 0.289.000 0.180.000 0.293.000 0.176.000 0.286.000 0.188.001 0.291.002 0.191.000 0.307.000
720 0.211.000 0.318.000 0.211.000 0.330.000 0.205.001 0.324.002 0.219.003 0.327.002 0.217.000 0.338.000

E
T

T
h1

96 0.342.000 0.619.000 0.321.000 0.626.000 0.328.003 0.640.002 0.352.011 0.668.012 0.367.000 0.656.000
192 0.364.000 0.661.000 0.359.000 0.690.000 0.359.002 0.705.001 0.393.001 0.745.003 0.392.000 0.706.000
336 0.371.000 0.666.000 0.388.000 0.723.000 0.384.002 0.740.004 0.419.007 0.778.009 0.398.000 0.711.000
720 0.376.000 0.679.000 0.408.000 0.735.000 0.397.002 0.738.001 0.502.029 0.860.049 0.433.000 0.739.000

E
T

T
h2

96 0.158.000 0.239.000 0.177.000 0.279.000 0.177.000 0.281.001 0.211.027 0.320.033 0.203.000 0.317.000
192 0.170.000 0.259.000 0.203.000 0.314.000 0.201.001 0.314.001 0.238.028 0.353.030 0.226.000 0.346.000
336 0.188.000 0.282.000 0.243.000 0.372.000 0.240.001 0.366.001 0.284.008 0.407.013 0.264.000 0.398.000
720 0.215.000 0.319.000 0.264.000 0.386.000 0.252.000 0.371.000 0.307.000 0.426.007 0.287.000 0.416.000

E
le

ct
ri

ci
ty 96 0.085.000 0.777.000 0.098.000 0.772.000 0.086.001 0.816.005 0.090.001 0.863.002 0.140.000 0.977.016

192 0.093.000 0.933.000 0.106.000 0.916.000 0.092.001 0.942.007 0.095.001 0.974.001 0.136.000 1.017.000
336 0.101.000 1.063.000 0.115.000 0.985.001 0.100.000 1.035.003 0.104.000 1.066.004 0.147.000 1.080.006
720 0.117.000 1.289.000 0.133.000 1.110.001 0.116.000 1.213.003 0.122.001 1.259.009 0.159.000 1.283.005

Tr
af

fic

96 0.195.000 0.461.000 0.246.000 0.511.000 0.248.001 0.527.001 0.356.009 0.645.017 0.293.000 0.560.000
192 0.193.000 0.459.000 0.259.000 0.543.000 0.245.001 0.528.001 0.346.009 0.628.009 0.318.000 0.594.000
336 0.199.000 0.468.000 0.283.000 0.571.000 0.257.002 0.550.001 0.350.008 0.631.008 0.332.000 0.630.000
720 0.218.000 0.497.000 0.275.000 0.563.000 0.266.001 0.559.001 0.365.009 0.659.009 0.341.003 0.611.002

W
ea

th
er

96 0.086.000 0.287.000 0.089.000 0.295.000 0.087.002 0.294.002 0.112.001 0.316.000 0.239.004 0.614.023
192 0.092.000 0.312.000 0.093.000 0.299.000 0.090.001 0.299.001 0.122.001 0.331.000 0.213.000 0.533.002
336 0.091.000 0.307.000 0.096.000 0.297.000 0.092.002 0.297.001 0.130.002 0.340.002 0.176.000 0.413.001
720 0.093.000 0.308.000 0.099.000 0.298.000 0.094.001 0.298.003 0.144.001 0.358.002 0.170.001 0.434.010

E
xc

ha
ng

e 96 0.026.000 0.039.000 0.025.000 0.039.000 0.023.000 0.036.000 0.024.000 0.037.000 0.032.000 0.049.000
192 0.033.000 0.050.000 0.036.000 0.056.000 0.034.000 0.054.000 0.035.000 0.055.000 0.041.000 0.065.000
336 0.041.000 0.062.000 0.048.000 0.072.000 0.048.000 0.076.000 0.048.001 0.072.001 0.056.000 0.091.000
720 0.059.000 0.089.000 0.076.000 0.114.000 0.072.000 0.106.001 0.075.002 0.118.004 0.112.002 0.164.004

Comparing the Robustness of Different Models for Varied Inference Horizons The results
clearly position ElasTST as the most robust option for deploying a single, well-trained model across
various inference horizons and application scenarios. As demonstrated in Figure 2, ElasTST consis-
tently maintains strong performance across both seen and unseen horizons, underscoring its ability
to navigate beyond trained scopes with consistent accuracy across a wide range of forecasts.

In contrast, other models face significant challenges in varied-horizon forecasting. State-of-the-art
models like iTransformer and PatchTST excel within their trained horizons but struggle when ex-
tended beyond these limits. Models that require horizon-specific tuning, such as Autoformer, often
experience abrupt declines in performance, illustrating that scalability alone is insufficient without
tailored optimization. TimesFM, with its autoregressive nature, shows substantial error propaga-
tion in unseen datasets like ETT and Exchange, and increased errors in pre-trained datasets such
as Weather as the horizon extends. While MOIRAI demonstrates strong zero-shot performance
on datasets like ETT and Exchange, we find that on the challenging datasets such as Weather and
Electricity, dataset-specific tuning still offers advantages. Furthermore, MOIRAIs performance sig-
nificantly diminishes with shorter context lengths, as discussed in their paper [31]. In comparison,
ElasTST operate effectively with much shorter context lengths.

7

119180 https://doi.org/10.52202/079017-3786

Figure 2: Performance of trained once and inference over varying forecasting horizons. Models ex-
cept TimesFM and MOIRAI are trained with a forecasting horizon of 720 and tasked with predicting
across multiple horizons. A vertical red dashed line distinguishes between their seen horizons (96,
192, 336, 720) and unseen horizon (1024). We use a dashed line to denote the datasets on which
the model was pre-trained, e.g., both TimesFM and MOIRAI have leveraged Traffic datasets for
their pre-training. The ETT encompasses averaged results from datasets ETTh1, ETTh2, ETTm1,
and ETTm2. Models lack inherent elasticity use a truncation strategy for shorter forecasts, and the
foundation models use their pre-trained checkpoints and recommended configurations for inference.

24 48 96 192 336 720 1024
Infer hor.

0.20

0.25

0.30

0.35

0.40

NM
AE

ETT

24 48 96 192 336 720 1024
Infer hor.

0.09

0.10

0.11

0.12

Weather

24 48 96 192 336 720 1024
Infer hor.

0.10

0.15

0.20

0.25

0.30

0.35
Electricity

24 48 96 192 336 720 1024
Infer hor.

