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Abstract

Softmax Loss (SL) is widely applied in recommender systems (RS) and has demon-
strated effectiveness. This work analyzes SL from a pairwise perspective, revealing
two significant limitations: 1) the relationship between SL and conventional rank-
ing metrics like DCG is not sufficiently tight; 2) SL is highly sensitive to false
negative instances. Our analysis indicates that these limitations are primarily
due to the use of the exponential function. To address these issues, this work
extends SL to a new family of loss functions, termed Pairwise Softmax Loss (PSL),
which replaces the exponential function in SL with other appropriate activation
functions. While the revision is minimal, we highlight three merits of PSL: 1)
it serves as a tighter surrogate for DCG with suitable activation functions; 2) it
better balances data contributions; and 3) it acts as a specific BPR loss enhanced by
Distributionally Robust Optimization (DRO). We further validate the effectiveness
and robustness of PSL through empirical experiments. The code is available at
https://github.com/Tiny-Snow/IR-Benchmark.

1 Introduction

Nowadays, recommender systems (RS) have permeated various personalized services [1–4]. What
sets recommendation apart from other machine learning tasks is its distinctive emphasis on ranking
[5]. Specifically, RS aims to retrieve positive items in higher ranking positions (i.e., giving larger
prediction scores) over others and adopts specific ranking metrics (e.g., DCG [6] and MRR [7]) to
evaluate its performance.

The emphasis on ranking inspires a surge of research on loss functions in RS. Initial studies treated
recommendation primarily as a classification problem, utilizing pointwise loss functions (e.g., BCE
[8], MSE [9]) to optimize models. Recognizing the inherent ranking nature of RS, pairwise loss
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functions (e.g., BPR [10]) were introduced to learn a partial ordering among items. More recently,
Softmax Loss (SL) [11] has integrated contrastive learning paradigms [12, 13], augmenting positive
items as compared with negative ones, achieving state-of-the-art (SOTA) performance.

While SL has proven effective, it still suffers from two limitations: 1) SL can be used to approximate
ranking metrics, e.g., DCG and MRR [11, 14], but their relationships are not sufficiently tight.
Specifically, SL uses the exponential function exp(·) as the surrogate activation to approximate the
Heaviside step function in DCG, resulting in a notable gap, especially when the surrogate activation
takes larger values. 2) SL is sensitive to noise (e.g., false negatives [15]). Gradient analysis reveals
that SL assigns higher weights to negative instances with large prediction scores, while the weights are
rather skewed and governed by the exponential function. This characteristic renders the model highly
sensitive to false negative noise. Specifically, false negative instances are common in RS, as a user’s
lack of interaction with an item might stem from unawareness rather than disinterest [16–18]. These
instances would receive disproportionate emphasis, potentially dominating the training direction,
leading to performance degradation and training instability.

To address these challenges, we propose a new family of loss functions, termed Pairwise Softmax
Loss (PSL). PSL first reformulates SL in a pairwise manner, where the loss is applied to the score gap
between positive-negative pairs. Such pairwise perspective is more fundamental to recommendation
as the ranking metrics are also pairwise dependent. Recognizing that the primary weakness of SL lies
in its use of the exponential function, PSL replaces this with other surrogate activations. While this
extension is straightforward, it brings significant theoretical merits:

• Tighter surrogate for ranking metrics. We establish theoretical connections between PSL and
conventional ranking metrics, e.g., DCG. By choosing appropriate surrogate activations, such as
ReLU or Tanh, we demonstrate that PSL achieves a tighter DCG surrogate loss than SL.

• Control over the weight distribution. PSL provides flexibility in choosing surrogate activations
that control the weight distribution of training instances. By substituting the exponential function
with an appropriate surrogate activation, e.g., ReLU or Tanh, PSL can mitigate the excessive impact
of false negatives, thus enhancing robustness to noise.

• Theoretical connections with BPR loss. Our analyses reveal that optimizing PSL is equivalent
to performing Distributionally Robust Optimization (DRO) [19] over the conventional pairwise
loss BPR [10]. DRO is a theoretically sound framework where the optimization is not only on
a fixed empirical distribution but also across a set of distributions with adversarial perturbations.
This DRO characteristic endows PSL with stronger generalization and robustness against out-of-
distribution (OOD), especially given that such distribution shifts are common in RS, e.g., shifts in
user preference and item popularity [16, 20, 21].

Our analyses underscore the theoretical effectiveness and robustness of PSL. To empirically validate
these advantages, we implement PSL with typical surrogate activations (Tanh, Atan, ReLU) and
conduct extensive experiments on four real-world datasets across three experimental settings: 1)
IID setting [22] where training and test distributions are identically distributed [23]; 2) OOD setting
[24] with distribution shifts in item popularity; 3) Noise setting [15] with a certain ratio of false
negatives. Experimental results demonstrate the superiority of PSL over existing losses in terms of
recommendation accuracy, OOD robustness, and noise resistance.

2 Preliminaries

Task formulation. We will conduct our discussion in the scope of collaborative filtering (CF) [25], a
widely-used recommendation scenario. Given the user set U and item set I , CF dataset D ⊂ U ×I is
a collection of observed interactions, where each instance (u, i) ∈ D means that user u has interacted
with item i (e.g., clicks, reviews, etc). For each user u, we denote Pu = {i ∈ I : (u, i) ∈ D} as the
set of positive items of u, while I \ Pu represents the negative items.

The goal of recommendation is to learn a recommendation model, or essentially a scoring function
f(u, i) : U × I → R that quantifies the preference of user u on item i accurately. Modern RS often
adopts an embedding-based paradigm [26]. Specifically, the model maps user u and item i into d-dim
embeddings u,v ∈ Rd, and predicts their preference score f(u, i) based on embedding similarity.
The cosine similarity is commonly utilized in RS and has demonstrated particular effectiveness [27].
Here we set f(u, i) = u·v

∥u∥∥v∥ · 1
2 , where the scaling factor 1

2 is introduced for faciliating analyses
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and can be absorbed into the temperature hyperparameter (τ ). The scores f(u, i) are subsequently
utilized to rank items for generating recommendations.

Ranking metrics. The Discounted Cumulative Gain (DCG) [6] is a prominent ranking metric for
evaluating the recommendation quality. Formally, for each user u, DCG is calculated as follows:

DCG(u) =
∑
i∈Pu

1

log2(1 + πu(i))
(2.1)

where πu(i) is the ranking position of item i in the ranking list sorted by the scores f(u, i). DCG
quantifies the cumulative gain of positive items, discounted by their ranking positions. Similarly, the
Mean Reciprocal Rank (MRR) [7, 28] is another popular ranking metric using the reciprocal of the
ranking position as the gain, i.e., MRR(u) =

∑
i∈Pu

1/πu(i). Additionally, other metrics such as
Recall [29], Precision [29], and AUC [30] are also utilized in RS [29]. Compared to these metrics,
DCG and MRR focus more on the top-ranked recommendations, thus attracting increasing attention
in RS [11, 31]. In this work, we aim to explore the surrogate loss for DCG and MRR.

Recommendation losses. To train recommendation models effectively, a series of recommendation
losses has been developed. Recent work on loss functions can mainly be classified into three types:

• Pointwise loss (e.g., BCE [8], MSE [9], etc.) formulates recommendation as a specific classifica-
tion or regression task, and the loss is applied to each positive and negative instance separately.
Specifically, for each user u, the pointwise loss is defined as

Lpointwise(u) = −
∑
i∈Pu

log(φ+(f(u, i)))−
∑

j∈I\Pu

log(φ−(f(u, j))) (2.2)

where φ+(·) and φ−(·) are the activation functions adapted for different loss choices.
• Pairwise loss (e.g., BPR [10], etc.) optimizes partial ordering among items, which is applied to

the score gap between negative-positive pairs. BPR [10] is a representative pairwise loss, which is
defined as

LBPR(u) =
∑
i∈Pu

∑
j∈I\Pu

log σ(f(u, j)− f(u, i)) (2.3)

where σ denotes the activation function that approximates the Heaviside step function. The basic
intuition behind BPR loss is to let the positive instances have higher scores than negative instances.
In practice, there are various choices of the activation function. For instance, Rendle et al. [10]
originally uses the sigmoid function, and the resultant BPR loss can approximate AUC metric.

• Softmax Loss (i.e., SL [11]) normalizes the predicted scores into a multinomial distribution [32]
and optimizes the probability of positive instances over negative ones [33], which is defined as

LSL(u) = −
∑
i∈Pu

log

(
exp(f(u, i)/τ)∑
j∈I exp(f(u, j)/τ)

)
(2.4)

where τ is the temperature hyperparameter. SL can also be understood as a specific contrastive
loss, which draws positive instances (u, i) closer and pushes negative instances (u, j) away [13].

