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Abstract

We investigate the extent to which contemporary Large Language Models (LLMs)
can engage in exploration, a core capability in reinforcement learning and decision
making. We focus on native performance of existing LLMs, without training inter-
ventions. We deploy LLMs as agents in simple multi-armed bandit environments,
specifying the environment description and interaction history entirely in-context,
i.e., within the LLM prompt. We experiment with GPT-3.5, GPT-4, and LLAMA2,
using a variety of prompt designs, and find that the models do not robustly engage
in exploration without substantial interventions: i) Only one configuration resulted
in satisfactory exploratory behavior: GPT-4 with chain-of-thought reasoning and an
externally summarized interaction history; ii) All other configurations did not result
in robust exploratory behavior, including those with chain-of-thought reasoning
but unsummarized history. While these findings can be interpreted positively, they
suggest that external summarization—which may not be possible in more complex
settings—is essential for desirable LLM behavior. We conclude that non-trivial
algorithmic interventions, such as fine-tuning or dataset curation, may be required
to empower LLM-based decision making agents in complex settings.

1 Introduction

In-context learning is an important emergent capability of Large Language Models (LLMs) whereby
one can use a pre-trained LLM to solve a problem by specifying the problem description and relevant
data entirely in-context, i.e., within the LLM prompt, with no updates to LLM parameters [16]. For ex-
ample, one can prompt an LLM with numeric covariate vectors and scalar targets and subsequently ob-
tain regression-style predictions from the model by including new covariate vectors in the prompt [28].
Perhaps surprisingly, LLMs are not explicitly trained for this behavior; instead the underlying algo-
rithms employed for in-context learning are extracted from the training corpus and emerge at scale.

Since its discovery in the GPT-3 model [16], in-context learning has been actively studied, from the-
oretical investigations into the underlying mechanisms [e.g., 78, 7] to empirical probes [e.g., 28, 40]
to leveraging in-context learning in applications [e.g., 79, 67, 25]. This literature predominantly
concerns prediction or supervised learning tasks, and while theoretical progress is in its infancy, our
understanding of how to use in-context supervised learning (ICSL) in practice is rapidly taking shape.

While ICSL is an important capability, many applications demand the use of ML models for down-
stream decision making. Thus, in-context reinforcement learning (ICRL) is a natural next frontier.
LLMs are already being used as decision making agents in applications ranging from experimental
design in the natural sciences [45] to game playing [63, 72], but our understanding—theoretically
and operationally—of ICRL is far less developed than for ICSL. To date, we lack a systematic
understanding as to whether LLMs can be considered general-purpose decision-making agents.

Decision making agents must possess three core capabilities: generalization (required for supervised
learning), exploration (making decisions that may be suboptimal in the short term for the sake of gath-
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ering more information) and planning (to account for long-term consequences of decisions). In this
paper, we focus on exploration, the capability to deliberately gather information in order to evaluate
alternatives and reduce uncertainty. A recent series of papers [42, 44, 57] demonstrates in-context re-
inforcement learning behavior (including exploration) in transformer models when they are explicitly
trained to produce this behavior using data from reinforcement learning agents or expert demonstra-
tions on related tasks. Such training tends to be laborious, expensive, and possibly task-specific. In
particular, these findings do not shed light into whether exploratory behavior manifests in general-
purpose LLMs obtained via standard training methods, which suggests the following basic question:

Do contemporary LLMs exhibit the capability to explore in-context?

Contributions. We investigate this question by deploying LLMs as agents in simple synthetic
reinforcement learning problems, namely multi-armed bandits (MABs) [65, 43], specifying the
environment description and interaction history entirely within the LLM prompt. MABs are a
well-studied type of RL problem that isolates the tradeoff between exploration and exploitation,
i.e., making the best decision given the available data. They are also fundamental in that the ability to
solve MABs is a prerequisite for more challenging RL tasks. These considerations make MABs a
natural choice for systematically studying the in-context exploration abilities of LLM:s.

We evaluate the in-context exploration behavior of GPT-3.5 [16], GPT-4 [54], and LLAMA?2 [69] in
MAB environments, using a variety of prompt designs. In our experiments, we find that only a single
configuration (i.e., a prompt design and LLM pair) results in satisfactory exploratory behavior. All
other configurations exhibit exploration failures, failing to converge to the best decision (arm) with
significant probability. We find that this typically happens due to suffix failures, where the LLM fails
to select the best arm even once after some initial rounds (i.e., in some “time suffix”). This scenario
is reflected in Figure 1(a): in particular, GPT-4 with our basic prompt design experiences a suffix
failure in > 60% of the replicates. An alternative failure mode we identify is where the LLM behaves
“uniformly”, selecting all arms near-equally often and failing to narrow down to the better ones.

The single configuration that succeeds in our experiments involves a combination of GPT-4 and
an “enhanced” prompt that (a) provides a suggestive hint to explore, (b) externally summarizes the
history of interaction into per-arm averages, and (c) asks the LLM to use zero-shot chain-of-thought
reasoning [74, 41]. This configuration is visualized in Figure 1(b). One can interpret this finding
positively: state-of-the-art LLMs do possess the capability to robustly explore, provided that the
prompt is carefully designed to elicit this behavior. On the other hand, the same configuration without
external summarization fails, leading to a negative interpretation: LLMs may fail to explore in more
complex environments, where external summarization is a non-trivial algorithmic problem.!

We conclude that while the current generation of LLMs can perhaps explore in simple RL envi-
ronments with appropriate prompt engineering, training interventions —in the spirit of Lee et al.
[44], Raparthy et al. [S7]— may be required to endow LLMs with more sophisticated exploration
capabilities required for more complex settings.

Methodology. An underlying technical challenge in assessing LLLM capabilities and limitations is
that one must search a combinatorially large space of prompt designs while obtaining statistically
meaningful results, all while meeting the financial and computational constraints associated with
LLMs. Assessing in-context bandit learning is even more challenging because (a) stochasticity in the
environment demands a high degree of replication for statistical significance and (b) the sample com-
plexity of learning/exploration demands that even a single experiment involve hundreds or thousands
of LLM queries to obtain meaningful effect sizes (i.e., separation between successful and failing
methods). To address these issues, our core technical contribution is to identify surrogate statistics as
diagnostics for long-term exploration failure. The surrogate statistics we consider characterize long-
term exploration failure, yet can be measured at moderate scale with few replicates and short learning
horizons, even when the standard performance measure (namely, reward) is too noisy to be useful.

2 Experimental setup

Multi-armed bandits (MAB). We consider a basic multi-armed bandit variant, stochastic Bernoulli
bandits. There are K possible actions (arms), indexed as [K] := {1,...,K}. Each arm a is

! E.g., if there are many arms, or if we are considering contextual bandits with many contexts, then we may
only play each arm (context-arm pair) a few times, so averaging reward separately for each—as we do in our
experiments—does not provide much summarization. (See Section 4 for further discussion.)
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Figure 1: Representative experiments: Two prompt configurations for GPT-4 on a 5-armed bandit
problem, with exploration failure (top) and success (bottom). The baselines are two standard bandit
algorithms with performance guarantees, Upper Confidence Bound (UCB) and Thompson Sampling
(TS), as well as the GREEDY algorithm (see Footnote 5). Visualizations are: (Left) histogram over
replicates of the number of times the best arm is chosen, (Center) for each ¢, we plot the suffix failure
frequency, the fraction of replicates for which the best arm is never chosen after time-step ¢, and
(Right) cumulative time-averaged rewards, averaged over replicates (£2 standard errors).

