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Abstract

Modeling multivariate time series is a well-established problem with a wide range
of applications from healthcare to financial markets. It, however, is challenging as
it requires methods to (1) have high expressive power of representing complicated
dependencies along the time axis to capture both long-term progression and sea-
sonal patterns, (2) capture the inter-variate dependencies when it is informative, (3)
dynamically model the dependencies of variate and time dimensions, and (4) have
efficient training and inference for very long sequences. Traditional State Space
Models (SSMs) are classical approaches for univariate time series modeling due
to their simplicity and expressive power to represent linear dependencies. They,
however, have fundamentally limited expressive power to capture non-linear depen-
dencies, are slow in practice, and fail to model the inter-variate information flow.
Despite recent attempts to improve the expressive power of SSMs by using deep
structured SSMs, the existing methods are either limited to univariate time series,
fail to model complex patterns (e.g., seasonal patterns), fail to dynamically model
the dependencies of variate and time dimensions, and/or are input-independent. We
present Chimera, an expressive variation of the 2-dimensional SSMs with careful
design of parameters to maintain high expressive power while keeping the training
complexity linear. Using two SSM heads with different discretization processes
and input-dependent parameters, Chimera is provably able to learn long-term pro-
gression, seasonal patterns, and desirable dynamic autoregressive processes. To
improve the efficiency of complex 2D recurrence, we present a fast training using a
new 2-dimensional parallel selective scan. Our experimental evaluation shows the
superior performance of Chimera on extensive and diverse benchmarks, including
ECG and speech time series classification, long-term and short-term time series
forecasting, and time series anomaly detection.

1 Introduction

Modeling time series is a well-established problem with a wide range of applications from health-
care [1–3] to financial markets [4, 5] and energy management [6]. The complex nature of time series
data, its diverse domains of applicability, and its broad range of tasks (e.g., classification [2, 7],
imputation [8, 9], anomaly detection [2, 10], and forecasting [6]), however, raise fundamental chal-
lenges to design effective and generalizable models: (1) The higher-order, seasonal, and long-term
patterns in time series require an effective model to be able to expressively capture complex and
autoregressive dependencies; (2) In the presence of multiple variates of time series, an effective
model need to capture the complex dynamics of the dependencies between time and variate axes.
More specifically, most existing multivariate models seem to suffer from overfitting especially when
the target time series is not correlated with other covariates [11]. Accordingly, an effective model
needs to adaptively learn to select (resp. filter) informative (resp. irrelevant) variates; (3) The diverse
set of domains and tasks requires effective models to be free of manual pre-processing and domain
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Figure 1: The Overview of Contributions and Architecture of Chimera. We present a 2-dimensional SSM
with careful and expressive parameterization. It uses different learnable discretization processes to learn seasonal
and long-term progression patterns, and leverages a parallelizable and fast training process by re-formulating the
2D input dependent recurrence as a 2D prefix sum problem.

knowledge and instead adaptively learn them; and (4) Due to the processing of very long sequences,
effective methods need efficient training and inference.

Classical methods (e.g., State Space Models [12, 13], ARIMA [14], SARIMA [15], Exponential
Smoothing (ETS) [16]) require manual data preprocessing and model selection, and often are not able
to capture complex non-linear dynamics. The raise of deep learning methods and more specifically
Transformers [17] has led to significant research efforts to address the limitation of classical methods
and develop effective deep models [18–27]. Unfortunately, most existing deep models struggle
to achieve all the above four criteria. The main body of research in this direction has focused on
designing attention modules that use the special traits of time series [21, 20]. However, the inherent
permutation equivariance of attentions contradicts the causal nature of time series and often results
in suboptimal performance compared to simple linear methods [11]. Moreover, they often either
overlook difference of seasonal and long-term trend or use non-learnable methods to handle them [20].

A considerable subset of deep models overlook the importance of modeling the dependencies of
variates [11, 28, 29]. These dependencies, however, are not always useful; specifically when the
target time series is not correlated with other covariates [30]. Despite several studies exploring the
importance of learning cross variate dependencies [26, 27, 30], there has been no universal standard
and the conclusion has been different depending on the domain and benchmarks. Accordingly, we
argue that an effective model need to adaptively learn to capture the dependencies of variates in a
data-dependent manner. In this direction, recently, Liu et al. [27] argue that attention mechanisms
are more effective when they are used across variates, showing the importance of modeling complex
non-linear dependencies across the variate axis in a data-dependent manner. However, the quadratic
complexity of Transformers challenges the model on multivariate time series with a large number of
variates (e.g., brain activity signals [2] or traffic forecasting [6]), limiting the efficient training and
inference (see Table 3, and Table 5).

The objective of this study is to develop a provably expressive model for multivariate time series
that not only can model the dynamics of the depenendencies along both time and variates, but it also
takes advantage of fast training and inference. To this end, we present a Chimera, a three-headed
two-dimensional State Space Model (SSM) that is based on linear layers along (i) time, (ii) variates,
(iii) time→variate, and (iv) variate→time. Chimera has a careful parameterization based on the pair
of companion and diagonal matrices (see Figure 1), which is provably expressive to recover both
classical methods [16, 14, 15], linear attentions, and recent SSM-based models [31, 32]. It further
uses an adaptive module based on a 2D SSM with an especially designed discretization process to
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capture seasonal patterns. While our theoretical results and design of Chimera guarantee the first
three criteria of an effective model, due to its 2D recurrence, the naive implementation of Chimera
results in slow training. To address this issue, we reformulate its 2D recurrence as the prefix sum
problem with a 2-dimensional associative operators. This new formulation can be done in parallel
and has hardware-friendly implementation, resulting in much faster training and inference.

In our experimental evaluation, we explore the performance of Chimera in a wide range of tasks: ECG
and audio speech time series classification, long- and short-term time series forecasting, and anomaly
detection tasks. We find that Chimera achieve superior or on par performance with state-of-the-art
methods, while having faster training and less memory consumption. We perform a case study on
the human brain activity signals [2] to show (1) the effectiveness of Chimera and (2) evaluate the
importance of modeling the dynamics of the variates dependencies.

2 Preliminaries

Notations. In this paper we mainly focus on classification and forecasting tasks. Note that anomaly
detection can be seen as a binary classification task, where 0 means “normall” and 1 means “anomaly”.
We let X = {x1, . . . ,xN} ∈ RN×T be the input sequences, where N is the number of variates
and T is the time steps. We use xv,t to refer to the value of the series v at time t. In classification
(anomaly detection) tasks, we aim to classify input sequences and for forecasting tasks, given an
input sequence xi, we aim to predict x̃i ∈ R1×H , i.e., the next H time steps for variate xi, where H
is called horizon. In 2D SSMs formulation, for a 2-dimensional vector x ∈ C1, we use x(1) and x(2)

to refer to its real and imaginary components, respectively.

Multi-Dimensional State Space Models. We build our approach on the continuous State Space
Model (SSM) but later we make each component of Chimera discrete by a designed discretization pro-
cess. For additional discussion on 1D SSMs see Appendix A. Given parameters Aτ1 ∈ RN(τ1)×N(τ1)

,
Bτ2 ∈ CN(τ2)×1, and C ∈ CN1×N2 for τ1 ∈ {1, ..., 4} and τ2 ∈ {1, 2}, the general form of the
time-invariant 2D SSM is the map x ∈ C1 7→ y ∈ C1 defined by the linear Partial Differential
Equation (PDE) with initial condition h(0, 0) = 0:

∂

∂t(1)
h
(
t(1), t(2)

)
=
(
A1h

(1)
(
t(1), t(2)

)
,A2h

(2)
(
t(1), t(2)

))
+B1x

(
t(1), t(2)

)
, (1)

∂

∂t(2)
h
(
t(1), t(2)

)
=
(
A3h

(1)
(
t(1), t(2)

)
,A4h

(2)
(
t(1), t(2)

))
+B2x

(
t(1), t(2)

)
, (2)

y
(
t(1), t(2)

)
= ⟨C,x

(
t(1), t(2)

)
⟩. (3)

Contrary to the multi-dimensional SSMs discussed by Gu and Dao [33], Gu et al. [34], in which
multi-dimension refers to the dimension of the input but with one time variable, the above formulation
uses two variables, meaning that the mapping is from a 2D grid to a 2D grid.

(Seasonal) Autoregressive Process. Autoregressive process is a basic yet essential premise for
time series modeling, which models the causal nature of time series. Given p ∈ N, xk ∈ Rd, the
simple linear autoregressive relationships between xk and its past samples xk−1,xk−2, . . . ,xk−p

can be modeled as xk = ϕ1xk−1 + ϕ2xk−2 + . . . , ϕpxk−p, where ϕ1, . . . , ϕp are coefficients. This
is called AR(p). Similarly, in the presence of seasonal patterns, the seasonal autoregressive process,
SAR(p, q, s), is:

xk = ϕ1xk−1 + ϕ2xk−2 + . . . , ϕpxk−p+η1xk−s + η2xk−2s + · · ·+ ηqxk−qs, (4)

where s is the frequency of seasonality, and ϕ1, . . . , ϕp and η1, . . . , ηq are coefficients. Note that
one can simply extend the above formulation to multivariate time series by letting coefficients to be
vectors and replace the product with element-wise product.

3 Chimera: A Three-headed 2-Dimensional State Space Model

In this section, we first present a mathematical model for multivariate time series data and then based
on this model, we present a neural architecture that can satisfy all the criteria discussed in §1.
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3.1 Motivations & Chimera Model

SSMs have been long-standing methods for modeling time series [12, 13], mainly due to their
simplicity and expressive power to represent complicated and autoregressive dependencies. Their
states, however, are the function of a single-variable (e.g., time). Multivariate time series, on the other
hand, require capturing dependencies along both time and variate dimensions, requiring the current
state of the model to be the function of both time and variate. Classical 2D SSMs [35–38], however,
struggle to achieve good performance compared to recent advanced deep learning methods as they
are : (1) only able to capture linear dependencies, (2) discrete by design, having a pre-determined
resolution, and so cannot simply model seasonal patterns, (3) slow in practice for large datasets,
(4) their update parameters are static and cannot capture the dynamics of dependencies. Deep
learning-based methods [6, 30, 27], on the other hand, potentially are able to address a subset of the
above limitations, while having their own drawbacks (discussed in §1). In this section, we start with
continuous SSMs due to their connection to both classical methods [12, 13] and recent breakthrough
in deep learning [34, 33]. We then discuss our contributions on how to take the advantages of the
best of both worlds, addressing all the abovementioned limitations.