3 Analyses on Softmax Loss from Pairwise Perspective

In this section, we aim to first represent the Softmax Loss (SL) in a pairwise form, followed by an
analysis of its relationship with the DCG metric, where two limitations of SL are exposed.

Pairwise form of SL. To facilitate the analysis of SL and to build its relationship with the DCG
metric, we rewrite SL (cf. Equation (2.4)) in the following pairwise form:

LSL(u) =
∑
i∈Pu

log

∑
j∈I

exp(duij/τ)

 , where duij = f(u, j)− f(u, i) (3.1)

Equation (3.1) indicates that SL is penalized based on the score gap between negative-positive pairs,
i.e., duij = f(u, j)− f(u, i). This concise expression is fundamental for ranking, as it optimizes the
relative order of instances rather than their absolute values.

3
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Connections between SL and DCG. We now analyze the connections between SL and the DCG
metric (cf. Equations (2.1) and (3.1)), which could enhance our understanding of the advantages
and disadvantages of SL. Our analysis follows previous work [11, 14], which begins by relaxing the
negative logarithm of DCG with

− logDCG(u) + log |Pu| ≤ − log

(
1

|Pu|
∑
i∈Pu

1

πu(i)

)
≤ 1

|Pu|
∑
i∈Pu

log πu(i) (3.2)

where the first inequality holds due to log2(1 + πu(i)) ≤ πu(i), and the second inequality holds due
to Jensen’s inequality [34]. Note that the ranking position πu(i) of item i can be expressed as

πu(i) =
∑
j∈I

I(f(u, j) ≥ f(u, i)) =
∑
j∈I

δ(duij) (3.3)

where δ(·) denotes the Heaviside step function, with δ(x) = 1 for x ≥ 0 and δ(x) = 0 for x < 0.
Since δ(duij) ≤ exp(duij/τ) holds for all τ > 0, we deduce that SL is a smooth upper bound of
Equation (3.2), and thus serves as a reasonable surrogate loss for DCG and MRR metrics1.

However, our analysis also reveals two limitations of SL:

• Limitation 1: SL is not tight enough as a DCG surrogate loss. There remains a significant gap
between the Heaviside step function δ(·) and the exponential function exp(·), especially when duij
reaches a relatively large value, where exp(·) becomes substantially larger than δ(·). This gap is
further exacerbated by the temperature τ . Practically, we find that the optimal τ is usually chosen
to be less than 0.2 (cf. Appendix B.5.2). Given the explosive nature of exp(·), the gap becomes
extremely large, potentially leading to suboptimal performance of SL in optimizing DCG.

• Limitation 2: SL is highly sensitive to noise (e.g., false negative instances). False negative
instances [15] are common in the typical RS. This is often due to the exposure bias [16], where
a user’s lack of interaction with an item might stem from unawareness rather than disinterest.
Unfortunately, SL is highly sensitive to these false negative instances. On one hand, these instances
(u, j), which may exhibit patterns similar to true positive ones, are difficult for the model to
differentiate and often receive larger predicted scores, thus bringing potentially larger duij for
positive items i. As analyzed in Limitation 1, these instances can significantly enlarge the gap
between SL and DCG due to the exponential function, causing the optimization to deviate from
the DCG metric.

Gradient analysis of SL. Another perspective to support the view of Limitation 2 comes from the
gradient analysis. Specifically, the gradient of SL w.r.t. duij is

∂LSL(u)

∂duij
=

exp(duij/τ)/τ

|I|Ej′∼I [exp(duij′/τ)]
∝ exp(duij/τ)/τ (3.4)

As can be seen, SL implicitly assigns a weight to the gradient of each negative-positive pair, where
the weight is proportional to exp(duij/τ). This suggests that instances with larger duij will receive
larger weights. While this property may be desirable for hard mining [11], which can accelerate
convergence, it also means that false negative instances, which typically have larger duij , will obtain
disproportionately large weights, as shown in the weight distribution of SL in Figure 1b. Therefore,
the optimization of SL can be easily dominated by false negative instances, leading to performance
drops and training instability.

Discussions on DRO robustness and noise sensitivity. Recent work [15] claims that SL exhibits
robustness to noisy data through Distributionally Robust Optimization (DRO) [19]. However, we
argue that this is not the case. DRO indeed can enhance model robustness to distribution shifts, but
it also increases the risk of noise sensitivity, as demonstrated by many studies on DRO [35, 36].
Intuitively, DRO emphasizes hard instances with larger losses, making noisy data contribute more
rather than less to the optimization. This is also demonstrated from the experiments with false
negative instances (cf. Figure 8 in [15]), where the improvements of SL over other baselines in Noise
setting do not increase significantly but sometimes decay.

1Note that the middle term in Equation (3.2), i.e., − log
(

1
|Pu|

∑
i∈Pu

1/πu(i)
)

, is exactly − logMRR(u).
Therefore, SL serves as an upper bound of the negative logarithm of DCG and MRR, and minimizing SL leads
to the improvement of these ranking metrics.

4
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Figure 1: (a) Illustration of different surrogate activations. (b) The weight distribution of SL as
compared with PSL using three different surrogate activations. Here we set τ = 0.2, which typically
achieves optimal results in practice.

4 Methodology

4.1 Pairwise Softmax Loss

Recognizing the limitations of SL, particularly its reliance on the unsatisfactory exponential function,
we propose to extend SL with a more general family of losses, termed Pairwise Softmax Loss (PSL).
In PSL, the exponential function exp(·) is replaced by other surrogate activations σ(·) approximating
the Heaviside step function δ(·). For each user u, the PSL is defined as

LPSL(u) =
∑
i∈Pu

log

∑
j∈I

σ(duij)
1/τ

 (4.1)

One might wonder why we apply the temperature outside the activation function (i.e., extending
exp(duij)

1/τ to σ(duij)
1/τ )2 rather than within it (i.e., extending exp(duij/τ) to σ(duij/τ)). This

subtlety will be elucidated later as we demonstrate that the form in Equation (4.1) offers superior
properties over the alternative.

Our PSL provides a flexible framework for selecting better activation functions, allowing the loss to
exhibit improved properties compared to SL. We advocate for three activations, including PSL-tanh:
σtanh = tanh(duij)+1, PSL-atan: σatan = arctan(duij)+1, and PSL-relu: σrelu = ReLU(duij+1).
In the following, we will discuss the advantages of PSL and provide evidence for the selection of
these surrogate activations.

Advantage 1: PSL is a better surrogate for ranking metrics. To highlight the advantages of
replacing exp(·) with alternative surrogate activations, we present the following lemma:
Lemma 4.1. If the condition

δ(duij) ≤ σ(duij) ≤ exp(duij) (4.2)

is satisfied for any duij ∈ [−1, 1], then PSL serves as a tighter DCG surrogate loss compared to SL.

The proof is presented in Appendix A.1. This lemma reveals that PSL could be a tighter surrogate loss
for DCG compared to SL. Additionally, it provides guidance on the selection of a proper surrogate
activation — we may choose the activation that lies between exp(·) and δ(·). As demonstrated in
Figure 1a, our chosen surrogate activations σtanh, σatan, and σrelu adhere to this principle.

Advantage 2: PSL controls the weight distribution. The gradient of PSL w.r.t. duij is

∂LPSL(u)

∂duij
=

σ′(duij) · σ(duij)1/τ−1/τ

|I|Ej′∼I [σ(duij′)1/τ ]
∝ σ′(duij) · σ(duij)1/τ−1/τ (4.3)

2Note that the equation exp(duij/τ) = exp(duij)
1/τ holds.

5
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This implies that the shape of the weight distribution is determined by the choice of surrogate
activation. By selecting appropriate activations, PSL can better balance the contributions of instances
during training. For example, the three activations advocated before can explicitly mitigate the
explosive issue on larger duij (cf. Figure 1b), bringing better robustness to false negative instances.

One might argue that adjusting τ in SL could improve noise resistance. However, such adjustments do
not alter the fundamental shape of the weight distribution, which remains exponential. Furthermore,
as we discuss subsequently, τ plays a crucial role in controlling robustness against distribution shifts.
Thus, indiscriminate adjustments to τ may compromise out-of-distribution (OOD) robustness.