0.20

0.30

0.40

0.50

Traffic
w/o Mask w/o Tunable RoPE w/o Multi-patch ElasTST

Figure 3: Ablation study for the structured attention masks, tunable RoPE, and multi-patch assem-
bly. A vertical red dashed line indicates the training horizon.

4.2 Ablation Study

Structured Attention Masks The ablation study confirms that structured attention masks are es-
sential for robust inference across horizons that differ from the training phase. As illustrated in
Figure 3, removing structured masks from ElasTST results in significant performance declines, par-
ticularly in the Weather dataset. Furthermore, as demonstrated in Figure 7 (see Appendix D.2), the
benefits of structured masks are consistent across all forecasting horizons. This underscores the im-
portance of the horizon-invariant property for enhancing the stability of time series forecasting, an
aspect often overlooked in current research.

Tunable Rotary Position Embedding Experimental results indicate that tunable RoPE signif-
icantly improves the models ability to extrapolate. Figure 4a shows that while other positional
embedding methods are effective on seen horizons, they falter when applied to horizons extending
beyond the training range. Although the original RoPE excels in NLP tasks, it underperforms in
time series forecasting. Besides, data-driven adjustments of these coefficients enable far more ro-
bust extrapolation. Dynamically tuning RoPE parameters according to the periodic patterns of the
dataset proves highly beneficial, especially when inferring over unseen horizons.

Furthermore, a range from 1 to 1000 for the period coefficients P is more suitable for time series
forecasting. As demonstrated in Figure 4b, using the commonly-used NLP settings with Pmin = 1
and Pmax = 10000 does not fully exploit the potential of RoPE in time series forecasting. Setting
Pmax to 1000 results in better performance. We hypothesize that this is because, unlike textual data
which benefits from attention over longer contexts, the time series data, especially when segmented
into patches, benefits from focusing on shorter, more recent intervals. By adjusting the maximum
period coefficient to a lower value, the model captures a richer spectrum of mid-to-high frequency
patterns, thereby enhancing its effectiveness. Detailed analyses of these findings are available in
Appendix D.4. Appendix E includes visualizations demonstrating how different initial ranges impact
frequency components, along with illustrations of the tuned period coefficients for each dataset.

8

119181https://doi.org/10.52202/079017-3786

24 48 96 192 336 720 1024
Infer hor.

0.20

0.25

0.30

0.35

0.40

NM
AE

ETT

24 48 96 192 336 720 1024
Infer hor.

0.08

0.09

0.10

0.11

0.12

Weather

24 48 96 192 336 720 1024
Infer hor.

0.10

0.15

0.20

0.25

0.30

0.35
Electricity

24 48 96 192 336 720 1024
Infer hor.

0.20

0.30

0.40

0.50

0.60
Traffic

w/o PE Abs PE Learn PE RoPE Tunable RoPE

(a) Comparison of various positional embeddings with the proposed Tunable RoPE.

96 192 336 720
Forecasting Horizon

0.18

0.20

0.22

0.24

0.26

NM
AE

Training Horizon: 96

96 192 336 720 1024
Forecasting Horizon

0.18

0.20

0.23

0.25

0.28

Training Horizon: 192

96 192 336 720 1024
Forecasting Horizon

0.18

0.20

0.22

0.24

0.26

0.28
Training Horizon: 336

96 192 336 720 1024
Forecasting Horizon

0.18

0.20

0.22

0.24

0.26
Training Horizon: 720

10 100 1000 10000

(b) The effect of selecting Pmax, with Pmin fixed at 1 and P is untunable during training.

Figure 4: Ablation study for designs in position embedding. A vertical red dashed line distinguishes
between seen horizons and unseen horizons.

96 192 336 720 1024
Forecasting Horizons

0.15

0.20

0.25

0.30

NM
AE

Patch
8
16
32
64
8_16
8_16_32
8_16_32_64

Figure 5: Performance of patch size selections. Results are averaged across all datasets and
training horizons of {96, 192, 336, 720}. ‘8_16_32’ represents a multi-patch configuration of
p = {8, 16, 32}.

Multi-Patch Design These experiments demonstrate that multi-patch configurations generally out-
perform single patch sizes across various forecasting horizons. Figure 5 shows that the configu-
ration p = {8, 16, 32} consistently achieves the lowest NMAE values, effectively balancing the
capture of short-term dynamics and long-term trends. However, adding larger patches, such as
p = {8, 16, 32, 64}, does not consistently improve performance and can sometimes increase the
NMAE. This suggests that more complex configurations may not always provide additional benefits
and could even be counterproductive.

Moreover, the patch size selection is particularly critical in the varied-horizon forecasting scenarios.
As demonstrated in the Figure 10 (see Appendix D.5), various combinations of training and forecast-
ing horizons exhibit distinct preferences for patch sizes. For instance, when the training forecasting
horizon is 720, during the inference stage, longer forecasting horizons prefer larger patch sizes.
Conversely, on shorter training horizons, such as 96 and 192, choosing large patch sizes for longer
horizons can lead to performance collapse. This difference underscores the complexity and neces-
sity of optimal patch size selection in achieving effective elastic forecasting. Detailed results for
four training horizons and further analysis are provided in Appendix D.5.

The Impact of Training Horizons Further experiments validate the effectiveness of our proposed
training horizon reweighting scheme in enhancing varied-horizon inference. As illustrated in Fig-
ure 6, reweighting longer horizons simplifies the training process, yielding better outcomes than

9

119182 https://doi.org/10.52202/079017-3786

Figure 6: Impact of forecasting horizon selection during the training phase.

selecting a fixed horizon and mitigating the uncertainties associated with random sampling. Cru-
cially, this training approach is model-agnostic and can be applied to different forecasting training
scenarios. These results also highlight the advantages of a flexible forecasting architecture, which
allows training horizons to be customized to the unique characteristics of each dataset.

We also observe that different datasets have distinct preferences for training horizons. For example,
in the Exchange dataset, the longest training horizon led to worse results compared to a shorter hori-
zon of 96, suggesting risks of overfitting or forecast instability with prolonged horizons. Besides,
in the ETTh1, employing random sampling for training horizons proved suboptimal. These insights
show that tailoring the training horizon selection strategy to the specific dataset can yield improve-
ments. One potential enhancement could involve dynamically optimizing the horizon reweighting
scheme alongside model training.

5 Conclusion

This study introduces the Elastic Time-Series Transformer (ElasTST), a pioneering model designed
to tackle the significant and insufficiently explored challenge of varied-horizon forecasting. ElasTST
integrates a non-autoregressive framework with innovative elements such as structured self-attention
masks, tunable Rotary Position Embedding (RoPE), and a versatile multi-scale patch system. Ad-
ditionally, we implement a training horizon reweighting scheme that simulates random sampling of
forecasting horizons, thus eliminating the need for extra sampling efforts. Together, these elements
enable ElasTST to adapt to a wide range of forecasting horizons, delivering reliable and competitive
outcomes even when facing horizons that were not encountered during the training phase.

