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Abstract

The Rashomon effect is a mixed blessing in responsible machine learning. It
enhances the prospects of finding models that perform well in accuracy while ad-
hering to ethical standards, such as fairness or interpretability. Conversely, it poses
a risk to the credibility of machine decisions through predictive multiplicity. While
recent studies have explored the Rashomon effect across various machine learning
algorithms, its impact on gradient boosting—an algorithm widely applied to tabular
datasets—remains unclear. This paper addresses this gap by systematically analyz-
ing the Rashomon effect and predictive multiplicity in gradient boosting algorithms.
We provide rigorous theoretical derivations to examine the Rashomon effect in the
context of gradient boosting and offer an information-theoretic characterization
of the Rashomon set. Additionally, we introduce a novel inference technique
called RashomonGB to efficiently inspect the Rashomon effect in practice. On
more than 20 datasets, our empirical results show that RashomonGB outperforms
existing baselines in terms of improving the estimation of predictive multiplicity
metrics and model selection with group fairness constraints. Lastly, we propose a
framework to mitigate predictive multiplicity in gradient boosting and empirically
demonstrate its effectiveness.

1 Introduction

Large-scale, complex data and the pursuit of superior performance in machine learning (ML) models
have led to increased complexity in both the models themselves and the training algorithms [44]. As
a result, it is more likely to find a plethora of distinct models, such as those found in local minima,
that exhibit statistically indistinguishable performance (e.g., test accuracy) [23]. This phenomenon,
known as the Rashomon effect [12], has urged researchers to reconsider its impact on ML models
when deployed in real-world scenarios [22, 10, 30, 26].

The impacts of the Rashomon effect reveals two sides of the same coin in responsible ML. On
one hand, it benefits the current trend of developing algorithms that prioritize responsible ML
principles beyond merely optimizing for accuracy. These principles often include interpretability [64],
causality [37], group fairness [20], counterfactual explanations [39], and feature interactions [51]. The
abundance of models with competing performance allows compliance with these principles without
significant compromises in performance. For instance, algorithmic fairness often faces a trade-off
with accuracy; the Rashomon effect allows a fairness intervention algorithm to identify a more optimal
balance among models with statistically similar performance [20]. On the other hand, the Rashomon
effect presents a risk to the credibility of machine decisions known as predictive multiplicity [56],
where competing models, generated by simply varying randomness1 in the training processes, yield

1Such randomness includes different seeds, weight initialization, splits of mini-batches, etc.
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conflicting predictions for some individual samples. If left unaddressed, conflicting predictions can
lead to discrimination and unfairness, hidden under the guise of algorithmic randomness. This can
adversely affect certain individuals without revealing significant statistical differences from non-
discriminatory models [22]. The negative societal impacts of predictive multiplicity and inconsistent
decisions have been recently studied under various frameworks2 such as prediction uncertainty [35, 2],
predictive churn [59, 75], and predictive multiplicity [56, 67, 9, 42].

To understand the Rashomon effect and address predictive multiplicity, recent studies have focused
on characterizing competing models and efficiently searching for them across different ML models.
For instance, predictive multiplicity caused by linear classifiers can be computed via mixed integer
programming [56, 74]. Competing models from sparse decision trees are exactly characterized and
searched by sub-tree pruning [76]. In special cases such as ridge regression and generalized additive
models, the forms of the set of competing models are analytically derived [67, 16]. More recently,
test-time dropout has been utilized to search for competing models for neural networks [43].

In this paper, we focus on another ML algorithm, gradient boosting [65], which is widely applied
to tabular datasets [36]. Gradient boosting differs fundamentally from other ML algorithms in its
sequential approach: rather than training a model as a single entity, gradient boosting breaks down
the training process into a sequence of sub-learning problems. This sequential training pipeline not
only facilitates the analysis of the Rashomon effect but also offers new methodologies for model
selection and reducing predictive multiplicity. To the best of our knowledge, our work is the first to
explore the Rashomon effect for gradient boosting. The main contributions of this work include:

1. We formalize and investigate the Rashomon effect induced by gradient boosting, employing
statistical learning and information theory to analyze its behavior (Section 3). Specifically,
we leverage information-theoretic measures to characterize the impact of dataset properties
on the Rashomon effect.

2. We introduce RashomonGB, an efficient method that explores an exponential search space
versus baseline methods which search linearly. (Section 3.1).

3. We implement RashomonGB on several real-world (large-scale) tabular and image datasets,
and empirically demonstrate the competing models obtained with RashomonGB can greatly
improve the estimation of predictive multiplicity (Section 4.1), and model selection with
additional responsible ML principles such as group fairness (Section 4.2).

4. We propose two methods to mitigate predictive multiplicity for gradient boosting and
experimentally validate the methods on 18 tabular datasets (Section 4.3).

Omitted proofs, additional explanations and discussions, details on experiment setups and training,
and additional experiments are included in the Appendix. Code to reproduce our experiments can be
accessed at https://github.com/jpmorganchase/Rashomon-gradient-boosting.

2 Background and related work

Consider a dataset S = {si}ni=1 drawn i.i.d. from PS , where each si is a pair (xi, yi) consisting of a
feature vector xi = [xi1, · · · ,xid]

⊤ ∈ X ⊆ Rd and a target yi ∈ R. Let X and Y be the random
variables for the feature xi and target yi respectively, and S = X × Y . We denote by H a hypothesis
space of functions that map from X to Y . The loss function used to evaluate model performance
is denoted by ℓ : H × S → R+ and LPS

(h) ≜ EPS
[ℓ(h, S)] the population risk. As usual, the

population risk is approximated by the empirical risk LS(h) ≜ 1
n

∑n
i=1 ℓ(h, si). We denote the

empirical risk minimizer as h∗ = argminh∈H LS(h) ∈ H. We denote ∇xv(x) the gradient of v(x)
w.r.t. x, and 1[·] the indicator function. For two random variables X and Y , the mutual information
between them is defined as I(X;Y ) = DKL(PX,Y ∥PXPY ) [21], where DKL(P∥Q) = EP [logP/Q]

is the Kullback-Leibler (KL) divergence [47]. Finally, we let [k] ≜ [1, · · · , k].

The Rashomon sets and exploring models therein. The studies on the Rashomon effect typically
start with searching for models in the Rashomon set [67], the set of all models in the hypothesis space

2Both prediction uncertainty and predictive multiplicity consider the arbitrariness of machine outputs, with
predictive multiplicity specifically addressing models with competing performance. Predictive churn, on the
other hand, focuses on the instability of decisions before and after updating models with new data.
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H whose population risks are comparable to that of a given model3 h∗ ∈ H, i.e.,

R(H,S, h∗, ϵ) ≜ {h ∈ H;LPS
(h) ≤ LPS

(h∗) + ϵ}, (1)

where ϵ ≥ 0 is a Rashomon parameter that determines the size of the Rashomon set. However,
when the hypothesis space H is large (e.g., neural network architectures, tree ensembles, etc.),
exhaustively identifying all models within the Rashomon set becomes computationally infeasible.
Therefore, it is customary to approximate the full Rashomon set by a subset with m models called an
empirical Rashomon set, Rm(H,S, h∗, ϵ) ≜ {h1, · · · , hm ∈ H;hi ∈ R(H,S, h∗, ϵ), ∀i ∈ [m]}.
In practice, the m models in the empirical Rashomon set are mainly obtained by re-training (See
Appendix B.2 for more discussions). The re-training strategy re-trains models with different
random initializations and rejects those that disobey the loss deviation constraint in Eq. (1) until
m models are collected [67, 48]. However, re-training models repeatedly is time-consuming with
large datasets or complex architectures. To improve efficiency, a recent strategy involves collecting
distinct models with competing performance during the inference phase. For example, Hsu et al. [43]
proposed an inference-time dropout strategy for convolutional neural networks (CNNs). Despite these
advances, exploring Rashomon sets for ensemble learning methods like boosting remains unexplored.