Discrete 2D SSM. We use 2-dimensional SSMs, introduced in Equation 1-3, to model multivariate
time series, where the first axis corresponds to the time dimension and the second axis is the variates.
Accordingly, each state is a function of both time and variates. The first stage is to transform the
continuous form of 2D SSMs to discrete form. Given the step size ∆1 and ∆2, which represent the
resolution of the input along the axes, discrete form of the input is defined as xk,ℓ = x(k∆1, ℓ∆2).
Using Zero-Order Hold (ZOH) method, we can discretize the input as (see Appendix C for details):(

h
(1)
k,ℓ+1

h
(2)
k+1,ℓ

)
=

(
Ā1 Ā2

Ā3 Ā4

)(
h
(1)
k,ℓ

h
(2)
k,ℓ

)
+

(
B̄1

B̄2

)
⊗
(
x̄k,ℓ+1

x̄k+1,ℓ

)
, (5)

where Āi = exp
(
∆⌊ i+1

2 ⌋Ai

)
for i = 1, 2, 3, 4, B̄1 =

(
A−1

1

(
Ā1 − I

)
B

(1)
1

A−1
2

(
Ā2 − I

)
B

(2)
1

)
, and B̄2 =(

A−1
3

(
Ā3 − I

)
B

(1)
2

A−1
4

(
Ā4 − I

)
B

(2)
2

)
. Note that this formulation can also be viewed as the modification of

the discrete Roesser’s SSM model [35] when we add a lag of 1 in the inputs
(
x̄i,j

x̄i,j

)
. This modifi-

cation, however, misses the discretization step, which is an important step in our model. We later
use the discretization step to (1) empower the model to select (resp. filter) relevant (resp. irrelevant)
information, (2) adaptively adjust the resolution of the method, capturing seasonal patterns.

From now on, we use t (resp. v) to refer to the index along the time (resp. variate) dimension.
Therefore, for the sake of simplicity, we reformulate Equation 5 as follows:

h
(1)
v,t+1 = Ā1h

(1)
v,t + Ā2h

(2)
v,t + B̄1xv,t+1, (6)

h
(2)
v+1,t = Ā3h

(1)
v,t + Ā4h

(2)
v,t + B̄2xv+1,t, (7)

yv,t = C1h
(1)
v,t +C2h

(2)
v,t , (8)

where Ā1, Ā2, Ā3, Ā4 ∈ RN×N , B̄1, B̄2 ∈ RN×1, and C1,C2 ∈ R1×N are parameters of the
model, h(1)

v,t , h
(2)
v,t ∈ RN×d are hidden states, and xv,t ∈ R1×d is the input. In this formulation,

intuitively, h(1)
v,t is the hidden state that carries cross-time information (each state depends on its

previous time stamp but within the same variate), where Ā1 and Ā2 control the emphasis on past
cross-time and cross-variate information, respectively. Similarly, h(2)

v,t is the hidden state that carries
cross-variate information (each state depends on other variates but with the same time stamp). Later
in this section, we discuss to modify the model to bi-directional setting along the variate dimension,
to enhance information flow along this non-causal dimension.

Interpretation of Discretization. Time series data are often sampled from an underlying continuous
process [39, 40]. In these cases, variable ∆1 in the discretization of the time axis can be interpreted
as resolution or the sampling rate from the underlying continuous data. However, discretization along
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Figure 2: Different forms of Chimera. (Top-Left) Chimera has a recurrence form (bi-directional along the
variates), which also can be computed as a global convolution in training. (Top-Right) In forecasting, we present
the multivariate closed-loop to improve the performance for long horizons. (Bottom) Using data-dependent
parameters, Chimera training can be done as a parallel 2D scan.

the variate axis, which is discrete by its nature, or when working directly with discrete data [41] is an
unintuitive process, and raise questions about its significance. The discretization step in 1D SSMs
has deep connections to gating mechanisms of RNNs [42, 33], automatically ensures that the model
is normalized [43], and results in desirable properties such as resolution invariance [32].
Proposition 3.1. The 2D discrete SSM introduced in Equation 6-8 with parameters
({Āi}, {B̄i}, {C̄i}, k∆1, ℓ∆2) evolves at a rate k (resp. ℓ) times as fast as the 2D discrete SSM with
parameters ({Āi}, {B̄i}, {C̄i},∆1, ℓ∆2) (resp. ({Āi}, {B̄i}, {C̄i}, k∆1,∆2)).

Accordingly, parameters ∆1 can be viewed as the controller of the length of dependencies that the
model captures. That is, based on the above result, we see the discretization along the time axis as
the setting of the resolution or sampling rate: while small ∆1 can capture long-term progression,
larger ∆1 captures seasonal patterns. For now, we see the discretization along the variate axis as a
mechanism similar to gating in RNNs [44, 33], where ∆2 controls the length of the model context.
Larger values of ∆2 means less context window, ignoring other variates, while smaller values of
∆2 means more emphesis on the dependencies of variates. Later, inspired by Gu and Dao [33],
we discuss making ∆2 as the function of the input, resulting in a selection mechanism that filters
irrelevant variates.

Structure of Transition Matrices. For Chimera to be expressive and able to recover autoregressive
process, hidden states h(1)

v,t should carry information about past time stamps. While making all the
parameters in Ai learnable allows the model to learn any arbitrary structure for Ai, previous studies
show that this is not possible unless the structure of transition matrices are restricted [45, 46]. To
this end, inspired by Zhang et al. [28] that argue that companion matrices are effective to capture
the dependencies along the time dimension, we restrict A1 and A2 matrices to have companion
structure (see Appendix D for the details). Not only this formulation is shown to be effective for
capturing dependencies along the time dimension [28] (also see Theorem 3.4), but it also can help us
to compute the power of A1 and A2 faster in the convolutional form, as discussed by Zhang et al.
[28]. Also, for A3 and A4, we observe that even a simpler structure of diagonal matrices is effective
to fuse information along the variate dimension. Not only these simple structured matrices make the
training of the model faster, but they also are proven to be effective [45].

Bi-Directionality. The causal nature of the 2D SSM result in limited information flow along the
variate dimension as variate are not ordered. To overcome this challenge, inspired by the bi-directional
1D SSMs [47, 48, 1], we use two different modules for forward and backward pass along the variate
dimension. The details of formulation is in Appendix E.

Convolution Form. As discussed by Baron et al. [49], similar to 1D SSMs [34], the data-independent
formulation of 2D-SSMs can be viewed as a convolution with a kernel K. This formulation not only
results in faster training by providing the ability of parallel processing, but it also connect Chimera
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with very recent studies of modern convolution-based architecture for time series [9]. Applying the
recurrent rules in Equation 6-8, we can write the output as:

yv,t =
∑

1≤v̂≤v

∑
1≤t̂≤t

(
C1K

(1)

v̂,t̂
+C2K

(2)

v̂,t̂

)
xv̂,t̂, (9)

where kernels K(τ)

v̂,t̂
=
∑

(z1,...,z5)∈P(τ) qi Ā
p1

1 Āp2

2 Āp3

3 Āp4

4 B̄p5 , and P(τ) is the partitioning of the

paths from the starting point to (v̂, t̂) for τ ∈ {1, 2}. As discussed by Baron et al. [49], if the power
of Āis are given and cached, calculating the partitioning of all paths can be done very efficiently
(near-linearly) as it the generalization of pascal triangle. To calculate the power of Āi, note that we
use diagonal matrices as the structure of Ā3, and Ā4, and so computing their powers is very fast. On
the other hand, for Ā1 and Ā2 with companion structures, we can use sparse matrix multiplication,
which results in linear complexity in terms of the sequence length.

Data-Dependent Parameters. As discussed earlier, parameters Ā1 and Ā2 controls the emphasis
on past cross-time and cross-variate information. Similarly, parameters ∆1 and B̄1 controls the
emphasis on the current input and historical data. Since these parameters are data-independent, one
can interpret them as a global feature of the system. In complex systems (e.g., human neural activity),
however, the emphasis depends on the current input, requiring these parameters to be the function of
the input (see §4.1). The input-dependency of parameters allows the model to select relevant and
filter irrelevant information for each input data, providing a similar mechanism as transformers [33].
Additionally, as we argue earlier, depending on the data, the model needs to adaptively learn if mixing
information along the variates is useful. Making parameters input-dependent further overcomes
this challenge and lets our model to mix relevant and filter irrelevant variates for the modeling of a
variate of interest. One of our main technical contributions is to let B̄i, C̄i, and ∆i for i ∈ {1, 2}
be the function of the input xv,t. This input-dependent 2D SSM, unfortunately, does not have the
convolution form, limiting the scalability and efficiency of the training. We overcome this challenge
by computing the model recurrently with a new 2D scan.

2D Selective Scan. Inspired by the scanning in 1D SSMs [50, 33], we present an algorithm to decrease
the sequential steps that are required to calculate hidden states. Given p, q, each of which with 6
elements, we first define operation ⋇ as: (⊙ is matrix-matrix and ⊗ is matrix-vector multiplication)

p⋇ q =

(
p1 p2 p3
p4 p5 p6

)
⋇
(
q1 q2 q3
q4 q5 q6

)
=

(
q1 ⊙ p1 q2 ⊙ p2 q1 ⊗ p3 + q2 ⊗ p6 + q3
q4 ⊙ p4 q5 ⊙ p5 q4 ⊗ p3 + q5 ⊗ p6 + q6

)
The proofs of the next two theorems are in Appendix G.
Theorem 3.2. Operator ⋇ is associative: Given p, q, and r, we have: (p⋇ q)⋇ r = p⋇ (q ⋇ r).
Theorem 3.3. 2D SSM recurrence can be done in parallel using parallel prefix sum algorithms with
associative operator ⋇, when fixing the variate.

3.2 New Variant of 2D SSM: 2D Mamba

Figure 2 (Top-Left) shows the recurrence form of our 2D SSM. Each small square is a state of the
system, i.e., the state of a variate at a certain time stamp. 2D SSM considers two hidden states for
each state (represented by two colors: light red and blue), encoding the information along the time
(red) and variate (blue), respectively. Furthermore, each arrow represents a transition matrix Ai that
decides to how information need to be fused. In this section, we discuss a spacial instance of our 2D
SSM by limiting its parameters.

2D Mamba. We let A2 = A3 = 0 in our 2D SSM. The resulting model is equivalent to:

h
(1)
v,t+1 = Ā1h

(1)
v,t + B̄1xv,t+1, (10)

h
(2)
v+1,t = Ā4h

(2)
v,t + B̄2xv+1,t, (11)

yv,t = C1h
(1)
v,t +C2h

(2)
v,t , (12)

where Ā1 = exp (∆1A1), Ā2 = exp (∆2A2), B̄1 =

[
A−1

1

(
Ā1 − I

)
B

(1)
1

0

]
, and B̄2 =[

0

A−1
4

(
Ā4 − I

)
B

(2)
2

]
. This formulation with data-dependent parameters, is equivalent to using two
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S6 blocks [33] each of which along a dimension. Notably, these two S6 blocks are not separate as the
output yv,t is based on both hidden states h(1)

v,t and h
(2)
v,t , capturing 2D inductive bias.

3.3 Chimera Neural Architecture

In this section, we use a stack of our 2D SSMs, with non-linearity in between, to enhance the
expressive power and capabilities of the abovementioned 2D SSM. To this end, similar to deep SSM
models [28], we allow all parameters to be learnable and in each layer we use multiple 2D SSMs,
each of which with its own responsibility. Also, in the data-dependent variant of Chimera, we let
parameters Bi,Ci, and ∆i for i ∈ {1, 2} be the function of the input x:

Bi = LinearBi(x), Ci = LinearCi(x), ∆i = Softplus (Linear∆i(x)) . (13)

Chimera follows the commonly used decomposition of time series, and decomposes them into trend
components and seasonal patterns. it, however, uses special traits of 2D SSM to capture these terms.