Limitations While ElasTST demonstrates robust performance across various forecasting tasks,
several limitations have been identified that highlight opportunities for future enhancements. First,
the current version of ElasTST does not incorporate a pre-training phase, which could significantly
improve the models initial grasp of time-series dynamics and boost its efficiency during task-specific
fine-tuning. Further exploration is needed to ascertain optimal training methodologies that maximize
the architectural benefits of ElasTST. Additionally, while the training horizon reweighting scheme
is straightforward and effective in enhancing performance across different inference horizons, it is
not the optimal solution for all datasets. Moreover, the evaluation of ElasTST is limited to a select
number of datasets, which may not fully represent the broader challenges encountered in more
complex or diverse real-world scenarios.

Future Work In response to these limitations, our forthcoming research efforts will concentrate on
developing and validating pre-training protocols for ElasTST to elevate its foundational performance
and extend its applicability across universal forecasting tasks. We aim to incorporate a reasonable
training approach that will fine-tune the models ability to seamlessly manage forecasts of varying
lengths, thus bolstering its utility in dynamic real-world environments. Furthermore, by broadening
the range of datasets used for model evaluations, we intend to rigorously test ElasTSTs effectiveness
across an expanded spectrum of industry-specific challenges. This comprehensive approach will not
only solidify ElasTSTs standing as a cutting-edge solution for time-series forecasting but also en-
hance our understanding of its practical implications and potential in diverse industrial applications.

10

119183https://doi.org/10.52202/079017-3786

References
[1] Abdul Fatir Ansari, Lorenzo Stella, Caner Turkmen, Xiyuan Zhang, Pedro Mercado, Huibin

Shen, Oleksandr Shchur, Syama Sundar Rangapuram, Sebastian Pineda Arango, Shubham
Kapoor, et al. 2024. Chronos: Learning the language of time series. arXiv preprint
arXiv:2403.07815 (2024).

[2] Joaquim Barros, Miguel Araujo, and Rosaldo JF Rossetti. 2015. Short-term real-time traffic
prediction methods: A survey. In 2015 International Conference on Models and Technologies
for Intelligent Transportation Systems.

[3] Tim Brooks, Bill Peebles, Connor Holmes, Will DePue, Yufei Guo, Li Jing, David Schnurr,
Joe Taylor, Troy Luhman, Eric Luhman, Clarence Ng, Ricky Wang, and Aditya Ramesh. 2024.
Video generation models as world simulators. (2024). https://openai.com/research/
video-generation-models-as-world-simulators

[4] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel
Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,
Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Rad-
ford, Ilya Sutskever, and Dario Amodei. 2020. Language Models are Few-Shot Learners. In
NeurIPS.

[5] Yitian Chen, Yanfei Kang, Yixiong Chen, and Zizhuo Wang. 2020. Probabilistic forecasting
with temporal convolutional neural network. Neurocomputing 399 (2020), 491–501.

[6] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. 2014. Empir-
ical evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint
arXiv:1412.3555 (2014).

[7] Estee Y Cramer, Evan L Ray, Velma K Lopez, Johannes Bracher, Andrea Brennen, Alvaro J
Castro Rivadeneira, Aaron Gerding, Tilmann Gneiting, Katie H House, Yuxin Huang, et al.
2022. Evaluation of individual and ensemble probabilistic forecasts of COVID-19 mortality in
the United States. Proceedings of the National Academy of Sciences (2022).

[8] Luke Nicholas Darlow, Qiwen Deng, Ahmed Hassan, Martin Asenov, Rajkarn Singh, Artjom
Joosen, Adam Barker, and Amos Storkey. 2024. Dam: A foundation model for forecasting. In
ICLR.

[9] Abhimanyu Das, Weihao Kong, Rajat Sen, and Yichen Zhou. 2023. A decoder-only foundation
model for time-series forecasting. arXiv preprint arXiv:2310.10688 (2023).

[10] Vijay Ekambaram, Arindam Jati, Nam Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam.
2023. Tsmixer: Lightweight mlp-mixer model for multivariate time series forecasting. In
SIGKDD. 459–469.

[11] Vijay Ekambaram, Arindam Jati, Nam H Nguyen, Pankaj Dayama, Chandra Reddy, Wes-
ley M Gifford, and Jayant Kalagnanam. 2024. Tiny Time Mixers (TTMs): Fast Pre-trained
Models for Enhanced Zero/Few-Shot Forecasting of Multivariate Time Series. arXiv preprint
arXiv:2401.03955 (2024).

[12] William Falcon and The PyTorch Lightning team. 2019. PyTorch Lightning. https://doi.
org/10.5281/zenodo.3828935

[13] Shanghua Gao, Teddy Koker, Owen Queen, Thomas Hartvigsen, Theodoros Tsiligkaridis,
and Marinka Zitnik. 2024. UniTS: Building a Unified Time Series Model. arXiv preprint
arXiv:2403.00131 (2024).

[14] Azul Garza, Cristian Challu, and Max Mergenthaler-Canseco. 2023. TimeGPT-1. arXiv
preprint arXiv:2310.03589 (2023).

[15] Mononito Goswami, Konrad Szafer, Arjun Choudhry, Yifu Cai, Shuo Li, and Artur Dubrawski.
2024. MOMENT: A Family of Open Time-series Foundation Models. In ICML.

11

119184 https://doi.org/10.52202/079017-3786

https://openai.com/research/video-generation-models-as-world-simulators
https://openai.com/research/video-generation-models-as-world-simulators
https://doi.org/10.5281/zenodo.3828935
https://doi.org/10.5281/zenodo.3828935

[16] Luis Hernandez, Carlos Baladron, Javier M Aguiar, Belén Carro, Antonio J Sanchez-
Esguevillas, Jaime Lloret, and Joaquim Massana. 2014. A survey on electric power demand
forecasting: Future trends in smart grids, microgrids and smart buildings. IEEE Communica-
tions Surveys & Tutorials (2014).

[17] Qihe Huang, Lei Shen, Ruixin Zhang, Jiahuan Cheng, Shouhong Ding, Zhengyang Zhou, and
Yang Wang. 2024. HDMixer: Hierarchical Dependency with Extendable Patch for Multivariate
Time Series Forecasting. In AAAI, Vol. 38. 12608–12616.

[18] Shiyang Li, Xiaoyong Jin, Yao Xuan, Xiyou Zhou, Wenhu Chen, Yu-Xiang Wang, and Xifeng
Yan. 2019. Enhancing the Locality and Breaking the Memory Bottleneck of Transformer on
Time Series Forecasting. In NeurIPS. 5244–5254.