Predictive multiplicity. Predictive multiplicity undermines the credibility of decisions made by ML
algorithms, making its measurement an active research area. Predictive multiplicity metrics can be
categorized based on whether they are defined on output decisions (i.e., thresholded predictions/scores
after argmax) or on output scores in the probability simplex. For example, ambiguity and discrepancy,
measure the proportion of samples with conflicting decisions from models within the Rashomon set
[56]. Disagreement, in a similar flavor, assess the probability of conflicting decisions per sample
[48]. In contrast, score-based metrics estimate various aspects such as score variance/std. [52, 17, 9],
the viable range of scores (termed viable prediction range (VPR) by Watson-Daniels et al. [74])),
or score spread in the probability simplex (referred to as Rashomon Capacity (RC) by Hsu and
Calmon [42]). Due to space constraints, we defer the mathematical formulations of these predictive
multiplicity metrics and discussions on estimating these metrics with the empirical Rashomon sets
to Appendix B.2. These predictive multiplicity metrics are often estimated using the empirical
Rashomon set Rm(H,S, h∗, ϵ). As m increases, the empirical Rashomon set better approximates
the Rashomon set, leading to more precise estimations of predictive multiplicity metrics.

Mitigating predictive multiplicity. Mitigating predictive multiplicity ensures that decisions made
by ML algorithms are consistent. The main strategy for this is to combine decisions from competing
models. Roth et al. [63] reconcile conflicting decisions from two different models in the Rashomon
set to improve the disagreement in predictions. Combining decisions from multiple models falls
under the umbrella of model averaging in ensemble learning [9, 42, 52]. Model averaging is a
special ensemble learning that collects multiple base models, often referred to as weak learners, and
combines them in parallel. As averaging model outputs reduces the variance, it is a natural choice for
diminishing predictive multiplicity and has been reported in several studies. For instance, Black et al.
[9] proposed a selective averaging that leverages certifiably-robust predictions to mitigate the problem
of inconsistency with a probabilistic guarantee. Hsu and Calmon [42, Section A.4.5] observe that
random forest classifiers exhibit a lower Rashomon Capacity compared to decision tree classifiers.
Furthermore, Long et al. [52] demonstrate that the probability of significant deviated predictions in
model averaging diminishes exponentially with the number of models in the average.

Ensemble learning is not limited to parallel combinations. Another popular branch involves com-
bining models sequentially, known as boosting algorithms. Despite the widespread use of boosting
algorithms and their superior performance over neural networks on tabular datasets [36], boosting
algorithms have been mostly overlooked in the literature on the Rashomon effect and predictive mul-
tiplicity. This paper aims to address this gap, as outlined in the next section. The works most closely
related to ours involve prediction uncertainty estimation in gradient boosting, such as NGBoost
[27, 55], PGBM [70], and IBUG [13], which consider probabilistic predictions from regression trees
in Bayesian settings. However, these studies do not frame the concept of arbitrariness in predictions
within the context of the Rashomon effect and may overestimate arbitrariness with models that do not
have similar performance. To the best of our knowledge, this work is the first that investigates the
impact of the Rashomon effect and predictive multiplicity on gradient boosting.

3It is common to choose the model as an empirical risk minimizer.

3
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3 Analyzing the Rashomon effect in gradient boosting

We begin with a brief introduction to gradient boosting and discuss how its sequential combination
approach can inspire a new method for finding competing models in the Rashomon set. We then
provide a high-probability bound on the Rashomon set using information theory, making the first
connection between the size of the Rashomon set and data quality as measured by mutual information.
The proofs of the propositions in this section are included in Appendix A.

Boosting algorithms select a sequence of weak learners4, h0, · · · , hT ∈ H, such that the additive
expansion fT (x) =

∑T
t=0 αht(x) ∈ F with α > 0 minimizes the empirical risk LS(fT ) [34, 57,

66, 19]. Different choices of H and the method for selecting ht ∈ H have led to various boosting
algorithms (see Appendix B.1). Here, our focus lies on gradient boosting [66, 34], which starts with a
constant model h0(x) = argminh0∈R

∑n
i=1 ℓ(h0, si), and iteratively extends the model ft(xi) with

ft(x) = ft−1(x) + argmin
ht∈H

∥ − ∇LS(ft−1)− ht∥22 = ft−1(x) + argmin
ht∈H

n∑
i=1

∥ht(xi)− rti∥22,

(2)
where rti = −

[
∂ℓ(ft−1,si)

∂ft−1

]
is the pseudo-residual of sample i from weaker learner ht. Indeed, for a

regression problem with a mean squared error (MSE) loss function, h∗
0 =

∑n
i=1 yi/n and rti = 2(yi−

ft−1(xi))—the part of the yi that cannot be explained by the current model ft−1(xi). For a binary
classification problem with a cross-entropy (CE) loss, h∗

0 = log
∑n

i=1 1[yi = 1]/
∑n

i=1 1[yi = 0],
and can be understood as regression on the log-likelihoods. We set α = 1 in this section for the sake
of theoretical analysis. For the convergence and consistency analysis of gradient boosting, see, e.g.,
Zhang and Yu [79] and Telgarsky [71].

3.1 Building Rashomon sets for gradient boosting

The iterative training procedure of gradient boosting in Eq. (2) allows us to convert the original
learning problem minf∈F LS(f) into a sequence of learning problems minht∈H LSt

(ht), for t ∈
[1, 2, · · · , T ], where St = {(xi, rti)}ni=1. In other words, the weak learner ht aims to fit the pseudo-
residuals in each iteration, and inducing a residual Rashomon set (cf. Figure 1),

Rt(H,St, h
∗
t , ϵ) ≜ {ht ∈ H;LPSt

(ht) ≤ LPSt
(h∗

t ) + ϵ}, (3)

where h∗
t is any given model such as the empirical risk minimizer in each iteration. Eq. (3) suggests

an alternative to building the entire Rashomon set R(F ,S, f∗
T , T ϵ) by iteratively building the residual

Rashomon sets for each iteration, i.e.

R1(H,S1, h
∗
1, ϵ)× · · · × Rt(H,St, h

∗
t , ϵ)× · · · × RT (H,ST , h

∗
T , ϵ) ⊇ R(F ,S, f∗

T , T ϵ). (4)

Eq. (4) comes from the fact that, for classification tasks, gradient boosting actually performs a
regression on the log-likelihood using the MSE loss. The pseudo-residual of the MSE loss exhibits a
linear relationship between the prediction and the output of each iteration, allows us to aggregate the
losses across iterations. Equation (4) will be clarified further in Proposition 2.

In practice, if we perform m re-training in each iteration, and obtain the empirical residual Rashomon
set Rm

t (H,St, h
∗
t , ϵ), the model fT (x) can be expressed as fT (x) = h0(x) +

∑T
t=1 ht(x),

∀ht ∈ Rm
t (H,St, h

∗
t , ϵ). Since in each of the T iterations, there are m candidate models in

Rm
t (H,St, h

∗
t , ϵ), there are a total of mT possibilities for fT (x) ∈ R(F ,S, f∗

T , T ϵ) (see Ap-
pendix B.3 for visualization). We term the process of building the empirical residual Rashomon
sets for the entire Rashomon set R(F ,S, f∗

T , T ϵ) as Rashomon gradient boosting or RashomonGB in
short. RashomonGB can be straightforwardly implemented by training m models (i.e., weak learners)
at each iteration that meet the loss constraints defined by the Rashomon set. This is fundamentally
different from simply performing m re-training of gradient boosting to solve the original learning
problem minf∈F LS(f), since the m models at each iteration obtained by RashomonGB share the
same residual from the previous iteration. During the inference phase RashomonGB carries a sig-
nificant benefit over simply performing m re-training of gradient boosting—both re-training
of gradient boosting and RashomonGB requires m× T training when considering all the iterations.