Seasonal Patterns. To capture the multi-resolution seasonal patterns, we take advantage of
the discretization process. Proposition 3.1 states that if x(v, t) 7→ y(v, t) with parameters
({Āi}, {B̄i}, {C̄i},∆1,∆2) then x(v, kt) 7→ y(v, kt) with ({Āi}, {B̄i}, {C̄i}, k∆1,∆2). Ac-
cordingly, we use 2D-SSM(.) module with a separate learnable ∆s that is responsible to learn the
best resolution to capture seasonal patterns. Another interpretation for this module is based on
SAR(p, q, s) (Equation 4). In this case, ∆s aims to learn a proper parameter s to capture seasonal
patterns. Since we expect the resolution before and after this module matches, we add additional
re-discretization module (a simple linear layer), after this module.

Trend Components. The second module of Chimera, 2D-SSMt (.) simply uses a sequence of multiple
2D SSMs to learn trend components. Proper combination of the outputs of this and the previous
modules can capture both seasonal and trend components.

Both Modules Together. We followed previous studies [51] and consider residual connection
modeling for learning trend and seasonal patterns. Given input data X̃0 = X, and ℓ = 0, . . . ,L, we
have:

X̂ℓ+1 = 2D-SSMt
(
X̃ℓ

)
, (14)

X̃ℓ+1 = Re-Discretization
(
2D-SSMs

(
X̃ℓ − X̂ℓ+1

))
. (15)

Figure 1 illustrate the architecture of Chimera. Due to the ability of our 2D SSM to recover smoothing
techniques (see Theorem 3.4), this combination of modules for trend and seasonal patterns can be
viewed as a generalization of traditional methods that use moving average with residual connection
to model seasonality [51].

Gating with Linear Mapping. Inspired by the success of gated recurrent and SSM-based models [52,
33], we use a head of a fully connected layer with Swish [53], resulting in SwiGLU variant [54].
While we validate the significance of this head, this

Closed-Loop 2D SSM Decoder. To enhance the generalizability and the ability of our model for
longer-horizon, we extend the closed-loop decoder module [28], which is similar to autoregression,
to multivariate time series. We use distinct processes for the inputs and outputs, using additional
matrices D1 and D2 in each decoder 2D SSM, we model future input time-steps explicitly:

yv,t = C1h
(1)
v,t +C2h

(2)
v,t , (16)

uv,t = D1h
(1)
v,t +D2h

(2)
v,t , (17)

where uv,t is the next input and yv,t is the output. Note that the other parts (recurrence) are the same
as Equation 6. Figure 2 illustrate the architecture of closed-loop 2D SSM.

3.4 Theoretical Justification

In this section, we provide some theoretical evidences for the performance of Chimera. These results
are mostly revisiting the theorems by Zhang et al. [28] and Baron et al. [49], and extending them
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for Chimera. In the first theorem, we show that Chimera recovers several classic methods, and
pre-processing steps as it can recover SpaceTime [28] and additionally because of its design, it can
recover SARIMA [15]:
Theorem 3.4. Chimera can represent seasonal autoregressive process, SARIMA [15], Space-
Time [28], and so ARIMA [14], and exponential smoothing [16].
Theorem 3.5. Chimera can represent S4nd [32], TSM2 [31], and TSMixer [30].

Next theorem compares the expressiveness of Chimera with some existing 2D deep SSMs. Since
Chimera can recover 2DSSM [49], it can express full-rank kernels with a constant number of
parameters:
Theorem 3.6. Similar to 2DSSM [49], Chimera can express full-rank kernels with O (1) parameters,
while existing deep SSMs [32, 31] require O (N) parameters to express N -rank kernels.

4 Experiments

Goals and Baselines. We evaluate Chimera on a wide range of time series tasks. In § 4.1 we compare
Chimera with the state-of-the-art general multivariate time series models [8, 9, 18, 20, 21, 24, 26, 27,
31, 55–57] on long-term forecasting and classification tasks. In the next part, we test the performance
of Chimera in short-term forecasting. In § 4.1 we perform a case study on human neural activity to
classify seen images, which requires capturing complex dynamic dependencies of variates, to test the
ability of Chimera in capturing cross-variate information and the significance of data-dependency. In
§ 4.2, we evaluate the significance of the Chimera’s components by performing ablation studies. In
§ 4.2, we evaluate whether the superior performance of Chimera coincide with its efficiency. Finally,
we test the Chimera’s generalizability on unseen variates and further evaluate its ability to filter
irrelevant context in § 4.3. The details and additional experiments are in Appendix I.

Table 1: Average Performance on long-term forecasting task. The first and second results are highlighted in red
(bold) and orange (underline). Full results are reported in Appendix I.

Chimera TSM2 Simba TCN iTransformer RLinear PatchTST Crossformer TiDE TimesNet DLinear
(ours) [2024] [2024] [2024] [2024] [2023] [2023] [2023] [2023] [2023] [2023]

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTm1 0.355 0.381 0.361 - 0.383 0.396 0.351 0.381 0.407 0.410 0.414 0.407 0.387 0.400 0.513 0.496 0.419 0.419 0.400 0.406 0.403 0.407
ETTm2 0.252 0.317 0.267 - 0.271 0.327 0.253 0.314 0.288 0.332 0.286 0.327 0.281 0.326 0.757 0.610 0.358 0.404 0.291 0.333 0.350 0.401
ETTh1 0.408 0.425 0.403 - 0.441 0.432 0.404 0.420 0.454 0.447 0.446 0.434 0.469 0.454 0.529 0.522 0.541 0.507 0.458 0.450 0.456 0.452
ETTh2 0.321 0.377 0.333 - 0.361 0.391 0.322 0.379 0.383 0.407 0.374 0.398 0.387 0.407 0.942 0.684 0.611 0.550 0.414 0.427 0.559 0.515
ECL 0.154 0.249 0.169 - 0.185 0.274 0.156 0.253 0.178 0.270 0.219 0.298 0.205 0.290 0.244 0.334 0.251 0.344 0.192 0.295 0.212 0.300
Exchange 0.311 0.358 0.443 - - - 0.302 0.366 0.360 0.403 0.378 0.417 0.367 0.404 0.940 0.707 0.370 0.413 0.416 0.443 0.354 0.414
Traffic 0.403 0.286 0.420 - 0.493 0.291 0.398 0.270 0.428 0.282 0.626 0.378 0.481 0.304 0.550 0.304 0.760 0.473 0.620 0.336 0.625 0.383
Weather 0.219 0.258 0.239 - 0.255 0.280 0.224 0.264 0.258 0.278 0.272 0.291 0.259 0.281 0.259 0.315 0.271 0.320 0.259 0.287 0.265 0.317

1st Count 4 5 1 - 0 0 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4.1 Main Results: Classification and Forecasting

Long-Term Forecasting. We perform experiments in long-term forecasting task on benchmark
datasets [6]. Table 1 reports the average of results over different horizons (for the results of each see
Table 8). Chimera shows outstanding performance, achieving the best or the second best results in all
the datasets and outperforms baselines in 5 out of 8 benchmarks. Notably, it surpasses extensively
studied MLP-based and Transformer-based models while being more efficient (see Table 3, Figure 4,
and Appendix I), providing a better balance of performance and efficiency. It further significantly
outperforms recurrent models, including very recent Mamba-based architectures [31, 57], unleashing
the potential of classical models, SSMs, when are carefully designed in deep learning settings.

Classification and Anomaly Detection. We evaluate the performance of Chimera in ECG classi-
fication on PTB-XL dataset [7] (see Table 2), speech classification [39] (Table 3), 10 multivariate
datasets from UEA Time Series Classification Archive [60] (see Figure 3 and Table 10), and anomaly
detection tasks on five widely-used benchmarks: SMD [10], SWaT [61], PSM [62] and SMAP [63]
(see Figure 3 and Table 11). For each benchmark, we use the state-of-the-art methods that are
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applicable to the task as the baselines. Table 2 reports the performance of Chimera and baselines
on ECG classification tasks. Chimera outperforms all the baselines in 4/6 tasks, while achieving the
second best results on the remaining tasks. Since these tasks are univariate time series, we attribute
the outstanding performance of Chimera, specifically compared to SpaceTime [28], to its ability
of capturing seasonal patterns and its input-dependent parameters, resulting in dynamically learn
dependencies.

Table 3 reports the results on speech audio classification task, which require long-range modeling of
time series. Due to the length of the sequence (16K), LSSL [34] and Transformer [17] has out of
memory (OOM) issue, showing the efficiency of Chimera compared to alternative backbones.

Finally, we report the summary of the results in multivariate time series classification and anomaly
detection tasks in Figure 3. The full list of results can be found in Table 10 and Table 11. Chimera
shows outstanding performance, achieving highest average accuracy and F1 score in classification
and anomaly detection tasks even compared to very recent and state-of-the-art methods [8, 9].

Table 2: ECG statement classification on PTB-XL (100 Hz version).

Tasks All Diag Sub-diag Super-diag Form Rhythm

Chimera 0.941 0.947 0.935 0.930 0.901 0.975
SpaceTime [28] 0.936 0.941 0.933 0.929 0.883 0.967
S4 [34] 0.938 0.939 0.929 0.931 0.895 0.977
Inception 0.925 0.931 0.930 0.921 0.899 0.953
xRN-101 0.925 0.937 0.929 0.928 0.896 0.957
LSTM 0.907 0.927 0.928 0.927 0.851 0.953
Transformer 0.857 0.876 0.882 0.887 0.771 0.831

Table 3: Speech classification.

Method Acc. (%)

Chimera 98.40
SpaceTime 97.29
S4 98.32
LSSL OOM
WaveGan-D 96.25
Transformer OOM

Short-Term Forecasting. Our evaluation on short-term forecasting tasks on M4 benchmark
datasets [64] reports in Table 4 (Full list in Table 9), which also shows the superior performance of
Chimera compared to baselines.

Table 4: Short-term forecasting task on the M4 dataset. Full results are reported in Appendix I.

Models Chimera ModernTCN PatchTST TimesNet N-HiTS N-BEATS∗ ETS∗ LightTS DLinear FED∗ Stationary Auto∗ Pyra∗ In∗ Re∗ LSTM
(ours) [2024] [2023] [2023] [2022] [2019] [2022] [2022] [2023] [2022] [2022] [2021] [2021] [2021] [2020] [1997]

W
ei

gh
te

d
A

ve
ra

ge SMAPE 11.618 11.698 11.807 11.829 11.927 11.851 14.718 13.525 13.639 12.840 12.780 12.909 16.987 14.086 18.200 160.031
MASE 1.528 1.556 1.590 1.585 1.613 1.599 2.408 2.111 2.095 1.701 1.756 1.771 3.265 2.718 4.223 25.788
OWA 0.827 0.838 0.851 0.851 0.861 0.855 1.172 1.051 1.051 0.918 0.930 0.939 1.480 1.230 1.775 12.642

Case Study of Brain Activity. Input dependency is a must to capture the dynamic of dependencies. To
support this claim, we use BVFC [2] (multivariate time series only), which aim to classify seen images
by its corresponding brain activity response. This task, requires focusing more on the dependencies of
brain units and their responses rather than the actual time series. Also, since each window corresponds
to a specific image, the model needs to capture the dependencies based on the current window,
requiring to be input-dependent. Results are reported in Table 5. Chimera significantly outperforms
all the baselines including our Chimera but without data-dependent parameters (convolution form).
Due to the large number of brain units, i.e., 9K, in the first dataset, transformer-based methods face
OOM issue. However, they are also data-dependent and so shows the second best results in second
and third datasets. This results support the significance of data-dependency in Chimera.