[19] Shizhan Liu, Hang Yu, Cong Liao, Jianguo Li, Weiyao Lin, Alex X Liu, and Schahram Dustdar.
2021. Pyraformer: Low-complexity pyramidal attention for long-range time series modeling
and forecasting. In ICLR.

[20] Yong Liu, Tengge Hu, Haoran Zhang, Haixu Wu, Shiyu Wang, Lintao Ma, and Mingsheng
Long. 2023. itransformer: Inverted transformers are effective for time series forecasting. arXiv
preprint arXiv:2310.06625 (2023).

[21] Yong Liu, Haoran Zhang, Chenyu Li, Xiangdong Huang, Jianmin Wang, and Mingsheng Long.
2024. Timer: Transformers for Time Series Analysis at Scale. In ICML.

[22] Yuqi Nie, Nam H. Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. 2023. A Time
Series is Worth 64 Words: Long-term Forecasting with Transformers. In ICLR.

[23] Boris N. Oreshkin, Dmitri Carpov, Nicolas Chapados, and Yoshua Bengio. 2020. N-BEATS:
Neural basis expansion analysis for interpretable time series forecasting. In ICLR.

[24] William Peebles and Saining Xie. 2023. Scalable diffusion models with transformers. In ICCV.
4195–4205.

[25] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agar-
wal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. 2021. Learning trans-
ferable visual models from natural language supervision. In ICML.

[26] Kashif Rasul, Arjun Ashok, Andrew Robert Williams, Arian Khorasani, George Adamopoulos,
Rishika Bhagwatkar, Marin Biloš, Hena Ghonia, Nadhir Vincent Hassen, Anderson Schneider,
et al. 2023. Lag-llama: Towards foundation models for time series forecasting. arXiv preprint
arXiv:2310.08278 (2023).

[27] Fei Su, Honghui Dong, Limin Jia, Yong Qin, and Zhao Tian. 2016. Long-term forecasting
oriented to urban expressway traffic situation. Advances in mechanical engineering (2016).

[28] Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. 2024. Ro-
former: Enhanced transformer with rotary position embedding. Neurocomputing 568 (2024),
127063.

[29] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timo-
thée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. 2023. Llama:
Open and efficient foundation language models. arXiv preprint arXiv:2302.13971 (2023).

[30] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is All you Need. In NeurIPS. 5998–6008.

[31] Gerald Woo, Chenghao Liu, Akshat Kumar, Caiming Xiong, Silvio Savarese, and Doyen Sa-
hoo. 2024. Unified training of universal time series forecasting transformers. arXiv preprint
arXiv:2402.02592 (2024).

[32] Haixu Wu, Tengge Hu, Yong Liu, Hang Zhou, Jianmin Wang, and Mingsheng Long. 2023.
TimesNet: Temporal 2D-Variation Modeling for General Time Series Analysis. In ICLR.

12

119185https://doi.org/10.52202/079017-3786

[33] Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. 2021. Autoformer: Decom-
position Transformers with Auto-Correlation for Long-Term Series Forecasting. In NeurIPS.
22419–22430.

[34] Wenhan Xiong, Jingyu Liu, Igor Molybog, Hejia Zhang, Prajjwal Bhargava, Rui Hou, Louis
Martin, Rashi Rungta, Karthik Abinav Sankararaman, Barlas Oguz, et al. 2023. Effective
long-context scaling of foundation models. arXiv preprint arXiv:2309.16039 (2023).

[35] Jiexia Ye, Weiqi Zhang, Ke Yi, Yongzi Yu, Ziyue Li, Jia Li, and Fugee Tsung. 2024. A
Survey of Time Series Foundation Models: Generalizing Time Series Representation with
Large Language Mode. arXiv preprint arXiv:2405.02358 (2024).

[36] Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. 2023. Are Transformers Effective for
Time Series Forecasting?. In AAAI. 11121–11128.

[37] George Zerveas, Srideepika Jayaraman, Dhaval Patel, Anuradha Bhamidipaty, and Carsten
Eickhoff. 2021. A transformer-based framework for multivariate time series representation
learning. In SIGKDD. 2114–2124.

[38] Jiawen Zhang, Shun Zheng, Wei Cao, Jiang Bian, and Jia Li. 2023. Warpformer: A multi-scale
modeling approach for irregular clinical time series. In SIGKDD. 3273–3285.

[39] Yitian Zhang, Liheng Ma, Soumyasundar Pal, Yingxue Zhang, and Mark Coates. 2024. Multi-
resolution time-series transformer for long-term forecasting. In International Conference on
Artificial Intelligence and Statistics. 4222–4230.

[40] Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wan-
cai Zhang. 2021. Informer: Beyond Efficient Transformer for Long Sequence Time-series
Forecasting. In AAAI. 11106–11115.

[41] Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. 2022. Fedformer:
Frequency Enhanced Decomposed Transformer for Long-term Series Forecasting. In ICML.
27268–27286.

13

119186 https://doi.org/10.52202/079017-3786

A Details of Methods

A.1 Details of Rotary Position Embedding

Rotary position embedding (RoPE) [28] is a method used to encode the position of tokens in the in-
put sequence for transformer-based models, enhancing the capability to utilize the positional context
of tokens. RoPE uniquely incorporates the geometric property of vectors, transforming them into a
rotary matrix that interacts with the vector embeddings.

Here, we have adopted the formal definition from the original RoPE paper. In the simplest two-
dimensional (2D) case, RoPE considers a dimension d = 2, where each position vector is treated in
its complex form. The formulation is given by:

fq(xm,m) = (Wqxm)eimθ,

fk(xn, n) = (Wkxn)e
inθ,

g(xm, xn,m− n) = Re[(Wqxm)(Wkxn)
∗ei(m−n)θ].

This expression shows that the embedding rotates the affine-transformed word embedding vectors
by angle multiples relative to their position indices. This rotation is mathematically represented
through a multiplication matrix:

fq,k(xm,m) =

[
cosmθ − sinmθ
sinmθ cosmθ

] [
W

(11)
q,k W

(12)
q,k

W
(21)
q,k W

(22)
q,k

][
x
(1)
m

x
(2)
m

]
.

For a generalized form in any dimension d, RoPE divides the space into d/2 sub-spaces and com-
bines them to utilize the linearity of the inner product. The generalized rotary matrix Rd

Θ,m is defined
as:

Rd
Θ,m =



cosmθ1 − sinmθ1 0 0 . . . 0 0
sinmθ1 cosmθ1 0 0 . . . 0 0

0 0 cosmθ2 − sinmθ2 . . . 0 0
0 0 sinmθ2 cosmθ2 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . cosmθd/2 − sinmθd/2
0 0 0 0 . . . sinmθd/2 cosmθd/2


,

where Θ = {θi = 10000−2(i−1)/d, i ∈ [1, 2, ..., d/2]}. This formulation ensures that RoPE is
computationally efficient and stable due to the orthogonality of Rd

Θ,m. The use of sparse matrices
further improves computational efficiency, making RoPE a practical approach to incorporate in large-
scale transformer models.