4The weak learners in gradient boosting are usually decision tree regressors. However, the choice of the weak
learners can be generalized to more complex families of functions [49] such as neural networks with [25] or
without regularizations [6, GrowNet], and Gaussian processes [69].

4
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Figure 1: Gradient boost-
ing and RashomonGB
with T iterations.

However, RashomonGB, using a different way to output the predictions at
the inference phase, yields exponentially many more models with the same
training cost. So far, we have informally introduced RashomonGB. In the
rest of this section, we provide a rigorous analysis to show the effectiveness
of RashomonGB by characterizing the Rashomon sets of gradient boosting
(or more generally, the Rashomon sets of the iterative training procedure).
The analysis collectively ensure that RashomonGB is not only practical but
also robust, enhancing its applicability in various real-world scenarios.

3.2 Information-theoretic characterization of the Rashomon set

Characterizing the entire Rashomon set, given a learning problem and
dataset, has posed as a significant computational challenge (refer to Sec-
tion 2). Specifically, for gradient boosting, delineating the Rashomon
set R(F ,S, f∗

T , ϵ) entails identifying all models fT ∈ F such that
LPS (fT ) ≤ LPS (f

∗
T ) + ϵ for a given model f∗

T . However, Eq. (4) presents
a novel approach to approximating the Rashomon set by decomposing it
into residual Rashomon sets concerning the weak learners—this method
offers valuable insights into analyzing the Rashomon effect in gradient
boosting.

Existing literature explores how various hypothesis spaces influence the Rashomon set but frequently
neglects the impact of datasets, despite the Rashomon set being inherently tied to the dataset itself
(cf. Eq. (1)). In this context, we derive a novel bound on the size of the Rashomon set by expanding
the scope of the Rashomon set beyond mere consideration of hypothesis spaces, incorporating the
influence of datasets through the lens of statistical learning and information theory. Particularly in
the analysis of information-theoretic generalization error bounds [77], a learning algorithm A(S)
is conceptualized as a random variable H that generates models within the hypothesis space H.
Moreover, the loss function ℓ(h, S) is also treated as a random variable, and is further assumed to
be σ-sub-Gaussian5 [73], a property that effectively generalizes the boundedness assumption of the
loss function in information-theoretical analysis. Sub-Gaussianity is a practical property since for
a bounded loss function ℓ ∈ [a, b], which can be readily satisfied by clipping the loss6, ℓ(h, S) is
guaranteed to be (b − a)/2-sub-Gaussian. With these properties in place, the mutual information
I(S;H) between H and the random variable of dataset S emerges as a pivotal metric for assessing
generalizability. By establishing a connection between generalization error bounds and the definition
of a Rashomon set in Eq. (1), and leveraging the properties of a sub-Gaussian loss, we derive the
following high-probability bound for a Rashomon set.
Proposition 1. For a dataset S, given an empirical risk minimizer h∗ = argminh∈H LS(h) and a
σ-sub-Gaussian loss ℓ, with probability at least 1− ρ, we have

h ∈ R

(
H,S, h∗,

√
8σ2

n

(
2I(S;H)

ρ
+ ln

4

ρ

)
+

√
σ2

n
ln

4

ρ

)
. (5)

In contrast to existing analyses of the Rashomon set primarily focused on optimization perspectives,
Proposition 1 offers a characterization of the size of the Rashomon set in terms of the controllable
probability of the Rashomon parameter ϵ. This sheds light on understanding the Rashomon set from
a statistical learning standpoint. Furthermore, the mutual information I(S;H) in Eq. (5) quantifies
the uncertainty of the learning algorithm with respect to the dataset S . In essence, I(S;H) serves as
a metric for the multiplicity of models, thereby contributing to predictive multiplicity. By chain rules,
we can decompose the mutual information into two components, each delineating a distinct source
responsible for inducing multiplicity, i.e.,

I(S;H) = I(Y,X;H) = I(X;H)︸ ︷︷ ︸
Model Uncertainty

+ I(Y ;H|X)︸ ︷︷ ︸
Quality of Data

. (6)

When I(X;H) is small, the model derived from the learning algorithm becomes nearly deterministic,
indicating minimal uncertainty regarding model selection. Similarly, I(Y ;H|X) can be expressed

5A random variable U is σ-sub-Gaussian if logE
[
eλ(U−EU)

]
≤ λ2σ2/2 for all λ ∈ R.

6The MSE loss is also qualified as a sub-Gaussian loss function.

5
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as I(Y ;H|X) = g(Y |X)− g(H|Y,X), where g denotes the (conditional) Shannon’s entropy [21].
The first component, g(Y |X), evaluates the data quality; if the channel from X to Y is devoid of
noise, the conditional entropy will be low. Conversely, if the channel is noisy, the conditional entropy
will be lower-bounded by the entropy of the noise source.

The mutual information I(S;H) indeed contains intricate details about the dataset, allowing us to
incorporate the dataset’s influence into depicting a Rashomon set. This is precisely why we opt for
information-theoretic tools over Rademacher complexity [68]. While Rademacher complexity offers
“data-dependent” generalization bounds, it lacks the ability to provide substantial insights into the
dataset itself. For completeness, we include a theoretical analysis of the size of Rashomon sets based
on Rademacher complexity, akin to the high probability bound in Proposition 1, in Appendix C.

Now we move back the characterizing the Rashomon set for RashomonGB. Recall that for each
iteration t ∈ [T ] in gradient boosting, we may define a residual Rashomon set St. By plugging St

into S in Proposition 1, and using the decomposition of the entire Rashomon set R(F ,S, f∗
T , T ϵ) in

Eq. (4), we are now equipped to re-evaluate the entire Rashomon set of gradient boosting.

Proposition 2. Let h∗
t be the empirical risk minimizer for each boosting iteration St, and f∗

T =∑T
t=1 h

∗
t , then for a σ-sub-Gaussian loss ℓ, with probability at least 1− Tρ, we have

fT ∈ R

(
F ,S, f∗

T , T

√
σ2

n
ln

4

ρ
+

T∑
t=1

√
8σ2

n

(
2I(St;H)

ρ
+ ln

4

ρ

))
. (7)

Proposition 2 suggests that the Rashomon set grows with the boosting iterations—it is due to the
increased complexity of the overall model ft. Unless the number of samples n goes to infinity, the
Rashomon set has a non-zero size.

3.3 The Rashomon effect in each iteration of gradient boosting

The information-theoretic analysis presented in the previous section underscores the importance
of the mutual information I(H;Y |X) in determining the size of the Rashomon set and hence the
severity of predictive multiplicity. However, existing literature lacks an in-depth analysis of the
information contained within the pseudo-residuals for gradient boosting algorithms. Let Rt represents
the random variable associated with the residuals {rti}ni=1. As t grows, fitting Rt with X becomes
progressively challenging, akin to the gradient vanishing problem observed in deep learning [31, 40],
thereby resulting in larger conditional mutual information with data X . We formalize this observation
in the following proposition.

Proposition 3. For both the MSE and CE losses, the mutual information between H and the pseudo-
residuals conditioned on the features X is non-decreasing with respect to the boosting iteration, i.e.,
let 0 ≤ t1 ≤ t2 ≤ T , then I(H;Rt1 |X) ≤ I(H;Rt2 |X).