Advantage 3: PSL is a DRO-empowered BPR loss. We establish a connection between PSL and
BPR [10] based on Distributionally Robust Optimization (DRO) [19, 37]. Specifically, optimizing
PSL is equivalent to applying a KL divergence DRO on negative item distribution over BPR loss
(cf. Equation (2.3)), as demonstrated in the following theorem3:

Theorem 4.2. For each user u and its positive item i, let P = P (j|u, i) be the uniform distribution
over I. Given a robustness radius η > 0, consider the uncertainty set Q consisting of all perturbed
distributions Q = Q(j|u, i) satisfying: (i) Q is absolutely continuous w.r.t. P , i.e., Q ≪ P ; (ii) the
KL divergence between Q and P is constrained by η, i.e., DKL(Q∥P ) ≤ η. Then, optimizing PSL is
equivalent to performing DRO over BPR loss, i.e.,

min

{
Ei∼Pu

[
logEj∼I

[
elog(σ(duij))/τ

] ]}
︸ ︷︷ ︸

LPSL(u)

⇔ min

{
Ei∼Pu

[
sup
Q∈Q

Ej∼Q(j|u,i) [log σ(duij)]

]}
︸ ︷︷ ︸

LBPR-DRO(u)

(4.4)
where τ = τ(η) is a temperature parameter controlled by η.

The proof is presented in Appendix A.2. Theorem 4.2 demonstrates how PSL, based on the DRO
framework, is inherently robust to distribution shifts. This robustness is particularly valuable in RS,
where user preference and item popularity may shift significantly. Therefore, PSL can be regarded as
a robust generalization of BPR loss, offering better performance in OOD scenarios.

In addition, Theorem 4.2 also gives insights into the rationality of PSL that differs from serving as a
DCG surrogate loss, but rather as a DRO-empowered BPR loss:

• Rationality of surrogate activations: The activation function in BPR is originally chosen as an
approximation to the Heaviside step function [10]. Since PSL is a generalization of BPR as stated
in Theorem 4.2, it is reasonable to select the activations in PSL that aligns with the ones in BPR.
Interestingly, this principle coincides with our analysis from the perspective of DCG surrogate loss.

• Rationality of the position of temperature: Theorem 4.2 also rationalizes the extension form that
places the temperature on the outside rather than inside. For the outside form (i.e., σ(duij)1/τ ),
Theorem 4.2 holds, and the temperature τ can be interpreted as a Lagrange multiplier in DRO
optimization, which controls the extent of distribution perturbation. However, for the inside
form (i.e., σ(duij/τ)), Theorem 4.2 no longer holds, and it would be challenging to establish the
relationship between PSL and BPR.

• Rationality of pairwise perspective: Recent work such as BSL [15] also reveals the DRO property
of SL (cf. Lemma 1 in [15]). However, we wish to highlight the distinctions between Theorem 4.2
and Wu et al. [15]’s analyses: 1) Wu et al. [15] views SL from a pointwise perspective and
associates it with a specific, less commonly used pointwise loss. In contrast, our analyses adopt a
pairwise perspective and establish a relationship between PSL and the widely used BPR loss. 2)
We construct a link between two families of losses with flexible activation selections, and Wu et al.
[15]’s analyses can be regarded as a special case within our broader framework.

The above analyses underscore the advantages of PSL and provide the principles to select surrogate
activations. Remarkably, PSL is easily implemented and can be integrated into various recommenda-
tion scenarios. This can be achieved by merely replacing the exponential function exp(·) in SL with
another activation σ(·) surrogating the Heaviside step function, requiring minimal code modifications.

3Note that elog(σ(duij))/τ = σ(duij)
1/τ holds, thus the PSL in Equation (4.4) is identical to the one in

Equation (4.1).
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4.2 Discussions

Comparisons of two extension forms. In previous discussions, we highlight the advantages of the
form that positions the temperature outside (i.e., σ(duij)1/τ ) over the inside (i.e., σ(duij/τ)). As
discussed in the analyses of Theorem 4.2, the outside form can be regarded as a DRO-empowered
BPR, while the inside form cannot, which ensures the robustness of PSL against distribution shifts.

Here we provide an additional perspective on the advantages of the outside form. In fact, the outside
form facilitates the selection of surrogate activations. For instance, to ensure that PSL serves as a
tighter DCG surrogate loss compared to SL (i.e., ensure Lemma 4.1 holds), the outside form only
need to consider the condition (4.2) on the range of duij ∈ [−1, 1]. However, for the inside form,
this condition should be satisfied on the entire domain of the activation σ(·), which complicates the
selection of activation functions. Therefore, the outside form is more flexible and easier to implement.
We further provide empirical evidence in Appendix C.3, demonstrating that the inside form will lose
the advantages of achieving tighter DCG surrogate loss, leading to compromised performance.

Connections with other losses. We further discuss the connections between PSL and other losses:

• Connection with AdvInfoNCE [38]: According to Theorem 3.1 in Zhang et al. [38], AdvInfoNCE
can indeed be considered as a special case of PSL with σ(·) = exp(exp(·)). We argue that this
activation is not a good choice as it would enlarge the gap between the loss and DCG. In fact, we
have − logDCG ≤ LPSL ≤ LSL ≤ LAdvInfoNCE (cf. Appendix A.3 for proof). While AdvInfoNCE
may achieve good performance in some specific OOD scenarios as tested in Zhang et al. [38], we
argue that AdvInfoNCE is a looser DCG surrogate loss and would be highly sensitive to noise
(cf. Table 1 and Figure 2 in Section 5.2 for empirical validation).

• Connection with BPR [10]: Besides the DRO relation stated in Theorem 4.2, we also derive
the bound relation between BPR and PSL with the same activation, i.e., − logDCG ≤ LPSL ≤
logLBPR (cf. Appendix A.3 for proof). This relation clearly demonstrates the effectiveness of
PSL over BPR — performing DRO over BPR results robustness to distribution shifts, while also
achieving a tighter surrogate of DCG, which is interesting (cf. Tables 1 and 2 in Section 5.2 for
empirical validation). An intuitive explanation is that DCG focuses more on the higher-ranked
items. Given that DRO would give more weight to the hard negative instances with larger prediction
scores and higher positions, it would naturally narrow the gap between BPR and DCG.

5 Experiments

5.1 Experimental Setup

Testing scenarios. We adopt three representative testing scenarios to comprehensively evaluate
model accuracy and robustness, including: 1) IID setting: the conventional testing scenario where
training and test data are randomly split and identically distributed; 2) OOD setting: to assess the
model’s robustness on the out-of-distribution (OOD) data, we adopt a debiasing testing paradigm
where the item popularity distribution shifts. We closely refer to Zhang et al. [20], Wang et al. [24],
and Wei et al. [39], sampling a test set where items are uniformly distributed while maintaining the
long-tail nature of the training dataset; 3) Noise setting: to evaluate the model’s sensitivity to noise,
following Wu et al. [15], we manually impute a certain proportion of false negative items in the
training data. The details of the above testing scenarios are provided in Appendix B.1.

Datasets. Four widely-used datasets including Amazon-Book, Amazon-Electronic, Amazon-Movie
[40, 41], and Gowalla [42] are used in our experiments. Considering the item popularity is not heavily
skewed in the Amazon-Book and Amazon-Movie datasets, we turn to other conventional datasets,
Amazon-CD [40, 41] and Yelp2018 [43], as replacements for OOD testing. All datasets are split into
80% training set and 20% test set, with 10% of the training set further treated as the validation set.
The details of the above datasets are summarized in Appendix B.1.

Metrics. We closely refer to Wu et al. [15] and Zhang et al. [38], adopting Top-K metrics including
NDCG@K [6] and Recall@K [29] for performance evaluation, where NDCG is the normalized
DCG, i.e., dividing DCG by the ideal value. Here we simply set K = 20 as in recent work [15, 38]
while observing similar results with other choices. For more details, please refer to Appendix B.2.
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Table 1: Performance comparison in terms of Recall@20 and NDCG@20 under the IID setting. The
best result is bolded, and the blue-colored zone indicates that PSL is better than SL. Imp.% denotes
the NDCG@20 improvement of PSL over SL. The marker "*" indicates that the improvement is
statistically significant (p-value < 0.05).