B Additional Related Work on Foundation Models

We summarize existing time series foundational models in Table 2, excluding the LLM-oriented
ones [35]. These models typically use standard architecture designs, position encodings, and patch-
ing approaches, primarily aiming to enhance transferability in zero-shot scenarios. However, they
generally do not deeply explore the challenges of producing robust forecasts across varied hori-
zons. Our work specifically addresses this gap by improving model design to enhance robustness
for varied-horizon forecasting.

C Additional Details of Experiment Setting

C.1 Dataset Details

Our experiments utilize 8 widely recognized datasets, including 4 from the ETT series (ETTh1,
ETTh2, ETTm1, ETTm2), as well as the Electricity, Exchange, Traffic, and Weather datasets. These

14

119187https://doi.org/10.52202/079017-3786

Table 2: Summary of Time Series Foundation Models.
Model Backbone Dec. Scheme. Pos. Emb. Token.

TimeGPT-1 [14] Enc-Dec Transformer AR Abs PE -
Lag-Llama [26] Decoder-only Transformer AR RoPE -

Chronos [1] Enc-Dec Transformer AR Simplified relative PE Quantization
Timer [21] Decoder-only Transformer AR Abs PE Patching

TimesFM [9] Decoder-only Transformer AR Abs PE Patching

UniTS [13] Transformer Encoder NAR Learnable PE Patching
DAM [8] Transformer Encoder NAR Abs PE ToME

Tiny Time Mixers [11] TSMixer NAR - Patching
MOIRAI [31] Transformer Encoder NAR RoPE Patching

MOMENT [15] Transformer Encoder NAR Learnable relative PE Patching

datasets encompass a broad range of real-world applications and are frequently used as benchmarks
in the field3. Consistent with common practices in long-term forecasting [33, 36, 22, 20], all models
are tested under the forecasting horizons T ∈ {96, 192, 336, 720}. Except for TimeFM [9], which
uses a lookback window of 512, a standard lookback window of 96 is employed across all other
models as [33].

Table 3: Dataset Summary.

Dataset #var. range freq. timesteps Description

ETTh1/h2 7 R+ H 17,420 Electricity transformer temperature per hour
ETTm1/m2 7 R+ 15min 69,680 Electricity transformer temperature every 15 min
Electricity 321 R+ H 26,304 Electricity consumption (Kwh)
Traffic 862 (0,1) H 17,544 Road occupancy rates
Exchange 8 R+ Busi. Day 7,588 Daily exchange rates of 8 countries
Weather 21 R+ 10min 52,696 Local climatological data

C.2 Implementation Details

ElasTST is implemented using PyTorch Lightning [12]. Training consists of 100 batches per epoch,
capped at 20 epochs, with the NMAE metric used for model checkpointing. We use the Adam
optimizer with a learning rate of 0.001, and experiments are conducted on NVIDIA Tesla V100
GPUs with CUDA 12.1. The code for Transformer Block is adapted from [38].

Baselines We select five representative forecasting models as our baselines:

• iTransformer 4 [20]: A transformer-based model that inverts the dimensions of time and
variates to effectively capture multivariate correlations, enhancing generalization across
different variates.

• PatchTST 5 [22]: A transformer-based model segmenting time series into subseries-level
patches and employing channel-independent processing to improve forecasting accuracy.

• DLinear 6 [36]: An MLP-based model that has demonstrated superior performance over
more complex transformer-based models in multiple real-life datasets.

• Autoformer 7 [33]: Integrates a novel Auto-Correlation mechanism that exploits series
periodicity for enhanced dependency discovery and representation aggregation.

• TimeFM 8 [9]: A foundation model for time series forecasting, pretrained using a decoder-
style attention mechanism and input patching on an extensive corpus of real-world and
synthetic data.

3Datasets are available at https://github.com/thuml/Autoformer under MIT License.
4https://github.com/thuml/iTransformer, MIT License.
5https://github.com/yuqinie98/PatchTST, Apache-2.0 license.
6https://github.com/cure-lab/LTSF-Linear, Apache-2.0 license.
7https://github.com/thuml/Autoformer, MIT License.
8https://github.com/google-research/timesfm, Apache-2.0 license.

15

119188 https://doi.org/10.52202/079017-3786

https://github.com/thuml/Autoformer
https://github.com/thuml/iTransformer
https://github.com/yuqinie98/PatchTST
https://github.com/cure-lab/LTSF-Linear
https://github.com/thuml/Autoformer
https://github.com/google-research/timesfm

• MOIRAI (UNI2TS) 9 [31]: A foundation model for time series forecasting, pretrained
using a masked encoder-based Transformer on the extensive Large-scale Open Time Series
Archive (LOTSA) with over 27 billion observations.

Hyper-parameter Tuning To ensure fairness, we conducted an extensive grid search for critical
hyperparameters across all models in this study. The range and specifics of these hyperparameters
are documented in Table 4. For parameters not mentioned in the table, we adhered to the best
practice settings proposed in their respective original papers.

Table 4: Hyper-parameters values fixed or range searched in hyper-parameter tuning.
Models Hyper-parameter Value or Range Searched

ElasTST

learning_rate 0.001
multi_patch_size 8-16-32
min_period_coeff 1
max_period_coeff 1000

n_heads [2, 4, 8, 16]
n_layers [1,2,4]

hidden_size [128,256,512]
d_v [64,128]

iTransformer
learning_rate [0.0001,0.0005,0.001]
hidden_size [128,256,512,1024]

e_layers [1,2,3,4]

PatchTST

learning_rate [0.0001, 0.001]
patch_len 16

stride 8
n_layers 3
d_model [16, 128,256,512]

d_ff [128,256,512]
n_heads [4,8,16]
dropout [0.2, 0.3]

DLinear learning_rate [0.0001,0.0005,0.001, 0.005, 0.05]
kernel_size 25

Autoformer

learning_rate [0.0001, 0.001]
e_layers [1,2,3]
d_layers [1,2,3]

factor [1,3]

C.3 Evaluation Metrics

We employ the Normalized Mean Absolute Error (NMAE) and Normalized Root Mean Squared
Error (NRMSE) as our evaluation metrics because they provide a relative measure of error that is
independent of the data scale. It’s important to note that some original papers reported metrics
prior to re-scaling forecasts to their original magnitude, which can affect metric calculations. In
this study, we have carefully ensured that our reproduced results are consistent with those reported
in the original studies and have applied these unified metrics to enable a comprehensive and fair
comparison.