(a) Top row. GPT-4 with our basic prompt design and zero temperature. The experiment runs
for T'" = 500 rounds, and is replicated N = 20 times, varying environment randomness. We see
highly bimodal behavior: a large (> 60%) fraction of replicates pick the best arm only a few times,
exhibiting suffix failures similar to GREEDY and very unlike UCB and TS. This is suggestive of a
long-term failure to explore; indeed, we see a substantial drop in rewards.

(b) Bottom row. GPT-4 with a suggestive framing, summarized history, and chain-of-thought with
zero temperature. The experiment runs for 7' = 200 rounds and N = 40 replicates. We observe a
unimodal distribution of plays of the best arm, very few suffix failures, and reward comparable to TS.

associated with mean reward i, € [0, 1], which is unknown. An agent interacts with the environment
for T time steps, where in each time step ¢ € [T] the agent selects an arm a; € [K|] and receives
areward r; € {0, 1} drawn independently from a Bernoulli distribution with mean y,,. Thus, the
MAB instance is determined by the mean rewards (p,, :
is to maximize the total reward, which roughly corresponds to identifying the best arm: an arm with
the highest mean reward. A key feature of the MAB setup is that rewards for arms not chosen by the
agent are not revealed, so exploration is necessary to identify the best arm.

a € [K]) and the time horizon 7. The goal

We focus on MAB instances where the best arm has mean reward p* = 0.5 + A/2 for a parameter
A > 0, while all other arms have mean reward pn = 0.5 — A/2 (so, A = p* — p is the gap between
the best and the second-best arm). The main instance we consider has K = 5 arms and gap A = 0.2.
We call this the hard instance, as we also consider an easy instance with K = 4 and A = 0.5.2

Prompts. We employ LLMs to operate as decision making agents that interact with MAB instances
by prompting them with a description of the MAB problem (including the time horizon 7T") and the
history of interaction thus far. Our prompt design allows several independent choices. First is a
“scenario”, which provides a grounding for the decision making problem, positioning the LLM either
a) as an agent choosing butfons to press, or b) as a recommendation engine displaying advertisements
to users. Second, we specify a “framing” as either a) explicitly suggestive of the need to balance
exploration and exploitation, or b) neutral. Third, the history can be presented as a) a raw list over
rounds, or it can b) be summarized via number of plays and average rewards of each arm. Fourth, the
requested final answer can be a) a single arm, or b) a distribution over arms. Finally, we either a)
request the answer only, or b) also allow the LLM to provide a “chain-of-thought" (CoT) explanation.
Altogether, these choices lead to 2° = 32 prompt designs, illustrated in Figure 2. More details about
the prompt design, including examples, are provided in Appendix B.

Larger gap A makes it easier to distinguish arms, while smaller & means there are fewer arms to explore.
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The most basic prompt design from the options above uses the buttons scenario, neutral framing,
and raw history, and requests the LLM to return only an arm with no CoT. Each of the five possible
modifications to this prompt can potentially help the LLM, and our experiments evaluate this.
For example, both the advertising scenario and suggestive framing might help invoke the LLM’s
knowledge of bandit algorithms (as bandit algorithms are commonly used in content recommendation).
History summarization might help if the LLM cannot reliably summarize history itself (perhaps due
to arithmetic errors®) and/or does not fully realize that it should. Returning a distribution might
help if the LLM can identify a good distribution, but fails to correctly sample from it. Finally,
chain-of-thought is known to help in a wide variety of LLM scenarios [74, 50], even when used in a
zero-shot manner [41] as we do here.

Prompts are presented to each LLM uSing both [ buttons scenario ][ advertisements scenario ]
system and user messages (exposed by all three | —— |
LLM APIs). The system message presents [ neutral framing ][ suggestive framing ]

information about the scenario and framing and
prOmptS the LLM abOut Whether to use CoT and [ description of multi-armed bandit problem ]

whether (and how) to return a distribution. The /\
user message presents the history and reminds
the LLM about how to format its response. For raw history summarized history

GPT-4 only, we found that prompting the LLM 1><1

[ ]
to use CoT in the system prompt did not reliably [ eturn: action ][ return: distribution over actions ]
]

elicit CoT outputs, so—for GPT-4 only—we 1><1

also consider a reinforced CoT prompt design [
that additionally reminds the LLM to use CoT
at the end of the user prompt. See Appendix B
for examples. Figure 2: Prompt designs; see Figure 9 for a more
detailed view. A prompt is generated by traversing
LLM conﬁgurations and baselines. We the graph from top to bottom.
experiment with three LLMs: GPT-3.5, GPT-4,
and LLAMA2.* In addition to the prompt variations above, we also consider two choices for the
temperature parameter, 0 and 1. A temperature of O forces the LLM to be deterministic and therefore
isolates the “deliberate” exploration behavior of the LLM itself. A temperature of 1 provides a source
of external randomness in the LLM responses, which may or may not result in randomization among
the arms. Allowing the LLM to return a distribution instead of a single arm also provides external
randomness (as we sample from the returned distribution); to isolate sources of randomness, we
do not consider temperature 1 with “return distribution" prompt designs.

final prompt: reply-only ][ final prompt: chain-of-thought

We refer to the tuple (prompt design, temperature) as the LLM configuration. We identify each
configuration with a 5-letter “code” Ly Lo L3L4Ls, with letters L; denoting the choices:

e Ly: ‘B’ or ‘A’ for, resp., buttons or advertisements scenario;

e Lo: ‘N’ or ‘S’ for, resp., neutral or suggestive framing;

e Ls: ‘R’ or ‘S’ for, resp., raw or summarized history;

e Ly ‘C or ‘C’ or ‘N’ for, resp., chain-of-thought, reinforced CoT, or no CoT.
* L5: ‘0’, ‘1’ or ‘D’ for, resp., temperature and returning a distribution (with temperature 0).

We refer to “BNRNO” as the basic configuration going forward. Most of our experiments consider
the “buttons” scenario, and we use the “advertisements” scenario primarily as a robustness check.

For GpT-3.5 and LLAMA2, we do not consider reinforced CoT as it is not required to reliably elicit
CoT outputs; thus, we have 48 configurations total. For GPT-4, we primarily used reinforced CoT,
but did experiment with some standard CoT prompt designs; thus, there are 72 configurations total.

For baselines, we consider two standard MAB algorithms, UCB [9] and Thompson Sampling (TS)
[68], which are optimal in a certain theoretical sense and also reasonably effective in practice. We
also consider the GREEDY algorithm, which does not explore and is known to fail.> While all three

3E.g., LLMs sometimes fail at basic arithmetic [27, 48], though this is likely to improve in the near future via
better training and/or integrating calculator-like tools.

4Speciﬁcally: GPT-3.5-TURB0-0613 (released 06/13/2023), GPT-4-0613 (released 06/13/2023), and
LLAMA2-13B-CHAT quantized to 4-bits [24].

3In each round, GREEDY chooses an arm with the largest average reward so far. It is initialized with one
sample of each arm. It fails in that with constant probability, it never chooses the best arm after initialization.
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baselines have tunable parameters, we perform no parameter tuning (see Section A.1 for a detailed
description of each algorithm with parameter settings). In addition to these baselines, some of
our experiments include the the e-GREEDY algorithm® with various choices of € to quantitatively
demonstrate tradeoffs between exploration and exploitation. We ran 1000 replicates for each baseline
and each MAB instance (with rewards realized independently across the replicates).