Model Loss
Amazon-Book Amazon-Electronic Amazon-Movie Gowalla

Recall NDCG Recall NDCG Recall NDCG Recall NDCG

MF [26]

BPR [10] 0.0665 0.0453 0.0816 0.0527 0.0916 0.0608 0.1355 0.1111
LLPAUC [44] 0.1150 0.0811 0.0821 0.0499 0.1271 0.0883 0.1610 0.1189
SL [11] 0.1559 0.1210 0.0821 0.0529 0.1286 0.0929 0.2064 0.1624
AdvInfoNCE [38] 0.1557 0.1172 0.0829 0.0527 0.1293 0.0934 0.2067 0.1627
BSL [15] 0.1563 0.1212 0.0834 0.0530 0.1288 0.0931 0.2071 0.1630
PSL-tanh 0.1567 0.1225 0.0832 0.0535 0.1297 0.0941 0.2088 0.1646
PSL-atan 0.1567 0.1226 0.0832 0.0535 0.1296 0.0941 0.2087 0.1646
PSL-relu 0.1569 0.1227 0.0838 0.0541 0.1299 0.0945 0.2089 0.1647

Imp.% +1.40%* +2.31%* +1.72%* +1.42%*

LightGCN [22]

BPR [10] 0.0984 0.0678 0.0813 0.0524 0.1006 0.0681 0.1745 0.1402
LLPAUC [44] 0.1147 0.0810 0.0831 0.0507 0.1272 0.0886 0.1616 0.1192
SL [11] 0.1567 0.1220 0.0823 0.0526 0.1304 0.0941 0.2068 0.1628
AdvInfoNCE [38] 0.1568 0.1177 0.0823 0.0528 0.1292 0.0936 0.2066 0.1625
BSL [15] 0.1568 0.1220 0.0823 0.0526 0.1306 0.0943 0.2069 0.1628
PSL-tanh 0.1575 0.1233 0.0825 0.0532 0.1300 0.0947 0.2091 0.1648
PSL-atan 0.1575 0.1233 0.0825 0.0532 0.1300 0.0948 0.2091 0.1648
PSL-relu 0.1575 0.1233 0.0830 0.0536 0.1300 0.0953 0.2086 0.1648

Imp.% +1.12%* +1.98%* +1.22%* +1.24%*

XSimGCL [45]

BPR [10] 0.1269 0.0905 0.0777 0.0508 0.1236 0.0857 0.1966 0.1570
LLPAUC [44] 0.1363 0.1008 0.0781 0.0481 0.1184 0.0828 0.1632 0.1200
SL [11] 0.1549 0.1207 0.0772 0.0490 0.1255 0.0905 0.2005 0.1570
AdvInfoNCE [38] 0.1568 0.1179 0.0776 0.0489 0.1252 0.0906 0.2010 0.1564
BSL [15] 0.1550 0.1207 0.0800 0.0507 0.1267 0.0918 0.2037 0.1597
PSL-tanh 0.1567 0.1225 0.0790 0.0501 0.1308 0.0926 0.2034 0.1591
PSL-atan 0.1565 0.1225 0.0792 0.0502 0.1253 0.0917 0.2035 0.1591
PSL-relu 0.1571 0.1228 0.0801 0.0507 0.1313 0.0935 0.2037 0.1593

Imp.% +1.72%* +3.39%* +3.42%* +1.48%*

Compared methods. Five representative loss functions are compared in our experiments, including
1) the representative pairwise loss BPR (UAI’09 [10]); 2) the SOTA recommendation loss Softmax
Loss (SL) (TOIS’24 [11]) and its two DRO-enhancements AdvInfoNCE (NIPS’23 [38]) and BSL
(ICDE’24 [15]); 3) another SOTA loss LLPAUC (WWW’24 [44]) that optimizes the Lower-Left
Partial AUC. Refer to Appendix B.3 for more details about these baselines.

Backbones. We also adopt three representative backbone models to evaluate the effectiveness of loss,
including MF [26], LightGCN [22], and XSimGCL [45], see Appendix B.4 for more details.

Hyperparameter settings. A grid search is utilized to find the optimal hyperparameters. For all
compared methods, we closely refer to the configurations provided in their respective publications to
ensure their optimal performance. As we also carefully finetune SL, the improvements of existing
methods over it are not as significant as those presented in their papers. The hyperparameter settings
are provided in Appendix B.5, where the detailed optimal hyperparameters for each method on each
dataset and backbone are reported.

5.2 Performance Comparisons

Results under IID setting. Table 1 presents the performance of our PSL compared with baselines.

• PSL outperforms SL and other baselines. Experimental results demonstrate that PSL, with
three carefully selected surrogate activations, consistently outperforms SL across all datasets
and backbones, with only a few exceptions. For instance, on the MF backbone, compared to
the marginal improvements or sometimes even degradation of AdvInfoNCE (-3%~0.5%) and
BSL (0.0%~0.5%), PSL shows a significant enhancement over SL (1%~3%). Moreover, our PSL
surpasses all compared baselines in most cases, clearly demonstrating its effectiveness.

• PSL achieves tighter connections with ranking metrics. We observe that the results align well
with our theoretical analyses of PSL’s Advantage 1 in Section 4. By replacing the exponential
function with other suitable surrogate activations, PSL establishes a tighter relationship with ranking
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Table 2: Performance comparison in terms of Recall@20 and NDCG@20 under the OOD setting
with popularity shift (on MF backbone). The best result is bolded, and the blue-colored zone indicates
that PSL is better than SL. Imp.% denotes the NDCG@20 improvement of PSL over SL. The marker
"*" indicates that the improvement is statistically significant (p-value < 0.05).

Loss
Amazon-CD Amazon-Electronic Gowalla Yelp2018

Recall NDCG Recall NDCG Recall NDCG Recall NDCG

BPR [10] 0.0518 0.0318 0.0132 0.0069 0.0382 0.0273 0.0118 0.0072
LLPAUC [44] 0.1103 0.0764 0.0225 0.0134 0.0729 0.0522 0.0324 0.0210
SL [11] 0.1184 0.0815 0.0230 0.0142 0.1006 0.0737 0.0349 0.0224
AdvInfoNCE [38] 0.1189 0.0818 0.0228 0.0139 0.0927 0.0676 0.0348 0.0223
BSL [15] 0.1184 0.0815 0.0231 0.0142 0.1006 0.0738 0.0351 0.0225
PSL-tanh 0.1202 0.0834 0.0239 0.0146 0.1013 0.0748 0.0357 0.0228
PSL-atan 0.1202 0.0835 0.0239 0.0146 0.1013 0.0748 0.0358 0.0228
PSL-relu 0.1203 0.0839 0.0241 0.0149 0.1014 0.0752 0.0358 0.0229

Imp.% +3.01%* +5.02%* +2.02%* +2.05%*
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Figure 2: Performance comparison of SL and PSL in terms of NDCG@20 with different false
negative noise ratio (on MF backbone). We also present the relative improvements (i.e., Imp.%)
achieved by PSL over SL. The complete results of other baselines are provided in Appendix C.1.

metrics, thus achieving better NDCG performance (cf. Lemma 4.1). This is also empirically evident
from the larger improvements in NDCG compared to Recall. In contrast, as discussed in Section 4.2,
other baselines like AdvInfoNCE and BSL either widen the gap or fail to connect with the ranking
metrics, resulting in slight improvements or even performance drops.

Results under OOD setting. Table 2 presents the results in OOD scenarios with popularity shift.
Given the consistent behavior across the three backbones, here we only report the results on MF.

• PSL is robust to distribution shifts. Experimental results indicate that PSL has a strong robustness
against distribution shifts, which is consistent with PSL’s Advantage 3 in Section 4. As can be
seen, PSL not only outperforms all baselines (2%~5%), but also achieves more pronounced
improvements than in IID setting, like on Amazon-Electronic (2.31% → 5.02%) and Gowalla
(1.42% → 2.02%). This demonstrates the superior robustness of PSL to distribution shifts, as
shown in Theorem 4.2.

• PSL is a DRO-enhancement of more reasonable loss. Although both PSL and SL can be
considered as DRO-enhanced losses (cf. Theorem 4.2), the original loss of our three PSLs before
DRO-enhancement is more reasonable than that of SL, which degenerates from BPR loss to a
linear triplet loss [46]. Therefore, we observe significant improvements of PSL over SL.

Results under Noise setting. Figure 2 and Appendix C.1 presents the results with a certain ratio of im-
puted false negative noise. Specifically, we regard 10% of the positive items in the training set as false
negative noise and allow the negative sampling procedure to have a certain probability p of sampling
those items. We test the model performance with varying noise ratios p ∈ {0.05, 0.1, 0.2, 0.3, 0.5}.

• PSL has strong noise resistance. Experimental results demonstrate that as the noise ratio p
increases, both the performance of SL and PSL decline. The performance decline rate of PSL is
significantly smaller than that of other baselines, resulting in higher performance enhancement(>
10% when p = 0.5). These results indicate that PSL possesses stronger noise resistance than SL,
which stems from our rational activation design, as discussed in PSL’s Advantage 2 in Section 4.
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However, for DRO-enhanced losses such as AdvInfoNCE, the performance declines similarly to or
even more quickly than SL (cf. Appendix C.1), which coincides with our theoretical analyses.