Normalized Mean Absolute Error (NMAE) The Normalized Mean Absolute Error (NMAE) is
a normalized version of the MAE, which is dimensionless and facilitates the comparability of the
error magnitude across different datasets or scales. The mathematical representation of NMAE is
given by:

NMAE =

∑K
k=1

∑T
t=1 |xk

t − x̂k
t |∑K

k=1

∑T
t=1 |xk

t |
.

9https://github.com/SalesforceAIResearch/uni2ts, Apache-2.0 license.

16

119189https://doi.org/10.52202/079017-3786

https://github.com/SalesforceAIResearch/uni2ts

Normalized Root Mean Squared Error (NRMSE) The Normalized Root Mean Squared Error
(NRMSE) is a normalized version of the Root Mean Squared Error (RMSE), which quantifies the
average squared magnitude of the error between forecasts and observations, normalized by the ex-
pectation of the observed values. It can be formally written as:

NRMSE =

√
1

K×T

∑K
i=1

∑L
t=1(xi,t − x̂i,t)2

1
K×T

∑K
i=1

∑T
t=1 |xi,t|

.

D Additional Experimental Results

D.1 Comparing ElasTST with More Neural Architectures

Table 5: Results (meanstd) on long-term forecasting scenarios with the best in bold and the second
underlined. Each result containing three independent runs with different seeds. During the training
phase, ElasTST utilizes an loss reweighting strategy where a single trained model is applied across
all inference horizons, the Hmax is set to 720. Other baseline models undergo horizon-specific
training and tuning.

pred ElasTST iTransformer PatchTST DLinear TSMixer Autoformer Transformer Enc
len NMAE NRMSE NMAE NRMSE NMAE NRMSE NMAE NRMSE NMAE NRMSE NMAE NRMSE NMAE NRMSE

E
T

T
m

1 96 0.273 0.488 0.271 0.568 0.272 0.565 0.282 0.573 0.369 0.620 0.388 0.711 0.320 0.561
192 0.289 0.520 0.301 0.614 0.295 0.602 0.309 0.617 0.393 0.673 0.442 0.820 0.348 0.632
336 0.314 0.575 0.333 0.668 0.323 0.645 0.338 0.654 0.426 0.727 0.429 0.774 0.373 0.679
720 0.346 0.645 0.376 0.741 0.353 0.700 0.387 0.737 0.464 0.788 0.440 0.793 0.397 0.712

E
T

T
m

2 96 0.150 0.227 0.137 0.227 0.132 0.220 0.138 0.226 0.560 0.668 0.158 0.254 0.156 0.233
192 0.174 0.264 0.161 0.266 0.157 0.259 0.163 0.264 0.556 0.665 0.175 0.283 0.183 0.275
336 0.191 0.289 0.180 0.293 0.176 0.286 0.188 0.291 0.553 0.664 0.191 0.307 0.201 0.303
720 0.211 0.318 0.211 0.330 0.205 0.324 0.219 0.327 0.548 0.661 0.217 0.338 0.223 0.336

E
T

T
h1

96 0.342 0.619 0.321 0.626 0.328 0.640 0.352 0.668 0.343 0.628 0.367 0.656 0.389 0.693
192 0.364 0.661 0.359 0.690 0.359 0.705 0.393 0.745 0.399 0.706 0.392 0.706 0.414 0.722
336 0.371 0.666 0.388 0.723 0.384 0.740 0.419 0.778 0.449 0.749 0.398 0.711 0.459 0.799
720 0.376 0.679 0.408 0.735 0.397 0.738 0.502 0.860 0.499 0.779 0.433 0.739 0.473 0.806

E
T

T
h2

96 0.158 0.239 0.177 0.279 0.177 0.281 0.211 0.320 0.199 0.283 0.203 0.317 0.210 0.312
192 0.170 0.259 0.203 0.314 0.201 0.314 0.238 0.353 0.228 0.322 0.226 0.346 0.228 0.339
336 0.188 0.282 0.243 0.372 0.240 0.366 0.284 0.407 0.253 0.354 0.264 0.398 0.244 0.361
720 0.215 0.319 0.264 0.386 0.252 0.371 0.307 0.426 0.288 0.390 0.287 0.416 0.262 0.391

E
le

ct
ri

ci
ty 96 0.085 0.777 0.098 0.772 0.086 0.816 0.090 0.863 0.101 0.862 0.140 0.977 0.107 0.924

192 0.093 0.933 0.106 0.916 0.092 0.942 0.095 0.974 0.105 0.951 0.136 1.017 0.109 0.957
336 0.101 1.063 0.115 0.985 0.100 1.035 0.104 1.066 0.109 1.022 0.147 1.080 0.118 1.057
720 0.117 1.289 0.133 1.110 0.116 1.213 0.122 1.259 0.120 1.194 0.159 1.283 0.123 1.118

Tr
af

fic

96 0.195 0.461 0.246 0.511 0.248 0.527 0.356 0.645 0.313 0.590 0.293 0.560 0.319 0.576
192 0.193 0.459 0.259 0.543 0.245 0.528 0.346 0.628 0.295 0.555 0.318 0.594 0.315 0.569
336 0.199 0.468 0.283 0.571 0.257 0.550 0.350 0.631 0.316 0.575 0.332 0.630 0.314 0.567
720 0.218 0.497 0.275 0.563 0.266 0.559 0.365 0.659 0.332 0.598 0.341 0.611 0.334 0.587

W
ea

th
er

96 0.086 0.287 0.089 0.295 0.087 0.294 0.112 0.316 0.118 0.309 0.239 0.614 0.106 0.309
192 0.092 0.312 0.093 0.299 0.090 0.299 0.122 0.331 0.123 0.325 0.213 0.533 0.111 0.327
336 0.091 0.307 0.096 0.297 0.092 0.297 0.130 0.340 0.126 0.328 0.176 0.413 0.114 0.330
720 0.093 0.308 0.099 0.298 0.094 0.298 0.144 0.358 0.129 0.330 0.170 0.434 0.113 0.324

E
xc

ha
ng

e 96 0.026 0.039 0.025 0.039 0.023 0.036 0.024 0.037 0.040 0.055 0.032 0.049 0.030 0.045
192 0.033 0.050 0.036 0.056 0.034 0.054 0.035 0.055 0.052 0.072 0.041 0.065 0.037 0.055
336 0.041 0.062 0.048 0.072 0.048 0.076 0.048 0.072 0.067 0.092 0.056 0.091 0.049 0.074
720 0.059 0.089 0.076 0.114 0.072 0.106 0.075 0.118 0.091 0.128 0.112 0.164 0.085 0.120

D.2 Performance Gains Across the Forecasting Horizon

In Figure 7, we compare the performance gains of each model design at different points within the
forecasting window. The benefits of structured masks are consistent across the entire horizon, while
the advantages of tunable RoPE and multi-patch designs become more prominent when handling un-
seen horizons. Notably, the tunable RoPE plays a critical role in enhancing the models extrapolation
capability.

