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Abstract

The advancement of Machine Learning has enabled the widespread deployment of
Machine Learning as a Service (MLaaS) applications. However, the untrustworthy
nature of third-party ML services poses backdoor threats. Existing defenses in
MLaaS are limited by their reliance on training samples or white-box model anal-
ysis, highlighting the need for a black-box backdoor purification method. In our
paper, we attempt to use diffusion models for purification by introducing noise in a
forward diffusion process to destroy backdoors and recover clean samples through
a reverse generative process. However, since a higher noise also destroys the
semantics of the original samples, it still results in a low restoration performance.
To investigate the effectiveness of noise in eliminating different types of backdoors,
we conducted a preliminary study, which demonstrates that backdoors with low
visibility can be easily destroyed by lightweight noise and those with high visibility
need to be destroyed by high noise but can be easily detected. Based on the study,
we propose SampDetox, which strategically combines lightweight and high noise.
SampDetox applies weak noise to eliminate low-visibility backdoors and compares
the structural similarity between the recovered and original samples to localize
high-visibility backdoors. Intensive noise is then applied to these localized areas,
destroying the high-visibility backdoors while preserving global semantic informa-
tion. As a result, detoxified samples can be used for inference even by poisoned
models. Comprehensive experiments demonstrate the effectiveness of SampDetox
in defending against various state-of-the-art backdoor attacks. The source code of
this work is publicly available at https://github.com/easywood0204/SampDetox.

1 Introduction

With Artificial Intelligence (AI) technologies showing advantages in tasks such as image classifi-
cation and target detection, they are widely used in safety- and security-critical applications such
as autonomous processing [1, 2], IoT System [3, 4] and health-care [5, 6]. As Machine Learning
as a Service (MLaaS) [7, 8, 9] becomes increasingly popular, AI applications are relying on AI
services provided by third parties. However, since users cannot guarantee the trustworthiness of
service providers, they face serious threats of backdoor attacks [10, 11, 12]. Typically, adversaries
inject backdoors into deep models on numerous occasions, especially when the training samples are
collected from unreliable sources, or the pre-trained deep models are obtained from untrusted third
parties. During the inference phase, when fed clean samples, the backdoored models behave normally
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with satisfactory classification performance. However, when processing poisoned samples containing
trigger patterns, the backdoored models will be fooled into predicting attack target categories with
high confidence.

Although various defense methods have been proposed to identify and destroy backdoors, most of
them are white-box defenses that require additional training samples or the right to analyze model
parameters [13, 14, 15]. Since in MLaaS-based applications users are not allowed to access the
original training data and parameters of models, these backdoor defense methods are strongly limited.
In contrast, black-box backdoor defense methods do not have such requirements. So far, black-box
backdoor defense methods can be classified into three categories, i.e., model detection-based [16],
sample detection-based [7, 17], and sample purification-based [18, 19] defense methods. The basic
idea of the first two categories is to simply discard training samples or deep models once they are
identified as poisoned. In this case, the usability and performance of classification tasks are greatly
affected. As an alternative, sample purification-based approaches strive to destroy backdoor trigger
patterns in samples. However, existing sample purification-based approaches are based on the strong
assumption that trigger patterns are small and only located in the corners of samples, which is not
always true in practice. As a result, such methods can only be used to defend against specific types of
backdoor attacks. Worse still, most of the above defense methods need to repetitively feed samples
to deep models and get their continuous feedback, resulting in extra non-negligible computation
overhead. Therefore, how to effectively mitigate the impacts of all possible backdoor attacks without
deteriorating the overall inference performance is becoming a great challenge in black-box defense.

Intuitively, adding noise to poisoned samples can disrupt the semantics of the backdoor, thereby
eliminating it from the sample. To preserve the semantics of the original sample while removing the
backdoor, the diffusion model [20, 21] serves as an effective solution to restore the sample. However,
different backdoors exhibit varying levels of robustness to noise, which requires different noise
amplitudes for effective disruption. In addition, the amplitude and range of noise will affect the
quality of samples restored by the diffusion model. We performed a preliminary study on various
backdoor attacks to explore the robustness of different types of backdoors. We found that: i) invisible
triggers with low robustness (to random noise) can be easily destroyed, and ii) backdoor triggers with
high robustness are easily detectable due to their high visibility.

Inspired by these observations, to address the challenge of black-box backdoor defense, we propose
a novel two-stage method called SampDetox. Based on our first observation, we globally apply
coarse-granularity noises on each given sample in the first stage of SampDetox, where backdoor
triggers with low visibility can be easily destroyed. To counteract the effects of such added noises,
we then restore the samples by denoising them using diffusion models. Note that for a poisoned
sample, its poisoned regions with high visibility, compared with clean regions, will be different from
their counterparts in the restored version (see the proof in Theorem 4.2), making them identified
easily. Based on our second observation, the second stage can quickly locate such robust triggers and
destroy them using our dedicatedly designed noises. Similar to the first stage, the second stage then
leverages diffusion models to restore the samples. Since our approach does not pose any assumptions
or requirements on the models, it accommodates arbitrary backdoor attack scenarios. In summary,
this paper makes the following three major contributions:

• We perform a preliminary study on a wide spectrum of backdoors to reveal the correlation
between the visibility of triggers and the robustness of poisoned samples.

• We present a novel perturbation-based sample detoxification method together with its
theoretical foundations. Our approach can effectively destroy all possible triggers with
dedicatedly designed noises and does not compromise the overall inference performance.

• We conduct extensive experiments to show the applicability and superiority of our approach
over state-of-the-art (SOTA) backdoor defense methods.

2 Related Work

Backdoor Attacks. Existing backdoor attacks can be mainly classified into two categories, i.e.,
visible attacks and invisible attacks, based on the visibility of trigger patterns during the inference
phase. Specifically, visible attacks do not consider the concealment of trigger patterns. For example,
BadNets [22] uses visible trigger patterns in the form of fixed pixels patched in the corner of
the images. Although there exist various visible attacks (e.g., training set corruption without label
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poisoning [23], label-consistent backdoor attacks [24], attacking pre-trained models [25], and specific-
sample triggers [26]), few of them can be applied in real scenarios, since the triggers on samples are
conspicuous and can be easily detected by manual inspection. To make attacks stealthier, more and
more backdoor attacks (e.g., Blended [27], WaNet [28], and ISSBA [29]) adopt invisible triggers.
For example, BPP [30] uses image quantization and dithering as imperceptible backdoor triggers to
avoid manual inspection.

Backdoor Defenses. According to the capabilities of defenders in manipulating the training and
inference processes on deep models, backdoor defense methods can be classified into two categories,
i.e., white-box and black-box defenses. Typically, white-box methods defend against backdoor
attacks by changing training processes [31, 32], extract gradients [33], and fine-tuning and -pruning
of poisoned models [34, 35]. However, these methods require access to model parameters, which
strongly restricts their usage (e.g., MLaaS applications) in practice. For black-box defenses, such
as model detection-based [16], sample detection-based [7, 17], and sample purification-based [18,
19] approaches, defenders only can rely on the predictions of input samples. For example, as a
model detection-based approach, CBD [36] can effectively identify whether models are poisoned by
analyzing their predictions. However, simply discarding the suspicious model/sample does not apply
to real-world classification tasks. Rather than ignoring poisoned samples, sample purification-based
methods aim to destroy the triggers on samples. For example, Sancdifi [37] measures saliency maps
and purifies the specific areas of samples. BDMAE [19] reconstructs the local area of the samples
using its AutoEncoder. ZIP [18] transforms and reconstructs samples independently of models
through zero-shot image purification. However, all these purification-based methods can handle only
small triggers within specific regions.

The robustness of triggers against perturbations or modifications plays an important role in deter-
mining the performance of backdoor attacks and defenses. For example, CBD [36] analyzes the
robustness of triggers with different sizes against random noises to certify its proposed defense
scheme. However, CBD only investigates attacks with simple triggers without taking SOTA backdoor
attacks into account. To the best of our knowledge, SampDetox is the first attempt to consider the
correlation between the visibility of backdoor triggers and the robustness of poisoned samples. As a
model-independent method, SampDetox enables perturbation-based sample detoxification, which
can effectively defend against complex backdoor attacks within arbitrary application scenarios.

3 Preliminary Study

This section first reviews the process of backdoor attacks. Then, it gives our definitions of the
visibility of backdoor triggers and the robustness of poisoned samples and reveals their inherent
correlation based on a preliminary study.

3.1 Evaluation Metrics

Assume that M is a model poisoned by some backdoor attack. Let xc be a clean sample, and xp

represent its poisoned version by adding specific backdoor triggers. If the backdoor attack succeeds,
the model M should classify xc into its correct category while classifying xp into a target category.
To defend against backdoor attacks, the findings in [38] show that transforming or perturbing samples
will achieve defensive effects against locally patched triggers. However, according to the observations
in [18, 19], these operations are unsuitable for defending against other types of triggers. This is
mainly because locally patched triggers are unremarkable and susceptible to disturbance, while other
triggers are robust (i.e., not sensitive) to such backdoor defenses. To better understand the inherent
characteristics of backdoor attacks and the trends of their development, we conduct a preliminary
study on existing attacks to reveal the correlation between the visibility of backdoor triggers and the
robustness of their poisoned samples, whose descriptions are as follows.