6 Related Work

Model-related recommendation research. Recent years have witnessed flourishing publications on
collaborative filtering (CF) models. The earliest works are mainly extensions of Matrix Factorization
[26], building more complex interactions between embeddings [47], such as MF [26], LRML [48],
SVD [49, 50], SVD++ [51], NCF [8], etc. In recent years, given the effectiveness of Graph Neural
Networks (GNNs) [52–58] in capturing high-order relations, which align well with CF assumptions,
GNN-based models have emerged and achieved great success, such as LightGCN [22], NGCF [55],
LCF [59], APDA [60], etc. Building upon LightGCN, some works attempt to introduce contrastive
learning [12, 61] for graph data augmentation, such as SGL [62] and XSimGCL [45], achieving
SOTA performance in recommendation.

Loss-related recommendation research. Existing recommendation losses can be primarily cat-
egorized into pointwise loss [8, 9], pairwise loss [10], and Softmax Loss (SL) [11], as discussed
in Section 2. Given the effectiveness of SL, recently some researchers have proposed to enhance
SL from different perspectives. For instance, BSL [15] aims to enhance the positive distribution
robustness by leveraging Distributionally Robust Optimization (DRO); AdvInfoNCE [38] employs
adversarial learning to enhance SL’s robustness; Zhang et al. [20] suggests incorporating bias-aware
margins in SL to tackle popularity bias. Beyond these three types of losses, other approaches have
also been explored in recent years. For example, Zhao et al. [63] introduces auto-loss, which utilizes
automated machine learning techniques to search the optimal loss; Shi et al. [44] proposes LLPAUC
to approximate Recall@K metric. The main concerns with these losses are their lack of theoretical
connections to ranking metrics like DCG, which may result in them not consistently outperforming
the basic SL. Moreover, both auto-loss and LLPAUC require iterative learning, leading to additional
computational time and increased instability.

7 Conclusion and Limitations

In this work, we introduce a new family of loss functions, termed Pairwise Softmax Loss (PSL).
PSL theoretically offers three advantages: 1) it serves as a better surrogate for ranking metrics
with appropriate surrogate activations; 2) it allows flexible control over the distribution of the data
contribution; 3) it can be interpreted as a specific BPR loss enhanced by Distributionally Robust
Optimization (DRO). These properties demonstrate that PSL has greater effectiveness and robustness
compared to Softmax Loss. Our extensive experiments across three testing scenarios validate the
superiority of PSL over existing methods.

One limitation of both PSL and SL is inefficiency, as they require sampling a relatively large number
of negative instances per iteration. How to address this issue and improve the efficiency of these
losses is an interesting direction for future research.
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A Theoretical Proofs

A.1 Proof of Lemma 4.1

Lemma A.1 (Lemma 4.1). If the condition

δ(duij) ≤ σ(duij) ≤ exp(duij) (4.2)

is satisfied for any duij ∈ [−1, 1], then PSL serves as a tighter DCG surrogate loss compared to SL.

Proof of Lemma 4.1. For any τ > 0, Equation (4.2) indicates that

δ(duij) ≤ σ(duij)
1/τ ≤ exp(duij)

1/τ (A.1)

which means σ(·)1/τ is tighter than exp(·)1/τ approximating δ(·). According to Equations (3.2)
and (3.3) in Section 3, we conclude that PSL is a tighter surrogate loss for DCG compared to SL.

A.2 Proof of Theorem 4.2

Theorem A.2 (Theorem 4.2). For each user u and its positive item i, let P = P (j|u, i) be the uniform
distribution over I. Given a robustness radius η > 0, consider the uncertainty set Q consisting
of all perturbed distributions Q = Q(j|u, i) satisfying: (i) Q is absolutely continuous w.r.t. P ,
i.e., Q ≪ P ; (ii) the KL divergence between Q and P is constrained by η, i.e., DKL(Q∥P ) ≤ η.
Then, optimizing PSL is equivalent to performing DRO over BPR loss, i.e.,

min

{
Ei∼Pu

[
logEj∼I

[
elog(σ(duij))/τ

] ]}
︸ ︷︷ ︸

LPSL(u)

⇔ min

{
Ei∼Pu

[
sup
Q∈Q

Ej∼Q(j|u,i) [log σ(duij)]

]}
︸ ︷︷ ︸

LBPR-DRO(u)

(4.4)
where τ = τ(η) is a temperature parameter controlled by η.

To prove Theorem 4.2, it suffices to prove the following lemma:
Lemma A.3 (DRO under KL divergence). Given the loss term ℓ(x; θ) of input x and parameters θ,
for any robustness radius η > 0, DRO under KL divergence is equivalent to optimizing a loss in the
form of logE[exp(·)], i.e.,

min
θ

sup
Q∈Q

Ex∼Q[ℓ(x; θ)] ⇔ min
θ,τ>0

{τ logEx∼P [exp(ℓ(x; θ)/τ)] + τη} (A.2)

where the uncertainty set Q consists of all perturbed distributions Q constrained by KL divergence
w.r.t. the original distribution P , i.e., Q = {Q ≪ P : DKL(Q∥P ) ≤ η}.

Lemma A.3, which was first proposed by Hu and Hong [37] with a complex proof, gives a closed-form
solution for DRO under KL divergence. Here we provide an elegant proof based on the following
general result about the ϕ-divergence DRO, which was first proposed by Shapiro [19].
Theorem A.4 (DRO under ϕ-divergence, [19]). Consider the DRO problem in ϕ-divergence

Dϕ(Q∥P ) =

∫
ϕ

(
dQ

dP

)
dP (A.3)

where ϕ : R → R+ = R+ ∪ {∞} is a convex function such that ϕ(1) = 0 and ϕ(t) = +∞
for any t < 0. Then the inner maximization problem in DRO, i.e., supQ∈Q Ex∼Q[ℓ(x; θ)] with the
uncertainty set Q = {Q ≪ P : Dϕ(Q∥P ) ≤ η}, is equivalent to the following optimization problem:

inf
τ>0,µ

{Ex∼P [(τϕ)∗(ℓ(x; θ)− µ)] + τη + µ} (A.4)

where f∗(y) = supx {yx− f(x)} is the Fenchel conjugate [64] for any convex function f : R → R.

Proof of Theorem A.4. Let the likelihood ratio L(x) = dQ(x)/dP (x), then the inner maximization
problem in DRO can be reformulated as

sup
L⪰0

{Ex∼P [L(x)ℓ(x; θ)] | Ex∼P [ϕ(L(x))] ≤ η,Ex∼P [L(x)] = 1} (A.5)
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The Lagrangian of Equation (A.5) is

L(L, τ, µ) = Ex∼P [L(x)ℓ(x; θ)− τϕ(L(x))− µL(x)] + τη + µ (A.6)

where τ ≥ 0 and µ are the Lagrange multipliers. Problem (A.5) is a convex optimization problem.
One can easily check the Slater’s condition [65] by choosing L(x) ≡ 1, thus the strong duality [65]
holds, and problem (A.5) is equivalent to the dual problem (A.7) of the Lagrangian (A.6):

inf
τ≥0,µ

sup
L⪰0

L(L, τ, µ) (A.7)

Consider the inner maximization problem supL⪰0 L(L, τ, µ) in Equation (A.7), τη + µ is a constant
and can be ignored. By the theorem of interchange of minimization and integration [64], we can
interchange sup and expectation in Equation (A.7).Then supL⪰0 L(L, τ, µ) can be reformulated as

Ex∼P

[
sup
L⪰0

{L(x)(ℓ(x; θ)− µ)− τϕ(L(x))}
]

(A.8)

The above problem can be rewritten by the Fenchel conjugate as

Ex∼P [(τϕ)∗(ℓ(x; θ)− µ)] (A.9)

Thus, problem (A.7) is equivalent to

inf
τ≥0,µ

{Ex∼P [(τϕ)∗(ℓ(x; θ)− µ)] + τη + µ} (A.10)

Finally, note that the condition τ ≥ 0 in problem (A.10) can be relaxed to τ > 0 without affecting the
optimal value, thus problem (A.10) is equivalent to problem (A.4), which completes the proof.

Lemma A.3 can be directly derived from Theorem A.4 as follows:

Proof of Lemma A.3. KL divergence is a special case of ϕ-divergence with ϕ(x) = x log x, and the
Fenchel conjugate of τϕ is

(τϕ)∗(y) = sup
x

{yx− τx log x} = τey/τ−1 (A.11)

By Theorem A.4, the DRO problem under KL divergence is equivalent to

inf
τ>0,µ

{
Ex∼P

[
τe(ℓ(x;θ)−µ)/τ−1

]
+ τη + µ

}
= inf

τ>0,µ

{
Ex∼P

[
eℓ(x;θ)/τ

]
τe−µ/τ−1 + τη + µ

} (A.12)

We fix τ and solve the optimal value of µ as

µ∗ = τ logEx∼P

[
eℓ(x;θ)/τ

]
− τ (A.13)

Therefore, by substituting the optimal µ∗ in Equation (A.13) back to Equation (A.12), the original
DRO problem is equivalent to

inf
θ,τ>0

{
τ logEx∼P

[
eℓ(x;θ)/τ

]
+ τη

}
(A.14)

This completes the proof.