The essence of Proposition 3 lies in the fact that the information contained in Rt2 can be understood as
a combination of the information in Rt1 and the additional information provided by the models fitted
to the residuals between iterations t1 and t2. Proposition 3, Proposition 1, and Eq. (6) collectively
hint at a counter-intuitive observation: the size of the residual Rashomon set could potentially
increase with more boosting iterations, i.e., for 0 ≤ t1 ≤ t2 ≤ T , we have ϵt1 ≤ ϵt2 and hence
Rt

(
H,St1 , h

∗
t1 , ϵt1

)
⊆ Rt

(
H,St2 , h

∗
t2 , ϵt2

)
. This implies that conducting additional boosting

iterations7 may not only exacerbate over-fitting but also result in a larger Rashomon set and heightened
predictive multiplicity. Note that we do not start with the assumption that ϵ increases with each
iteration; rather, this conclusion emerges from Proposition 3. With a constant ρ—as defined in
Proposition 1—additional iterations result in increased conditional mutual information, which in turn
necessitates a larger ϵ.

Figure 2 provides a simulation with a 20-dimensional Gaussian synthetic datasets with 100 samples,
trained with gradient boosting for 10 iterations, where each iteration contains m = 100 models.
Here, we show the conditional entropy8 g(Rt|X) instead of the mutual information I(Rt, X;H) in

7A similar phenomenon where additional information impacts the performance of boosting algorithms, has
also been noted in previous studies such as Friedman et al. [33] and Long and Servedio [53].

8Estimated with local linear regression [18], which has consistently smaller MSE for small datasets.

6
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Eq. (6) as the estimation of the mutual information is in general a hard task [60]. It is clear that the
conditional entropy—and consequently the mutual information—increases as the boosting procedure
iterates, leading to a larger Rashomon set. This occurs because the Rashomon effect accumulates
across the sequential learning problems addressed in each iteration, highlighting the cumulative
impact on diversity within the model space. The Ablation study in Appendix E.4 further clarifies
the selection of ϵ through its iterations. Figure E.9 demonstrates that fixing ϵ while re-training with
different random seeds results in a decreasing percentage ρ of models in the Rashomon set. This
implies that to maintain a consistent ρ, the chosen Rashomon parameter ϵ must increase.

Figure 2: Gradient boosting for binary
classification. The conditional entropy
of the residuals and the predictive mul-
tiplicity (measured by VPR) increase
along with the boosting iteration, which
matches Proposition 1.

As a remark, consider training m models per iteration, and
construct the overall Rashomon sets using models obtained
from the T1-th and T2-th iterations with T1 < T2. With the
same threshold ϵ for the Rashomon set, let ρ1 and ρ2 represent
the probabilities for iterations T1 and T2, respectively, then by
Proposition 3, we have 1− ρ1 ≥ 1− ρ2. the number of models
from the T1-th iteration that are included in the Rashomon
set with threshold ϵ will be mT1 × (1 − ρ1). Similarly, for
the T2-th iteration, the count will be mT2 × (1 − ρ2). It is
important to note that although ρ decreases, this reduction is
linear with respect to the number of iterations (as suggested
by the term 1 − Tρ in Proposition 2). However, the number
of models generated by RashomonGB grows exponentially with
the number of iterations. Thus, the total number of models in
the Rashomon set will still asymptotically increase with the
number of iterations.

4 Applications of Rashomon gradient boosting

We present three use cases demonstrating how RashomonGB can be deployed in practice to explore
models more effectively in the Rashomon sets: (i) improving the estimation of predictive multiplicity
metrics, (ii) fair model selection, and (iii) mitigating predictive multiplicity. Given that there are no
existing algorithms specifically designed to explore the Rashomon set for gradient boosting, apart
from re-training with different seeds [67, 48], we use the re-training strategy as our primary
baseline for comparison through this section. It’s noteworthy that both the re-training strategy and
RashomonGB share the same training complexity. However, during the inference phase, RashomonGB
exponentially expands the empirical Rashomon set (i.e., with a large m following Section 3.1). In our
experiments, we adopt the settings in Friedman [34] with decision tree regressors as weak learners for
tabular datasets and CNNs for images. See Appendix D.1 for detailed descriptions and pre-processing
of the datasets, Appendix D.2 for detailed training setups, and Appendix E for additional experiments
including ablation studies.

4.1 Improving the estimation of predictive multiplicity metrics

We estimate the predictive multiplicity metrics (cf. Appendix B.2) on three tabular datasets with
binary classes. Two of these datasets are from the financial domain (ACS Income [24] and Credit Card
[78]), while the other is from the medical domain (Contraception[5]). The datasets are particularly
chosen as predictive multiplicity in these domains could have profound implications for fairness and
justice. Note that the ACS Income dataset is an extension of the widely-used UCI Adult dataset
[5] with many more samples (≈1.6 million vs. <50k in the UCI Adult), allowing us to compare
methods with higher precision. Beyond binary classification and decision-tree weak learners, we
use CIFAR-10 [46] as a multi-class case study with CNNs as weak learner, i.e., a setting similar to
Badirli et al. [6, GrowNet].

Figure 3 summarizes the estimation of 4 predictive multiplicity metrics using the empirical Rashomon
sets obtained from re-training and RashomonGB. For a more detailed explanation on how to
interpret Figure 3, see Appendix E.1. We conduct 10 (and 50 for the CIFAR-10 dataset) re-training
of gradient boosting with different random seeds; each gradient boosting has T = 10 (and T = 6
for CIFAR-10) iterations and m = 10 (and m = 50 for CIFAR-10) models in each iteration. We
randomly select 2 out of m models in each boosting iteration and perform RashomonGB to obtain

7
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Figure 3: Re-training vs. RashomonGB in exploring the Rashomon set for predictive multiplicity metrics
estimation. In the leftmost column, each marker represents a model. The rightmost 4 figures in a row share the
same y-axis for the loss difference (values shown at the right), i.e., LPS (h

∗) + ϵ in Eq. (1). Higher predictive
multiplicity values mean a better estimate. RashomonGB, with more models in the Rashomon set, offers more
accurate multiplicity estimates under the same loss deviation constraints.

2T = 1024 (and 972 models for CIFAR-10) models9. The leftmost column shows the CE loss vs.
accuracy for the models obtained by the two methods. It is clear that with the same training cost,
RashomonGB offers many more models in the Rashomon set that spread wider in the loss-accuracy
plane. The rest of the four columns show the estimates of predictive multiplicity metrics given
different loss deviation constraints. Since VPR, Rashomon capacity, and disagreement are defined
per sample, we plot the mean and std. of the top 10% samples instead10.

As observed in Figure 3, RashomonGB consistently outperforms re-training in the ACS Income
and Credit Card datasets for all predictive multiplicity metrics. The RashomonGB has more advantages
especially when re-training is incapable of exploring enough models under the loss deviation
constraint. For example, in the Contraception dataset, when the loss constraint is under 0.585, there
is only one model obtained from re-training, and therefore the corresponding values of predictive
multiplicity metrics remain 0. As the loss constraint increases, the Rashomon set from re-training
has more models and its estimates converge with that of RashomonGB. The explanations above
indicate that the exploration of diverse models under the same loss constraint largely affects the
estimation of predictive multiplicity metrics. For the CIFAR-10 dataset, both VPR and RC values are
small, while decision-based metrics, such as disagreement and discrepancy, are large. This implies
that despite small score variations, a significant number of samples have scores close to the decision
boundary. Consequently, a slight perturbation in scores from a different model in the Rashomon set
could lead to a different class after applying argmax.

We include additional results on three other UCI datasets in Appendix E.2 and a comparison of
the computational time11 to obtained one model from re-training and from RashomonGB in
Appendix E.3. The ablation studies on different types of weak learners H (e.g., linear regression),
depths of decision tree weak learners, the number of boosting iteration T and the number of model
in each iteration m are also include in Appendix E.5 to E.8. To elucidate the distinctions between
predictive multiplicity and prediction uncertainty estimation in gradient boosting (cf. Section 2), we
have compared our re-training strategy, RashomonGB against NGBoost [27, 55], PGBM [70], and
IBUG [13] with the UCI Contraception dataset in Appendix E.9.