Visibility. When a backdoor attack is applied to some deep model, the visibility of embedded triggers
indicates the stealthiness of the backdoor attack. In this paper, we use the Structural Similarity Index
Measure (SSIM) [29, 39] to evaluate the visibility of backdoor triggers. This is because, unlike
traditional measurements like Mean Squared Error (MSE) and Peak Signal-to-Noise Ratio (PSNR),
SSIM takes into account the local characteristics of samples, aligning more closely with the visual
system of human eyes. Let SSIM(xc, xp) ∈ [−1, 1] be the SSIM between xc and xp, quantifying
the visibility of trigger patterns embedded in xp. For ease of evaluation, we adopt the notation
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v = (1− SSIM(xc, xp))/2 to normalize the visibility values. Specifically, the higher the value of v,
the more notable the triggers are.

Robustness. For a given poisoned sample xp, we propose to use the term robustness to quantify
its capability to resist perturbations or modifications imposed by random noise. Assume that the
backdoored model classifies xp into a specific attack target category due to the existence of triggers.
We apply random noises to xp and get a modified sample xm, where the modification process can be
described by the equation xm = (1− ηr)x

p + ηrϵ (ϵ ∼ N (0, I)). Since ηr plays an important role
in determining whether its modified version xm belongs to another category, we use it to reflect the
robustness of xp. Typically, the higher the value of ηr, the more robust the poisoned sample xp is.

3.2 Observations from Attacks

To explore the correlation between the visibility of triggers and the robustness of their host poisoned
samples, we conduct an experiment on the dataset CIFAR-10 against ten backdoor attacks, including
both visible and invisible attacks, where each attack is applied on 200 randomly selected samples
from CIFAR-10. Note that in the experiment, we assume that each poisoned sample is touched by
only one kind of backdoor attack. In other words, each poisoned sample is embedded with a specific
trigger. For each poisoned sample, we calculate the visibility score v of the trigger and the robustness
ηr of the poisoned sample. As shown in Figure 1, for different poisoned counterparts of a clean
sample, their visibility and robustness scores differ significantly under different backdoor attacks.

Clean
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BadNets

Figure 1: Examples of poi-
soned samples and their v/ηr.
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Figure 2: Correlation between v and ηr.

Figure 2 illustrates the (v,ηr) pairs for all the poisoned samples under ten attacks (detailed in
Section 5.1), where each filled pentagram symbol represents a poisoned sample. From the figure, we
can get the following two observations.

Observation 1. For backdoor triggers with low visibility (v < 0.13), their host samples (i.e., ones
with ηr < 0.18 located in the red box) have low robustness. According to [38], the triggers within
these poisoned samples can be easily destroyed by lightweight noises.

Observation 2. For poisoned samples (i.e., those located in the blue box) with high robustness
(ηr ≥ 0.18), their backdoor triggers have high visibility, which renders them easily detectable and
accurately located.

4 Our SampDetox Approach

4.1 Threat Model

We consider defending against backdoor attacks in black-box scenarios [17, 18], where defenders
do not have access to the parameters of deep models and can only obtain predictions for samples.
For attackers, we assume that they can completely control the training processes of models, enabling
them to poison samples in datasets and modify model components to achieve poisoned models. In our
approach, defenders strive to detoxify poisoned samples to classify them into their original correct
categories. For clean samples, defenders aim to maintain their classification accuracy.
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Figure 3: Framework and workflow of our SampDetox approach

4.2 Overview of SampDetox

As observed in Section 3.2, there exists a strong correlation between the visibility of triggers and
the robustness of poisoned samples, which can be used for backdoor defense. However, due to the
lack of prior knowledge of clean samples, it is difficult to figure out both the trigger visibility and
robustness of poisoned samples. To defend various backdoor attacks, Figure 3 presents a novel
perturbation-based backdoor defense framework using our proposed sample detoxification method,
which consists of two stages:

Stage 1: Global Detoxification. According to Observation 1, backdoor triggers with low visibility
typically have low robustness poisoned samples. In this case, such triggers can be easily destroyed by
adding lightweight noises to suspected samples. However, due to the low visibility or even invisibility,
it is hard to determine the existence or location of triggers within a given sample. To destroy all these
potential triggers, Stage 1 applies the noise-based perturbation (see Section 4.3) globally to each
sample using lightweight noises. Note that the introduction of noises inevitably affects the inference
accuracy of deep models. To counteract the impacts of added noises on inference performance, we
then utilize DDPM-based denoising (see Section 4.4) to denoise the samples. In this way, Stage 1 can
destroy possible triggers spread over the poisoned samples with low robustness.

Stage 2: Local Detoxification. According to Observation 2, poisoned samples with high robustness
are often embedded with highly visibility triggers. Based on DDPM-based denoising in Stage
1, the clean regions of poisoned samples can easily be restored to their original states, while the
poisoned regions cannot, especially when triggers are highly visible. Due to this fact, by comparing a
potentially poisoned sample with its detoxified version by Stage 1 pixel by pixel, we can figure out
the positions of obvious triggers and the required intensity of local noises. Then, Stage 2 applies the
noise-based perturbation locally on each sample using pixel-specific noises to destroy such triggers.
Similarly to Stage 1, the added noises in Stage 2 also greatly influence the final inference accuracy for
both clean and detoxified poisoned samples, thus requiring diffusion models to perform the denoising.
After Stage 2, both visible and invisible triggers can be safely eliminated without degrading the
inference performance.

4.3 Noise-based Perturbation

To quantitatively control the intensity of noises applied on samples in each stage of SampDetox,
we resort to the forward Denoising Diffusion Probabilistic Model (DDPM) [20], which can also be
used to determine the number of denoising steps required in the DDPM-based denoising process.
Assume that x0 is an input sample, and xi is the sample after adding noises for i times (steps). In the
forward process of DDPM, the model incrementally adds noises to x0 step by step until the sample
(denoted by xT ) is completely composed of random Gaussian noises at step T , where T is a diffusion
model-specific constant. In each step t, xt is obtained by adding a random Gaussian noise ϵ∼N (0, I)
to xt−1 based on the formula xt=

√
1− βtxt−1 +

√
βtϵ, where βt∈(0, 1). For a given xt−1, the

posterior probability of xt can be represented as q(xt|xt−1)=N (xt;
√
1− βtxt−1, βtI). Since step

t only relies on step t-1, the forward process can be regarded as a Markov process in the form of
q(xt|x0)=

∏T
t=1 q(xt|xt−1). For a given x0, we can get the probability of xt as

P (xt|x0) = N (xt;
√
αtx0, (1− αt) I), (1)

where αt=1−βt and αt=
∏t

i=1(1−βt). According to [20], we can get the exact relationship between
x0 and xt using the formula

xt =
√
αtx0 +

√
1− αtz, (2)

where z∼N (0, I) is a random Gaussian noise.
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Leveraging the forward DDPM, our approach aims to add proper random Gaussian noise on samples
within t steps based on Equation 2, which can destroy backdoor triggers in samples. Therefore,
Theorem 4.1 investigates the potential of DDPM to eliminate triggers within poisoned samples.
Theorem 4.1. Suppose that xt represents a diffused sample at step t of the forward process in
DDPM, where t ∈ [0, T ]. Given a clean sample xc

0 and its poisoned version xp
0, we obtain xc

t and xp
t

through the forward DDPM, whose distributions are Pt(x) and Qt(x), respectively. By using the
Kullback-Leibler divergence [40, 41] to measure the distance between the two distributions, we have

KL(Pt+1||Qt+1) ≤ KL(Pt||Qt), (3)
where the equality happens only when Pt=Qt., and the inequality implies that the KL divergence
between Pt and Qt monotonically decreases along with the forward DDPM.

Please refer to Appendix B.1 for the proof of the theorem. According to Theorem 4.1, for any positive
number ξ, there exists a minimum t ∈ [0, T ] such that for any t ≥ t we have KL(Pt||Qt) ≤ ξ. Note
that this theorem forms the theoretical basis to utilize the forward DDPM to minimize the distribution
discrepancy between poisoned and clean samples, thus mitigating the impact of backdoor triggers.

4.4 DDPM-based Denoising

We also utilize DDPM to perform denoising on samples within the two stages of SampDetox. For
each pixel in a sample, the number of denoising steps is determined by its noise-based perturbation
steps (i.e., t) as introduced in Section 4.3. In reverse DDPM, by taking the current sample state
xt as an input, the diffusion model can be used to achieve its previous state xt−1. Given both
x0 and xt, according to Bayes’ Theorem, we can obtain the probability distribution of xt−1 as
p(xt−1|xt, x0)=p(xt|xt−1) · p(xt−1|x0)/p(xt|x0). By resorting to the relationship between x0 and
xt described by Equation 2, according to [20], we can use xt to approximate x0 as follows:

x0 =
1√
αt

(xt −
√
1− αtzt), zt = θ(xt, t), (4)

where zt is predicted by the pre-trained neural network θ of DDPM, denoting the estimation of the
real noise in step t. Accordingly, we can obtain xt−1 from xt:

xt−1 =
1

√
αt

(xt −
1− αt√
1− αt

θ(xt, t)) + σtz, (5)

where σ2
t = 1−αt−1

1−αt
· βt and z ∼ N (0, I).