Scale of the experiments. Our main set of experiments has time horizon 7' = 100. To account for
randomness in rewards (and possibly in the LLM, via temperature) we ran N € {10, 20} replicates for
each LLM configuration and each bandit instance, with rewards generated independently across the
replicates. As a robustness check, we ran a single experiment on GPT-4 with the basic configuration
for T' = 500 rounds (with N = 20), and obtained consistent/stronger conclusions, see Figure 1(a).

In more detail, for GPT-3.5 we used N = 20 replicates across all 48 prompt configurations, resulting
in ~ 200K queries in total. GPT-4 was an order of magnitude more expensive, considerably slower
on throughput, and subject to unpredictable throttling. As such, we only used N = 10 replicates
across 10 representative prompt configurations.” For additional robustness checks, we ran four GPT-4
configurations with 7" = 200, two for N = 20 replicates and two for N = 40 replicates. In total, this
resulted in =50 K queries issued to GPT-4. LLAMA2 was essentially free from our perspective (since
it was locally hosted), but its performance was consistently sub-par; we limited our experiments to
the hard MAB instance, 32 configurations, and N = 10 replicates.

We emphasize that bandit experiments with LLMs are quite costly in terms of money and time.
They take N - T' LLM queries for each LLM configuration and each MAB instance being tested.
Both IV and T must be relatively large to obtain statistically meaningful results: N governs the
significance level and must be large to overcome randomness in reward realizations, while 7" governs
the effect size and must be large so that good algorithms have enough time to identify the optimal
arm. Both issues are more pronounced in harder MAB instances (many arms K and/or small gap
A), but exploration failures also tend to be less frequent in (very) easy MAB instances. Further, we
need to cover the space of possible prompt designs, which is essentially infinitely large, to ensure that
our findings do not overfit to one particular design. Thus, ideally we would take N, T', the number
of MAB instances, and the number of prompts to be rather large, but doing so is not practically
feasible.® Instead, we use moderately small gap A = 0.2, moderately large choices for N € {10, 20}
and 7" = 100, and the prompt design space as described above.

As we see below, these choices (N € {10,20}, T = 100, A = 0.2) do not provide enough statistical
power to distinguish between successful and unsuccessful methods based solely on accumulated
rewards. In lieu of further increasing the scale of the experiments, which is not practically feasible,
we rely on surrogate statistics which can be detected at our moderate scale, and are highly suggestive
of long-term/persistent exploration failures. Our robustness checks with larger 7" and NN, as well as
qualitative findings that we report below provide supporting evidence for this methodology.

3 Experimental results

In this section, we present our experimental findings, beginning with a summary. In Section 3.1 we
investigate failing LLM configurations in detail. In Section 3.2, we focus on the single successful
LLM configuration we identified. In Section 3.3, we attempt to diagnose root causes for failures.

Overview. All but one LLM configurations considered exhibit exploration failures, not converging to
the best arm with significant probability. This happens either due to suffix failures, where the LLM
never selects the best arm after a small number of initial rounds, or (in a few configurations) due to
uniform-like failures, where the LLM selects all arms at an approximately uniform rate, failing to

eliminate poorly performing arms. The one exception is GPT-4 with the BSSCO configuration, i.e.,
the buttons scenario, suggestive framing, summarized history, reinforced CoT, and temperature 0.

We summarize our key findings in Figures 3-4. Figure 3 summarizes the main set of experiments
(on the hard MAB instance), mapping each LLM configuration to a single point on a scatter plot.

8¢-GREEDY is a standard MAB algorithm which in each round chooses an arm uniformly at random with a
given probability €, and exploits (i.e., mimics GREEDY) otherwise.

7N = 10 for the buttons scenario, and N = 3 for the robustness check with the advertisements scenario.

8Raw-history prompts and chain-of-thought outputs are particularly expensive, as LLM APIs bill per token.
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Figure 4: GPT-4 for T' = 100: a per-configuration summary table on the hard MAB instance
with NV = 10 replicates. Only three GPT-4 configurations do not exhibit suffix failures; two of these

(BNRND and BSSCD) exhibit uniform-like failures. The final configuration (BSSEO) succeeds.
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3.1 Identifying failures

We now give a precise overview of the exploration failures illustrated in Figure 3 and Figure 4, and
provide additional results and figures that illustrate failure in greater detail. We focus on GPT-4, as
GPT-3.5 and LLAMA?2 perform worse (and often much worse) in all experiments; detailed results
for GPT-3.5 and LLAMA?2 are included in Appendix C. We begin with detailed background on the
surrogate statistics, SuffFailFreq and MinFrac, used to quantify failures in Figures 3 and 4 and
beyond, providing evidence that exploration failure—as quantified by these statistics—results in a
persistent drop in performance.

Suffix failures. Most of the LLM configurations we consider exhibit highly bimodal behavior,
whereby a large fraction of the replicates choose the best arm very rarely, and a few replicates
converge to the best arm extremely quickly. Consistent with this bimodal behavior, we observe a
large incidence of suffix failures, where the best arm is not selected even once after a small number
initial of rounds (i.e., in some “time suffix"). Suffix failures are suggestive of a long-term failure to
explore which cannot be improved by running the algorithm for longer, because, without playing the
optimal arm, one cannot acquire information to learn that it is indeed optimal. Such behaviors are
qualitatively similar to those of GREEDY and qualitatively very different from those of UCB and
Thompson Sampling.

Our surrogate statistic for measuring suffix failures is defined as follows: For an experiment replicate
R and round t, let SuffFail(¢, R) be a binary variable that is 1 if the best arm is never chosen
in rounds [t,T]. Then let SuffFailFreq(t) := mean({SuffFail(¢, R) : replicates R}). Suffix
failures manifest in most of our experiments at 7" = 100. In the scatter plot in Figure 3, the X-axis
plots SuffFailFreq(T/2) for each LLM configuration, and we find that all but five configurations
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Figure 5: Bimodal behavior and suffix failures for GPT-4 with 7' = 100, same visualizations as
in Figure 1. Shown: the basic configuration (BNRNO) and the ablation with temperature 1 (BNRNT1).
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Figure 6: Detailed view of uniform-like failures for GPT-4 (the BNRND and BNSND configurations)
with T' = 200. Visualizations are: (Left) suffix failure frequency, (Center) K - MinFrac(t) as a
function of ¢ and (Right) cumulative time-averaged rewards. These configurations exhibit uniform-like
failures but not suffix failures, and uniform-like failures are detrimental to long-term rewards.

have SuffFailFreq(7'/2) > 15%. Recalling the definition of suffix failures, this means that > 15%
of the time, these configurations do not pull the best arm even once in the last half of the rounds.

A more detailed view of suffix failures and bimodal behavior can be obtained by focusing on individual
LLM configurations. We visualize this for the basic configuration (GPT-4-BNRNO) in Figure 1 (top)
for T' = 500, and in Figure 5 for GPT-4 (BNRNO and BNRN1) at 7' = 100. In these detailed views,
the middle panels plot SuffFailFreq(t) at each time ¢ for the given LLM configurations, as well
as UCB, TS, and GREEDY. We find that these LLLM configurations have much higher suffix failure
rates than both UCB and TS. Bimodal behavior is visualized in the left panel of each plot, where
for each configuration, a large fraction of replicates rarely pulls the best arm, while the remaining
fraction almost always pulls the best arm. Because of this bimodal behavior (particularly because a
constant fraction of replicates by chance almost always pull the best arm), suffix failures are not fully
reflected in the total reward plots in the right panels of Figure 5, since the time horizon 7' = 100 is
not large enough. However, as mentioned, suffix failures are suggestive of an irrecoverable failure
to explore which leads to stark differences in reward for larger 7. This is precisely what we find at
T = 500 in Figure 1, which suggests that suffix failures indeed lead to poor long-term performance.