4.2 Ablation Study and Efficiency

To evaluate the significance of the Chimera’s design, we perform ablation studies and remove one of
the components at each time, keeping other parts unchanged. Table 6 reports the results. The first
row reports the Chimera’s performance, while row 2 uses unidirectional recurrence along the variate
dimension, row 3 removes the gating mechanism, row 4 uses convolution form (data-independent),
and row 5 removes the module for seasonal patterns. The results show that all the components of
Chimera contributes to its performance.
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Table 5: Image classification by brain activity (Acc. %).

Method Chimera Chimera (ind.) SpaceTime S4 iTrans. Trans. DLinear
(ours) (ours) [2023] [2022] [2024] [2017] [2023]

BVFC (9K) 69.41 62.36 41.20 40.89 OOM OOM 39.74
BVFC (1K) 58.99 50.25 34.31 35.19 54.18 43.60 33.09
BVFC (400) 51.08 45.17 33.58 33.76 48.22 38.05 32.73

Table 6: Ablation study on the Chimera’s design.

Method ETTh1 ETTm1 ETTh2

MSE MAE MSE MAE MSE MAE

Chimera 0.408 0.425 0.355 0.381 0.321 0.377
Uni.-directional 0.416 0.430 0.368 0.397 0.334 0.386
w/o Gating 0.424 0.438 0.367 0.395 0.331 0.382
Input-independent 0.473 0.501 0.433 0.412 0.380 0.414
w/o seasonal 0.436 0.435 0.366 0.391 0.343 0.395

Figure 3: Classification and anomaly detection performance. Full list
with additional baselines is in Appendix I. Figure 4: Wall-clock scaling.

Length of Time Series. We perform experiments on the effect of the sequence length on the efficiency
of Chimera and baselines. The results are reported in Figure 4. Chimera scales linearly with respect
to the sequence length and has smoother scaling than S4 [34] and Transformers [17]. These results
also highlight the significance of our algorithm that uses 2D parallel scans for training Chimera. This
algorithm results in ≈ ×4 faster training, which is very closed to the convolutional format without
data dependency. Chimera also has a close running time to SpaceTime [28], which has 1D recurrent.

4.3 Selection Mechanism Along Time and Variate

Variate Generalization. We argue that the data-dependency with discretization allows the model
to filter the irrelevant context based on the input, resulting in more generalizability. Inspired by Liu
et al. [27], we train our model (and baseline) on 20% of variates and evaluate its generalizability to
unseen variates. The results are reported in Figure 5. Chimera has on par generalizability compared to
Transformers (when applied along the variate dimension), which we attributes to its data-dependent
parameters as Chimera with convolution form performs poorly on unseen variates.

Context Filtering. Increasing the lookback length does not necessarily result in better performance
for Transformers [27]. Due to the selection mechanism of Chimera, we expect it to filter irrelevant
information and monotonically performs better. Figure 6 reports the Chimera’s performance (w/ and
w/o data-dependency) and transformer-based baselines [6, 22] while varying the lookback length.
Chimera due to its selection mechanism monotonically performs better with increasing the lookback.

Figure 5: Selection results in generalization to unseen variates. Figure 6: Effect of lookback length.

5 Conclusion

This paper presents Chimera, a three-headed 2-dimensional SSM model with provably high expressive
power. Chimera is based on 2D SSMs with careful design of parameters that allows it to dynamically
and simultaneously capture the dependencies along both time and variate dimensions. We provide
different views of our 2D SSM for efficient training, and present a data-dependent formulation
with a fast implementation using 2D scans. Our experimental and theoretical results support the
effectiveness and efficiency of Chimera in a wide range of tasks.
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A Background

A.1 1D Space State Models

1D Space State Models (SSMs) are linear time-invariant systems that map input sequence x(t) ∈
RL 7→ y(t) ∈ RL [13]. SSMs use a latent state h(t) ∈ RN×L, transition parameter A ∈ RN×N , and
projection parameters B ∈ RN×1,C ∈ R1×N to model the input and output as:

h′(t) = A h(t) +B x(t), y(t) = C h(t). (18)

Most existing SSMs [34, 33, 31], first discretize the signals A,B, and C. That is, using a parameter
∆ and zero-order hold, the discretized formulation is defined as:

ht = Ā ht−1 + B̄ xt, yt = C ht, (19)

where Ā = exp (∆A) and B̄ = (∆A)
−1

(exp (∆A− I)) .∆B. [70] show that discrete SSMs
can be interpreted as both convolutions and recurrent networks: i.e.,

K̄ =
(
CB̄,CĀB̄, . . . ,CĀL−1B̄

)
,

y = x ∗ K̄, (20)

which makes their training and inference very efficient as a convolution and recurrent model, respec-
tively.

A.2 Data Dependency

Above discrete SSMs are based on data-independent parameters. That is, parameters ∆, Ā, B̄, and
C are time invariant and are the same for any input. Gu and Dao [33] argue that this time invariance
has the cost of limiting SSMs effectiveness in compressing context into a smaller state [33]. To
overcome this challenge, they present a selective SSMs (S6) block that effectively selects relevant
context by enabling dependence of the parameters B̄, C̄, and ∆ on the input xt, i.e.:

B̄t = LinearB(xt) (21)

C̄t = LinearC(xt) (22)
∆t = Softplus (Linear∆(xt)) , (23)

where Linear(.) is a linear projection and Softplus(.) = log(1 + exp(.)). This data dependency
comes at the cost of efficiency as the model cannot be trained as a convolution. To overcome this
challenge, Gu and Dao [33] show that the linear recurrence in Equation 1 can be formulated as an
associative scan [71], which accepts efficient parallel algorithms.

B Additional Related Work

Classical Approach. Modeling time series data is a long-standing problem and has attracted much
attention during the past 60 years. There have been several mathematical models to capture the time
series traits like exponential smoothing[16], autoregressive integrated moving average (ARIMA) [14],
SARIMA [15], Box-Jenkins method [72], and more recently state-space models [12, 13]. Despite
their more interpretability, these methods usually fail to capture non-linear dependencies and also
often require manually analyzing time series features (e.g., trend or seasonality), resulting in lack of
generalizability.

Recurrent and Deep State Space Models. Another group of relevant studies to ours is deep sequence
models. A common class of architectures for sequence modeling are recurrent neural networks such
as like GRUs [73], DeepAR [74], LSTMs [69]. The main drawback of RNNs is their potential for
vanishing/exploding gradients and also their slow training. Recently, linear attention methods with
fast training attracted attention [75–77]. Katharopoulos et al. [76] show that these methods have
recurrent formulation and can be fast in inference.

Recently, deep state space models have attracted much attention as the alternative of Transformers [17],
due to their fast training and inference [70]. These methods are the combination of traditional SSMs

17

119902 https://doi.org/10.52202/079017-3810



with deep neural networks by directly parameterizing the layers of a neural network with multiple
linear SSMs, and overcome common recurrent training drawbacks by leveraging the convolutional
view of SSMs [70, 45, 46, 34, 50]. Recently, Gu and Dao [33] present a new formulation of deep
SSMs by allowing the parameters to be the function of inputs. This architecture shows promissing
potential in various domains like NLP [33], vision [78, 79, 31], graphs [48], DNA modeling [33, 80].

All the above methods are design for 1D data, meaning that the states depends on one variable. There
are, however, a few studies that uses 2D SSMs in deep learning settings. S4ND [32] uses continuous
signals to model images. These methods not only consider two separate SSM for the axes, but it
also directly treat the system as a continuous system without discretization step. Furthermore, S4ND
has data-independent parameters. Another similar approach is 2DSSM [49], that models images as
discrete signals. That is, the initial SSM model is discrete and again there is a lack of discretization
step, which is important for time series as we discussed earlier. Also, their method again is based
on data-independent parameters. Both S4ND and 2DSSM can be computed as a convolution. We,
however, present a new scanning technique for fast training of 2D SSMs, even with input-dependent
parameters.

WITRAN [81] is a 2D RNN approach for univariate time series, which is different from our
approaches from different aspects: (1) Goal: The main goal of WITRAN is to use 2D RNN to
model univariate time series data. That is, the first dimension corresponds to short-term, and the
second dimension corresponds to long-term patterns. On the other hand, our 2D SSM aims to model
multivariate time series where the first dimension corresponds to time, and the second dimension
corresponds to variates. (2) Backbone: WITRAN is based on GSC (LSTM-like cell), which uses
non-linear transition. Our 2D SSM is based on state space models, is simpler, and uses linear
transitions. (3) Data-dependency: WITRAN is based on data-independent parameters, meaning that
it uses the same transition process for all time steps. 2D SSM, however, is based on data-dependent
parameters, which allows it to filter irrelevant/noisy time steps. (4) Recurrence, Hidden States,
and Training: Although both models have recurrent form, WITRAN’s recurrence is over extracted
short-term and long-term patterns. Our 2D SSM’s recurrence, however, is over time and variate
dimensions. WITRAN uses only one hidden state for each state of the system, while 2D SSM uses 2
different hidden states for each state of the system, allowing more flexibility to capture cross-variate
and cross-time information.

Other methods. Transformer-based models have attracted much attention over recent years for
multivariate time series forecasting, when modeling the complex relationships of co-variates or
along the time dimension is required [24–26, 11, 6, 23, 21, 82, 29]. Several studies have focused on
designing more efficient and effective attentions with using special traits of time series [20]. Some
other studies have focused on extracting long-term information for better forecasting [29, 83]. In
addition to transformers, linear models also have shown promising results [8, 30]. For example,
Chen et al. [30] present TSMixer, an all-MLP architecture for time series forecasting, with promising
performance. Due to the expressive power of our 2D SSM, these linear methods sometimes can be
viewed as a special case of 2D SSMs. Recently, convolution-based models for time series have shown
promising results [9]. These methods by using global kernels enhance the global receptive field. Our
data-independent formulation of Chimera is connected to this line of work as it can be written as a
global convolution.

Recently, Koopman-based deep models [84, 85] are designed to capture non-linear dependencies
in the data. Existing methods, however, does not consider dynamics in different variates and might
miss complex dependencies of variates. Moreover, despite their promising results in the time series
forecasting, these approaches can be hard to be parallelizable and so might have longer training for
large models.