Unlike existing DDPM-based methods that strive to restore samples from Gaussian noises, SampDetox
uses diffusion models to denoise samples generated by our noise-based perturbation approach (see
Section 4.3). Assuming that the training data used for the pre-trained diffusion model do not involve
any knowledge about backdoor triggers, according to the principle of DDPM, the denoised results
will restore the original samples with all the triggers cleansed. Theorem 4.2 investigates the difference
between clean and poisoned regions of poisoned samples after denoising.
Theorem 4.2. Suppose that R(x) denotes a specific region of the sample x. Given a poisoned sample
xp
0, we use Rc(x

p
0) and Rp(x

p
0) to represent a clean region and a poisoned region of the sample,

respectively. We perform the noise-based perturbation on xp
0 for t steps and get the noisy samples

xp

t
, and then utilize DDPM to get a denoised sample x̂p

0. When comparing different regions of the
original sample xp

0 with their counterparts of the detoxified sample x̂p
0, we have

||Rp(x̂
p
0)−Rp(x

p
0)||2

n1
>

||Rc(x̂
p
0)−Rc(x

p
0)||2

n2
, (6)

where n1 and n2 represent the numbers of pixels in Rp(x
p
0) and Rc(x

p
0), respectively.

Please refer to Appendix B.2 for the proof of the theorem. According to Theorem 4.2, we can
calculate the similarity between the denoised and original sample to identify the positions of trigger
patterns. The inequality in Theorem 4.2 implies that for a poisoned sample, its poisoned regions,
compared with clean regions, will be more different from their counterparts in the restored version.
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4.5 Implementation of SampDetox Algorithm 1 Implementation of SampDetox
Input: i) x0, original input sample; ii) t1, t2, the numbers of

noise-adding and denoising steps in Stage 1 and Stage 2,
respectively; iii) θ, diffusion model;

Output: a detoxified sample;
1: xt1

←
√

αt1
x0 +

√
1− αt1

z //z ∼ N (0, I)

2: for t = t1 to 1 do
3: z ∼ N (0, I) if t > 1, else z = 0

4: σ2
t ←

1−αt−1

1−αt
· βt

5: xt−1← 1√
αt

(xt − 1−αt√
1−αt

θ(xt, t)) + σtz

6: end for
7: M ← PixelSSIM(x0, x̂0)
8: for each pixel i in M do
9: m[i]← t2 ·M [i]

10: xt2
←√αm[i] · x̂0 +

√
1− αm[i]z //z ∼ N (0, I)

11: end for
12: for t = t2 to 1 do
13: z ∼ N (0, I) if t > 1, else z = 0
14: zt ← θ(xt, t)
15: for each pixel i in M do
16: if m[i] > t then
17: xt−1[i]← 1√

αt
(xt[i]− 1−αt√

1−αt
zt[i]) + σtz[i]

18: else xt−1[i]← xt[i]
19: end if
20: end for
21: end for
22: return x0

Algorithm 1 details the implementation of
SampDetox. Lines 1-6 describe the pro-
cess of global detoxification, while Lines
8-21 present the local detoxification pro-
cess. Specifically, Line 1 applies the noise-
based perturbation to the sample follow-
ing Equation 2 with a fixed noise intensity
t1. Lines 2-6 show the process of DDPM-
based denoising to obtain the denoised sam-
ple x̂0. In Line 7, SampDetox calculates
the SSIM score for each pixel between the
original sample x0 and its denoised ver-
sion x̂0. Lines 8-11 describe how a noise
with a specific intensity (i.e., m[i]) is added
to the pixel i. Lines 12-21 present the
DDPM-based denoising process, whether
SampDetox iteratively calculates the esti-
mation of the real noise zt with xt using
the diffusion model θ and then selectively
denoises each pixel accordingly. In Lines
16-19, SampDetox only updates pixels with
noise intensity higher than that of the cur-
rent step. Finally, Line 22 returns the re-
sulting detoxified sample x0, which is the
denoised sample by Stage 2.

5 Experiments

To evaluate the effectiveness of our approach, we implemented our approach, i.e., SampDetox, on
top of Pytorch (version 1.13.0). We compared the defense performance between SampDetox and
state-of-the-art (SOTA) black-box defense methods against various well-known backdoor attacks.
All experiments were carried out on an Ubuntu workstation equipped with one Intel i7-13700K CPU,
64GB memory, and one NVIDIA GeForce RTX4090 GPU.

5.1 Experimental Setup

Dataset and Model Settings. We investigated three classical datasets (i.e., CIFAR-10 [42], GT-
SRB [43], and Tiny-ImageNet [44]) and three models (i.e., PreAct-ResNet18, ResNet34 [45] and
VGG-19 [46]). Due to space limitations, this section only presents the experimental results of PreAct-
ResNet18 on the CIFAR-10 dataset. Note that we can find similar trends from the experiments using
different models and datasets. Please refer to Appendix C for more details.

Evaluation Metrics. To objectively evaluate the effectiveness of a given backdoor defense method,
we adopted the following three metrics: i) Clean sample Accuracy (CA), which denotes the inference
accuracy of clean samples processed by the defense method; ii) Poisoned sample Accuracy (PA),
which indicates the inference accuracy of poisoned samples purified (detoxified) by the defense
method based on their ground-truth labels; and iii) Attack Success Rate (ASR), which represents the
rate of successful attacks by poisoned samples. Note that a higher CA means that the defense method
causes less interference in the classification of clean samples. Typically, backdoor defenders strive to
achieve both high CA and PA with lowered ASR.

Attack Methods. We conducted defenses against ten SOTA backdoor attacks, i.e., BadNets [22],
SIG [23], Label Consistent (LC) [24], TrojanNN [25], Dynamic [26], Blended [27], Low Frequency
(LF) [47], WaNet [28], ISSBA [29], and BPP [30]. Note that the first five are visible attacks, while
the last five are invisible attacks. We used the same benchmark settings in [48] to configure all these
attack methods. Please refer to Appendix A.1 for more details.
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Clean BadNets Blended BPPSIG WaNetLC TrojanNN Dynamic LF ISSBA

Triggers

Detoxified
Samples

Figure 4: Illustration of poisoned samples, backdoor triggers, and their corresponding detoxified
samples for the ten attacks, respectively.

Table 1: Defense performance comparison, where Bold fonts and underlines denote the best and the
second-best values, respectively.
Defense→ No Defense Sancdifi BDMAE ZIP SampDetox (Ours)

Attack ↓ CA(%) PA(%) ASR(%) CA(%) PA(%) ASR(%) CA(%) PA(%) ASR(%) CA(%) PA(%) ASR(%) CA(%) PA(%) ASR(%)

No Attack 93.84 - - - - - - - - - - - - - -
BadNets 92.00 10.18 99.97 76.59 89.55 1.92 89.02 90.10 2.32 88.12 86.52 7.17 89.57 90.15 2.11

SIG 84.94 9.78 98.50 70.68 43.73 29.58 82.77 10.08 96.65 82.15 35.60 36.58 83.71 65.06 11.03
LC 84.34 10.26 99.06 68.44 51.78 3.64 79.75 73.39 2.01 79.85 74.92 2.06 80.72 74.36 1.55

TrojanNN 93.20 11.07 99.03 76.63 90.84 1.81 91.19 89.35 2.47 87.35 86.91 7.10 92.78 89.95 1.86
Dynamic 91.09 10.02 98.19 76.24 68.89 7.92 88.48 75.78 12.57 87.96 80.19 2.75 88.52 88.62 1.45
Blended 93.85 10.93 99.51 77.92 51.12 15.06 87.84 14.88 96.46 88.51 63.81 8.72 90.23 86.65 1.96

LF 93.63 11.13 99.48 77.92 49.95 16.57 87.50 13.63 80.97 88.76 86.59 5.85 90.01 87.40 3.02
WaNet 91.43 10.27 91.05 77.87 42.97 14.35 85.95 23.19 50.63 86.91 85.22 8.36 89.34 88.92 5.59
ISSBA 93.57 11.38 95.96 77.70 52.05 14.20 86.18 53.12 22.39 87.75 85.46 1.79 90.74 86.51 1.60

BPP 91.38 9.46 98.40 75.32 50.42 15.25 86.69 21.73 53.46 85.42 82.94 7.20 90.59 84.83 6.15

Defense Baselines. We compared SampDetox with three SOTA sample purification-based backdoor
defenses: i) Sancdifi [37], which utilizes the RISE algorithm to measure the saliency maps and purify
the specific areas of samples; ii) BDMAE [19], which uses a masked AutoEncoder to defend against
backdoor attacks; and iii) ZIP [18], which applies linear transformations to samples and restores them
under noises by using diffusion models. Note that both Sancdifi and BDMAE need to feed samples
into deep models repeatedly to obtain their predictions, while ZIP does not rely on predictions. Please
refer to Appendix A.2 for more details.