Uniform-like failures. Returning to the left panel of Figure 3, we see that three GPT-4 configurations
avoid suffix failures. Two of these configurations exhibit a different type of failure, where the LLM
selects arms in roughly equal proportions for the entirety of the 7" rounds and fails to exploit the
acquired information to focus on the better arms. We call this a uniform-like failure.

Our surrogate statistic for measuring such failures is defined as follows: For a particular experiment
replicate R and round ¢, let f, (¢, R) be the fraction of rounds in [1, ¢] in which a given arm a is cho-
sen, MinFrac(¢, R) := min, f,(¢, R), and MinFrac(t) := mean({MinFrac(t, R) : replicates R}).
Since MinFrac(t) < 1/K, Vt € [T], we always plot K - MinFrac(¢), so as to rescale the range to
[0, 1]. Larger MinFrac(t) corresponds to a more uniform selection of arms at time ¢. When an LLM’s
MinFrac(t) does not decrease over time and stays substantively larger than that of the baselines
(especially as t approaches the time horizon 7"), we take it as an indication of a uniform-like failure.

The Y-axis of Figure 3 records K - MinFrac(T') for each configuration, where we see that of the
three GPT-4 configurations that avoid suffix failures, two configurations have very high MinFrac(T")

relative to UCB and TS (the third configuration is GPT—4-BSSEO, which is successful). These two
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configurations are GPT-4-BNRND and GPT-4-BSSCD, both of which use the distributional output
format. We provide a more detailed view of GPT-4-BNRND (as well as GPT-4-BNSND, which also
exhibits uniform-like failures, but only differs from GPT-4-BNRND in the use of summarized history)
in Figure 6, which considers a longer horizon and more replicates (1" = 200 and N = 20). The
middle panel reveals that K - MinFrac(t) does not decrease over time for these LLM configurations,
while it does for the baselines. This behavior results in no suffix failures, but leads to much lower
reward than the baselines. In particular, we obtain a clear separation in total reward, showing that
uniform-like failures indeed result in poor long-term performance.

Generality of the failures. To summarize, Figure 3 shows that all LLM configurations except
GPT-4-BSSCO exhibit either a suffix failure or a uniform failure for the hard MAB instance and
the buttons scenario. Scatter plots for the other three experiments (i.e., the advertisements scenario
and/or the easy MAB instance) are qualitatively similar and are deferred to Appendix C.

The same data, but with attributions to specific LLM configurations, are presented for all GPT-4
configurations in Figure 4; analogous tables for other LLMs and experimental settings are given
in Appendix C. As it is not instructive to present detailed plots such as Figure 5 for every LLM
configuration, Figure 4 summarizes the performance of each configuration with just a few statistics.
We include: SuffFailFreq(7'/2) and MinFrac(T'), defined above; MedianReward: the rescaled
median (over replicates) of the time-averaged total reward;’ GreedyFrac: the fraction of greedy
rounds (where an arm with a largest average reward is selected), averaged over the replicates.
GreedyFrac is one way to quantify the extent to which a configuration behaves like GREEDY.

We now summarize further findings from the scatter plots (Figures 3 and 10) and the summary tables
(Figures 11 to 17). First, GPT-4 performs much better than GPT-3.5, and LLAMA?2 performs much
worse (in particular, the suffix failure frequency for LLAMA?2 ranges from that of GREEDY to much
larger). Second, we observe that all LLMs are sensitive to small changes in the prompt design.
However, the different modifications we consider appear to interact with each other, and it is difficult
to identify which individual modifications improve performance and which degrade it.

3.2 Investigating successes

On the hard MAB instance, the only configuration in our experiments that avoids both suffix failures

and uniform-like failures is GPT-4 with the BSSCO prompt design. As can be seen from Figure 4, at
T = 100, this configuration has no suffix failures, the K - MinFrac value is only slightly larger than
TS, and the reward is comparable to TS. These statistics suggest that this configuration succeeds.

For more statistically mean- Greedy BSRCO BSSCO

. ’ TS ucB
ingful results supporting
. . MedianReward
this claim, we run GPT-4-
0.00 0.02 n 0.12 0.03

BSSCO on the hard MAB  sutraifreqa)
instance with 7" = 200 and
N = 40. We also con- K*MinFrac

0.23 0.12 0.03 0.11 m
sider GPT-4-BSRCO, which
. . GreedyFrac 0.75 0.68
Swaps summarized istory | om | oo | o [ ew
f.Or raw history, as an gbla- Figure 7: Summary statistics of two GPT-4 configurations with rein-
tion. Figure 7 summarizes = ~ . .
this experiment, while Fig- forced CoT (BSRCO and BSSCO0), on the hard MAB instance with

ure 1(b) provides a detailed 1" = 200 and V' = 40 replicates. BSRCO shows suffix failures. BSSCO
view of the BSSCO confi ou- has neither suffix nor uniform-like failures and reasonable reward.

ration. We see that BSSCO continues to avoid suffix failures and perform relatively well in terms of

reward for larger T'. On the other hand, the ablation BSRCO exhibits a non-trivial fraction of suffix
failures, a fundamentally different behavior.

We provide additional visualizations with some qualitative evidence toward the success of BSSCO,
as well as the failure of other configurations. In Figure 8, we plot the fraction of rounds in [0, ¢]

where the optimal arm was pulled; we plot this for individual replicates, as a function of ¢. BSRCO is

?Specifically, let ®(R) be the time-averaged total reward for a given replicate R. Then E [®(R)] ranges over
[Y/2 — A/2, /2 + A/2]. We rescale ®(R), by translating and multiplying, so that E [®(R)] ranges in [0, 1].
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Figure 8: Per-replicate behavior: two reinforced-CoT GPT-4 configurations & the baselines. For each
algorithm, replicate and round ¢, we plot the fraction of rounds in [0, t] when the best arm was pulled.

visually similar to UCB, except that a non-trivial fraction of runs exhibit suffix failures (the curves

that converge to 0 on the plot). Meanwhile, BSSCO is visually similar to TS, with almost all replicates
slowly converging to 1. Another visualization, presented in Appendix D, shows the arm chosen at
each time step for particular replicates; this is for several LLM configurations (“successful” and not),

as well as the baselines. These visualizations, along with the summary statistics, suggest that BSSCO
behaves most similarly to TS, which further suggests a similar convergence in the long run.

3.3 Root causes

Why do LLMs behave the way they do? Particularly, can one explain their failures via flaws in their
per-round decisions? Two natural hypotheses are that the failing LLM configurations are either a) too
greedy, or b) too uniform-like. Indeed, most GPT-4 configurations behave much like GREEDY on the
easy MAB instance; yet, they avoid suffix failures and accrue large rewards, and so does GREEDY.
However, on the hard instance, most GPT-4 configurations seem to be doing something non-trivial.

A secondary experiment studies this further: Each agent (LLM or baseline) faces a “data source"
(distribution of bandit histories) and makes a single decision. We used GPT-3.5 and several data
sources. We find it difficult to separate LLMs from the baselines based on the per-round performance,
as the latter is very sensitive to the data source. While a deeper investigation is needed, we report this
difficulty as a non-trivial finding. All these results are discussed in Appendix E.