Theorem 4.2 is a direct consequence of Lemma A.3, when setting the loss term ℓ(x; θ) as log σ(duij)
(i.e., the pairwise loss term in BPR loss), P as the uniform distribution over I, Q as the perturbed
distribution constrained by KL divergence w.r.t. P , and τ = τ(η) as the optimal value of Lagrange
multiplier τ in Equation (A.2). This completes the proof of Theorem 4.2.
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A.3 Proof of the Bound Connections between PSL and Other Losses in Section 4.2

Proof of the Bound Connections in Section 4.2. We have proved in Lemma 4.1 that

− logDCG(u) + log |Pu| ≤
1

|Pu|
∑
i∈Pu

log

∑
j∈I

σ(duij)
1/τ

 (A.15)

with any surrogate activation σ satisfying δ(duij) ≤ σ(duij). Furthermore, if two surrogate acti-
vations σ1, σ2 satisfy σ1(duij) ≤ σ2(duij) for any duij ∈ [−1, 1], then the corresponding DCG
surrogate losses satisfy the same inequality. Therefore, we have

− logDCG ≤ LPSL ≤ LSL ≤ LAdvInfoNCE (A.16)

where the constant term is omitted for simplicity.

Finally, we prove that BPR serves as a surrogate loss for DCG. Apply Jensen’s inequality to the RHS
of Equation (A.15), we have

1

|Pu|
∑
i∈Pu

log

∑
j∈I

σ(duij)
1/τ

 ≤ log

 1

|Pu|
∑
i∈Pu

∑
j∈I

σ(duij)
1/τ

 (A.17)

The RHS of Equation (A.17) is just logLBPR(u)− log |Pu| with the same surrogate activation σ in
BPR. Equation (A.17) indicates that for any surrogate activation σ, the general PSL (including SL,
BSL, and AdvInfoNCE) is always better than BPR with the same σ, i.e.,

− logDCG ≤ LPSL ≤ logLBPR (A.18)

where the constant term is omitted for simplicity. This completes the proof.
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B Experimental Details

B.1 Datasets

The six benchmark datasets used in our experiments are summarized in Table B.1. In dataset
preprocessing, following the standard practice in Wang et al. [55], we use 10-core setting [66], i.e., all
users and items have at least 10 interactions. We also remove the low-quality interactions, such as
those with ratings (if available) lower than 3. After preprocessing, we split the datasets into 80%
training and 20% test sets. In IID and Noise settings, we further randomly split a 10% validation set
from training set for hyperparameter tuning.

Table B.1: Statistics of datasets. All datasets are cleaned by 10-core setting. If the dataset is used in
both IID and OOD settings, the statistics below are provided for the IID setting.

Dataset #Users #Items #Interactions Density
Amazon-Electronic [40, 41] 13,455 8,360 234,521 0.00208
Amazon-CD [40, 41] 12,784 13,874 360,763 0.00203
Amazon-Movie [40, 41] 26,968 18,563 762,957 0.00152
Gowalla [42] 29,858 40,988 1,027,464 0.00084
Yelp2018 [43] 55,616 34,945 1,506,777 0.00078
Amazon-Book [40, 41] 135,109 115,172 4,042,382 0.00026

The details of datasets are as follows:

• Amazon [40, 41]: The Amazon dataset is a large crawl of product reviews from Amazon4. The
2014 version of Amazon dataset contains 142.8 million reviews spanning May 1996 - July 2014.
We process four widely-used categories: Electronic, CD, Movie, and Book, with interactions
ranging from 200K to 4M.

• Gowalla [42]: The Gowalla dataset is a check-in dataset collected from the location-based social
network Gowalla5, including 1M users, 1M locations, and 6M check-ins.

• Yelp2018 [43]: The Yelp6 dataset is a subset of Yelp’s businesses, reviews, and user data, which
was originally used in the Yelp Dataset Challenge. The 2018 version of Yelp dataset contains 5M
reviews.

The detailed dataset constructions in IID, OOD and Noise settings are as follows:

• IID setting [22]: In the IID setting, the test set is randomly split from the original dataset.
Specifically, the positive items of each user are split into 80% training and 20% test sets. Moreover,
the training set is further split into 90% training and 10% validation sets for hyperparameter tuning.
In the IID setting, the training and test sets are both long-tail.

• OOD setting [20, 24, 39]: In the OOD setting, a 20% test set is uniformly sampled (w.r.t. items)
from the original dataset, while the 80% training set remains long-tail. The OOD setting is used to
simulate real-world online recommender systems. In order to avoid leaking information about the
test set distribution, we do not introduce the validation set.

• Noise setting [15]: In the Noise setting, the validation and test sets are split in the same way as the
IID setting. However, we randomly sample 10% of the training set as the false negatives. In Noise
training, the negative items will be sampled from the false negatives with a probability of p as the
negative noise, where p ∈ {0.05, 0.1, 0.2, 0.3, 0.5} is a.k.a. the noise ratio.

All experiments are conducted on one NVIDIA GeForce RTX 4090 GPU and one AMD EPYC 7763
64-Core Processor.

B.2 Metrics

This section provides a detailed explanation of the recommendation metrics used or mentioned in our
experiments.

4https://www.amazon.com/
5https://en.wikipedia.org/wiki/Gowalla
6https://www.yelp.com/
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As stated in Section 5.1, we use Top-K recommendation [5]. It should be noted that for each user,
the positive items in the training set will be masked and not included in the Top-K recommendations
when evaluating, and the ground-truth positive items Pu only consist of those in the test set. For
convenience, we denote the set of hit items in the Top-K recommendations for user u as Hu = {i ∈
Pu : πu(i) ≤ K}. The recommendation metrics are defined as follows:

• Recall@K [29]: The proportion of hit items among Pu in the Top-K recommendations,
i.e., Recall@K(u) = |Hu|/|Pu|, and the overall Recall@K = Eu∼U [Recall@K(u)].

• NDCG@K [6]: The Discounted Cumulative Gain in the Top-K recommendations (DCG@K)
is defined as DCG@K(u) =

∑
i∈Hu

1/ log2(1 + πu(i)). Since the range of DCG@K will vary
with the number of positive items |Pu|, we should consider to normalize DCG@K to [0, 1]. The
Normalized DCG in the Top-K recommendations (NDCG@K) = DCG@K(u)/IDCG@K(u),
where IDCG@K is the ideal DCG@K, i.e., IDCG@K(u) =

∑min{K,|Pu|}
i=1 1/ log2(1 + i). The

overall NDCG@K = Eu∼U [NDCG@K(u)].
• MRR@K [7, 28]: The Mean Reciprocal Rank (MRR) is originally defined as the reciprocal

of the rank of the first hit item. Here we follow the definition of Argyriou et al. [28]’s to meet
the requirements of multi-hit scenarios, i.e., MRR@K(u) = Ei∼Hu

[1/πu(i)], and the overall
MRR@K = Eu∼U [MRR@K(u)].

B.3 Baselines

We reproduced the following losses as baselines in our experiments:

• BPR [10]: A pairwise loss based on the Bayesian Maximum Likelihood Estimation (MLE). The
objective of BPR is to learn a partial order among items, i.e., positive items should be ranked
higher than negative items. Furthermore, BPR is a surrogate loss for AUC metric [10, 30]. In
our implementation, we follow He et al. [22]’s setting and use the inner product as the similarity
function for user and item embeddings.

• LLPAUC [44]: A surrogate loss for Recall and Precision. In fact, LLPAUC is a surrogate loss for
the lower-left part of AUC. In practice, LLPAUC is a min-max loss.

• Softmax Loss (SL) [11]: A SOTA recommendation loss derived from the listwise MLE,
i.e., maximizing the probability of the positive items among all items. The effectiveness of
SL has been thoroughly reviewed in Sections 2 and 3. In fact, SL is a special case of PSL with
surrogate activation σ = exp(·).

• AdvInfoNCE [38]: A DRO-based modification of SL. AdvInfoNCE tries to introduce adap-
tive negative hardness to pairwise score duij in SL (cf. Equation (3.1)). In Zhang et al. [38]’s
original design, AdvInfoNCE can be seen as a failure case of PSL with surrogate activation
σ = exp(exp(·)), as discussed in Section 4.2. In practice, AdvInfoNCE is a min-max loss.