5.2 Performance Comparison

Figure 4 shows an example of backdoor defense against the ten different attacks using our proposed
SampDetox. Here, the first row presents both a clean sample and all its poisoned counterparts. The
second row presents the triggers identified by stage 2 of SampDetox, while the third row exhibits
the detoxified samples of each attack. From this figure, we can find that SampDetox can effectively
figure out all visible and invisible triggers embedded by different SOTA backdoor attacks.

Table 1 compares the defense performance between SampDetox and the three baselines on the CIFAR-
10 dataset using PreAct-ResNet18. Please see Appendix C.1 for the results of datasets GTSRB and
Tiny-ImageNet. From this table, we can find that SampDetox can achieve the highest CA for all
different attacks, indicating that the impact of SampDetox on clean samples is negligible. Meanwhile,
SampDetox has the best PA and ASR for 8 out of 10 attacks, respectively. Even for all the remaining
cases (i.e., BadNets, LC, and TrojanNN), our approach can achieve the second-best PA and ASR,
whose values are quite close to the ones of the best PA and ASR. As an example of the BadNets
attack, Sancdifi has the best ASR, which is only 0.19% lower than our approach. However, in this
case, our approach significantly outperforms Sancdifi in CA by 12.98%. For the TrojanNN attack,
though Sancdifi can achieve slightly better PA (by 0.89%) and ASR (by 0.05%) than SampDetox,
SampDetox notably outperforms Sancdifi in CA by 16.15%. For the Label Consistent (LC) attack,
ZIP can achieve slightly better PA, but its CA and ASR are worse than SampDetox. It is important to
note that Sancdifi and BDMAE require feedback from deep models. As an alternative, our approach
does not rely on underlying models, showing the applicability and superiority of our approach.
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Table 2: Ablation study results of our approach against backdoor attacks with different visibility.

Attack
Visibility Noise* Stage 1 SampDetox (Stage 1 + Stage 2)

v CA(%) PA(%) ASR(%) CA(%) PA(%) ASR(%) CA(%) PA(%) ASR(%)

BadNets 0.052 56.25 49.71 3.93 90.12 88.15 6.61 89.57 90.15 2.11
SIG 0.185 51.81 17.16 15.89 83.10 9.48 92.33 83.71 65.06 11.03
LC 0.121 47.75 28.04 1.07 81.50 61.45 34.75 80.72 74.36 1.55

TrojanNN 0.137 58.03 45.89 5.68 92.54 35.51 46.86 92.78 89.95 1.86
Dynamic 0.098 56.26 41.18 1.09 87.58 85.62 3.82 87.52 88.62 1.45
Blended 0.067 59.42 45.22 1.53 88.65 86.65 1.86 90.23 86.65 1.96

LF 0.005 56.12 40.95 2.55 89.43 87.50 3.02 90.01 87.40 3.02
WaNet 0.005 57.71 43.73 5.38 89.43 88.91 5.60 89.34 88.92 5.59
ISSBA 0.006 57.10 37.35 1.14 90.92 86.50 1.61 90.74 86.51 1.60

BPP 0.009 58.40 42.03 5.75 89.09 84.84 6.15 90.59 84.83 6.15

5.3 Ablation Studies

Impacts of Different Stages and Denoising. The implementation of SampDetox consists of two
stages. The first stage strives to destroy triggers globally on a given sample in a coarse manner, while
the second stage tries to identify fine triggers and remove them locally. To examine the impacts of
these two stages, we consider a variant (i.e., “Stage 1”) of our approach, which does not take stage
2 of SampDetox into account. Meanwhile, to evaluate the impact of the denoising operations, we
considered another variant of SampDetox (i.e., “Noise*”), where denoising is not applied to restore
the samples in both stages. Table 2 presents the ablation study results against the ten attacks. Note
that to enable an intuitive understanding of the role of each stage in SampDetox, this table provides
the average visibility of backdoor triggers for each attack.

For all the defense methods in Table 2, we can find that the smaller the trigger visibility caused by
backdoor attacks, the lower PA and higher ASR we can achieve. Although “Noise*” can achieve
comparable ASR results to SampDetox, SampDetox outperforms “Noise*” in both CA and PA signif-
icantly. It means that simply adding noises to samples can effectively destroy the backdoor triggers
of the samples. However, the noises themselves will also result in a sharp decline in the inference
accuracy of clean and poisoned samples. If we merely adopt the first stage of SampDetox due to the
denoising operation by diffusion models, both CA and PA can be improved. However, since the first
stage only coarsely applies the perturbation on samples, most subtle backdoor triggers still survive.
As an example in SIG attack, “Stage 1” can only achieve a PA of 9.48% but with an ASR of 92.33%.
By combining both Stages 1 and 2, SampDetox can effectively identify such undetectable triggers and
destroy them without affecting the inference of original samples, leading to a better PA and ASR. For
example, in SIG attack, by using SampDetox, we can achieve a PA of 65.06% and an ASR of 11.03%.

Table 3: Ablation study results for different t1 and t2.
Fixed t2 = 0 Fixed t1 = 20

t1 CA(%) PA(%) ASR(%) t2 CA(%) PA(%) ASR(%)

5 92.07 62.48 27.58 40 92.19 60.90 30.07
10 91.22 78.69 12.96 60 92.02 73.32 19.32
15 90.92 86.35 5.39 80 91.86 79.38 14.11
20 90.65 86.43 1.73 100 91.72 83.68 6.13
25 88.26 85.13 1.80 120 92.02 85.22 2.34
30 86.77 84.56 1.71 150 91.85 84.92 2.28
35 84.91 83.78 1.75 200 92.26 81.87 2.30
40 82.30 83.01 1.72 250 92.39 77.03 2.29

Impact of Hyperparameters t1 and t2.
In our approach, we use two hyperparam-
eters, i.e., t1 and t2 to control the noise
intensity and denoising samples, respec-
tively. We investigated two variants of Sam-
pDetox to evaluate the impacts of t1 and
t2. For the first variant, we fixed the value
of t2 (i.e., t2=0) while allowing the tun-
ing of t1. With different values of t1, we
can evaluate the defense performance of
SampDetox against various invisible back-
door attacks (i.e., Blended, Low Frequency,
WaNet, ISSBA, and BPP). Similarly, for the second variant, we fixed the value of t1 (i.e., t1=20)
while changing the values of t2, to evaluate the defense performance of SampDetox against visible
backdoor attacks (i.e., BadNets, SIG, LC, TrojanNN, and Dynamic). Table 3 shows the ablation
study results with varying values of t1 or t2. Note that the results in the table represent the average
results across multiple attack types. From this table, we can observe that when t1 and t2 increase,
the ASR decreases, indicating the effect of adding noises in destroying backdoor triggers. However,
a high value of t1 and t2 will also lead to a significant reduction of CA and PA, showing that the
denoising processes are strongly affected by excessive noises. Therefore, we suggest to set t1 = 20
and t2 = 120 in practice.
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5.4 Discussion

To show the applicability of SampDetox, we investigated the extra time overheads, explored training
sample detoxification, evaluated the defense performance of SampDetox against SOTA adaptive
attacks, and analyzed its limitations. Due to the space limitation, this section only presents the
overhead caused by inference detoxification. Please refer to Appendix D for more discussions.
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Figure 5: Inference time of different defense methods.

Extra time overhead. Based on our pro-
posed two-stage perturbation-based sample
detoxification, SampDetox can protect any
deep models during their inference phase.
However, similar to other backdoor defense
approaches, the detoxification process will
inevitably lead to extra time overhead. To
address this issue, SampDetox resorts to
the Denoising Diffusion Implicit Model
(DDIM) [21] to accelerate the denoising
process. Figure 5 compares the average in-
ference time per sample for different back-
door defense methods. We can find that with the help of DDIM, the inference time of SampDetox is
comparable to that of the method without defense.

6 Conclusion

Based on our observed correlation between the visibility of backdoor triggers and the robustness
of poisoned samples, this paper introduces a novel black-box backdoor defense approach named
SampDetox. By using our proposed perturbation-based sample detoxification, SampDetox can easily
destroy backdoor triggers in samples and restore the samples using diffusion models. Extensive
experiments against various complex backdoor attacks show the superiority of SampDetox from both
perspectives of effectiveness and applicability to arbitrary scenarios.
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A Detailed Experimental Setup

A.1 Attack Method Settings

BadNets [22]. BadNets is the first proposed backdoor attack method, which patches a fixed pattern
on the corners of benign samples and modifies their labels to the attack target category. We use a
3× 3 black and white checkerboard in the lower right corner of samples as the trigger pattern.

SIG [23]. SIG modifies the pixels in samples based on the sinusoidal signal to generate poisoned
samples. We set the frequency of the sinusoidal signal to 3 as the trigger pattern.

Label Consistent (LC) [24]. LC generates the poisoned samples using adversarial attack methods
and keeps the original sample label unchanged. The trigger pattern is identical to BadNets, and other
settings follow the original paper.

TrojanNN [25]. TrojanNN injects backdoors into a pre-trained model instead of injecting backdoors
during the training. We use a white apple image as the trigger pattern.

Dynamic [26]. Dynamic trains a trigger generator to generate the specific triggers for each sample.
The backdoor attack will only succeed if the specific trigger matches its sample. We follow the
settings in the original paper to generate triggers.