4 Discussion and open questions

Our investigation suggests that contemporary LLMs do not robustly engage in exploration required
for very basic statistical RL and decision making problems, at least without further intervention.
Let us identify several natural next steps. First, experiment with other prompts: as in many other
settings [61], small changes to our prompt template might improve performance; but sensitivity
to prompt design is already concerning. Second, experiment with few-shot prompting, where the
prompt contains examples of exploratory behavior, or use such examples to fine-tune the LLM. Third,
train the LLM to use auxiliary tools, such as a calculator for basic arithmetic or a “randomizer" to
correctly sample from a distribution. We emphasize that cost, access to models, and compute pose
significant barriers to further study, particularly because of the need to employ long horizons 7" and
many replicates [V to obtain statistically meaningful results. To this end, we believe that further
methodological and/or statistical advancements to enable cost-effective diagnosis and understanding
of LLM-agent behavior (e.g., our surrogate statistics) are essential.

Implications for more complex problems. Our focus on simple MAB problems provides a clean
and controllable experimental setup to study the exploratory behavior of LLMs. Exploration failures
here suggest that similar failures will also occur in more complex RL and decision-making settings.
On the other hand, mitigations must be developed with caution, as solutions that succeed for the MAB
setting may not generalize to more complex settings. For example, while GPT-4 with summarized
interaction history and reinforced CoT seems to successfully explore in our MAB setting, it is not
clear how one should externally summarize the history in settings with complex, high-dimensional
observations such as contextual bandits (see Footnote 1). Indeed, even for linear contextual bandits,
the approach may not be applicable without a substantial algorithmic intervention (such as, e.g., a
linear regression computed externally and included in the prompt) and the many explicit modeling and
algorithmic choices involved therein. We believe a deeper investigation of algorithmic interventions
is essential to understand the extent to which LLMs can operate as decision-making agents.
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A Related work

This paper belongs to a recent body of work that aims to understand the capabilities of LLMs,
i.e., what they can and cannot do well, and why. Capabilities that have received considerable attention,
but are peripheral to the present paper, include general intelligence [18, 14], causal [39, 81] and
mathematical reasoning [21, 49], planning [70, 51, 15], and compositionality [82].

In more detail, our work contributes to the broader literature on capabilities of in-context learning.
Prior studies of in-context learning include theoretical [78, 7, 84, 1, 83, 31, 20, 4, 75, 26, 76, 36,
34,46, 71, 11, 30, 37] and empirical [28, 40, 6, 32, 58, 73, 13, 29, 62, §] investigations, though as
mentioned in the prequel, the vast majority of this work pertains to in-context supervised learning; in-
context reinforcement learning has received far less attention. The small collection of empirical works
that study in-context RL [42, 44, 57, 79] focus on models trained from scratch using trajectory data
collected from another agent (either an RL algorithm or an expert); theoretically, Lee et al. [44] and
later Lin et al. [47] justify this approach with a Bayesian meta-reinforcement learning perspective [64],
and show that pre-trained transformers can implement classical exploration strategies like Thompson
sampling and upper confidence bounds (UCB). However, these works require interventions to the
pre-training phase of the language model, and do not study whether existing LLMs exhibit exploration
capabilities under standard training conditions.

Perhaps closest to the present paper, Coda-Forno et al. [22] evaluates the performance of in-context
learning with GPT-3.5 on a two-armed bandit task and an associated meta-learning task. As with our
study, they find that GPT-3.5 performs similarly (in fact, slightly worse) than GREEDY; however,
they do not consider long enough time horizons to distinguish GREEDY from successful baselines
like UCB.

In parallel, there is a rapidly growing line of work that applies LLMs to real-world decision-making
applications. Beyond previously mentioned works [63, 72, 45], which consider applications to
gaming, programming, and medicine, highlights include Park et al. [56], who introduce generative
agents which simulate human behavior in an open-world environment, Ahn et al. [5], Xu et al. [80],
who develop LLM-enabled robots.

Concurrent work. Two closely related concurrent works [77, 55] also study in-context LLM
performance in bandit tasks. Wu et al. [77] considers a battery of tasks that aim to characterize
“intelligent agents” with two-armed bandits as a specific task of interest. Their bandit experiments
differ in several key respects: They consider a very easy MAB instance (with 2 arms and a gap
A = 0.6, which is much easier than both of our instances), focus on a single prompt design (similar
to our basic prompt), and compare to human players rather than algorithmic benchmarks. These
differences lead to very different experimental findings. In particular, they find that GPT-4 performs
well on their simple MAB instance, converging very quickly to the best arm, while we find that
GPT-4 with a similar prompt fails on a harder MAB instance. However, their finding is consistent
with ours, as we also find that several configurations of GPT-4 do well on the easy MAB instance.
As we discuss in Section 3.3, this instance is too simple to provide compelling evidence for principled
exploratory behavior.

Park et al. [55] primarily focus on full-information online learning and repeated game settings but also
evaluate LLMs in bandit settings. Their experiments differ from ours in two significant ways. First,
although some of their data generation protocols are stochastic in nature, they are primarily interested
in adversarial settings. Consequently they compare with adversarial bandits baselines and present
the history to the LLM via importance-weighted losses [10]. Second, they mostly consider shorter
time horizons (1" = 25 for bandits and up to 7' = 50 for full-information). In an updated version
of their paper (announced on arXiv in Fall 2024), they also include longer horizon experiments of
their original settings, where they find that LLMs continue to perform well, as well as experiments
with our hard MAB instance with horizon 7" = 100, where they evaluate uniform and suffix failures.
Interestingly, they find that both GPT-4 and GPT-40 succeed (with high reward, no suffix failures, and
low MinFrac) when using their default prompt which asks for distributional output, chain-of-thought,
and which presents the history via importance weighting. They further find that removing importance
weighting results in failures, specifically, higher MinFrac for GPT-4 and suffix failures for GPT-40.
These findings are perhaps consistent with ours: both results highlight that pre-processing the history
(either via summarization or via importance weighting) is crucial for eliciting exploratory behavior
from LLMs.
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Other concurrent work includes Schubert et al. [60], Hayes et al. [33], Coda-Forno et al. [23] who use
in-context bandit and other tasks to study whether LLMs exhibit human-like behavior (particularly,
biases) in decision making tasks.

We also refer the interested reader to a recent survey of methods for using LLMs in reinforcement
learning settings [19].

Follow-up work. Monea et al. [52] and Nie et al. [53] follow up on our results with several new
experimental findings. Both works consider contextual bandits (and Nie et al. [53] also considers
vanilla MAB), and find that LLMs fail to explore without non-trivial interventions. In this sense,
these works corroborate our main findings. Further, both works propose interventions that improve
LLM exploration. In particular, Monea et al. [52] propose a training-free intervention whereby the
interaction history is subsampled uniformly before it is included in the LLM prompt, while Nie et al.
[53] consider few-shot prompting and fine-tuning with optimal demonstrations. These interventions
improve performance, but are still not competitive with standard algorithmic baselines.

A.1 Further background on multi-armed bandits

Here, we provide additional background on the multi-armed bandit problem, and on the baseline
algorithms used in this paper. Deeper discussion can be found in Bubeck and Cesa-Bianchi [17],
Slivkins [65], Lattimore and Szepesvdri [43].

The UCB algorithm [9] explores by assigning each arm «a an index, defined as the average reward
from the arm so far plus a bonus of the form /C/n,, where C = ©(log T') and n, is the number
of samples from the arm so far. In each round, it chooses an arm with the largest index. The bonus
implements the principle of optimism under uncertainty. We use a version of UCB that sets C' = 1
(a heuristic), which has been observed to have a favorable empirical performance [e.g., 66, 35].