9For 3 models per iteration, RashomonGB produces 310 ≈ 59k models, exceeding our storage limit.
10Predictive multiplicity occurs only on a small portion of samples. The choice of 10% is data-dependent.
11For the ACSIncome dataset, the inference time per model is 0.4 seconds for re-training, compared to just

0.02 seconds for RashomonGB. This indicates that, with the same training cost (54.67 seconds), RashomonGB is
20 times more efficient in generating models from the Rashomon set than the re-training strategy.
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4.2 Selecting models with group fairness constraints

We conduct re-training and RashomonGB on two standard datasets in the algorithmic fairness
community, the UCI Adult and COMPAS recidivism datasets [3], with the goal of selecting a
model that exhibits better fairness-accuracy trade-offs. We follow the same training procedure
and gradient boosting architecture in Section 4.1. We assess the bias across different groups (e.g.,
female vs. male) by two group-fairness metrics12, mean equalized odds (MEO) [38] and statistical
parity (SP) [29] (cf. Appendix B.4 for details). In both datasets, the group attributes are the binary
“race” label. Figure 4 illustrates that with RashomonGB, a practitioner has a greater chance to
select a model that better satisfies group-fairness constraints without a significant drop in accuracy.

Figure 4: Fairness-accuracy trade-off for re-training
vs. RashomonGB on test set. Each marker represents a
model. A better trade-off means a smaller group-fairness
metric (MEO or SP) and a higher accuracy, i.e., the top
left area. For both datasets, RashomonGB provides more
better models to select that complies with the fairness
constraints whilst having the highest accuracy. For UCI
Adult, the CE loss of the models from RashomonGB is
0.38± 0.02 and 0.64± 0.02 for COMPAS.

For the UCI Adult dataset, despite that
re-training achieves the highest accuracy
(≈ 84.5%), it violates the MEO with 0.01. On
the other hand, RashomonGB provides a model
that perfectly complies with fairness constraint
(MEO ≈ 0) with a drop in accuracy less than
1%. Similar observations apply to the COM-
PAS dataset regarding SP. Moreover, we include
four additional fairness intervention baselines,
EqOdds [38], Rejection [45], Reduction [1],
and FaiRS [20]. See Appendix B.4 for a brief in-
troduction of the fairness intervention baselines.
The most relevant baseline to RashomonGB
is FaiRS, which modifies the Reduction ap-
proach to address fairness intervention problems
across the models in the Rashomon set. FaiRS
is originally implemented for logistic regression,
and we adapt it to gradient boosting.

For both UCI Adult and COMPAS datasets, RashomonGB encompasses nearly all models (excluding
EqOdds) from the fairness intervention baselines–without explicit fairness intervention–indicating
that RashomonGB gives a “rich” Rashomon set for model selection with additional fairness consider-
ations. The advantage of RashomonGB becomes even more pronounced when dealing with larger
datasets. In such scenarios, re-training and re-training-based fairness intervention algorithms, such
as Reduction (and FaiRS) and Rejection, may incur significantly higher training costs. Model
selection with RashomonGB is not limited the group fairness purposes; this experiment serves as
an initial demonstration of the diversity of RashomonGB use cases. In Section 4.3 we demonstrate
explicit feedback in the model selection process.

4.3 Mitigating predictive multiplicity

The RashomonGB framework, which involves training m distinct models in each iteration, offers the
added benefit of reducing predictive multiplicity in gradient boosting. The m models in the empirical
Rashomon set for Rm(H,St, h

∗
t , ϵ) for the tth iteration can either be selected (based on the least

losses) or aggregated (similarly to model averaging in Section 2). Building on these concepts, we
propose two approaches to reduce predictive multiplicity in gradient boosting: (i) model selection
with reweighted loss (MS), and (ii) intermediate ensembles during boosting iterations (IE).

Let ℓi,j = ℓ(hj , si) be the loss evaluated at sample si for model hj ∈ Rm(H,St, h
∗
t , ϵ), and let

ℓ̄i =
1
m

∑m
j=1 ℓi,j be the mean loss. The MS method considers the reweighted loss for each model in

the empirical Rashomon set using ℓhj
≜
∑n

i=1 ℓi,j(ℓi,j/ℓ̄i)
λ, and selects the top k models with the

smallest ℓhj
, where k ≤ m. MS simplifies to re-training at λ = 0. The model with the smallest

ℓhj
is used to compute the residuals for the next iteration, and we return the top k models at the

last boosting iteration. The intuition of this reweighting is that the loss contribution of sample si
is rewarded at an exponential scaling factor λ ≥ 0 when the model hj produces lower loss than
the average for si over all models in Rm(H,St, h

∗
t , ϵ). In contrast, the IE method constructs U

ensembles hu, u ∈ [U ] in each iteration, where each ensemble consists of E randomly selected

12MEO and SP respectively quantifies the discrepancy in the sum of True Positive Rate and False Positive
Rate, and in the probability of the model outputting class 1.
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Figure 5: re-training vs. MS with λ = 3 (left) and IE with E = 20 (right) to mitigate predictive multiplicity
on 18 UCI datasets. Each point is averaged over 20 random train-test splits (std. omitted for clarity). Dashed
lines are the mean of each axis. Higher values are better for both axes.

models from Rm(H,St, h
∗
t , ϵ). The model hu is constructed by an additive weighted sum of the

outputs of the E models, i.e., hu(xi) =
1
E

∑E
e=1 wehe(xi), where the weights we = (1/ℓhe

)/w,
and w is the harmonic mean of all losses {ℓhe

}Ee=1.

For evaluation, we extend the sample-wise metric disagreement µ(si) in Kulynych et al. [48] (cf. Ap-
pendix B.2) to consider the disagreement across all samples in the whole dataset. We call this new
metric p-disagreement13, defined as d(S, p) ≜ 1

n

∑n
i=1 1 [µ(si) ≤ p]. In Figure 5 we report the

reduction of predictive multiplicity (∆0-disagreement) and improvement of accuracy (∆accuracy)
vs. a re-training baseline, on 18 UCI tabular datasets [5]. In our experiments, U = m = 100,
k = 25, and E = 20. For a fair comparison, MS and IE share the same training procedure as
re-training—in all iterations we select the top k = 25 from m = 100 models.

We observe that IE outperforms MS in disagreement reduction while both methods yield a similar
accuracy to re-training. However, IE has the cost of increasing the overall model complexity
by a factor of E = 20, which may be undesirable for interpretability or auditing. It is noteworthy
that a small ∆accuracy could lead to a great reduction in disagreement. For example, in “epileptic-
seizure”, re-training has a 0-disagreement of 0.208 and IE reduces it to 0.041 with only a slight
improvement of 0.014± 0.002 in accuracy. For ablation studies on the hyperparameters E, k and λ
and more explanations, see Appendix E.10.

5 Discussion

Here we reflect on the limitations and highlight interesting avenues for future work.

Limitations. While re-training with different random seeds offers a “global” exploration of
models within the Rashomon set, RashomonGB conducts a “local” exploration. Therefore, the
effectiveness of RashomonGB depends on selecting diverse models in each iteration; similar models
reduce its efficiency in exploring Rashomon sets. However, RashomonGB demonstrates greater
efficiency than the re-training strategy, highlighting a trade-off between the efficiency of exploring
the Rashomon set and the effectiveness of capturing model diversity. Finding the (sub-)optimal
strategy for exploring the Rashomon set remains an active area of research. Our theoretical analysis,
developed for gradient boosting, needs an extension to other algorithms like adaptive boosting to
validate its applicability. Additionally, the large number of models generated by RashomonGB poses
storage challenges, requiring new data structures for efficient management.