Blended [27]. Blended generates poisoned samples by blending benign samples with a fixed
pattern. Blending with coefficient α, Blended increases the invisibility of the trigger to avoid manual
inspection. We use a “hello kitty” image as the trigger pattern.

Low Frequency (LF) [47]. LF proposes an optimization-based approach to filter high-frequency
artifacts to generate smooth triggers. We follow the settings in the original paper to generate triggers.

WaNet [28]. WaNet uses fixed warping functions to distort benign samples slightly to construct the
poisoned samples. We follow the settings in the original paper to generate poisoned samples with
trigger patterns.

ISSBA [29]. ISSBA employs image steganography to embed the string trigger into benign samples,
which generates unique triggers that are specific to each sample. Following the settings in the original
paper, we use the trained image steganography method.

BPP [30]. BPP generates the poisoned samples using image quantization. To inject the backdoor
more efficiently, BPP proposes a contrastive learning-based approach to improve the success rate of
backdoor attacks. We set the negative ratio to 0.1.

A.2 Defense Baseline Settings

Sancdifi [37]. Sancdifi followed the settings in Section “Numerical Experiment” of its paper. Sancdifi
computed RISE maps using 2000 random binary masks and set the saliency threshold to 0.95. For a
fair comparison, Sancdifi used the same diffusion models as ours.

BDMAE [19]. BDMAE followed the settings in Section “Method Configurations” of its paper, which
used masked autoencoders pre-trained on ImageNet with 24 encoder layers.

ZIP [18]. ZIP followed the settings in Section “Purification Implementation” of its paper, which set
its hyperparameter to 2. For a fair comparison, ZIP used the same diffusion models as ours.

A.3 Diffusion Model Settings

We utilize the framework of the improved diffusion model provided by [21]. The number of total
diffusion steps was set to 1000 for all the datasets in the experiments, the noise schedule was set as
“cosine”, and the learning rate was set to 1e-4. In the experiments, we load the parameters of the
pre-trained model for each dataset. For DDIM, compared with the total steps of the diffusion model
(e.g., T = 1000), our approach does not require too many steps to add noise and denoise samples
(e.g., t1 = 20 and t2 = 120). Therefore, when we use DDIM to accelerate the denoising, we set the
speed-up pace to 20 to ensure the effectiveness of our approach.
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A.4 PixelSSIM Settings

In our work, the PixelSSIM denotes an intermediate data structure for calculating the SSIM [39]
value of two given samples. Specifically, for each block pair in the two samples, we calculate its
SSIM value and record it in PixelSSIM at the same position as one of the central pixels of the block
pair. When sliding the block pair along the two dimensions of the samples, we can collect all the
SSIM values for the block pairs and form the final PixelSSIM. Note that by averaging all the values
in PixelSSIM, we can achieve the SSIM value for the two samples. We use structural similarity()
in the skimage library of Python to implement the PixelSSIM.

B Theoretical Justification

B.1 Proof of Theorem 4.1

Theorem 4.1. Suppose that xt represents a diffused sample at step t of the forward process in
DDPM, where t ∈ [0, T ]. Given a clean sample xc

0 and its poisoned version xp
0, we obtain xc

t and xp
t

through the forward DDPM, whose distributions are Pt(x) and Qt(x), respectively. By using the
Kullback-Leibler divergence [40, 41] to measure the distance between the two distributions, we have

KL(Pt+1||Qt+1) ≤ KL(Pt||Qt), (7)

where the equality happens only when Pt=Qt, and the inequality implies that the KL divergence
between Pt and Qt monotonically decreases along with the forward DDPM.

Proof: First, following the definition of the diffused sample probability distribution in DDPM [20],
like Equation 1, when given a clean sample xc

0 and a poisoned sample xp
0, we have their distributions:

P (xc
t |xc

0) = N (xc
t ;
√
αtx

c
0, (1− αt) I)

Q(xp
t |x

p
0) = N (xp

t ;
√
αtx

p
0, (1− αt) I)

(8)

where αt = 1− βt and αt =
∏t

i=1 αi. Therefore, we know that both P (xc
t |xc

0) and Q(xp
t |x

p
0) are

Gaussian distributions. When both terms of the KL divergence are Gaussian distributions, we can
simplify the formula as follows:

KL
(
N
(
µ1, σ

2
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)
∥N (µ2, σ

2
2)
)
=

∫
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 dx

=

∫
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σ2
2√

σ2
1
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2

σ2
2
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σ2
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]}}
dx

=
1

2

(
log σ2

2 − log σ2
1 +

∫
p(x)

(x− µ2)
2

σ2
2

dx− 1

)
=
1

2

(
log σ2

2 − log σ2
1 +

E
(
x2
)
− 2µ2E (x) + µ2

2

σ2
2

− 1

)

=
1

2

(
log σ2

2 − log σ2
1 +

σ2
1 + (µ1 − µ2)

2

σ2
2
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)

.

(9)
Since Pt and Qt have the same σ, i.e., σ = σ1 = σ2 =

√
1− αtI, we can continue to simplify the

formula:

KL(Pt||Qt) =
1

2

(
(µ1 − µ2)

2

σ2
2

)
=
1

2

(
αt(x

c
0 − xp

0)
2

1− αt

) (10)
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Finally, we take the difference of both sides of the inequality

KL(Pt+1||Qt+1)−KL(Pt||Qt) =
1

2

(
αt+1(x

c
0 − xp

0)
2

1− αt+1

)
− 1

2

(
αt(x

c
0 − xp

0)
2

1− αt

)
=
(xc

0 − xp
0)

2

2

(
αt+1

1− αt+1
− αt

1− αt

)
=
(xc

0 − xp
0)

2

2

(
αtαt+1

1− αtαt+1
− αt

1− αt

)
=
(xc

0 − xp
0)

2

2

(
1

1− αtαt+1
− 1

1− αt

)
(11)

Since αt = 1− βt and βt ∈ (0, 1), αt should be less than 1. As a result, we can get

KL(Pt+1||Qt+1)−KL(Pt||Qt) ≤ 0. (12)

According to Equation 12, we have

KL(Pt+1||Qt+1) ≤ KL(Pt||Qt), (13)

where the equality happens only when Pt = Qt.

B.2 Proof of Theorem 4.2

Theorem 4.2. Suppose that R(x) denotes a specific region of the sample x. Given a poisoned sample
xp
0, we use Rc(x

p
0) and Rc(x

p
0) to represent a clean region and a poisoned region of the sample,

respectively. We perform the noise-based perturbation on xp
0 for t steps and get the noisy samples

xp

t
, and then utilize DDPM to get a denoised sample x̂p

0. When comparing different regions of the
original sample xp

0 with their counterparts of the detoxified sample x̂p
0, we have

||Rp(x̂
p
0)−Rp(x

p
0)||2

n1
>

||Rc(x̂
p
0)−Rc(x

p
0)||2

n2
, (14)

where n1 and n2 represent the numbers of pixels in Rp(x
p
0) and Rc(x

p
0), respectively.

Proof: First, we expand the inequality that we need to prove. Therefore, proving Equation 14 is
equivalent to proving the following inequality:

1

n1

∑
i∈[·]p

(x̂p
0(i)− xp

0(i))
2 >

1

n2

∑
j∈[·]c

(x̂p
0(j)− xp

0(j))
2. (15)

According to Equation 5, we have

xt−1 =
1

√
αt

(xt −
1− αt√
1− αt

θ(xt, t)) + σtz, (16)

where σ2
t = 1−αt−1

1−αt
· βt and z ∼ N (0, I). θ is a pre-trained neural network. Assuming that θ is

a fully trained model that can generate possible noise based on the input sample xt and the step t.
Therefore, we have

||θ(xt, t)− zt|| > ||θ(xt−1, t− 1)− zt−1||, (17)
where zt is the real noise in step t.

Then, we analyze the pixels in the clean and poisoned regions, respectively. We denote a pixel in
the clean region of the original sample as x0, and a pixel in the poisoned region as y0. Therefore,
we have xt and yt to denote the pixels after our noise-based perturbation. And we have x̂0 and ŷ0

to denote the pixels after our DDPM-based denoising process. Since θ has a strong ability, we can
approximate the entire denoising process with the following:

x̂0 =
1√
αt

(xt −
√
1− αt · z)

ŷ0 =
1√
αt

(yt −
√
1− αt · z),

(18)
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According to Equation 2 about the relationship between x0 and xt, we have

||x̂t:0 − x0|| = || 1√
αt

(xt −
√

1− αt · z)− x0||

= ||x0 +

√
1− αt√
αt

(zt − z)− x0||

= ||
√
1− αt√
αt

(zt − z)||,

(19)

where zt is the real noise and z = [z] = [θ(xt, t)]. According to Equation 17, we have

||x̂t:0 − x0|| > ||x̂t−1:0 − x0||. (20)

Supposing that the training data used for the pre-trained diffusion model does not contain any
knowledge about backdoor triggers, it is reasonable to assume that x0 belongs to the probability
distribution of the training dataset of θ, while y0 does not. Therefore, we have

||θ(yt, t)− zt|| > ||θ(xt, t)− zt||. (21)

According to Theorem 4.1, when the sample is fully noised, the sample is equivalent to Gaussian
noise. Additionally, the sample generated by the unguided denoising process from Gaussian noise is
completely independent of the original sample. Therefore, we have the equation about x and y as
follows:

lim
t→T

||x̂t:0 − x0|| = lim
t→T

||ŷt:0 − y0||. (22)

According to Equation 21 and Equation 22, we finally get the following equation:

0 < ||x̂t:0 − x0|| < ||ŷt:0 − y0|| < lim
t→T

||x̂t:0 − x0|| = lim
t→T

||ŷt:0 − y0||, (23)

where t ∈ (0, T ). Therefore, Equation 15 can be proved. Finally, we have

||Rp(x̂
p
0)−Rp(x

p
0)||2

n1
>

||Rc(x̂
p
0)−Rc(x

p
0)||2

n2
. (24)

C Additional Experimental Results

C.1 Performance Comparison on More Datasets

Table 4 and Table 5 show the defense performance of our approach and three defense baselines, i.e.,
Sancdifi [37], BDMAE [19] and ZIP [18], against ten state-of-the-art (SOTA) attack methods on the
GTSRB and Tiny-ImageNet dataset, respectively. The experimental results in the table illustrate
that our approach outperforms existing SOTA methods on a variety of datasets, which shows the
generalizability of our approach.