C Details of the Discretization

Given PDE with initial condition h(0, 0) = 0:
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∂

∂t(1)
h(1)

(
t(1), t(2)

)
=
(
A1h

(1)
(
t(1), t(2)

)
,A2h

(2)
(
t(1), t(2)

))
+B1x

(
t(1), t(2)

)
, (24)

∂

∂t(1)
h(2)

(
t(1), t(2)

)
=
(
A1h

(1)
(
t(1), t(2)

)
,A2h

(2)
(
t(1), t(2)

))
+B1x

(
t(1), t(2)

)
, (25)

∂

∂t(2)
h(1)

(
t(1), t(2)

)
=
(
A3h

(1)
(
t(1), t(2)

)
,A4h

(2)
(
t(1), t(2)

))
+B2x

(
t(1), t(2)

)
, (26)

∂

∂t(2)
h(2)

(
t(1), t(2)

)
=
(
A3h

(1)
(
t(1), t(2)

)
,A4h

(2)
(
t(1), t(2)

))
+B2x

(
t(1), t(2)

)
, (27)

over the sampling intervals [k∆t(1), (k + 1)∆t(1)] and [ℓ∆t(2), (ℓ+ 1)∆t(2)] we have:∫ (k+1)∆t(1)

k∆t(1)

∂

∂t(1)
h(1)

(
t(1), t(2)

)
dt(1)

=

∫ (k+1)∆t(1)

k∆t(1)

(
A1h

(1)
(
t(1), t(2)

)
+B

(1)
1 x(1)

(
t(1), t(2)

))
dt(1) (28)

and so: ∫ (k+1)∆t(1)

k∆t(1)

∂

∂t(1)
h(2)

(
t(1), t(2)

)
dt(1)

=

∫ (k+1)∆t(1)

k∆t(1)

(
A2h

(2)
(
t(1), t(2)

)
+B

(2)
1 x(2)

(
t(1), t(2)

))
dt(1) (29)

Similarly, for the second equation we have:∫ (ℓ+1)∆t(2)

ℓ∆t(2)

∂

∂t(2)
h(1)

(
t(1), t(2)

)
dt(2)

=

∫ (ℓ+1)∆t(2)

ℓ∆t(2)

(
A3h

(1)
(
t(1), t(2)

)
+B

(1)
2 x(1)

(
t(1), t(2)

))
dt(2) (30)

and so: ∫ (ℓ+1)∆t(2)

ℓ∆t(2)

∂

∂t(2)
h(2)

(
t(1), t(2)

)
dt(2)

=

∫ (ℓ+1)∆t(2)

ℓ∆t(2)

(
A4h

(2)
(
t(1), t(2)

)
+B

(2)
2 x(2)

(
t(1), t(2)

))
dt(2) (31)

Next, the integrals can be simplified as:

h(1)
(
(k + 1)∆t(1), t(2)

)
= eA1∆t(1)h(1)

(
k∆t(1), t(2)

)
+

∫ (k+1)∆t(1)

k∆t(1)
eA1(t

(1)−k∆t(1))B
(1)
1 x(1)

(
t(1), t(2)

)
dt(1), (32)

and

h(2)
(
(k + 1)∆t(1), t(2)

)
= eA2∆t(1)h(2)

(
k∆t(1), t(2)

)
+

∫ (k+1)∆t(1)

k∆t(1)
eA2(t

(1)−k∆t(1))B
(2)
1 x(2)

(
t(1), t(2)

)
dt(1), (33)

and similarly for the third and fourth equations we have:

h(1)
(
t(1), (ℓ+ 1)∆t(2)

)
= eA3∆t(2)h(1)

(
t(1), ℓ∆t(2)

)
+

∫ (ℓ+1)∆t(2)

ℓ∆t(2)
eA3(t

(2)−ℓ∆t(2))B
(1)
2 x(1)

(
t(2), t(1)

)
dt(2) (34)
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and

h(2)
(
t(1), (ℓ+ 1)∆t(2)

)
= eA4∆t(2)h(2)

(
t(1), ℓ∆t(2)

)
+

∫ (ℓ+1)∆t(2)

ℓ∆t(2)
eA4(t

(2)−ℓ∆t(2))B
(2)
2 x(2)

(
t(2), t(1)

)
dt(2) (35)

Using ZOH assumption, we have:

∫ ∆t(1)

0

eA1s ds = A(1)−1
(
eA1∆t(1) − I

)
∫ ∆t(1)

0

eA2s ds = A(2)−1
(
eA2∆t(1) − I

)
(36)∫ ∆t(2)

0

eA3s ds = A(3)−1
(
eA3∆t(2) − I

)
(37)∫ ∆t(2)

0

eA4s ds = A(4)−1
(
eA4∆t(2) − I

)
(38)

Accordingly, the discretized form is as follows:

h
(1)
k+1,ℓ = eA1∆t(1)h

(1)
k,ℓ +A(1)−1

(
eA1∆t(1) − I

)
B

(1)
1 x

(1)
k+1,ℓ (39)

h
(2)
k+1,ℓ = eA2∆t(1)h

(2)
k,ℓ +A(2)−1

(
eA2∆t(1) − I

)
B

(2)
1 x

(2)
k+1,ℓ (40)

h
(1)
k,ℓ+1 = eA3∆t(2)h

(1)
k,ℓ +A(3)−1

(
eA3∆t(2) − I

)
B

(1)
2 x

(1)
k,ℓ+1 (41)

h
(2)
k,ℓ+1 = eA4∆t(2)h

(2)
k,ℓ +A(4)−1

(
eA4∆t(2) − I

)
B

(2)
2 x

(2)
k,ℓ+1, (42)

which means that:

Ā1 = exp (A1∆1) , (43)

Ā2 = exp (A2∆1) , (44)

Ā3 = exp (A3∆2) , (45)

Ā4 = exp (A4∆2) , (46)
(47)

and

B̄1 =

[
A(1)−1 (

eA1∆1 − I
)
B

(1)
1

A(2)−1 (
eA2∆1 − I

)
B

(2)
1

]
, (48)

B̄2 =

[
A(3)−1 (

eA3∆2 − I
)
B

(1)
2

A(4)−1 (
eA4∆2 − I

)
B

(2)
2

]
. (49)

D Details of the Structure of Transition Matrices

Definition D.1 (Companion Matrix). A matrix A ∈ RN×N has companion form if it can be written
as:

A =



0 0 . . . 0 a1
1 0 . . . 0 a2
0 1 . . . 0 a3
...

...
. . .

...
...

0 0 . . . 0 aN1

0 0 . . . 1 aN

 . (50)
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These matrices can be decomposed into a shift and a low-rank matrix. That is:

A =



0 0 . . . 0 a1
1 0 . . . 0 a2
0 1 . . . 0 a3
...

...
. . .

...
...

0 0 . . . 0 aN1

0 0 . . . 1 aN

 =



0 0 . . . 0 0
1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 0 0
0 0 . . . 1 0


︸ ︷︷ ︸

Shift Matrix

+



0 0 . . . 0 a1
0 0 . . . 0 a2
0 0 . . . 0 a3
...

...
. . .

...
...

0 0 . . . 0 aN1

0 0 . . . 0 aN


︸ ︷︷ ︸

Low-rank Matrix

. (51)

This formulation can help us to compute the power of A faster in the convolutional form, as discussed
by Zhang et al. [28].

E Bidirectionality Across Variates

The causal nature of the 2D SSM result in limited information flow along the variate dimension as
variate are not ordered. To overcome this challenge, inspired by the bi-directional 1D SSMs [47, 48, 1],
we use two different modules for forward and backward pass along the variate dimension:

h
(1)f

v,t+1 = Āf
1h

(1)
v,t + Āf

2h
(2)f

v,t + B̄f
1xv,t+1,

h
(1)b

v,t+1 = Āb
1h

(1)
v,t + Āb

2h
(2)
v,t + B̄b

1xv,t+1, (52)

h
(2)f

v+1,t = Āf
3h

(1)
v,t + Āf

4h
(2)f

v,t + B̄f
2xv+1,t,

h
(2)b

v−1,t = Āb
3h

(1)b

v,t + Āb
4h

(2)b

v,t + B̄b
2xv−1,t, (53)

yf
v,t = Cf

1h
(1)f

v,t +Cf
2h

(2)f

v,t , (54)

yb
v,t = Cb

1h
(1)b

v,t +Cb
2h

(2)b

v,t , (55)

yv,t = yf
v,t + yb

v,t, (56)

where Āτ
1 , Ā

τ
2 , Ā

τ
3 , Ā

τ
4 ∈ RN×N , B̄τ

1 , B̄
τ
2 ∈ RN×1, and Cτ

1 ,C
τ
2 ∈ R1×N are parameters of the

model, h(1)τ

v,t , h
(2)τ

v,t ∈ RN×d are hidden states, xv,t ∈ R1×d is the input, and τ ∈ {f, b}. Figure 2
illustrates the bi-directional recurrence process in Chimera. For the sake of simplicity, we continue
with unidirectional pass, but adapting them for bi-directional setting is simple as we use two separate
blocks, each of which for a direction.

F Time Complexity of 2D-SSM

Let T be the length of the time series and V be the number of variates. Since for each variate we have
O(T ) recurrence and we have V variates, the total number of recurrence is O(TV ). In each step, we
have the matrix multiplication of transition matrices Ai with the hidden states and also Bis with the
input. Accordingly, if we use d as the state dimension, the complexity is O(d2TV ). Given the fact
that d is usually a small number, the overall complexity is linear with respect to each of V and T .

G Theoretical Results

G.1 Proof of Theorem 3.2

In this part, we want to prove that ⋇ is associative. This operator is defined as:

p⋇ q =

(
p1 p2 p3
p4 p5 p6

)
⋇
(
q1 q2 q3
q4 q5 q6

)
=

(
q1 ⊙ p1 q2 ⊙ p2 q1 ⊗ p3 + q2 ⊗ p6 + q3
q4 ⊙ p4 q5 ⊙ p5 q4 ⊗ p3 + q5 ⊗ p6 + q6

)
Accordingly, we have:

(p⋇ q)⋇ r =

(
q1 ⊙ p1 q2 ⊙ p2 q1 ⊗ p3 + q2 ⊗ p6 + q3
q4 ⊙ p4 q5 ⊙ p5 q4 ⊗ p3 + q5 ⊗ p6 + q6

)
⋇
(
r1 r2 r3
r4 r5 r6

)
, (57)
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Table 7: Dataset descriptions. The dataset size is organized in (Train, Validation, Test).