Future directions. First, our analysis in Section 3 links the size of the Rashomon set to dataset
quality, providing a foundation for studying how dataset properties impact the Rashomon effect. Sec-
ond, combining models in each RashomonGB iteration is similar to model stitching [50], suggesting
potential insights if adapted for neural networks. Third, varying the number of models selected per
iteration could enhance RashomonGB’s flexibility and effectiveness.

13d(S, 0) counts the fraction of samples that have zero disagreement among the models in the Rashomon set.
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Disclaimer. This paper was prepared for informational purposes by the Global Technology Applied
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is not a product of the Research Department of JPMorgan Chase & Co. or its affiliates. Neither
JPMorgan Chase & Co. nor any of its affiliates makes any explicit or implied representation or
warranty and none of them accept any liability in connection with this paper, including, without
limitation, with respect to the completeness, accuracy, or reliability of the information contained
herein and the potential legal, compliance, tax, or accounting effects thereof. This document is not
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The appendix is divided into the following parts. Appendix A: Omitted proofs and theoretical results;
Appendix B: Discussion on predictive multiplicity metrics; Appendix C: discussion on the Rashomon
set with Rademacher complexity; Appendix D: Details on the experimental setup; and Appendix E:
Additional empirical results and ablation studies.

A Omitted proofs and theoretical results

We first introduce the following useful lemmas to facilitate the proofs of the propositions. The
first lemma is a fundamental property of sub-Gaussian random variables (Proposition 2.5.2 from
Vershynin [72]), and the second lemma is a slight extension of the Theorem 3 in Xu and Raginsky
[77].
Lemma A.1. If a random variable X is σ-sub-Gaussian, then

Pr (|X| ≥ γ) ≤ 2e−
γ2

σ2 . (A.1)

Lemma A.2. Suppose ℓ(h, S) is σ-sub-Gaussian under the data-generating distribution PS with
|S| = n for all h ∈ H, then

Pr (LPS
(H)− LS(H) > α) ≤ β, (A.2)

if n = 8σ2

α2

(
I(S;H)

β + log 2
β

)
for any α > 0 and 0 < β ≤ 1.

A.1 Proof of Proposition 1

By the definition of the Rashomon set in Eq. (1), we know that h ∈ R(H,S, h∗, ϵ) if and only if the
loss deviation is upper bounded by ϵ; that is,

LPS
(h)− LPS

(h∗) ≤ ϵ. (A.3)

We can decompose the loss deviation in Eq. (A.3) by

LPS
(h)− LPS

(h∗) = LPS
(h)− LS(h)︸ ︷︷ ︸

(1)

+LS(h)− LPS
(h∗)︸ ︷︷ ︸

(2)

. (A.4)

By picking β = ρ
2 in Lemma A.2, we have with probability at least 1− ρ

2 ,

(1) = LPS
(h)− LS(h) ≤

√
8σ2

n

(
2I(S;H)

ρ
+ ln

4

ρ

)
. (A.5)

Moreover, since the loss function ℓ(h, S) is σ-sub-Gaussian, the risk LS(h) is σ/
√
n-sub-Gaussian.

By Lemma A.1 and the non-negativity of the loss functions, we have

Pr (LS(h)− LPS
(h∗) ≥ γ) ≤ Pr (LS(h) ≥ γ) ≤ 2e−

nγ2

σ2 . (A.6)

Let 2e−
nγ2

σ2 = ρ
2 and solve for γ, we have with probability at least 1− ρ

2 ,

(2) = LS(h)− LPS
(h∗) ≤

√
σ2

n
ln

4

ρ
. (A.7)

Therefore, combining Eq. (A.4), Eq. (A.5) and Eq. (A.7) with probability union bounds, we have
with probability at least 1− ρ,

LPS
(h)− LPS

(h∗) ≤

√
8σ2

n

(
2I(S;H)

ρ
+ ln

4

ρ

)
+

√
σ2

n
ln

4

ρ
, (A.8)

and hence

Pr

(
h ∈ R

(
H,S, h∗,

√
8σ2

n

(
2I(S;H)

ρ
+ ln

4

ρ

)
+

√
σ2

n
ln

4

ρ

))
> 1− ρ. (A.9)
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A.2 Proof of Proposition 2

We start with the Rashomon set of fitting models to the pseudo-residuals at T -th boosting iteration.
With the MSE loss, we have rti = −

[
∂ℓ(ft−1,si)

∂ft−1

]
= 2(yi − ft−1(xi)). We neglect the factor 2 as it

is just a constant. From Proposition 1, we know that for hT ∈ H, with probability at least 1− ρ,

1

n

n∑
i=1

(hT (xi)− rti)
2 ≤ 1

n

n∑
i=1

(h∗
T (xi)− rTi)

2 + ϵT , (A.10)

where ϵT =

√
8σ2

n

(
2I(ST ;H)

ρ + ln 4
ρ

)
+
√

σ2

n ln 4
ρ is the Rashomon parameter. By plugging in the

recursive relation of the pseudo-residuals , we have

1

n

n∑
i=1

(h∗
T (xi)− rTi)

2 + ϵT =
1

n

n∑
i=1

(h∗
T (xi)− (yi −

T−1∑
t=0

h∗
t (xi))))

2 + ϵT

=
1

n

n∑
i=1

(

T∑
t=0

h∗
t (xi)− yi)

2 + ϵt

=
1

n

n∑
i=1

(f∗
T (xi)− yi)

2 + ϵt.

(A.11)

On the other hand, for the left-handed term in Eq. (A.10), we have for hT−1 ∈ H, with probability at
least 1− ρ

1

n

n∑
i=1

(hT (xi)− rti)
2 =

1

n

n∑
i=1

(hT (xi)− r(T−1)i + h∗
T−1(xi))

2

≥ 1

n

n∑
i=1

(hT (xi)− r(T−1)i + hT−1(xi))
2 − ϵT−1

=
1

n

n∑
i=1

(

T∑
t=T−1

ht(xi)− r(T−1)i)
2 − ϵT−1,

(A.12)

where the inequality in Eq. (A.12) comes again from Proposition 1. By repeating the decomposition
of the pseudo-residuals in Eq. (A.12), we have for fT ∈ F , with probability at least 1− (T − 1)ρ,

1

n

n∑
i=1

(hT (xi)− rti)
2 ≥ 1

n

n∑
i=1

(

T∑
t=1

ht(xi)− yi)
2 −

T−1∑
t=1

ϵt

=
1

n

n∑
i=1

(fT (xi)− yi)
2 −

T−1∑
t=1

ϵt.

(A.13)

Finally, combining Eq. (A.10), Eq. (A.11), and Eq. (A.13) with probability union bounds, we have
for fT ∈ F , with probability at least 1− Tρ

1

n

n∑
i=1

(fT (xi)− yi)
2 ≤ 1

n

n∑
i=1

(f∗
T (xi)− yi)

2 +

T∑
t=1

ϵt, (A.14)

where the overall Rashomon parameter
∑T

t=1 ϵt = T
√

σ2

n ln 4
ρ +

∑T
t=1

√
8σ2

n

(
2I(St;H)

ρ + ln 4
ρ

)
.

A.3 Proof of Proposition 3

With loss of generality, let t1 = t − 1 and t2 = t. If the loss function ℓ is the MSE loss, the
pseudo-residuals of the t-th boosting iteration have the form

rti = −
[
∂ℓ(ft−1, si)

∂ft−1

]
= 2(yi − ft−1(xi)) = 2(yi − ft−2(xi)− ht−1(xi))

= r(t−1)i − 2ht−1(xi).

(A.15)

17

121281 https://doi.org/10.52202/079017-3854



Therefore, we have the recursive relation of the residual variables as Rt = Rt−1 − 2H . The mutual
information then follows as

I(H;Rt|X) = I(H;Rt−1, H|X) = I(H;Rt−1|X) + I(H;H|X,Rt−1) ≥ I(H;Rt−1|X),
(A.16)

since mutual information I(H;H|X,Rt−1) is non-negative.