Table 4: Defense performance comparison on GTSRB, where Bold fonts and underlines denote the
best and the second-best values.

Defense→ No Defense Sancdifi BDMAE ZIP SampDetox (Ours)

Attack ↓ CA(%) PA(%) ASR(%) CA(%) PA(%) ASR(%) CA(%) PA(%) ASR(%) CA(%) PA(%) ASR(%) CA(%) PA(%) ASR(%)

No Attack 98.12 - - - - - - - - - - - - - -
BadNets 95.18 3.16 62.31 81.55 90.29 1.62 92.33 91.19 2.60 92.58 85.78 6.44 94.56 93.49 1.95

SIG 97.21 2.13 99.26 83.73 46.03 29.44 96.61 2.91 95.85 96.33 37.34 35.64 97.13 68.00 10.85
LC 97.52 2.33 99.12 82.48 53.30 3.86 93.42 77.36 1.22 94.29 74.89 1.99 94.25 77.03 1.20

TrojanNN 97.52 2.32 99.34 81.05 92.60 1.97 95.30 88.63 2.15 91.38 89.74 6.52 97.51 92.05 1.79
Dynamic 95.63 2.27 98.18 79.45 71.73 8.21 93.43 75.03 12.43 92.40 79.45 2.85 93.70 90.07 2.83
Blended 98.21 2.30 99.47 80.98 51.41 14.85 91.89 5.47 95.47 91.85 64.46 8.99 93.69 90.93 4.34

LF 97.91 2.33 96.88 81.86 51.17 15.98 92.44 6.57 80.35 93.08 87.82 5.18 94.91 88.64 2.31
WaNet 96.16 2.33 93.64 82.53 43.02 14.62 90.15 22.38 49.80 89.99 88.17 8.38 92.63 90.38 5.36
ISSBA 97.47 2.34 98.20 80.78 53.51 13.92 89.61 53.29 21.65 91.09 85.25 1.05 95.13 86.83 1.30

BPP 96.27 2.32 99.17 78.90 51.28 15.40 90.53 24.19 53.40 89.46 84.83 7.46 94.85 84.99 5.64
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Table 5: Defense performance comparison on Tiny-ImageNet, where Bold fonts and underlines
denote the best and the second-best values.

Defense→ No Defense Sancdifi BDMAE ZIP SampDetox (Ours)

Attack ↓ CA(%) PA(%) ASR(%) CA(%) PA(%) ASR(%) CA(%) PA(%) ASR(%) CA(%) PA(%) ASR(%) CA(%) PA(%) ASR(%)

No Attack 56.71 - - - - - - - - - - - - - -
BadNets 56.61 0.51 99.96 40.94 49.17 3.88 51.56 50.84 4.45 52.28 44.15 7.34 53.95 53.02 4.40

SIG 56.00 0.50 99.97 43.33 25.77 11.09 54.89 0.26 96.93 56.08 11.03 37.36 55.24 38.07 8.74
LC 56.09 0.51 99.71 41.89 12.81 5.03 53.23 36.63 3.33 54.00 33.90 2.19 54.44 46.67 2.52

TrojanNN 56.27 0.50 99.85 40.54 51.92 2.32 54.90 47.17 3.04 51.33 49.21 6.97 54.20 52.10 2.63
Dynamic 55.65 0.49 99.34 39.14 29.90 10.52 53.22 33.93 13.04 51.96 39.10 3.81 54.18 50.23 4.76
Blended 56.36 0.52 99.47 40.85 10.69 15.07 51.39 0.81 97.96 51.48 22.67 9.52 53.20 51.04 5.31

LF 56.82 0.51 99.45 40.92 9.93 18.86 51.75 0.42 82.24 53.07 47.14 6.03 54.11 48.91 4.22
WaNet 55.34 0.50 99.10 42.47 11.75 15.81 49.95 6.93 52.36 49.93 46.17 8.24 51.90 50.40 6.49
ISSBA 55.60 0.51 99.48 40.60 13.35 16.61 49.49 13.16 24.00 50.62 44.27 1.07 54.28 47.23 3.11

BPP 57.01 0.52 99.73 38.79 10.14 17.68 48.90 4.52 55.86 49.18 42.94 8.68 53.93 45.34 6.48

C.2 Performance on More Models.

Since our approach does not require any interaction with the model, it should have defensive effects
on different models. Table 6 and Table 7 show the defense performance of our approach on the
VGG-19 and ResNet34 models on CIFAR-10, GTSRB, and Tiny-ImageNet datasets, respectively.
The experimental results show that our approach has satisfactory defense effects on VGG-19 and
ResNet34, which demonstrates that our approach is model-independent.

Table 6: Defense performance of our approach on VGG-19 model.

Dataset→ CIFAR-10 GTSRB Tiny-ImageNet

Attack ↓ CA(%) PA(%) ASR(%) CA(%) PA(%) ASR(%) CA(%) PA(%) ASR(%)

No Attack 91.02 - - 94.93 - - 45.54 - -
BadNets 86.82 86.35 2.42 91.15 89.98 2.08 42.12 39.43 4.31

SIG 81.62 61.80 11.39 94.19 64.33 10.72 43.51 24.35 9.01
LC 78.68 70.65 1.57 90.86 73.12 1.47 42.61 32.80 2.45

TrojanNN 90.67 86.19 1.73 94.42 87.60 1.42 42.17 38.88 2.61
Dynamic 86.06 85.60 1.73 90.47 85.68 3.22 42.41 36.93 4.44
Blended 87.91 83.22 1.57 90.29 87.05 4.11 41.34 37.16 5.01

LF 87.82 84.36 3.50 92.41 84.30 2.50 42.22 35.11 3.97
WaNet 86.40 85.76 5.45 90.10 86.80 5.53 39.88 36.43 6.47
ISSBA 88.58 83.39 2.07 92.37 83.21 1.23 42.33 34.18 2.86

BPP 88.31 81.59 6.63 91.38 80.88 6.01 41.79 31.76 6.40

Table 7: Defense performance of our approach on ResNet34 model.

Dataset→ CIFAR-10 GTSRB Tiny-ImageNet

Attack ↓ CA(%) PA(%) ASR(%) CA(%) PA(%) ASR(%) CA(%) PA(%) ASR(%)

No Attack 85.34 - - 97.62 - - 59.96 - -
BadNets 84.27 83.11 2.67 93.44 90.44 1.48 56.77 54.72 4.58

SIG 78.66 59.10 10.94 96.02 66.15 10.16 59.31 39.78 8.04
LC 76.22 67.47 1.56 92.03 73.94 1.03 57.39 48.21 2.45

TrojanNN 88.40 83.17 2.03 96.67 88.42 2.20 58.05 53.88 2.96
Dynamic 83.46 82.25 1.99 91.90 85.81 3.81 56.74 53.62 6.06
Blended 84.97 79.47 1.66 91.78 88.58 3.96 55.52 52.78 6.55

LF 85.37 81.03 3.86 94.67 84.47 3.00 56.83 51.17 2.76
WaNet 84.26 83.33 5.94 92.66 88.19 5.63 54.54 52.84 8.26
ISSBA 85.73 80.90 1.94 95.09 83.60 1.06 58.28 49.53 3.79

BPP 85.65 79.19 6.40 93.86 81.13 5.19 55.96 48.35 4.72

C.3 Comparison with Sample Transformation Methods

In this section, we compare our approach with existing sample transformation methods on CIFAR-10,
including Noising, ShrinkPad, and Blur [49]. Noising attempts to destroy the backdoor trigger
structure by adding a large amount of noise to the sample without considering the inference accuracy.
ShrinkPad shrinks the samples and then randomly pads samples back to their original size. Blur
utilizes Gaussian kernel to pool the samples to destroy backdoor trigger patterns. The experimental
results are shown in Table 8.

From the table, we can find that transforming the samples can break some of the backdoor triggers.
However, the transformation will cause great damage to the quality of the samples, resulting in a sig-
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Table 8: Defense performance comparison with sample transformation methods.