• BSL [15]: A DRO-based modification of SL. BSL applies additional DRO on the positive term in
the pointwise form of SL.

The hyperparameter settings of each method are detailed in Appendix B.5.

B.4 Backbones

We implemented three popular recommendation backbones in our experiments, including

• MF [26]: MF is the most basic but still effective recommendation model, which factorizes the user-
item interaction matrix into user and item embeddings. All the embedding-based recommendation
models use MF as the first layer. Specifically, we set the embedding size d = 64 for all settings,
following the setting in Wang et al. [55].

• LightGCN [22]: LightGCN is an effective GNN-based recommendation model. LightGCN
performs graph convolution on the user-item interaction graph, so as to aggregate the high-order
interactions. Specifically, LightGCN simplifies NGCF [55] and only retains the non-parameterized
graph convolution operator. In our experiments, we set the number of layers as 2, which aligns
with the original setting in He et al. [22].

• XSimGCL [45]: XSimGCL is a novel recommendation model based on contrastive learning
[12, 67]. Based on 3-layers LightGCN, XSimGCL adds a random noise to the output embeddings
of each layer, and introduces the contrastive learning between the final layer and the l∗-th layer,
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i.e., adding an auxiliary InfoNCE loss [61] between these two layers. Following the original Yu
et al. [45]’s setting, the modulus of random noise between each layer is set as 0.1, the contrastive
layer l∗ = 1 (where the embedding layer is 0-th layer), the temperature of InfoNCE is set as
0.1, and the weight of the auxiliary InfoNCE loss is set as 0.2 (except for the Amazon-Electronic
dataset, where the weight is set as 0.05).

B.5 Hyperparameters

B.5.1 Hyperparameter Settings

Optimizer. We use Adam [68] optimizer for training. The learning rate (lr) is searched in
{10−1, 10−2, 10−3}, except for BPR, where the lr is searched in {10−1, 10−2, 10−3, 10−4}. The
weight decay (wd) is searched in {0, 10−4, 10−5, 10−6}. The batch size is set as 1024, and the
number of epochs is set as 200. Following the negative sampling strategy in Wu et al. [15], we
uniformly sample 1000 negative items for each positive instance in training.

Loss. The hyperparameters of each loss are detailed as follows:

• BPR: No other hyperparameters.
• LLPAUC: Following Shi et al. [44]’s setting, the hyperparameters α ∈ {0.1, 0.3, 0.5, 0.7, 0.9}

and β ∈ {0.01, 0.1} are searched.
• Softmax Loss (SL): The temperature τ ∈ {0.005, 0.025, 0.05, 0.1, 0.25} is searched.
• AdvInfoNCE: The temperature τ is searched in the same space as SL. The other hyperparameters

are fixed as the original setting in Zhang et al. [38]. Specifically, the negative weight is set as 64,
the adversarial learning will be performed every 5 epochs, with the adversarial learning rate as
5× 10−5.

• BSL: The temperatures τ1, τ2 for positive and negative terms are searched in the same space as SL,
respectively.

• PSL: The temperature τ is searched in the same space as SL.

B.5.2 Optimal Hyperparameters

The hyperparameters we search include the learning rate (lr), weight decay (wd), and other hyperpa-
rameters: {α, β} for LLPAUC, {τ} for SL, AdvInfoNCE, and PSL, {τ1, τ2} for BSL.

IID optimal hyperparameters. Table B.2 shows the optimal hyperparameters of IID setting,
including four datasets (Amazon-Book, Amazon-Electronic, Amazon-Movie, Gowalla) and three
backbones (MF, LightGCN, XSimGCL).

OOD optimal hyperparameters. Table B.3 shows the optimal hyperparameters of OOD setting on
MF backbone, including four datasets (Amazon-CD, Amazon-Electronic, Gowalla, Yelp2018).

Noise optimal hyperparameters. The Noise setting uses the optimal hyperparameters of IID
setting, as listed in Table B.2. We compare the performance of each method under different noise
ratios p ∈ {0.05, 0.1, 0.2, 0.3, 0.5} on MF backbone and four IID datasets (Amazon-Book, Amazon-
Electronic, Amazon-Movie, Gowalla).
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Table B.2: Optimal hyperparameters of IID setting.

Model Loss
Amazon-Book Amazon-Electronic

lr wd others lr wd others

MF

BPR 10−4 0 10−3 10−5

LLPAUC 10−1 0 {0.7, 0.01} 10−1 0 {0.5, 0.01}
AdvInfoNCE 10−2 0 {0.05} 10−1 0 {0.1}
SL 10−1 0 {0.025} 10−2 0 {0.1}
BSL 10−1 0 {0.25, 0.025} 10−1 0 {0.25, 0.1}
PSL-tanh 10−1 0 {0.025} 10−2 0 {0.1}
PSL-atan 10−1 0 {0.025} 10−2 0 {0.1}
PSL-relu 10−1 0 {0.025} 10−2 0 {0.1}

LightGCN

BPR 10−3 0 10−2 10−6

LLPAUC 10−1 0 {0.7, 0.01} 10−1 0 {0.5, 0.01}
AdvInfoNCE 10−1 0 {0.05} 10−2 0 {0.1}
SL 10−1 0 {0.025} 10−2 0 {0.1}
BSL 10−1 0 {0.25, 0.025} 10−2 0 {0.1, 0.1}
PSL-tanh 10−1 0 {0.025} 10−2 0 {0.1}
PSL-atan 10−1 0 {0.025} 10−2 0 {0.1}
PSL-relu 10−1 0 {0.025} 10−2 0 {0.1}

XSimGCL

BPR 10−4 10−5 10−2 0
LLPAUC 10−1 0 {0.7, 0.01} 10−1 0 {0.3, 0.01}
AdvInfoNCE 10−1 0 {0.05} 10−1 0 {0.1}
SL 10−1 0 {0.025} 10−2 0 {0.1}
BSL 10−1 0 {0.025, 0.025} 10−1 0 {0.05, 0.1}
PSL-tanh 10−2 0 {0.025} 10−1 0 {0.1}
PSL-atan 10−2 0 {0.025} 10−1 0 {0.1}
PSL-relu 10−1 0 {0.025} 10−1 0 {0.1}

Model Loss
Amazon-Movie Gowalla

lr wd others lr wd others

MF

BPR 10−3 10−6 10−3 10−6

LLPAUC 10−1 0 {0.7, 0.01} 10−1 0 {0.7, 0.01}
AdvInfoNCE 10−1 0 {0.05} 10−1 0 {0.05}
SL 10−1 0 {0.05} 10−1 0 {0.05}
BSL 10−2 0 {0.25, 0.05} 10−1 0 {0.1, 0.05}
PSL-tanh 10−1 0 {0.05} 10−1 0 {0.05}
PSL-atan 10−1 0 {0.05} 10−1 0 {0.05}
PSL-relu 10−1 0 {0.05} 10−1 0 {0.05}

LightGCN

BPR 10−3 0 10−3 0
LLPAUC 10−1 0 {0.7, 0.01} 10−1 0 {0.7, 0.01}
AdvInfoNCE 10−1 0 {0.05} 10−1 0 {0.05}
SL 10−1 0 {0.05} 10−1 0 {0.05}
BSL 10−1 0 {0.025, 0.05} 10−1 0 {0.025, 0.05}
PSL-tanh 10−1 0 {0.05} 10−1 0 {0.05}
PSL-atan 10−1 0 {0.05} 10−1 0 {0.05}
PSL-relu 10−1 0 {0.05} 10−1 0 {0.05}

XSimGCL

BPR 10−4 10−4 10−4 0
LLPAUC 10−1 0 {0.3, 0.01} 10−1 0 {0.7, 0.01}
AdvInfoNCE 10−1 0 {0.05} 10−1 0 {0.05}
SL 10−2 0 {0.05} 10−2 0 {0.05}
BSL 10−1 0 {0.025, 0.05} 10−1 0 {0.025, 0.05}
PSL-tanh 10−1 0 {0.1} 10−1 0 {0.05}
PSL-atan 10−1 0 {0.05} 10−1 0 {0.05}
PSL-relu 10−2 0 {0.1} 10−1 0 {0.05}
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Table B.3: Optimal hyperparameters of OOD setting.