Similarly, if the loss function is the binary CE loss, the pseudo-residuals of the t-th boosting iteration
have the form

rti = −
[
∂ℓ(ft−1, si)

∂ft−1

]
=

yi
ft−1(xi)

− 1− yi
1− ft−1(xi)

=
yi − ft−1(xi)

ft−1(xi)(1− ft−1(xi))

=
yi − ft−2(xi)

ft−2(xi)(1− ft−2(xi))
+ c = r(t−1)i + c

(A.17)

where c is a function of ht−1(xi):

ht−1(xi)ft−2(xi)(1− ft−2(xi))(1− 2ft−2(xi)− ht−1(xi))(ft−2(xi)− yi)− ht−1(xi)

ft−2(xi)(1− ft−2(xi)) + ht−1(xi)(1− 2ft−2(xi)− ht−1(xi))
.

(A.18)
Therefore, consider the corresponding random variables of Eq. (A.17), we have Rt = Rt−1 + C and
the desired result follows from Eq. (A.16).
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B Additional discussions

We provide addition background and discussions on gradient boosting, predictive multiplicity, the
Rashomon gradient boosting algorithm, and group fairness.

B.1 More on gradient boosting

The minimization of LS(fT ) can be viewed as functional gradient descent (FGD), which is a com-
putationally infeasible optimization problem in general [58]. A common alternative to approximate
a FGD is applying steepest descent to find a local minimum of the loss function by iterating on a
given ft−1(x), i.e., ft(x) = ft−1(x) − η∇ft−1

LS(ft−1) with a learning rate η ∈ R+. This way,
in a forward stage-wise manner, we can fit a basis function ht ∈ H that is closest to the functional
gradient ∇ft−1

LS(ft−1) subject to a distance measure d with ht = argminh∈H d(∇LS(ft−1), h).
Varying the choices of ℓ and d recovers most widely-used boosting algorithms. For instance, if
ℓ(ht, si) = e−yiht(xi) and d(∇LS(ft−1), ht) = −∇LS(ft−1) ·ht, the FGD recovers adaptive boost-
ing (AdaBoost) [32], and if ℓ(ht, si) = log(1 + e−yih(xi)), it recovers LogitBoost [33]. Finally, if d
is the ℓ2-norm ∥ − ∇LS(ft−1)− ht∥22 instead of the inner product, it recovers the gradient boosting
[34]. One of the most popular variants of gradient boosting is by further applying LASSO and ridge
regularizations, called the eXtreme Gradient Boosting (XGB) [15].

B.2 More on predictive multiplicity and the empirical Rashomon sets
We summarize existing predictive multiplicity metrics, from their background, mathematical for-
mulation, operational meanings, to computational details. Predictive multiplicity metrics can be
categorized into two groups: score-based and decision-based, where a decision is a thresholded score
or the score vector after argmax. Precisely, consider a binary classification, if we have a score q, then
the decision can be obtained by 1[s > τ ], where τ is a threshold. For a c-class classification problem
where c > 2, the score is a vector, say q ∈ ∆c, and the decision can be obtained by argmaxi∈[c][q]i.
In the following, we start with the decision-based metrics, see Table B.1.

Decision-based predictive multiplicity metrics essentially measure the “conflictions” of the decisions
either for the whole dataset or per sample. Marx et al. [56] propose two metrics: ambiguity and
discrepancy; both of them measure the fraction of conflicting decisions across a dataset. Ambiguity
is the proportion of samples in a dataset that can be assigned conflicting predictions by competing
classifiers in the Rashomon set. Discrepancy is the maximum number of predictions that could change
in a dataset if we were to switch between models within the Rashomon set. More precisely, given a
pre-trained model hw∗ , the ambiguity α(D) and the discrepancy δ(D) are respectively defined in [56,
Definitions 3 and 4]. Both ambiguity and discrepancy can be estimated by a mixed integer program
[56, Section 3]. The implementation of estimating ambiguity and discrepancy can be accessed at
https://github.com/charliemarx/pmtools.

Table B.1: Decision-based predictive multiplicity metrics.

Metrics Definitions

Ambiguity [56] α(D) ≜ 1
|D|

∑
xi∈D

max
hw∈R

1 [argmaxhw(xi) ̸= argmaxhw∗(xi)]

Discrepancy [56] δ(D) ≜ max
hw∈R

1
|D|

∑
xi∈D

1 [argmaxhw(xi) ̸= argmaxhw∗(xi)]

Disagreement [10, 48] µ(xi) ≜ 2Pr{argmaxhw(xi) ̸= argmaxh′
w(xi);hw, h′

w ∈ R}

Table B.2: Score-based predictive multiplicity metrics.

Metrics Definitions

Std./ Var. of scores [52, 17, 9] s(xi) ≜
√

Ehw∼PR [(hw(xi)− Ehw∼PR [hw(xi)])2]
Viable Prediction Range (VPR) [74] v(xi) ≜ max

hw∈R
hw(xi)− min

hw∈R
hw(xi)

Rashomon Capacity (RC) [42] c(xi) ≜ sup
PR

inf
q∈∆c

Ehw∼PRDKL(hw(xi)∥q)
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Instead of computing the empirical fraction of conflicting decision over a dataset D, disagreement
directly using the probability of the occurrence of conflicting decisions per sample Black et al. [10,
Section A.1] and Kulynych et al. [48, Eq. (4)]. The factor 2 in the definition of disagreement ensures
that µ(xi) is in the [0, 1] range for the ease of interpretation. Kulynych et al. [48] further proposed
a plug-in estimator to estimate disagreement for binary classification with a sample complexity
bound on the number of models obtained by re-training. The implementation of directly estimating
disagreement from the empirical Rashomon set along with the plug-in estimator can be accessed at
https://github.com/spring-epfl/dp_multiplicity

On the other hand, score-based metrics focus on the spread of the output scores; see Table B.2. The
most straightforward metric is to compute the standard deviation (std.) s(xi) (and the variance (var.))
of the scores of a sample by all models in the Rashomon set Long et al. [52, Definition 2], see https:
//github.com/Carol-Long/Fairness_and_Arbitrariness for the implementation. However,
score std. or var. fails to capture large score spreads that concentrate on a small subset of models.
To precisely capture the largest possible spread of scores, Watson-Daniels et al. [74, Definition 2]
proposed Viable Prediction Range (VPR) v(xi), which is the largest score deviation of a sample
that can be achieved by models in the Rashomon set. The VPR can be computed using similar
mixed integer programs in Marx et al. [56] for binary classification with linear classifiers. However,
Watson-Daniels et al. [74] did not release their codes.

Borrowing from information theory, Hsu and Calmon [42, Definition 2] measures the spread of output
scores for c-class classification problems in the probability simplex ∆c by an analog of channel
capacity, termed the Rashomon Capacity. Note that the infimum infq∈∆c

Ehw∼PRDKL(hw(xi)∥q)
measures (in the sense of KL divergence) the spread of the scores of a sample xi given a distribution
PR over all the models hw in the Rashomon set, where the minimizing q acts as a “centroid” for
the outputs of the classifiers. The supremum picks the worst-case distribution PR over all possible
distributions in the Rashomon set. They proposed the adversarial weight perturbation (AWP), which
perturbs the weights of a pre-trained model such that the output scores of a sample are thrust toward
all possible classes. The outputs of the perturbed models can then be used to compute RC by the
Blahut-Aromoto algorithm [11, 4]. The implementation of AWP and the Blahut-Aromoto algorithm
can be accessed at https://github.com/HsiangHsu/rashomon-capacity.