Defense→ No Defense Noising ShrinkPad Blur SampDetox (Ours)

Attack ↓ CA(%) PA(%) ASR(%) CA(%) PA(%) ASR(%) CA(%) PA(%) ASR(%) CA(%) PA(%) ASR(%) CA(%) PA(%) ASR(%)

No Attack 93.84 - - - - - - - - - - - - - -
BadNets 92.00 10.18 99.97 68.43 61.79 5.42 71.63 66.06 8.42 64.02 49.44 18.15 89.57 90.15 2.11

SIG 84.94 9.78 98.50 60.43 13.97 91.34 64.19 59.75 8.35 55.74 48.50 6.69 83.71 65.06 11.03
LC 84.34 10.26 99.06 61.26 55.91 4.57 63.71 58.07 6.42 56.10 50.02 12.52 80.72 74.36 1.55

TrojanNN 93.20 11.07 99.03 69.20 59.40 12.16 73.40 69.17 4.33 64.67 50.90 14.30 92.78 89.95 1.86
Dynamic 91.09 10.02 98.19 67.45 59.94 1.67 72.76 64.31 1.67 63.80 55.76 2.34 88.52 88.62 1.45
Blended 93.85 10.93 99.51 71.14 58.87 25.78 72.93 68.52 2.54 68.61 61.76 7.69 90.23 86.65 1.96

LF 93.63 11.13 99.48 73.43 66.72 4.31 73.67 69.35 5.33 66.33 60.98 2.37 90.01 87.40 3.02
WaNet 91.43 10.27 91.05 68.51 62.95 5.53 72.52 65.23 7.52 65.35 57.25 5.67 89.34 88.92 5.59
ISSBA 93.57 11.38 95.96 68.96 62.88 7.82 73.22 65.40 1.67 65.36 55.55 2.02 90.74 86.51 1.60

BPP 91.38 9.46 98.40 67.36 51.82 10.65 72.25 55.43 7.14 65.86 56.90 8.34 90.59 84.83 6.15

nificant reduction in Clean sample Accuracy (CA) and Poisoned sample Accuracy (PA). Specifically,
though Blur has lower ASR than SampDetox when defending against the SIG and LF attacks, our
approach has better CA and PA. In addition, our methods have the best defensive performance. The
experimental results show that our approach can successfully defend against various attacks while
preserving the original semantic information of samples to the greatest extent.

C.4 Performance using Different Diffusion Models

In this section, we deploy our approach using different pre-trained diffusion models to defend against
backdoor attacks on CIFAR-10 and compare their defense performance. Specifically, we choose three
diffusion models with different parameters: 1) pre-trained on CIFAR-10, which is the same setup as
our main experiments, 2) pre-trained on ImageNet, and 3) pre-trained on ImageNet and fine-turned
on CIFAR-10. Notably, we used 5% clean samples in the test dataset of CIFAR-10 to fine-tune the
pre-trained model, and we excluded these data during the experiments. The experimental results are
shown in Table 9.

From the table, we can observe that SampDetox with different diffusion models has satisfied defensive
performance on Clean sample Accuracy (CA) and Attack Success Rate (ASR). For CA, since clean
samples do not have any trigger patterns, only a little noise will be added to them in Stage 2 of our
approach. Therefore, all these three diffusion models can accurately denoise samples. For ASR,
the results are generally not related to the denoising process. For Poisoned sample Accuracy (PA),
when defending against visible attacks (i.e., BadNets, SIG, LC, TrojanNN, and Dynamic), the model
pre-trained on ImageNet has much lower accuracy, meaning that the model pre-trained on outside
distribution datasets can not accurately denoise samples, especially when much noise is added. The
fine-tuning model achieves satisfactory defensive performance against different attacks. Therefore,
when we need to detoxify samples without pre-trained models, we can fine-tune a diffusion model to
deploy our defense approach.

Table 9: Defense performance of our approach using different diffusion models.

Diffusion→ Pre-trained (CIFAR-10) Pre-trained (ImageNet) Fine-tuning (CIFAR-10)

Attack ↓ CA% PA% ASR% CA% PA% ASR% CA% PA% ASR%

No Attack 93.84 - - 93.39 - - 93.81 - -
BadNets 89.57 90.15 2.11 89.23 85.02 2.26 89.59 90.77 1.98

SIG 83.71 65.06 11.03 83.27 56.04 11.05 83.30 64.68 10.99
LC 80.72 74.36 1.55 80.05 64.83 1.80 80.19 73.62 1.87

TrojanNN 92.78 89.95 1.86 92.17 82.12 1.69 92.66 90.21 1.58
Dynamic 88.52 88.62 1.45 87.97 80.44 1.80 88.46 88.93 1.01
Blended 90.23 86.65 1.96 89.42 83.64 1.54 89.81 85.92 1.64

LF 90.01 87.40 3.02 89.38 86.94 2.65 89.72 86.83 3.53
WaNet 89.34 88.92 5.59 88.94 87.88 5.17 89.43 88.02 6.16
ISSBA 90.74 86.51 1.6 90.25 85.31 1.57 90.29 85.53 1.70

BPP 90.59 84.83 6.15 90.96 84.01 5.95 91.24 85.12 5.34

Additionally, considering the case where pre-training datasets for diffusion models are out-of-
distribution from their target classification tasks, we conducted experiments to evaluate the perfor-
mance of SampDetox on a subset of the MS-Celeb-1M [50] dataset. Specifically, we considered
the top 100 labels with the largest number of samples and randomly selected 380 samples for each
label. We split the training and tests with a ratio of 8 : 2 and adjusted the shape of the samples to

19

121254 https://doi.org/10.52202/079017-3853



224 ∗ 224. We adopted BadNets [22] and WaNet [28] as attack methods, representing a visible and
an invisible backdoor attack, respectively. We considered four pre-trained diffusion models: i) a
pre-trained model (i.e., Model 1) on the subset of MS-Celeb-1M, ii) a pre-trained model (i.e., Model
2) on another subset of MS-Celeb-1M, iii) a pre-trained model (i.e., Model 3) on ImageNet, and iv)
Model 4, which is fine-tuned from Model 3 using a subset of MS-Celeb-1M.

Table 10 shows the experimental results. We can find that SampDetox with different diffusion
models achieves satisfied defensive performance on ASR. Note that, for Model 3, the CA and PA of
SampDetox decrease. This is because Model 3 is pre-trained on ImageNet rather than MS-Celeb-1M,
resulting in the diffusion model failing to effectively denoise MS-Celeb-1M samples. However,
we can find significant improvements in the CA and PA of Model 4 since Model 4 is fine-tuned
using a subset of MS-Celeb-1M. In other words, SampDetox can defend against attacks using
out-of-distribution diffusion models with proper fine-tuning.

Table 10: Defense performance of our approach using out-of-distribution diffusion models.

Attack→ BadNets WaNet

Setting↓ CA(%) PA(%) ASR(%) CA(%) PA(%) ASR(%)

No Defense 94.38 1.27 99.32 94.61 1.96 97.05
Model 1 92.06 91.65 1.36 91.83 91.12 1.29
Model 2 90.27 89.73 1.31 89.92 90.05 1.22
Model 3 55.47 52.06 1.57 72.35 62.26 1.25
Model 4 88.56 89.27 1.47 89.43 89.32 1.30

D Additional Discussions

D.1 Performance on High-frequency Classification Task

To evaluate the defense performance of SampDetox on classification tasks that rely on benign high-
frequency details, we conducted experiments on the DTD (Describable Textures Dataset) dataset [51],
where we adopted a visible backdoor attack, i.e., BadNets [22], and an invisible backdoor attack, i.e.,
WaNet [28], respectively. Table 11 compares SampDetox with six baselines. From this table, we can
find that though the CA of SampDetox is a little smaller than the CA of “No Defense”, SampDetox
can achieve the best defense performance on CA, PA, and ASR compared with all baselines, which
shows the applicability and superiority of SampDetox.

Table 11: Defense performance of our approach on the high-frequency classification task.

Attack→ BadNets WaNet

Defense ↓ CA(%) PA(%) ASR(%) CA(%) PA(%) ASR(%)

No Defense 65.42 2.05 90.56 64.72 2.17 88.56
Sancdifi 48.98 51.23 2.84 49.64 28.06 15.12
BDMAE 56.25 56.43 1.86 55.57 19.17 47.22

ZIP 43.17 40.95 3.32 44.87 40.56 3.31
Noising 37.55 35.87 5.26 38.46 37.08 3.27

ShrinkPad 41.27 39.36 8.92 43.19 42.48 2.92
Blur 33.17 30.92 12.05 33.49 29.50 3.67

SampDetox (Ours) 57.46 57.12 1.73 58.33 58.12 2.21

Table 12: Defense performance of SampDetox using DDPM and DDIM.