Tasks Dataset Dim Series Length Dataset Size Information (Frequency)

ETTm1, ETTm2 7 {96, 192, 336, 720} (34465, 11521, 11521) Electricity (15 mins)

ETTh1, ETTh2 7 {96, 192, 336, 720} (8545, 2881, 2881) Electricity (15 mins)

Forecasting Electricity 321 {96, 192, 336, 720} (18317, 2633, 5261) Electricity (Hourly)

(Long-term) Traffic 862 {96, 192, 336, 720} (12185, 1757, 3509) Transportation (Hourly)

Weather 21 {96, 192, 336, 720} (36792, 5271, 10540) Weather (10 mins)

Exchange 8 {96, 192, 336, 720} (5120, 665, 1422) Exchange rate (Daily)

M4-Yearly 1 6 (23000, 0, 23000) Demographic

M4-Quarterly 1 8 (24000, 0, 24000) Finance

Forecasting M4-Monthly 1 18 (48000, 0, 48000) Industry

(short-term) M4-Weakly 1 13 (359, 0, 359) Macro

M4-Daily 1 14 (4227, 0, 4227) Micro

M4-Hourly 1 48 (414, 0, 414) Other

EthanolConcentration 3 1751 (261, 0, 263) Alcohol Industry

FaceDetection 144 62 (5890, 0, 3524) Face (250Hz)

Handwriting 3 152 (150, 0, 850) Handwriting

Heartbeat 61 405 (204, 0, 205) Heart Beat

Classification JapaneseVowels 12 29 (270, 0, 370) Voice

(UEA) PEMS-SF 963 144 (267, 0, 173) Transportation (Daily)

SelfRegulationSCP1 6 896 (268, 0, 293) Health (256Hz)

SelfRegulationSCP2 7 1152 (200, 0, 180) Health (256Hz)

SpokenArabicDigits 13 93 (6599, 0, 2199) Voice (11025Hz)

UWaveGestureLibrary 3 315 (120, 0, 320) Gesture

SMD 38 100 (566724, 141681, 708420) Server Machine

Anomaly MSL 55 100 (44653, 11664, 73729) Spacecraft

Detection SMAP 25 100 (108146, 27037, 427617) Spacecraft

SWaT 51 100 (396000, 99000, 449919) Infrastructure

PSM 25 100 (105984, 26497, 87841) Server Machine

re-using the definition of ⋇, we have:

(p⋇ q)⋇ r =

(
q1 ⊙ p1 q2 ⊙ p2 q1 ⊗ p3 + q2 ⊗ p6 + q3
q4 ⊙ p4 q5 ⊙ p5 q4 ⊗ p3 + q5 ⊗ p6 + q6

)
⋇
(
r1 r2 r3
r4 r5 r6

)
(58)

=

(
r1 ⊙ (q1 ⊙ p1) r2 ⊙ (q2 ⊙ p2) r1 ⊗ (q1 ⊗ p3 + q2 ⊗ p6 + q3) + r2 ⊙ (q4 ⊗ p3 + q5 ⊗ p6 + q6) + r3
r4 ⊙ (q4 ⊙ p4) r5 ⊙ (q5 ⊙ p5) r4 ⊗ (q1 ⊗ p3 + q2 ⊗ p6 + q3) + r4 ⊗ (q4 ⊗ p3 + q5 ⊗ p6 + q6) + r6

)
(59)
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Table 8: Long-term forecasting task with different horizons H.
Chimera TSM2 Simba TCN iTransformer RLinear PatchTST Crossformer TiDE TimesNet DLinear SCINet FEDformer Stationary Autoformer

(ours) [2024] [2024] [2024] [2024] [2023] [2023] [2023] [2023] [2023] [2023] [2022] [2022] [2022] [2021]

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
E

T
T

m
1 96 0.318 0.354 0.322 - 0.324 0.360 0.292 0.346 0.334 0.368 0.355 0.376 0.329 0.367 0.404 0.426 0.364 0.387 0.338 0.375 0.345 0.372 0.418 0.438 0.379 0.419 0.386 0.398 0.505 0.475

192 0.331 0.369 0.349 - 0.363 0.382 0.332 0.368 0.377 0.391 0.391 0.392 0.367 0.385 0.450 0.451 0.398 0.404 0.374 0.387 0.380 0.389 0.439 0.450 0.426 0.441 0.459 0.444 0.553 0.496
336 0.363 0.389 0.366 - 0.395 0.405 0.365 0.391 0.426 0.420 0.424 0.415 0.399 0.410 0.532 0.515 0.428 0.425 0.410 0.411 0.413 0.413 0.490 0.485 0.445 0.459 0.495 0.464 0.621 0.537
720 0.409 0.415 0.407 - 0.451 0.437 0.416 0.417 0.491 0.459 0.487 0.450 0.454 0.439 0.666 0.589 0.487 0.461 0.478 0.450 0.474 0.453 0.595 0.550 0.543 0.490 0.585 0.516 0.671 0.561

Avg 0.355 0.381 0.361 - 0.383 0.396 0.351 0.381 0.407 0.410 0.414 0.407 0.387 0.400 0.513 0.496 0.419 0.419 0.400 0.406 0.403 0.407 0.485 0.481 0.448 0.452 0.481 0.456 0.588 0.517

E
T

T
m

2 96 0.169 0.265 0.173 - 0.177 0.263 0.166 0.256 0.180 0.264 0.182 0.265 0.175 0.259 0.287 0.366 0.207 0.305 0.187 0.267 0.193 0.292 0.286 0.377 0.203 0.287 0.192 0.274 0.255 0.339
192 0.221 0.290 0.230 - 0.245 0.306 0.222 0.293 0.250 0.309 0.246 0.304 0.241 0.302 0.414 0.492 0.290 0.364 0.249 0.309 0.284 0.362 0.399 0.445 0.269 0.328 0.280 0.339 0.281 0.340
336 0.279 0.339 0.279 - 0.304 0.343 0.272 0.324 0.311 0.348 0.307 0.342 0.305 0.343 0.597 0.542 0.377 0.422 0.321 0.351 0.369 0.427 0.637 0.591 0.325 0.366 0.334 0.361 0.339 0.372
720 0.342 0.376 0.388 - 0.400 0.399 0.351 0.381 0.412 0.407 0.407 0.398 0.402 0.400 1.730 1.042 0.558 0.524 0.408 0.403 0.554 0.522 0.960 0.735 0.421 0.415 0.417 0.413 0.433 0.432

Avg 0.252 0.317 0.267 - 0.271 0.327 0.253 0.314 0.288 0.332 0.286 0.327 0.281 0.326 0.757 0.610 0.358 0.404 0.291 0.333 0.350 0.401 0.571 0.537 0.305 0.349 0.306 0.347 0.327 0.371

E
T

T
h1

96 0.366 0.392 0.375 - 0.379 0.395 0.368 0.394 0.386 0.405 0.386 0.395 0.414 0.419 0.423 0.448 0.479 0.464 0.384 0.402 0.386 0.400 0.654 0.599 0.376 0.419 0.513 0.491 0.449 0.459
192 0.402 0.414 0.398 - 0.432 0.424 0.405 0.413 0.441 0.436 0.437 0.424 0.460 0.445 0.471 0.474 0.525 0.492 0.436 0.429 0.437 0.432 0.719 0.631 0.420 0.448 0.534 0.504 0.500 0.482
336 0.406 0.419 0.419 - 0.473 0.443 0.391 0.412 0.487 0.458 0.479 0.446 0.501 0.466 0.570 0.546 0.565 0.515 0.491 0.469 0.481 0.459 0.778 0.659 0.459 0.465 0.588 0.535 0.521 0.496
720 0.458 0.477 0.422 - 0.483 0.469 0.450 0.461 0.503 0.491 0.481 0.470 0.500 0.488 0.653 0.621 0.594 0.558 0.521 0.500 0.519 0.516 0.836 0.699 0.506 0.507 0.643 0.616 0.514 0.512

Avg 0.408 0.425 0.403 - 0.441 0.432 0.404 0.420 0.454 0.447 0.446 0.434 0.469 0.454 0.529 0.522 0.541 0.507 0.458 0.450 0.456 0.452 0.747 0.647 0.440 0.460 0.570 0.537 0.496 0.487

E
T

T
h2

96 0.262 0.327 0.253 - 0.290 0.339 0.263 0.332 0.297 0.349 0.288 0.338 0.302 0.348 0.745 0.584 0.400 0.440 0.340 0.374 0.333 0.387 0.707 0.621 0.358 0.397 0.476 0.458 0.346 0.388
192 0.320 0.372 0.334 - 0.373 0.390 0.320 0.374 0.380 0.400 0.374 0.390 0.388 0.400 0.877 0.656 0.528 0.509 0.402 0.414 0.477 0.476 0.860 0.689 0.429 0.439 0.512 0.493 0.456 0.452
336 0.316 0.381 0.347 - 0.376 0.406 0.313 0.376 0.428 0.432 0.415 0.426 0.426 0.433 1.043 0.731 0.643 0.571 0.452 0.452 0.594 0.541 1.000 0.744 0.496 0.487 0.552 0.551 0.482 0.486
720 0.389 0.430 0.401 - 0.407 0.431 0.392 0.433 0.427 0.445 0.420 0.440 0.431 0.446 1.104 0.763 0.874 0.679 0.462 0.468 0.831 0.657 1.249 0.838 0.463 0.474 0.562 0.560 0.515 0.511

Avg 0.321 0.377 0.333 - 0.361 0.391 0.322 0.379 0.383 0.407 0.374 0.398 0.387 0.407 0.942 0.684 0.611 0.550 0.414 0.427 0.559 0.515 0.954 0.723 0.437 0.449 0.526 0.516 0.450 0.459

E
C

L

96 0.132 0.234 0.142 - 0.165 0.253 0.129 0.226 0.148 0.240 0.201 0.281 0.181 0.270 0.219 0.314 0.237 0.329 0.168 0.272 0.197 0.282 0.247 0.345 0.193 0.308 0.169 0.273 0.201 0.317
192 0.144 0.223 0.153 - 0.173 0.262 0.143 0.239 0.162 0.253 0.201 0.283 0.188 0.274 0.231 0.322 0.236 0.330 0.184 0.289 0.196 0.285 0.257 0.355 0.201 0.315 0.182 0.286 0.222 0.334
336 0.156 0.259 0.175 - 0.188 0.277 0.161 0.259 0.178 0.269 0.215 0.298 0.204 0.293 0.246 0.337 0.249 0.344 0.198 0.300 0.209 0.301 0.269 0.369 0.214 0.329 0.200 0.304 0.231 0.338
720 0.184 0.280 0.209 - 0.214 0.305 0.191 0.286 0.225 0.317 0.257 0.331 0.246 0.324 0.280 0.363 0.284 0.373 0.220 0.320 0.245 0.333 0.299 0.390 0.246 0.355 0.222 0.321 0.254 0.361

Avg 0.154 0.249 0.169 - 0.185 0.274 0.156 0.253 0.178 0.270 0.219 0.298 0.205 0.290 0.244 0.334 0.251 0.344 0.192 0.295 0.212 0.300 0.268 0.365 0.214 0.327 0.193 0.296 0.227 0.338

E
xc

ha
ng

e 96 0.077 0.198 0.163 - - - 0.080 0.196 0.086 0.206 0.093 0.217 0.088 0.205 0.256 0.367 0.094 0.218 0.107 0.234 0.088 0.218 0.267 0.396 0.148 0.278 0.111 0.237 0.197 0.323
192 0.159 0.270 0.229 - - - 0.166 0.288 0.177 0.299 0.184 0.307 0.176 0.299 0.470 0.509 0.184 0.307 0.226 0.344 0.176 0.315 0.351 0.459 0.271 0.315 0.219 0.335 0.300 0.369
336 0.311 0.344 0.383 - - - 0.307 0.398 0.331 0.417 0.351 0.432 0.301 0.397 1.268 0.883 0.349 0.431 0.367 0.448 0.313 0.427 1.324 0.853 0.460 0.427 0.421 0.476 0.509 0.524
720 0.697 0.623 0.999 - - - 0.656 0.582 0.847 0.691 0.886 0.714 0.901 0.714 1.767 1.068 0.852 0.698 0.964 0.746 0.839 0.695 1.058 0.797 1.195 0.695 1.092 0.769 1.447 0.941