17

119190 https://doi.org/10.52202/079017-3786

0 100 200 300 400 500 600 700
Hor.

1.0

1.5

2.0

2.5

3.0

3.5

M
od

el
.M

AE
 /

El
as

TS
T.M

AE Model
w/o Mask
w/o Multi-patch
w/o Tunable RoPE
ElasTST

Figure 7: Performance gain of each model design across the forecasting horizon. A relative perfor-
mance greater than 1 indicates a gain, while values less than 1 indicate a drop. Results are averaged
across all datasets, with the vertical red dashed line marking the training horizon.

Figure 8: Impact of forecasting horizon selection during the training phase.

D.3 More Analysis of the Impact of Training Horizon

The scalable architecture of ElasTST allows it to treat the training horizon as a hyperparameter. This
adaptability prompts us to evaluate performance across various training and inference horizons (see
Figure 8), yielding several interesting insights.

• Model performance deteriorates as the forecasting horizon increases, particularly in models
trained on shorter horizons, as seen in the ETT and Electricity datasets. This pattern suggests
the importance of training models on extended horizons to capture adequate contextual informa-
tion.

• Tuning models specifically for a given horizon does not guarantee improved performance on that
horizon, as noted in the Weather dataset. This indicates that optimal model settings depend sig-
nificantly on dataset-specific characteristics, and horizon-specific tuning may not be a reliable
strategy.

• The longest training horizons do not always produce the best forecasting results. In the Exchange
dataset, for example, the longest horizon yielded poorer results compared to a shorter training
horizon of 96. This points to the potential risks of overfitting or forecast instability when training
with long-term series only.

These observations underscore the importance of tailoring training horizons to the unique character-
istics of each dataset and underscore the benefits of an architecture designed for elastic forecasting.
Furthermore, they suggest the potential advantages of implementing a mixed-horizon training strat-
egy, which leverages multiple horizons to produce more resilient forecasts.

D.4 More Analysis of the Impact of Tunable Rotary Position Embedding

Beyond its scalable architecture, the position embedding plays a crucial role in enhancing the elas-
ticity of ElasTST. We analyze the Tunable RoPE in ElasTST by examining the effects of the initial-
ization of period coefficients, specifically Pmin and Pmax, and the benefits of parameter optimization
during the training process.

Experimental results, presented in Figure 9, indicate that using settings similar to the commonly-
used one in NLP, with Pmin = 1 and Pmax = 10000, does not fully exploit its potential in time series

18

119191https://doi.org/10.52202/079017-3786

(a) The effect of selecting Pmin, with Pmax fixed at 10,000 and θ is untunable during training.

(b) The effect of selecting Pmax, with Pmin fixed at 1 and θ is untunable during training.

(c) The effect of tuning θ, with Pmin set at 1 and Pmax set at 10,000.

Figure 9: Ablation study for designs in position embedding. Here we analyze the tunable RoPE in
ElasTST by examining the effects of the initialization of period coefficients, specifically Pmin and
Pmax, and the benefits of parameter optimization during the training process. Results are averaged
across all datasets. A vertical red dashed line distinguishes between seen horizons and unseen hori-
zons.

forecasting. This discrepancy stems from fundamental differences between the data types: in text,
discrete tokens are the smallest units, requiring attention over longer contexts, while time series data,
particularly when patched, may benefit from focusing on shorter, more recent tokens.

Furthermore, our findings reveal that tuning parameters in RoPE during training significantly im-
proves forecasting accuracy, particularly over varying and extended horizons. When the training
horizon is set to 96, a tunable feature shows minimal impact, suggesting that a short-seen horizon
does not facilitate learning effective period coefficients. However, as the training horizon extends,
the advantages of a tunable theta become more pronounced, especially for unseen horizons.

These results emphasize the importance of customizing RoPE’s period coefficients settings and uti-
lizing tunable RoPE to enable flexible and accurate forecasting in time series analysis. Appendix E
offers visualizations demonstrating how different initial ranges impact the frequency components,
along with a detailed analysis of the distribution of RoPE periods optimized for each dataset.

D.5 The Impact of Patch Size Selection

These experiments highlight the critical impact of patch size selection, particularly in varied-horizon
forecasting scenarios. As demonstrated in Figure 10, various combinations of training and forecast-
ing horizons exhibit distinct preferences for patch sizes. For instance, when the training forecasting
horizon is 720, during the inference stage, longer forecasting horizons prefer larger patch sizes.
Conversely, on shorter training horizons, such as 96 and 192, choosing large patch sizes for longer
horizons can lead to performance collapse. This difference underscores the complexity and necessity
of optimal patch size selection in achieving effective elastic forecasting.

19

119192 https://doi.org/10.52202/079017-3786

96 192 336 720 1024
Forecasting Horizons

0.2

0.3

0.4

NM
AE

Patch
8
16
32
64
8_16
8_16_32
8_16_32_64

(a) Training Horizon: 96

96 192 336 720 1024
Forecasting Horizons

0.15

0.20

0.25

0.30

NM
AE

Patch
8
16
32
64
8_16
8_16_32
8_16_32_64

(b) Training Horizon: 192

96 192 336 720 1024
Forecasting Horizons

0.15

0.20

0.25

0.30

NM
AE

Patch
8
16
32
64
8_16
8_16_32
8_16_32_64

(c) Training Horizon: 336

96 192 336 720 1024
Forecasting Horizons

0.15

0.20

0.25

0.30

NM
AE

Patch
8
16
32
64
8_16
8_16_32
8_16_32_64

(d) Training Horizon: 720

Figure 10: The performance of difference patch size selection.

Moreover, Figure 10 clearly show that multi-patch configurations typically surpass single patch
sizes across most forecasting horizons. The configuration p = {8, 16, 32} consistently offers the
lowest NMAE values, striking an optimal balance between capturing short-term dynamics and long-
term trends. However, introducing larger patches (p = {8, 16, 32, 64}) does not always enhance
performance and can sometimes increase the NMAE, indicating that overly complex configurations
may not yield additional benefits and could be counterproductive.

These findings emphasize the advantages of employing multi-patch configurations to improve the
accuracy of varied-horizon forecasting. They also highlights the importance of carefully selecting
patch size combinations to optimize performance and minimize computational expenses.

E Visualization of Periods in RoPE

E.1 Initialized Periods

To provide a more intuitive visualization of the initial distribution of periodicity coefficients, we
present this in Figure 11.