Attack
SampDetox+DDPM SampDetox+DDIM

CA(%) PA(%) ASR(%) CA(%) PA(%) ASR(%)

BadNets 89.57 90.15 2.11 89.49 90.13 2.12
SIG 83.71 65.06 11.03 83.82 65.13 10.98
LC 80.72 74.36 1.55 80.62 74.22 1.53

TrojanNN 92.78 89.95 1.86 92.83 89.87 1.69
Dynamic 88.52 88.62 1.45 88.52 88.72 1.42
Blended 90.23 86.65 1.96 90.15 86.54 2.02

LF 90.01 87.40 3.02 90.09 87.61 3.10
WaNet 89.34 88.92 5.59 89.48 88.82 5.54
ISSBA 90.74 86.51 1.60 90.76 86.65 1.55

BPP 90.59 84.83 6.15 90.42 84.91 6.17
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D.2 Performance using DDIM

Since DDIM [21] was proposed to accelerate the speed of DDPM without affecting the image
generation quality, the defense performance of “SampDetox+DDIM” is comparable to that of
“SampDetox+DDPM”. To demonstrate the performance of “SampDetox+DDIM”, we conducted new
experiments on CIFAR-10 against ten SOTA backdoor attacks. The experimental results are shown
in Table 12. From the table, we can find that the defense performance of “SampDetox+DDIM” is
almost the same as that of “SampDetox+DDPM”, which means that “SampDetox+DDIM” can match
the defense efficacy of “SampDetox+DDPM”.

D.3 Training Sample Detoxification

Before training deep models, we can use SampDetox to conduct perturbation-based training sample
detoxification, protecting them against backdoor injection. Table 13 compares the defense perfor-
mance of the trained models by SampDetox. Here, the second column shows the defense performance
without using SampDetox. The third and fourth columns present the defense performance of models
trained by detoxified samples. Note that for the third column, we did not change the labels of
detoxified samples. In other words, the poisoned samples still keep their dirty labels (denoted by
D.L.). For the fourth column, we tried to correct the dirty labels based on the inference results of the
models generated by the third column. Based on the detoxified samples and corrected clean labels
(denoted by C.L.), the fourth column shows the defense performance of our approach. Note that for
this table, we did not apply sample detoxification on test samples. From this table, we can observe that
SampDetox can effectively defend against various backdoor attacks. Although “SampDetox+D.L.”
and “SampDetox+C.L.” have similar ASR, the CA of “SampDetox+C.L.” can be notably improved
based on the corrected labels of poisoned samples.

Table 13: Defense performance of SampDetox in the training phase.

Defense→ No defense SampDetox+D.L. SampDetox+C.L.

Attack ↓ CA(%) ASR(%) CA(%) ASR(%) CA(%) ASR(%)

BadNets 91.95 99.97 88.97 1.46 92.95 1.41
SIG 85.03 98.39 87.33 1.78 91.53 1.69
LC 84.64 99.06 89.78 1.49 89.78 1.49

TrojanNN 93.37 99.99 89.46 2.01 93.10 1.84
Dynamic 91.05 98.12 88.19 1.64 90.98 1.89
Blended 93.41 99.96 87.67 1.45 91.59 1.46

LF 93.11 99.31 88.59 1.63 90.77 1.45
WaNet 91.81 90.77 88.18 1.77 90.85 1.85
ISSBA 93.09 96.36 89.79 1.55 93.31 1.60

BPP 91.39 99.18 89.52 1.47 93.21 1.38

D.4 Performance against Adaptive Attacks

Assume that attackers have all the prior knowledge of our proposed approach to design an adaptive
attack to bypass our defense approach. Since SampDetox is based on observations about the
correlation between the visibility of triggers and the robustness of poisoned samples, the attackers
can try two types of adaptive attacks as follows.

1) Adaptive attack 1. The attacker uses an attack with both low visibility and high robustness since
attacks with high visibility and low robustness are easily defended. To guarantee low visibility, the
attacker adopts an invisible backdoor attack, i.e., WaNet. To ensure high robustness, the attacker
adaptively adds noises to samples during the training phase to improve the robustness of triggers.

2) Adaptive attack 2. The attacker does not consider visibility issues and tries to maximize robustness
to bypass our defense. In this case, the attacker adopts a visible backdoor attack, i.e., BadNets, and
adds robust noise during the training phase to improve robustness.

We conducted experiments to defend against the two adaptive attacks on the CIFAR-10 dataset.
Table 14 shows the results of the experiments, where the first column denotes the amount of noise
added during training to improve the robustness. From the table, we find that our approach can defend
against adaptive attacks.
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Table 14: Defense performance of SampDetox against adaptive attacks.

Robust Noise Attack 1 (No Defense) Attack 1 (SampDetox) Attack 2 (No Defense) Attack 2 (SampDetox)

η CA(%) PA(%) ASR(%) CA(%) PA(%) ASR(%) CA(%) PA(%) ASR(%) CA(%) PA(%) ASR(%)

0 91.43 10.27 91.05 89.34 88.92 5.59 92.00 10.18 99.97 89.57 90.15 2.11
0.10 91.62 13.14 87.36 89.45 89.07 5.22 92.16 10.07 99.12 89.62 90.37 2.25
0.20 91.87 21.18 52.53 90.15 89.45 3.13 91.87 10.56 97.12 89.58 89.98 2.16
0.30 92.26 89.61 1.36 90.83 90.72 1.13 91.62 12.32 82.12 90.02 90.09 2.33

D.5 Limitation

Although our approach aims to defend against backdoor attacks with any kind of trigger, there are still
certain triggers that SampDetox cannot remove. Physical attack [52, 53] is a backdoor attack with
visible but natural triggers, usually physical objects. Since our approach identifies the positions of
trigger patterns based on Theorem 4.2 by calculating the similarity between the denoised and original
samples, the effectiveness of our approach depends on the pre-trained diffusion model. When the
triggers are visible, are part of the sample classification characteristics, and belong to the knowledge
contained in the pre-trained diffusion model, our defense approach cannot destroy the trigger patterns
and defend against these attacks.

Table 15: Defense performance of SampDetox against semantics attacks.

Attack CIFAR-10 GTSRB Tiny-ImageNet

Defense CA(%) PA(%) ASR(%) CA(%) PA(%) ASR(%) CA(%) PA(%) ASR(%)

Refool 87.46 88.03 1.72 93.79 91.43 2.16 54.52 51.11 4.10
DSFT 86.71 86.55 1.96 90.45 89.20 2.05 50.68 49.85 4.15

To investigate the limitation of SampDetox, we conducted experiments with three semantic backdoor
attacks, i.e., Refool [54], DSFT [55] and CBA [56]. Table 15 presents the defense performance of
SampDetox against Refool and DSFT. From the table, we can find that SampDetox can effectively
defend against such backdoor attacks. This is because the semantic features adopted by Refool and
DSFT are neither part of the original classified features nor are their distributions the same as the
distribution of the training dataset of the pre-trained diffusion model. Therefore, the triggers based on
such semantic features will not be restored by the denoising phase of SampDetox.

Additionally, to explain why SampDetox can defend against these two attacks, we conducted ex-
periments to calculate the robustness of their poisoned samples, respectively. For each attack, we
randomly selected 50 poisoned samples on CIFAR-10 and calculated the robustness value of each
sample following our robustness definition in Section 3.1. For Refool, the robustness of its poisoned
samples has a mean value of 0.0759 and a standard deviation of 0.011. For DFST, the robustness
of its poisoned samples has a mean value of 0.137 and a standard deviation of 0.019. From the
experimental results, we can find that the robustness of the poisoned samples is low (ones with
robustness < 0.18, according to Figure 2). Therefore, when SampDetox adds enough noise to these
samples, even if trigger patterns are partially restored by diffusion models, backdoors will not be
successfully triggered.

However, SampDetox fails to defend against CBA. Since CBA concatenates two natural images as
backdoor triggers, it is considered the backdoor attack type that SampDetox fails to defend. The
experimental results on CIFAR-10 are as follows: Without defense, CA, PA, and ASR were 87.52%,
10.16%, and 90.17%, respectively. However, when using SampDetox, CA, PA, and ASR were
86.81%, 38.45%, and 37.28%, respectively. The experimental results show that SampDetox has a
certain effect in defending against CBA but fails to minimize ASR.
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E More Examples of Poisoned Samples

Figure 6 shows examples of the poisoned samples with their visibility v and robustness ηr.

0.102/0.182 0.006/0.063 0.010/0.069 0.007/0.053 0.023/0.071

0.089/0.096 0.108/0.105 0.187/0.418 0.043/0.071 0.013/0.058

0.057/0.067 0.098/0.081 0.006/0.061 0.131/0.233 0.010/0.062

0.191/0.398 0.149/0.406 0.053/0.083 0.006/0.045 0.047/0.068

0.044/0.073 0.096/0.071 0.174/0.326 0.112/0.121 0.112/0.113

0.047/0.078 0.169/0.430 0.006/0.059 0.015/0.048 0.167/0.364

Figure 6: Examples of poisoned samples and their v/ηr.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The paper discusses the limitations in Section D.5.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate ”Limitations” section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: The paper provides the proofs of theoretical results in Section B.1 and Sec-
tion B.2, respectively.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper fully discloses all the information needed to reproduce the main
experimental results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The paper provides code in supplemental material.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The paper provides the experimental settings in Section 5.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: The paper does not involve error bars.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer ”Yes” if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The paper provides the information about compute resources in Section 5.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in the paper conforms with the NeurIPS Code of
Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: The paper discusses the potential societal impacts of the work performed.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The paper uses popular datasets and models. We cites the original paper.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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