Thompson Sampling [68, 59, for a survey] proceeds as if the arms’ mean rewards were initially drawn
from some Bayesian prior. In each round, it computes a Bayesian posterior given the history so far,
draws a sample from the posterior, and chooses an arm with largest mean reward according to this
sample (i.e., assuming the sample were the ground truth). In our setting, the prior is essentially a
parameter to the algorithm. We choose the prior that draws the mean reward of each arm independently
and uniformly at random from the [0, 1] interval. This is one standard choice, achieving near-optimal
regret bounds, as well as good empirical performance [38, 2, 3]. Each arm is updated independently as
a Beta-Bernoulli conjugate prior. Further optimizing UCB and Thompson Sampling is non-essential
to this paper, as they already perform quite well in our experiments.

Provable guarantees for bandit algorithms are commonly expressed via regret: the difference in
expected total reward of the best arm and the algorithm. Both baselines achieve regret O(y/KT logT),
which is nearly minimax optimal as a function of 7" and K. They also achieve a nearly instance-
optimal regret rate, which scales as O (¥/a logT') for the instances we consider.

The e-GREEDY algorithm (Footnote 6) is fundamentally inefficient in that it does not adaptively steer
its exploration toward better-performing arms. Accordingly, its regret rate scales as 7%/3 (for an
optimal setting of € ~ T~1/3). Fixing such e, regret does not improve for easier instances.

The GREEDY algorithm (Footnote 5) does not explore at all, which causes suffix failures. This is
obvious when the algorithm is initialized with a single sample (n = 1) of each arm: a suffix failure
happens when the good arm returns 0, and one of the other arms returns 1. However, suffix failures are
not an artifact of small n: they can happen for any n, with probability that scales as Q(1/4/n) [12].
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B Prompt designs

f You are in a room with 5 buttons labeled blue, You are a bandit algorithm in a room with 5 buttons
| green, red, yellow, purple. labeled blue, green, red, yellow, purple. )
\ /

(" Each button is associated with a Bernoulli distribution with a fixed but unknown mean; the means for the )
buttons could be different. For each button, when you press it, you will get a reward that is sampled from the
button's associated distribution. You have 100 time steps and, on each time step, you can choose any button

\_ and receive the reward. Your goal is to maximize the total reward over the 100 time steps. )

(So far you have played 5 times with So far you have played 9 times with your past choices and
the following choices and rewards: rewards summarized as follows:
green button, reward 1 blue button: pressed 8 times with average reward 0.2
red button, reward 0 green button: pressed 1 times with average reward 0.0
blue button, reward 0 red button: pressed 0 times
green button, reward 0 yellow button: pressed 0 times

\yellow button, reward 0 purple button: pressed 0 times
You must provide your final answer ( A
within the tags <Answer> COLOR You may output a distribution over the 5 buttons formatted
</Answer> where COLOR is one of EXACTLY like “blue:a,green:b,red:c,yellow:d,purple:e”.
blue, green, red, yellow, purple. 9 )

. \4

, _ - r D
Which button Wlll you choose next? Let’s think step by step to make sure we make a good
You must provide your final answer . . .
. . . choice. Which button will you choose next? You must
immediately <...> and with no text .

. provide your final answer <...>

explanation. L )

Figure 9: Prompt designs with text in the buttons scenario, expanding on Figure 2.
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B.1 Prompt examples

Let us present three full examples of our prompts. We remove the blank lines for the sake of
readability.

(a) Our basic prompt design (i.e., BNRN, as temperature is specified elsewhere): the buttons scenario
with neutral framing and raw histories, asking the LLM to return an action without chain-of-thought
reasoning.

[SYSTEM] You are in a room with 5 buttons labeled blue, green, red, yellow,
purple. Each button is associated with a Bernoulli distribution with a fixed but
unknown mean; the means for the buttons could be different. For each button, when
you press it, you will get a reward that is sampled from the button’s associated
distribution. You have 10 time steps and, on each time step, you can choose any
button and receive the reward. Your goal is to maximize the total reward over the
10 time steps.

At each time step, I will show you your past choices and rewards. Then you
must make the next choice, which must be exactly one of blue, green, red, yellow,
purple. You must provide your final answer immediately within the tags <An-
swer>COLOR</Answer> where COLOR is one of blue, green, red, yellow, purple
and with no text explanation.

[USER] So far you have played 2 times with the following choices and rewards:
blue button, reward 1

green button, reward 0

Which button will you choose next? Remember, YOU MUST provide your final
answer within the tags <Answer>COLOR</Answer> where COLOR is one of
blue, green, red, yellow, purple.

(b) The adverts scenario with all the “advanced” modifications (i.e., ASSCD) : suggestive framing,
summarized histories, asking the LLM to return a distribution over actions, and asking for a chain-of-
thought reasoning.

[SYSTEM] You are recommendation engine that chooses advertisements to display
to users when they visit your webpage. There are 5 advertisements you can choose
from, named A, B, C, D, E. When a user visits the webpage you can choose an
advertisement to display and you will observe whether the user clicks on the ad or
not. You model this by assuming that each advertisement has a certain click rate
and users click on advertisements with their corresponding rates.

You have a budget of 10 users to interact with and your goal is to maximize the
total number of clicks during this process.

A good strategy to optimize for clicks in these situations requires balancing explo-
ration and exploitation. You need to explore to try out all of the options and find
those with high click rates, but you also have to exploit the information that you
have to accumulate clicks.

When each user visits the webpage, I will show you a summary of the data you
have collected so far.

Then you must choose which advertisement to display. You may output a distribu-
tion over the 5 choices formatted EXACTLY like “A:n1,B:n2,C:n3,D:n4,E:n5.
Let’s think step by step to make sure we make a good choice. Then, you must
provide your final answer within the tags <Answer>DIST</Answer> where DIST
is the distribution in the format specified above.

[USER] So far you have interacted with 2 users. Here is a summary of the data
you have collected:

Advertisement A was shown to 1 users with an estimated click rate of 1.00
Advertisement B was shown to 1 users with an estimated click rate of 0.00
Advertisement C has not been shown

Advertisement D has not been shown

Advertisement E has not been shown
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Which advertisement will you choose next? Remember, YOU MUST provide your
final answer within the tags <Answer>DIST</Answer> where DIST is formatted
like “A:n1,B:n2,C:n3,D:n4,E:n5”.

(¢) The successful configuration for GPT-4 (i.e., BSS&, as temperature is specified elsewhere), which
uses the buttons scenario, suggestive framing, summarized histories, and reinforced chain-of-thought
reasoning.

[SYSTEM] You are a bandit algorithm in a room with 5 buttons labeled blue, green,
red, yellow, purple. Each button is associated with a Bernoulli distribution with a
fixed but unknown mean; the means for the buttons could be different. For each
button, when you press it, you will get a reward that is sampled from the button’s
associated distribution. You have 10 time steps and, on each time step, you can
choose any button and receive the reward. Your goal is to maximize the total reward
over the 10 time steps.

At each time step, I will show you a summary of your past choices and rewards.
Then you must make the next choice, which must be exactly one of blue, green,
red, yellow, purple. Let’s think step by step to make sure we make a good choice.
You must provide your final answer within the tags <Answer>COLOR</Answer>
where COLOR is one of blue, green, red, yellow, purple.