E.2 Tuned periodicity coefficients

In Figure 12, we present the distribution of tuned periodicity coefficients for each dataset.

20

119193https://doi.org/10.52202/079017-3786

0 5 10
j

0

250

500

750

1000

Pe
rio

d
P

(a) P ∈ [1, 1000].

0 5 10
j

0

2500

5000

7500

10000

Pe
rio

d
P

(b) P ∈ [1, 10000] (Same as RoPE paper).

0 20 40 60 80 100
1
0
1

sin(2 /1.0x)

0 20 40 60 80 100
1
0
1

sin(2 /2.7x)

0 20 40 60 80 100
1
0
1

sin(2 /7.2x)

0 20 40 60 80 100
1
0
1

sin(2 /19.3x)

0 20 40 60 80 100
1
0
1

sin(2 /51.8x)

0 20 40 60 80 100
1
0
1

sin(2 /138.9x)

0 20 40 60 80 100
0

1
sin(2 /372.8x)

0 20 40 60 80 100
0.0

0.5 sin(2 /1000.0x)

(c) Frequency distribution when P ∈ [1, 1000].

0 20 40 60 80 100
1
0
1

sin(2 /1.0x)

0 20 40 60 80 100
1
0
1

sin(2 /3.7x)

0 20 40 60 80 100
1
0
1

sin(2 /13.9x)

0 20 40 60 80 100
1
0
1

sin(2 /51.8x)

0 20 40 60 80 100
0

1
sin(2 /193.1x)

0 20 40 60 80 100
0.0
0.5 sin(2 /719.7x)

0 20 40 60 80 100
0.0

0.2
sin(2 /2682.7x)

0 20 40 60 80 100
0.00
0.05 sin(2 /10000.0x)

(d) Frequency distribution when P ∈ [1, 10000]
(Same as RoPE paper).

Figure 11: The initialized periodicity coefficients in RoPE. Here we set the dimension d to 16.

F Model Efficiency

F.1 Overall Computational Efficiency Comparison

Table 6: Computation memory. The batch size is 1 and the prediction horizon is set to 96.

Metric Dataset DLinear PatchTST Autoformer iTransformer ElasTST

NPARAMS (MB)

ETTm1 0.075 2.145 23.273 3.366 2.240
Electricity 0.076 2.146 29.701 3.366 2.240

Traffic 0.078 2.149 40.783 3.366 2.240
Weather 0.075 2.145 23.560 3.366 2.240

Exchange 0.075 0.135 23.286 3.366 2.240

Max GPU Mem. (GB)

ETTm1 0.002 0.009 0.227 0.026 0.024
Electricity 0.060 0.068 0.246 0.037 0.112

Traffic 0.161 0.168 0.279 0.157 0.263
Weather 0.004 0.012 0.228 0.027 0.028

Exchange 0.002 0.002 0.227 0.026 0.024

In Table 6, we compare the memory usage of ElasTST with other baseline models. The comparison
reveals that ElasTST does not require more computational resources than other Transformer-based
models.

F.2 Memory Usage Introduced by TRoPE

In Table 7, we compare the memory usage of ElasTST with different position encodings. The
results show that RoPE adds an almost negligible number of parameters compared to vanilla absolute
position encoding. While applying rotation matrix does introduce slightly higher memory usage, it
remains within acceptable limits.

21

119194 https://doi.org/10.52202/079017-3786

Figure 12: Tuned periodicity coefficients over different datasets.

Table 7: Memory consumption of ElasTST using different position encoding approaches. The batch
size is 1 and the forecasting horizon is 1024.

Metric Abs PE RoPE w/o Tunable Tunable RoPE
Max GPU Mem. (GB) 0.0480 0.0539 0.0539

NPARAMS (MB) 5.1225 5.1225 5.1228

F.3 Memory Usage Introduced by Multi-scale Patch Assembly

Table 8: Memory consumption under different patch size settings. The batch size is 1 and the
forecasting horizon is 1024.

Metric p=1 p=8 p=16 p=32 p={1,8,16,32} p={8,16,32}
Max GPU Mem. (GB) 0.6747 0.0536 0.0415 0.0360 0.6751 0.0539

NPARAMS (MB) 5.0130 5.0267 5.0424 5.0738 5.1257 5.1228

While our model uses a shared Transformer backbone to process all patch sizes, this can be done
either in parallel or sequentially, depending on whether shorter computation times or lower memory
usage is prioritized. In practice, we chose the sequential approach, where each patch size is pro-
cessed individually, and the total forecast is assembled afterward. This approach ensures that the
memory bottleneck depends on the smallest patch size used.

As indicated in Table 8, memory usage is primarily influenced by the smallest patch size, not by the
number of patch sizes employed. The additional parameters introduced by using multiple patch sizes
are almost negligible. For example, the multi-patch setting 8,16,32 used in the paper requires the
same maximum memory as using a single patch size of 8. Under resource constraints, the minimum
patch size can be adjusted to balance model performance and memory usage.

22

119195https://doi.org/10.52202/079017-3786

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The claims in the abstract and introduction are well-aligned with the paper’s
contributions and scope as detailed in Sections 3 and 4, where we elaborate on the theoret-
ical advancements and experimental validations.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The limitations of our work are discussed in Section 5.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

answer: [NA]

Justification: There is no theoretical result in this paper.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All necessary details required for reproducing the main experimental results
are comprehensively disclosed in Section C.2 and Appendix C.2.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The code is available at https://github.com/microsoft/ProbTS/tree/
elastst.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All training and testing details, including data splits, hyperparameters, their
selection rationale, and the type of optimizer used, are fully specified in Section C.2 and
Appendix C.2.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: For the experiments presented in the main result tables, we conducted each
experimental setup three times using random seeds set to 0, 1, and 2. The mean and variance
of these three trials are reported in the tables, providing a measure of the experiments’
statistical robustness.

8. Experiments Compute Resources

23

119196 https://doi.org/10.52202/079017-3786

https://github.com/microsoft/ProbTS/tree/elastst
https://github.com/microsoft/ProbTS/tree/elastst

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Detailed specifications of the compute resources are provided in Ap-
pendix C.2 and Appendix F.

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research presented in this paper adheres fully to the NeurIPS Code of
Ethics.

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: No negative societal impact of the work performed.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The methodologies developed in this study do not involve such risk.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All relevant assets used in our research are duly credited. We have explicitly
listed the licenses and terms of use for each asset, including URLs to the original sources,
in Appendix C.1 and Appendix C.2.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?
Answer: [NA]
Justification: No new asset have been released so far.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.

24

119197https://doi.org/10.52202/079017-3786

https://neurips.cc/public/EthicsGuidelines