Avg 0.311 0.358 0.443 - - - 0.302 0.366 0.360 0.403 0.378 0.417 0.367 0.404 0.940 0.707 0.370 0.413 0.416 0.443 0.354 0.414 0.750 0.626 0.519 0.429 0.461 0.454 0.613 0.539

Tr
af

fic

96 0.366 0.248 0.396 - 0.468 0.268 0.368 0.253 0.395 0.268 0.649 0.389 0.462 0.295 0.522 0.290 0.805 0.493 0.593 0.321 0.650 0.396 0.788 0.499 0.587 0.366 0.612 0.338 0.613 0.388
192 0.394 0.292 0.408 - 0.413 0.317 0.379 0.261 0.417 0.276 0.601 0.366 0.466 0.296 0.530 0.293 0.756 0.474 0.617 0.336 0.598 0.370 0.789 0.505 0.604 0.373 0.613 0.340 0.616 0.382
336 0.409 0.311 0.427 - 0.529 0.284 0.397 0.270 0.433 0.283 0.609 0.369 0.482 0.304 0.558 0.305 0.762 0.477 0.629 0.336 0.605 0.373 0.797 0.508 0.621 0.383 0.618 0.328 0.622 0.337
720 0.443 0.294 0.449 - 0.564 0.297 0.440 0.296 0.467 0.302 0.647 0.387 0.514 0.322 0.589 0.328 0.719 0.449 0.640 0.350 0.645 0.394 0.841 0.523 0.626 0.382 0.653 0.355 0.660 0.408

Avg 0.403 0.286 0.420 - 0.493 0.291 0.398 0.270 0.428 0.282 0.626 0.378 0.481 0.304 0.550 0.304 0.760 0.473 0.620 0.336 0.625 0.383 0.804 0.509 0.610 0.376 0.624 0.340 0.628 0.379

W
ea

th
er

96 0.146 0.206 0.161 - 0.176 0.219 0.149 0.200 0.174 0.214 0.192 0.232 0.177 0.218 0.158 0.230 0.202 0.261 0.172 0.220 0.196 0.255 0.221 0.306 0.217 0.296 0.173 0.223 0.266 0.336
192 0.189 0.239 0.208 - 0.222 0.260 0.196 0.245 0.221 0.254 0.240 0.271 0.225 0.259 0.206 0.277 0.242 0.298 0.219 0.261 0.237 0.296 0.261 0.340 0.276 0.336 0.245 0.285 0.307 0.367
336 0.244 0.281 0.252 - 0.275 0.297 0.238 0.277 0.278 0.296 0.292 0.307 0.278 0.297 0.272 0.335 0.287 0.335 0.280 0.306 0.283 0.335 0.309 0.378 0.339 0.380 0.321 0.338 0.359 0.395
720 0.297 0.309 0.337 - 0.350 0.349 0.314 0.334 0.358 0.347 0.364 0.353 0.354 0.348 0.398 0.418 0.351 0.386 0.365 0.359 0.345 0.381 0.377 0.427 0.403 0.428 0.414 0.410 0.419 0.428

Avg 0.219 0.258 0.239 - 0.255 0.280 0.224 0.264 0.258 0.278 0.272 0.291 0.259 0.281 0.259 0.315 0.271 0.320 0.259 0.287 0.265 0.317 0.292 0.363 0.309 0.360 0.288 0.314 0.338 0.382

Using the fact that ⊙ and ⊗ are associative, we have:

(p⋇ q)⋇ r =

(
q1 ⊙ p1 q2 ⊙ p2 q1 ⊗ p3 + q2 ⊗ p6 + q3
q4 ⊙ p4 q5 ⊙ p5 q4 ⊗ p3 + q5 ⊗ p6 + q6

)
⋇
(
r1 r2 r3
r4 r5 r6

)
(60)

=

(
r1 ⊙ (q1 ⊙ p1) r2 ⊙ (q2 ⊙ p2) r1 ⊗ (q1 ⊗ p3 + q2 ⊗ p6 + q3) + r2 ⊙ (q4 ⊗ p3 + q5 ⊗ p6 + q6) + r3
r4 ⊙ (q4 ⊙ p4) r5 ⊙ (q5 ⊙ p5) r4 ⊗ (q1 ⊗ p3 + q2 ⊗ p6 + q3) + r4 ⊗ (q4 ⊗ p3 + q5 ⊗ p6 + q6) + r6

)
(61)

=

(
p1 p2 p3
p4 p5 p6

)
⋇
(
r1 ⊙ q1 r2 ⊙ q2 r1 ⊗ q3 + r2 ⊗ q6 + r3
r4 ⊙ q4 r5 ⊙ q5 r4 ⊗ q3 + r5 ⊗ q6 + r6

)
(62)

= p⋇ (q ⋇ r), (63)

which proves the theorem.

G.2 Proof of Theorem 3.3

For each v, t, we can pre-compute B1xv,t and B2xv,t+1. Accordingly, all the following parameters
are pre-computed:

c
(i,j,k,ℓ)
v,t =

(
A1 A2 B1xv+i,t+j

A3 A4 B2xv+k,t+ℓ

)
, (64)
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Table 9: Full results for the short-term forecasting task in the M4 dataset. ∗. in the Transformers
indicates the name of ∗former. Stationary means the Non-stationary Transformer.

Models Chimera ModernTCN PatchTST TimesNet N-HiTS N-BEATS∗ ETS∗ LightTS DLinear FED∗ Stationary Auto∗ Pyra∗ In∗ Re∗ LSTM
(ours) [2024] [2023] [2023] [2022] [2019] [2022] [2022] [2023] [2022] [2022] [2021] [2021] [2021] [2020] [1997]

Y
ea

rl
y SMAPE 13.107 13.226 13.258 13.387 13.418 13.436 18.009 14.247 16.965 13.728 13.717 13.974 15.530 14.727 16.169 176.040

MASE 2.902 2.957 2.985 2.996 3.045 3.043 4.487 3.109 4.283 3.048 3.078 3.134 3.711 3.418 3.800 31.033
OWA 0.767 0.777 0.781 0.786 0.793 0.794 1.115 0.827 1.058 0.803 0.807 0.822 0.942 0.881 0.973 9.290

Q
ua

rt
er

ly SMAPE 9.892 9.971 10.179 10.100 10.202 10.124 13.376 11.364 12.145 10.792 10.958 11.338 15.449 11.360 13.313 172.808
MASE 1.105 1.167 0.803 1.182 1.194 1.169 1.906 1.328 1.520 1.283 1.325 1.365 2.350 1.401 1.775 19.753
OWA 0.853 0.878 0.803 0.890 0.899 0.886 1.302 1.000 1.106 0.958 0.981 1.012 1.558 1.027 1.252 15.049

M
on

th
ly SMAPE 12.549 12.556 12.641 12.670 12.791 12.677 14.588 14.014 13.514 14.260 13.917 13.958 17.642 14.062 20.128 143.237

MASE 0.914 0.917 0.930 0.933 0.969 0.937 1.368 1.053 1.037 1.102 1.097 1.103 1.913 1.141 2.614 16.551
OWA 0.864 0.866 0.876 0.878 0.899 0.880 1.149 0.981 0.956 1.012 0.998 1.002 1.511 1.024 1.927 12.747

O
th

er
s SMAPE 4.685 4.715 4.946 4.891 5.061 4.925 7.267 15.880 6.709 4.954 6.302 5.485 24.786 24.460 32.491 186.282

MASE 3.007 3.107 2.985 3.302 3.216 3.391 5.240 11.434 4.953 3.264 4.064 3.865 18.581 20.960 33.355 119.294
OWA 0.983 0.986 1.044 1.035 1.040 1.053 1.591 3.474 1.487 1.036 1.304 1.187 5.538 5.013 8.679 38.411

W
ei

gh
te

d
A

ve
ra

ge SMAPE 11.618 11.698 11.807 11.829 11.927 11.851 14.718 13.525 13.639 12.840 12.780 12.909 16.987 14.086 18.200 160.031
MASE 1.528 1.556 1.590 1.585 1.613 1.599 2.408 2.111 2.095 1.701 1.756 1.771 3.265 2.718 4.223 25.788
OWA 0.827 0.838 0.851 0.851 0.861 0.855 1.172 1.051 1.051 0.918 0.930 0.939 1.480 1.230 1.775 12.642

for all inputs xv,t and i, j, k, ℓ ∈ {0, 1}. Now, starting from

(
S
(1)
0,0

S
(2)
0,0

)
=

(
I I 0
I I 0

)
, we have:

(
S0,1

S1,0

)
=

(
I I 0
I I 0

)
⋇
(
A1 A2 B1x0,1

A3 A4 B2x1,0

)
(65)

=

(
A1 A2 B1x0,1

A3 A4 B2x1,0

)
. (66)

Re-using operator ⋇, we have:(
S1,1

S1,1

)
=

(
S0,1

S1,0

)
⋇
(
A1 A2 B1x1,1

A3 A4 B2x1,1

)
︸ ︷︷ ︸

Pre-computed

(67)

=

(
A2

1 A2
2 A1B1x0,1 +A2B2x1,0 +B1x1,1

A3 A2
4 A3B1x0,1 +A4B2x1,0 +B2x1,1

)
(68)

Fixing the variate by putting 0 as the initial points of the operator, and then looking at the third
element of each row, these elements are calculating the hidden states of the recurrent (it can be shown
by a straightforward induction). Accordingly, using this operation, we can recursively calculate the
outputs of 2D SSM.

However, using Theorem 3.2, we know that this is an associative operation, so instead of calculating
in the recurrent form, we can use parallel pre-fix sum make this computation parallel, decreasing the
sequential operations required to calculate the hidden states. Note that since our above operation can
model the problem as an parallel prefix, all the algorithms for this problem can be used to enhance
the efficiency.

G.3 Proof of Theorem 3.4

To prove this theorem, we need to (1) show that Chimera can recover SpaceTime. Given this, since
SpaceTime is capable of recovering ARIMA [14], exponential smoothing [16], and controllable linear
time–invariant systems [87], we can conclude that Chimera can also recover these methods. Then,
(2) we need to prove that Chimera can recover SARIMA. This is the model that SpaceTime is not
capable of recovering due to the additional seasonal terms.

Note that using A2 = A3 = A4 = 0, results in a 1D SSM, with companion matrix as the structure of
A1, which is SpaceTime. Accordingly, SpaceTime is a special case of Chimera when the recurrence
only happen along the time direction.
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Note that as discussed in Proposition 3.1, multiplying the discretization parameter ∆ results in
multiplying the steps. Accordingly, using s as the ∆ in our seasonal module and also letting
A2 = A3 = A4 = 0 for the seasonal module, we can model the seasonal terms in the formulation of
SAR(p, q, s), meaning that Chimera can also recover SARIMA which is ARIMA with seasonal terms.
Note that the reason that Chimera is capable of such modeling is that it uses two heads separately for
trend and seasonal terms. Therefore, using different discretization parameters, each can model their
own corresponding terms in SAR(p, q, s).