[USER] So far you have played 2 times with your past choices and rewards
summarized as follows:

blue button: pressed 1 times with average reward 1.00

green button: pressed 1 times with average reward 0.00

red button: pressed 0 times

yellow button: pressed 0 times

purple button: pressed O times

Which button will you choose next? Remember, YOU MUST provide your final
answer within the tags <Answer>COLOR</Answer> where COLOR is one of
blue, green, red, yellow, purple. Let’s think step by step to make sure we make a
good choice.
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C Scatter plots and summary tables
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Figure 10: All scatter plots for the main experiments (7" = 100): suffix failures vs. uniform-like
failures. Specifically: SuffFailFreq(7'/2) vs K - MinFrac(T'). Each LLM/configuration pair maps
to a dot on this plane. (However, some dots may be hidden by some others.) We also plot e-GREEDY,
tracing out the different tradeoffs obtained for different values of e.
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(a) Hard MAB instance (A = 0.2), buttons scenario, N = 10 replicates.

CB Greedy BNRNO BNRN1 BNRND BNRCO BNSNO BSRNO BSSCO BSSC1 BSSCD BSSCO

Hedanfeward Hmmﬂﬂmmm
e -mm mm-m

K*MinFrac

creee YFra ‘ ﬂ-mﬂmm-mmm-mm

Replicates| 1000 1000 1000

(b) Hard MAB instance (A = 0.2), advertisements scenario, N = 3 replicates.

TS ucB Greedy ANRNO ANRN1 ANRND ANRCO ANSNO ASRNO ASSCO ASSC1 ASSCD

Medanfieward Emmmﬂmﬂ
Sulflfrea(tr2) 001 902 mmmm-

K*MinFrac

oreed YFra ‘ m------m-

Replicates| 1000 1000 1000 3 3
(c) Easy MAB instance (A = 0.5), buttons scenario, N = 3 replicates.
TS ucB Greedy BNRNO BNRN1 BNRND BNRCO BNSNO BSRNO BSSCO BSSC1 BSSCD

MedianReward = 0.84 0.88 0.92 0.90 0.92 ﬂ 0.92 0.96 0.92 0.92 0.90

SufffailFreq(T/2)  0.00 0.00 0.19 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0

K*MinFrac | 0.14 0.09 0.04 0.05 0.03 m 0.05 0.04 0.03 0.04 m

GreedyFrac

Replicates| 1000 1000 1000 3 3 3 3 3 3 3 3

(d) Easy MAB instance (A = 0.5), advertisements scenario, N = 3 replicates.

TS ucs Greedy ANRNO ANRN1 ANRND ANRCO ANSNO ASRNO ASSCO ASSC1 ASSCD

vedoreward| 084 | 088 092 o088 | 088 088 090 oss
Sufelfreattr2) 0:00 9.0 mﬂ- m 9.0 9.0

K*MinFrac 0.1

oree YFra ‘ -mmmﬂnmnmn-n

Replicates| 1000 1000 1000

Figure 11: GPT-4 for T' = 100: the per-configuration summary tables. The “fails” row indicates
that all replicates completed successfully.
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MedianReward SuffFailFreq(T/2) K*MinFrac GreedyFrac Replicates

TS 0.01 _ 0.62 1000

ucam 0.02 0.18 0.76 1000

Greedym 0.05 1.00 1000
BNRNO mm 0.16 0.30 20
BNRNlm 0.00 m 20
BNRND m 0.07 . 20
BNRCO 0.01 ' 20
BNRC1 mm 0.03 . 20

BNRCD mm 0.01 . 20
BNSNO m 0.00 ] 20
BNSN1 m_ 0.04 . 20
BNSCO mm 0.00 ] 20
BNSC1 m 0.01 . 20
BNSCD mm 0.11 . 20
BSRN1 m 20
BSRND m_ 0.12 0.33 20
BSRCO _m 0.03 0.44 20
BSRC1 m_ 0.12 0.47 20
BSRCDm 0.11 0.60 20
BSSNO _m 0.00 1.00 20
BSSN1 mm 0.03 0.78 20
BSSND m 0.42 20
BSSCO m 0.00 1.00 20
BSSC1 m 0.02 0.83 20
BSSCD mm 0.10 0.78 20

Figure 12: GPT-3.5 for T' = 100: the per-configuration summary table. The buttons scenario, hard
MAB instance.
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MedianReward SuffFailFreq(T/2)

0.02

o

ANSN1 0.20

| oso

ASSC1 0.15

K*MinFrac

0.18
0.05
0.03
0.05
0.00
0.00
0.00
0.00
0.00
0.04
0.00
0.00
0.01
0.00
0.03
0.06
0.00
0.06
0.11
0.00
0.00
0.05
0.00
0.01
0.14
0.00

GreedyFrac

0.62
0.76
1.00
0.48
0.33
1.00
0.98
0.80
1.00
1.00
0.93
1.00
1.00
0.93
1.00
0.48

1.00
0.64

0.65

1.00
1.00
0.92
1.00
0.99
0.83
1.00

Replicates

1000

1000

1000
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20

Figure 13: GPT-3.5 for T = 100: the per-configuration summary table. The advertisements

scenario, hard MAB instance.
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MedianReward SuffFailFreq(T/2) K*MinFrac GreedyFrac Replicates
TS 0.84 0.00 0.14 0.88 1000

ucB 0.88 0.00 0.09 0.94 1000
Greedy 0.92 0.19 0.04 1.00 1000

BNRN1 0.05 0.16 0.62 20

BNRCO 0.84 _ 0.03 0.56 20

BNRC1 0.81 0.05 0.08 0.77 20
BNRCD 0.88 0.10 0.04 0.92 20

BNSNO mm 0.00 1.00 20
BNSN1 mm 0.02 0.89 20
BNSNDm m 0.52 20
BNSCO mm 0.00 1.00 20
BNSC1 m“ 0.01 0.95 20
BNSCD mm 0.03 0.77 20
BSRNO _m 0.11 0.57 20
BSRNlm 0.42 20
BSRND m_ 0.09 0.43 20

BSRCO 0.05 0.06 0.72 20

BSRCl_ 0.05 0.16 0.72 20
BSRCD 0.05 0.11 0.76 20
BSSNO mm 0.00 1.00 20
BSSN1 _ 0.02 0.89 20
BSSCO mm 0.00 0.99 20
BSSC1 m“ 0.03 0.82 20
BSSCD _— 0.02 0.90 20

Figure 14: GPT-3.5 for T' = 100: the per-configuration summary table. The buttons scenario, easy
MAB instance.
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MedianReward SuffFailFreq(T/2)

TS 0.84 0.00
ucB 0.88 0.00
Greedy 0.92 0.19

ANRCO 0.13

ANRC1 0.77
ANSNO
ANSN1
ANSND
ANSCO
ANSC1
ANSCD 0.10

ASRNO 0.08

ASRC1 0.00

ASSN1 0.79 0.10
ASSND

ASSCO 0.89 0.20
ASSC1 0.82 0.10

K*MinFrac

0.14
0.09
0.04
0.01
0.03
0.00
0.00
0.03
0.00
0.00
0.03
0.00
0.00
0.03
0.00
0.01
0.05
0.00
0.08
0.13
0.00
0.04
0.05
0.00
0.01
0.11
0.00

GreedyFrac

0.88
0.94
1.00
0.81
0.47
1.00
0.96
0.89
1.00
1.00
0.97
1.00
1.00
0.96
1.00
0.81
0.40
1.00
0.86
0.86
1.00
0.92
0.93
1.00
1.00