Model Loss
Amazon-CD Amazon-Electronic

lr wd others lr wd others

MF

BPR 10−2 10−6 10−2 10−6

LLPAUC 10−1 0 {0.7, 0.01} 10−1 0 {0.7, 0.1}
AdvInfoNCE 10−1 0 {0.05} 10−1 0 {0.05}
SL 10−1 0 {0.05} 10−1 0 {0.05}
BSL 10−1 0 {0.05, 0.05} 10−1 0 {0.1, 0.05}
PSL-tanh 10−1 0 {0.05} 10−1 0 {0.05}
PSL-atan 10−1 0 {0.05} 10−1 0 {0.05}
PSL-relu 10−1 0 {0.05} 10−1 0 {0.05}

Model Loss
Gowalla Yelp2018

lr wd others lr wd others

MF

BPR 10−3 0 10−3 0
LLPAUC 10−1 0 {0.7, 0.01} 10−1 0 {0.7, 0.01}
AdvInfoNCE 10−1 0 {0.05} 10−1 0 {0.05}
SL 10−1 0 {0.025} 10−1 0 {0.05}
BSL 10−1 0 {0.25, 0.025} 10−1 0 {0.1, 0.05}
PSL-tanh 10−1 0 {0.025} 10−1 0 {0.025}
PSL-atan 10−1 0 {0.025} 10−1 0 {0.025}
PSL-relu 10−1 0 {0.025} 10−1 0 {0.025}
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C Supplementary Experiments

C.1 Noise Results

The Recall@20 and NDCG@20 results under Noise setting on four datasets (Amazon-Book, Amazon-
Electronic, Amazon-Movie, Gowalla) are shown in Figures C.1 to C.4.
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Figure C.1: Noise results on Amazon-Book dataset.
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Figure C.2: Noise results on Amazon-Electronic dataset.
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Figure C.3: Noise results on Amazon-Movie dataset.
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Figure C.4: Noise results on Gowalla dataset.
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C.2 PSL-softplus Results

BPR uses Softplus [69] as log σ, i.e., σ(duij) = exp(duij) + 1, which is looser than SL. That is, this
surrogate activation is not a suitable choice for PSL. We call this PSL variant as PSL-softplus.

In this section, we conduct experiments to evaluate the performance of PSL-softplus with surrogate
activation σ(duij) = exp(duij) + 1. The IID, OOD, and Noise results of PSL-softplus are shown in
Tables C.4 and C.5, Figures C.5 to C.8, respectively. Results demonstrate that PSL-softplus is inferior
to SL and three PSLs in all settings. This confirms our claim – the choice of surrogate activation σ is
crucial, and an unreasonable or intuitive design will decrease the accuracy.

Table C.4: IID results of PSL-softplus. The results of SL, PSL-tanh, PSL-atan, and PSL-relu have
been listed in Table 1. The blue-colored results are better than PSL-softplus.

Model Loss
Amazon-Book Amazon-Electronic Amazon-Movie Gowalla

Recall NDCG Recall NDCG Recall NDCG Recall NDCG

MF

SL 0.1559 0.1210 0.0821 0.0529 0.1286 0.0929 0.2064 0.1624
PSL-tanh 0.1567 0.1225 0.0832 0.0535 0.1297 0.0941 0.2088 0.1646
PSL-atan 0.1567 0.1226 0.0832 0.0535 0.1296 0.0941 0.2087 0.1646
PSL-relu 0.1569 0.1227 0.0838 0.0541 0.1299 0.0945 0.2089 0.1647

PSL-softplus 0.1536 0.1149 0.0826 0.0522 0.1280 0.0919 0.2053 0.1613

LightGCN

SL 0.1567 0.1220 0.0823 0.0526 0.1304 0.0941 0.2068 0.1628
PSL-tanh 0.1575 0.1233 0.0825 0.0532 0.1300 0.0947 0.2091 0.1648
PSL-atan 0.1575 0.1233 0.0825 0.0532 0.1300 0.0948 0.2091 0.1648
PSL-relu 0.1575 0.1233 0.0830 0.0536 0.1300 0.0953 0.2086 0.1648

PSL-softplus 0.1536 0.1152 0.0814 0.0514 0.1296 0.0932 0.2053 0.1613

XSimGCL

SL 0.1549 0.1207 0.0772 0.0490 0.1255 0.0905 0.2005 0.1570
PSL-tanh 0.1567 0.1225 0.0790 0.0501 0.1308 0.0926 0.2034 0.1591
PSL-atan 0.1565 0.1225 0.0792 0.0502 0.1253 0.0917 0.2035 0.1591
PSL-relu 0.1571 0.1228 0.0801 0.0507 0.1313 0.0935 0.2037 0.1593

PSL-softplus 0.1545 0.1161 0.0770 0.0484 0.1242 0.0894 0.1996 0.1557

Table C.5: OOD results of PSL-softplus. The results of SL, PSL-tanh, PSL-atan, and PSL-relu have
been listed in Table 2. The blue-colored results are better than PSL-softplus.

Loss
Amazon-CD Amazon-Electronic Gowalla Yelp2018

Recall NDCG Recall NDCG Recall NDCG Recall NDCG

SL 0.1184 0.0815 0.0230 0.0142 0.1006 0.0737 0.0349 0.0224
PSL-tanh 0.1202 0.0834 0.0239 0.0146 0.1013 0.0748 0.0357 0.0228
PSL-atan 0.1202 0.0835 0.0239 0.0146 0.1013 0.0748 0.0358 0.0228
PSL-relu 0.1203 0.0839 0.0241 0.0149 0.1014 0.0752 0.0358 0.0229

PSL-softplus 0.1169 0.0799 0.0232 0.0139 0.0909 0.0665 0.0346 0.0222
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Figure C.5: Noise results of PSL-softplus on Amazon-Book dataset.
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Figure C.6: Noise results of PSL-softplus on Amazon-Electronic dataset.
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Figure C.7: Noise results of PSL-softplus on Amazon-Movie dataset.
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Figure C.8: Noise results of PSL-softplus on Gowalla dataset.
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C.3 Comparisons of Two Extension Forms

In this section, we compare the two different extension forms from SL to PSL, i.e., outside form
σ(duij)

1/τ and inside form σ(duij/τ). As discussed in Section 4.2, the outside form scales in the
value domain, while the inside form scales in the definition domain. Therefore, the inside form will
lead to certain drawbacks: 1) the condition (4.2) must be satisfied over the entire duij ∈ R to ensure a
tighter DCG surrogate loss (cf. Lemma 4.1), which is hard to achieve; 2) the value of σ(duij/τ) and
its gradient may be quickly exploded when τ → 0, as the range of duij/τ is hard to control, which
may cause numerical instability.

To empirically compare the above two extension forms, we conduct experiments on MF backbone and
four IID datasets. Specifically, since there exists serious numerical instability, we expand the range
of τ to {0.005, 0.025, 0.05, 0.1, 0.25, 0.5, 1.0} for the inside form, where the outside form remains
the same search space τ ∈ {0.005, 0.025, 0.05, 0.1, 0.25}. The results are shown in Table C.6,
demonstrating that the outside form is superior to the inside form in all cases.

Table C.6: Extension forms comparisons on MF under IID setting. The blue-colored results are better
than the counterpart.

Form Loss
Amazon-Book Amazon-Electronic Amazon-Movie Gowalla

Recall NDCG Recall NDCG Recall NDCG Recall NDCG

σ(duij)
1/τ

PSL-tanh 0.1567 0.1225 0.0832 0.0535 0.1297 0.0941 0.2088 0.1646
PSL-atan 0.1567 0.1226 0.0832 0.0535 0.1296 0.0941 0.2087 0.1646
PSL-relu 0.1569 0.1227 0.0838 0.0541 0.1299 0.0945 0.2089 0.1647

σ(duij/τ)

PSL-tanh 0.1415 0.1041 0.0767 0.0494 0.0876 0.0590 0.1956 0.1507
PSL-atan 0.0307 0.0213 0.0453 0.0268 0.0363 0.0247 0.0982 0.0727
PSL-relu 0.1366 0.1053 0.0723 0.0452 0.1210 0.0855 0.1732 0.1304
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims made in the abstract accurately conclude this paper’s contri-
bution, including theoretical findings and experimental results.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations of this work is discussed in Section 7.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: Full theory assumptions and proofs are provided in Section 2 to Section 4, and
Appendix A.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper fully discloses all the information needed to reproduce the experi-
mental results in Section 5, Appendices B and C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The data and code are provided in https://github.com/Tiny-Snow/
IR-Benchmark.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All the experimental details are included in Section 5, Appendices B and C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The p-value of the main performance is reported in Tables 1 and 2.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Sufficient information on the computer resources is provided in Appendix B.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conform in every respect with the NeurIPS
Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This work improves the effect of recommendation loss and has no societal
impact.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper poses no risks for misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The original paper that produced the codes and datasets are cited in the paper
without any omissions.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The new assets introduced in the paper are well documented and the details of
the code are included.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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