G.4 Proof of Theorem 3.5

Similar to the above, using A2 = A3 = 0, our formulation is equivalent to S4D, while we use
diagonal matrices as the structure of A1. Similarly, as discussed by Behrouz et al. [31], MambaMixer
is equivalent to S4ND but on patched data. Using our Theorem 5, we can recover linear layers,
resulting in recovering TSMixer by setting A2 = A3 = 0.

G.5 Proof of Theorem 3.6

We in fact will show that restricting Chimera results in recovering 2DSSM [49]. As discussed earlier,
this method do not use discretization and initially starts from a discrete system. Also, it uses input-
independent parameters. Therefore, we use Linear∆1

(.) = Linear∆2
(.) as broadcast function, and

restrict Chimera to have input-independent parameters, then Chimera can recover 2DSSM [49].

H Experimental Settings

We provide the description of datasets in Table 7.

H.1 Baselines

In our experiments, we use the following baselines:

• Table 8: TSM2 [31], Simba [57], TCN [9], iTransformer [27], RLinear [58], PatchTST [29],
Crossformer [26], TiDE [55], TimesNet [8], DLinear [59], SCINet [56], FEDformer [24],
Stationary [86], Autoformer [21].

• Table 9: ModernTCN [9], PatchTST [29], TimesNet [8], N-HiTS [65], N-BEATS∗ [66],
ETSformer [20], LightTS [67], DLinear [11], FEDformer [24], Stationary [68], Auto-
former [21], Pyraformer [23], Informer [6], Reformer [25], LSTM [69].

• Table 10: LSTM [69], LSTNet [88], LSSL [34], Trans.former [17], Reformer [25], In-
former [6], Pyraformer [23], Autoformer [21], Station. [68], FEDformer [24], ETS-
former [20], Flowformer [22], DLinear [11], LightTS. [67], TimesNet [8], PatchTST [29],
MTCN [9].

For the results of the baselines, we re-use the results reported by Wu et al. [8], or from the original
cited papers.

I Additional Experimental Results

I.1 Long Term Forecasting Full Results

The complete results of long term forecasting are reported in Table 8.

I.2 Short-Term Forecasting

The complete results of short term forecasting are reported in Table 9.

I.3 Classification

The complete results of time series classification are reported in Table 10.
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Table 10: Full results for the classification task (accuracy %). We omit “former” from the names of
Transformer-based methods. For all methods, the standard deviation is less than 0.1%.

Datasets / Models
LSTM LSTNet LSSL Trans. Re. In. Pyra. Auto. Station. FED. /ETS. /Flow. /DLinear/LightTS./TimesNet/PatchTST/MTCN/Chimera
[1997][2018][2022][2017][2020][2021][2021][2021] [2022] [2022][2022][2022] [2023] [2022] [2023] [2023] [2024] (ours)

EthanolConcentration 32.3 39.9 31.1 32.7 31.9 31.6 30.8 31.6 32.7 31.2 28.1 33.8 32.6 29.7 35.7 32.8 36.3 39.8
FaceDetection 57.7 65.7 66.7 67.3 68.6 67.0 65.7 68.4 68.0 66.0 66.3 67.6 68.0 67.5 68.6 68.3 70.8 70.4
Handwriting 15.2 25.8 24.6 32.0 27.4 32.8 29.4 36.7 31.6 28.0 32.5 33.8 27.0 26.1 32.1 29.6 30.6 32.9
Heartbeat 72.2 77.1 72.7 76.1 77.1 80.5 75.6 74.6 73.7 73.7 71.2 77.6 75.1 75.1 78.0 74.9 77.2 81.3
JapaneseVowels 79.7 98.1 98.4 98.7 97.8 98.9 98.4 96.2 99.2 98.4 95.9 98.9 96.2 96.2 98.4 97.5 98.8 99.1
PEMS-SF 39.9 86.7 86.1 82.1 82.7 81.5 83.2 82.7 87.3 80.9 86.0 83.8 75.1 88.4 89.6 89.3 89.1 89.5
SelfRegulationSCP1 68.9 84.0 90.8 92.2 90.4 90.1 88.1 84.0 89.4 88.7 89.6 92.5 87.3 89.8 91.8 90.7 93.4 93.7
SelfRegulationSCP2 46.6 52.8 52.2 53.9 56.7 53.3 53.3 50.6 57.2 54.4 55.0 56.1 50.5 51.1 57.2 57.8 60.3 59.9
SpokenArabicDigits 31.9 100.0 100.0 98.4 97.0 100.0 99.6 100.0 100.0 100.0 100.0 98.8 81.4 100.0 99.0 98.3 98.7 100.0
UWaveGestureLibrary 41.2 87.8 85.9 85.6 85.6 85.6 83.4 85.9 87.5 85.3 85.0 86.6 82.1 80.3 85.3 85.8 86.7 86.7

Average Accuracy 48.6 71.8 70.9 71.9 71.5 72.1 70.8 71.1 72.7 70.7 71.0 73.0 67.5 70.4 73.6 72.5 74.2 75.3

Table 11: Full results for the anomaly detection task. The P, R and F1 represent the precision, recall
and F1-score (%) respectively. A higher value of P, R and F1 indicates a better performance.

Datasets SMD MSL SMAP SWaT PSM Avg F1

Metrics P R F1 P R F1 P R F1 P R F1 P R F1 (%)

LSTM [1997] 78.52 65.47 71.41 78.04 86.22 81.93 91.06 57.49 70.48 78.06 91.72 84.34 69.24 99.53 81.67 77.97
Transformer [2017] 83.58 76.13 79.56 71.57 87.37 78.68 89.37 57.12 69.70 68.84 96.53 80.37 62.75 96.56 76.07 76.88
LogTrans [2019] 83.46 70.13 76.21 73.05 87.37 79.57 89.15 57.59 69.97 68.67 97.32 80.52 63.06 98.00 76.74 76.60
TCN [2019] 84.06 79.07 81.49 75.11 82.44 78.60 86.90 59.23 70.45 76.59 95.71 85.09 54.59 99.77 70.57 77.24
Reformer [2020] 82.58 69.24 75.32 85.51 83.31 84.40 90.91 57.44 70.40 72.50 96.53 82.80 59.93 95.38 73.61 77.31
Informer [2021] 86.60 77.23 81.65 81.77 86.48 84.06 90.11 57.13 69.92 70.29 96.75 81.43 64.27 96.33 77.10 78.83
Anomaly∗ [2021] 88.91 82.23 85.49 79.61 87.37 83.31 91.85 58.11 71.18 72.51 97.32 83.10 68.35 94.72 79.40 80.50
Pyraformer [2021] 85.61 80.61 83.04 83.81 85.93 84.86 92.54 57.71 71.09 87.92 96.00 91.78 71.67 96.02 82.08 82.57
Autoformer [2021] 88.06 82.35 85.11 77.27 80.92 79.05 90.40 58.62 71.12 89.85 95.81 92.74 99.08 88.15 93.29 84.26
LSSL [2022] 78.51 65.32 71.31 77.55 88.18 82.53 89.43 53.43 66.90 79.05 93.72 85.76 66.02 92.93 77.20 76.74
Stationary [2022] 88.33 81.21 84.62 68.55 89.14 77.50 89.37 59.02 71.09 68.03 96.75 79.88 97.82 96.76 97.29 82.08
DLinear [2023] 83.62 71.52 77.10 84.34 85.42 84.88 92.32 55.41 69.26 80.91 95.30 87.52 98.28 89.26 93.55 82.46
ETSformer [2022] 87.44 79.23 83.13 85.13 84.93 85.03 92.25 55.75 69.50 90.02 80.36 84.91 99.31 85.28 91.76 82.87
LightTS [2022] 87.10 78.42 82.53 82.40 75.78 78.95 92.58 55.27 69.21 91.98 94.72 93.33 98.37 95.97 97.15 84.23
FEDformer [2022] 87.95 82.39 85.08 77.14 80.07 78.57 90.47 58.10 70.76 90.17 96.42 93.19 97.31 97.16 97.23 84.97
TimesNet (I) [2023] 87.76 82.63 85.12 82.97 85.42 84.18 91.50 57.80 70.85 88.31 96.24 92.10 98.22 92.21 95.21 85.49
TimesNet (R) [2023] 88.66 83.14 85.81 83.92 86.42 85.15 92.52 58.29 71.52 86.76 97.32 91.74 98.19 96.76 97.47 86.34
CrossFormer [2023] 83.6 76.61 79.70 84.68 83.71 84.19 92.04 55.37 69.14 88.49 93.48 90.92 97.16 89.73 93.30 83.45
PatchTST [2023] 87.42 81.65 84.44 84.07 86.23 85.14 92.43 57.51 70.91 80.70 94.93 87.24 98.87 93.99 96.37 84.82
ModernTCN [2024] 87.86 83.85 85.81 83.94 85.93 84.92 93.17 57.69 71.26 91.83 95.98 93.86 98.09 96.38 97.23 86.62
Chimera (ours) 87.74 83.29 85.46 84.01 86.83 85.39 93.05 58.12 71.55 92.18 95.93 94.01 97.30 96.19 96.74 86.69

I.4 Anomaly Detection

The complete results of anomaly detection tasks are reported in Table 11.

J Additional Ablation Study

K Comparison with Koopman-based Deep Models

We also compare the results of Chimera with Koopman-based deep models [84]. In ECL dataset,
Chimera achieves 0.132, 0.141, 0.144 for (h = 96, 144, 192), while Koopa [84] achieves 0.136,
0.149, 0.156. Similarly, in ETTh2, Chimera achieves 0.262, 0.309, 0.320 for (h = 96, 144, 192),
while Koopa achieves 0.297, 0.333, 0.356. Similarly, in Exchange, Chimera achieves 0.077, 0.126,
0.159 for (h = 96, 144, 192), while Koopa achieves 0.083, 0.130, 0.184. Since Liu et al. [84] has
focused on these datasets and values for the horizon, we use the same setting for Chimera. The results
for Koopa are from its original paper.
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Table 12: Ablation Study on additional datasets.

Method BVFC Exchange Traffic

Acc. % MSE MAE MSE MAE

Chimera 58.99 0.077 0.198 0.366 0.248
Uni.-directional 57.29 0.091 0.203 0.369 0.255
w/o Gating 56.18 0.094 0.210 0.373 0.259
Input-independent 55.31 0.113 0.228 0.402 0.271
w/o seasonal 58.12 0.083 0.202 0.372 0.258
All Diagonal 57.98 0.095 0.209 0.370 0.257
All Companion 54.01 0.108 0.226 0.375 0.261

L Limitations

The main goal of this study is to enhance the time series modeling with a wide range of impact on
society, from improving the healthcare system using developing deep learning models for analysing
medical health records to forecasting stock. We, however, emphasis that our work is a proof-of-
concept, meaning that it has error modes.
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: [NA]
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See Appendix L.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: See Appendix G.
Guidelines:

28

119913https://doi.org/10.52202/079017-3810



• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: See Appendix H.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: It is available in this link.
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Guidelines:
• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: See above question.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.
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• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: See question 5.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have reviewed NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: See Appendix L.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.
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• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer:[NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: [NA]
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Guidelines:
• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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