0.92

1.00

Replicates
1000

1000
1000
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20

Figure 15: GPT-3.5 for T' = 100: the per-configuration summary table. The adverts scenario, easy

MAB instance.
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MedianReward SuffFailFreq(T/2) K*MinFrac GreedyFrac Replicates
UCB“ 0.02 0.18 1000
Greedym 0.48 0.05 1000
onevo [REUCCRE YN 0.00 10
BNRN1 “ 0.00 10
BNRCO“ 0.01 10
BNRClmm 0.00 10
BNSNom“ 0.00 10
BNsmmm 0.00 10
BNSCO 0.00 10
BNsa_m 0.00 10
BSRNomm 0.00 10
BSRN1 _ 0.00 10
BSRCO“_ 0.01 10
BSRC1 _ 0.01 10
BSSNO““ 0.00 10
BSSN1 mm 0.00 10
BSSCO 0.00 10
BSSCl“m 0.00 10

Figure 16: LLAMA?2 for T' = 100: the per-configuration summary tables. The buttons scenario,
hard MAB instance.
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MedianReward SuffFailFreq(T/2)

ucB 0.02

Greedy 0.48

BNRNO

BNRN1

BNRCO

BNRC1

BNSNO

BNSN1

BNSCO

BNSC1

BSRNO

BSRN1

BSRCO

BSRC1

BSSNO

BSSN1

BSSCO

BSSC1

K*MinFrac

0.18

0.05

0.00

0.00

0.01

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.01

0.01

0.00

0.00

0.00

0.00

GreedyFrac Replicates

1000

1000

1000

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

Figure 17: LLAMA2 for T" = 100: the per-configuration summary tables. The advertisements

scenario, hard MAB instance.
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D Investigating successes: additional visualization for Subsection 3.2.

We provide an additional visualization for Subsection 3.2, with some qualitative evidence toward the
success of BSSGO, as well as the failure of other configurations. In Figure 18 we visualize the arm
chosen at each time step for various replicates of several different methods (LLMs and baselines).
Specifically, we have four replicates for the basic configuration (BNRNO) and the two configurations
with reinforced CoT (BSRCO and BSSEO), as well as one replicate of each of the baseline algorithms.
We see that the basic configuration BNRNO tends to commit to a single arm for several rounds, a
behavior that is similar to that of GREEDY and very different from both UCB and TS. BSRCO also
commits for long periods, but to a lesser extent than the basic configuration. In contrast, BSSCO
switches arms much more frequently, and qualitatively appears much more similar to TS.

BNRNO

L'm E IIH\l..IW"-l | lli
L:!lyllflll‘lllllﬂ\ﬂlllhl ‘|||||’)|| I|I|Illllllll ||II }I IF'I'MI " lll IIIIIIII Ikl."lll I)IlllllulllllfllllllfllllI lell

Arm index
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Figure 18: Traces of the arm chosen at each time step for (a) 4 of the replicates of the basic
configuration (GPT-4-BNRNO) (left four cells in top row), (b) 4 of the repEcates of GPT-4-BSRCO

(left four cells of the middle row), (c) 4 of the replicates of GPT-4-BSSCO (left four cells of the
bottom row), as well as one replicate of GREEDY (red border), UCB (green border) and TS (orange
border). For each of the 7' = 100 time steps (X-axis) we indicate which of the five arms was chosen
(Y-axis). The best arm is the top row of each plot, highlighted with blue boxes.
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E Root causes

Our experimental findings above shed light on how

LLM-based decision making agents behave, but it is TS 0.60 054 0531030 0.12 0.12
also worthwhile to understand why they behave the UCB 084 066 055|046 009 026
way they do (and particularly, why they fail). This  TBNRN0 | 034 036 0.50]0.30 030 0.24
question is rather challenging to answer decisively, BNRCO | 050 084 058|012 0 004
but two natural hypotheses are that the configurations BNSNO | 082 094 084]028 o0 0
we consider (outside of GPT-4-BSSCO) are either a) BSRNO [ 020 0.18 022]0.60 038 0.38
too greedy, or b) too uniform-like. In this section, we  Data source | Unif UCB TS | Unif UCB TS
describe how our experiments offer some insight into
this hypotheses.

Figure 19: Per-round decisions with some
First, focusing on GPT-4, our experiments reveal GPT-3.5 configurations. T' = 100, histories
qualitatively different behavior between the easy of length ¢ = 30, hard MAB instance.

and hard instances (Figure 11(a) and Figure 11(c)).

Indeed, the easy instance appears to be much easier;

most GPT-4 configurations avoid suffix failures and accrue large rewards on this instance, and the
GreedyFrac statistic offers a potential explanation as to why. On the easy instance, most GPT-4 con-
figurations have very high GreedyFrac values, so they behave similarly to GREEDY, which performs
quite well (even though GREEDY provably fails with small constant probability and, empirically,
has many suffix failures on this instance).'® A plausible hypothesis from this is that GPT-4 performs
quite well in low-noise settings, which is precisely when GREEDY also performs well.

A stronger hypothesis would be that most GPT-4 configurations (except perhaps those using reinforced
CoT) behave like GREEDY on all instances, but this hypothesis is invalidated by the GreedyFrac
statistics for our experiments on the hard instance. On the hard instance, it seems that most GPT-4
configurations are doing something non-trivial (albeit flawed); their behavior is neither completely
GREEDY-like nor like uniform-at-random.

Toward a more fine-grained understanding, we ran a collection of small-scale secondary experiments
focusing on the per-round decisions of LLM-agents. The experiments focus on a single round ¢
in a bandit problem. Each experiment considers a particular “data source" (a distribution of bandit
histories), samples N = 50 bandit histories of length ¢ from this distribution, and presents them to
the agents (the LLMs and the baselines) and asks them to output an arm or distribution over arms. We
track two statistics for each agent: GreedyFrac and LeastFrac, the fraction of replicates in which
the agent chose, resp., an empirically best arm so far and a least-chosen arm so far. We vary the data
source, i.e., the algorithm which generates the history. In particular, we consider histories generated
by sampling uniformly at random (Unif) and by running our baselines UCB and TS for ¢ rounds.

Results are summarized in Figure 19. Unfortunately, we find that per-round performance of both the
LLMs and the baselines is very sensitive to the particular data source. For example, the MinFrac
statistic of UCB can vary from as high as 0.46 on histories generated uniformly at random to as
low as 0.09 on histories generated by UCB itself. It seems plausible to conclude the BNSNO is too
greedy while BSRNO is too uniform, but the statistics for the other two LLM configurations (BNRNO
and BNRCO)—both of which fail in our longitudinal experiments—fall within the reasonable range
provided by the baselines. Thus, we find that it is challenging to assess whether LLM agents are too
greedy or too uniform-like based on per-round decisions, even though these agents behave rather
differently from the baselines in the longitudinal experiments.

¥Indeed, in Figure 11(c) we see that most GPT-4 configurations have very high GreedyFrac but no suffix
failures. Apparently, even a very small amount of exploration suffices for easy instances (and makes a big
difference, relative to GREEDY). However, this should not be construed as evidence for the more general and
robust exploratory behavior necessary for harder bandit instances.

120152 https://doi.org/10.52202/079017-3818



NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification:
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification:
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: The paper does not include theoretical results.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

e Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification:
Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification:
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification:
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification:
Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.
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8.

10.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification:
Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification:
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our work studies the exploration capabilities of the current generation of large
language models. As such, there is no societal impact of this work.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification:
Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification:
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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