The estimation of all these predictive multiplicity metrics is, in practice, computed with the empirical
Rashomon set, as the true Rashomon set in Eq. (1) is computationally infeasible. Note that, however,
the size of the empirical Rashomon set is not a proxy for multiplicity. For instance, an empirical
Rashomon set with 100 globally diverse (e.g., obtained by re-training with different seeds) models
might exhibit a higher predictive multiplicity metric (e.g., VPR) compared to another empirical
Rashomon set containing 1000 models that differ only locally. The size of the true Rashomon set, on
the other hand, representing an ideal scenario achievable with unlimited computational and storage
resources, can indeed act as a proxy for predictive multiplicity. In this context, predictive multiplicity
metrics are non-decreasing with a larger size of the true Rashomon set (i.e., a larger ϵ).

B.3 More on RashomonGB

We provide visualizations of RashomonGB in Figure B.6. For the sake of illustration, we pick T = 3
and m = 2; however, T and m could be arbitrary numbers. The left hand side shows 2 re-training
of gradient boosting, where the final models are M31 and M32, and there are m× T = 2× 3 = 6

Figure B.6: Re-training and RashomonGB with the same training costs produce difference numbers of models
in the Rashomon set.
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training in total. The right hand side is RashomonGB that generates mT = 23 = 8 models, i.e.,
{M11,M12}+{M21,M22}+{M31,M32}. In essence, building the Rashomon set with RashomonGB
is similar to expanding the tree in each iteration (i.e., layers) until it is a complete m-ary tree.

B.4 Group-fairness metrics and fairness interventions

Consider a triple of sample (x, a, y), where x and y are the usual feature and label pair, and a is an
additional attribute, such as race or sex, that can be used to split the datasets into different groups (e.g.,
female vs. male if a is sex). Group fairness is measured by the gap of a certain quantity evaluated
on different groups. For example, statistical parity (SP) considers the the probability of the model
outputting class 1, and mean equalized odds (MEO) considers the sum of True Positive Rate (TPR)
and False Positive Rate (FPR). For simplicity, denote Ŷ argmaxh(X) the prediction label from the
model h, and assume that there are B groups. Then the equalized odds (EO) and (SP) can be formally
defined as:

Definition B.1 (SP [29]). Pr
(
Ŷ = 1|A = a

)
= Pr

(
Ŷ = 1|A = a′

)
, ∀a, a′ ∈ [B].

Definition B.2 (EO [38]). Pr
(
Ŷ = 1|A = a, Y = y

)
= Pr

(
Ŷ = 1|A = a′, Y = y

)
, ∀a, a′ ∈ [B]

and ∀y ∈ [c].

The operational meaning of the two group fairness metrics is as follows: Statistical Parity (SP)
requires that the predicted label Ŷ be independent of the group attribute A, while Equalized Odds
(EO) conditions on both the group attribute and the true label for independence. EO improves upon
SP by allowing for perfect classifiers when the true label Y is correlated with the group attribute A.
In practice, we measure fairness by quantifying the level of EO and SP violations, as reported in
Figure 4. The violation of EO is also referred to as the mean EO.

MEO ≜ max
a,a′∈[B]

1

2
(|TPRA=a − TPRA=a′ |+ |FPRA=a − FPRA=a′ |) .

SP violation ≜ max
a,a′∈[B]

1

2

∣∣∣Pr(Ŷ = 1|A = a
)
− Pr

(
Ŷ = 1|A = a′

)∣∣∣ . (B.19)

Fairness intervention algorithms aim to make the outputs of a machine learning model satisfy either
MEO or SP violation smaller than a given budget. The fairness interventions can be categorized into
three categories: pre-processing, in-processing and post-processing. Pre-processing mechanisms,
such as the one proposed by Calmon et al. [14], transform the dataset using a random mapping to
reduce group fairness metrics while preserving utility. This approach is the most flexible within
the data science pipeline, as it is independent of the modeling algorithm and can be integrated with
data release and publishing mechanisms. In-processing mechanisms such as Reduction incorporate
fairness constraints directly into the training process. This typically involves adding a fairness
constraint to the loss function, resulting in a fair classifier. Post-processing mechanisms such as
EqOdds and rejection treat the model as a black box and adjust its predictions (by, e.g., tilting) to
meet the desired fairness constraints.

Here, we provide more details on the fairness intervention baselines used in Section 4.2. Reduction
[1], short for exponentiated gradient reduction, is an in-processing technique that converts fair classi-
fication into a sequence of cost-sensitive classification problems. It produces a randomized classifier
that achieves the lowest empirical error while satisfying the desired fairness constraints. Although this
technique effectively achieves fairness with minimal accuracy loss, it is computationally expensive
due to the need for re-training multiple models. Rejection [45] is a post-processing technique
that achieves fairness constraints by adjusting the outcomes of samples within a confidence band
around the decision boundary. It assigns favorable outcomes to unprivileged groups and unfavorable
outcomes to privileged groups, resulting in thresholded predictions rather than probabilities over
binary labels. EqOdds [38] is a post-processing technique that addresses empirical risk minimization
with a fairness constraint by formulating it as a linear program. It adjusts predictions based on the
derived probabilities to achieve equalized odds. FaiRS [20] develops a framework for characterizing
predictive fairness properties across models in the Rashomon set. They also propose a variant of
FaiRS that addresses the issue of selective labels, achieving the same guarantees with oracle access
to the outcome regression function.
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C Characterizing Rashomon sets with Rademacher complexity

Besides the information-theoretic analysis on the Rashomon sets in Section 3, here, we further
provide an analysis on the size the Rashomon sets based on Rademacher complexity [68]. Similar to
the Vapnik–Chervonenkis (VC) dimension, Rademacher complexity measures the richness of a set of
functions with respect to a probability distribution, reflecting its capacity to fit random noise, and is
widely-adopted in modern analysis of machine learning generalizability. Following the notations in
Section 2, the definition of Rademacher complexity is as follows.
Definition C.3 (Rademacher Complexity). For a hypothesis space H, samples S and a loss function
ℓ, the Rademacher complexity of H with respect to S is defined as

Rad(ℓ ◦ H ◦ S) ≜ 1

n
Eσ∼{±1}n

[
sup
h∈H

n∑
i=1

σiℓ(h, si)

]
, (C.20)

where the random variable in σ are i.i.d. distributed according to the Rademacher distribution, i.e.,
P (σi = 1) = P (σi = −1) = 0.5.

The following lemma is one of the fundamental results of the Rademacher Complexity.
Lemma C.3 ([68, Lemma 26.5]). Assume for all si ∈ S and h ∈ H we have |ℓ(h, si)| ≤ M , i.e.,
the loss function is bounded by M ; then with probability of at least 1− ρ, for all h ∈ H,

LPS
(h)− LS(h) ≤ 2Rad(ℓ ◦ H ◦ S) + 4M

√
2 ln(4/ρ)

n
. (C.21)

The following proposition states that the size of a Rashomon set is controlled by the Rademacher
complexity.

Proposition C.4. Let γ ≜ sup
h,h′∈H

LS(h)− LS(h
′), we have with probability of at least 1− ρ,

h ∈ R

(
H,S, h∗, γ + 2Rad(ℓ ◦ H ◦ S) + 5M

√
2 ln(4/ρ)

n

)
. (C.22)

Proof. Recall the constrain in the definition of the Rashomon set in Eq. (1), i.e.,

LPS
(h)− LPS

(h∗) = LPS
(h)− LS(h)︸ ︷︷ ︸

(1)

+LS(h)− LS(h
∗)︸ ︷︷ ︸

(2)

+LS(h
∗)− LPS

(h∗)︸ ︷︷ ︸
(3)

. (C.23)

Term (1) follows directly from Lemma C.3 and let (2) ≤ sup
h∈H

LS(h)− LS(h
∗) ≤ γ by assumption.

By the Hoeffding’s inequality [41], and denote zi = ℓ(h, si), we have for any function h ∈ H,

P (|LS(h)− LPS
(h)| ≤ t) = P

(∣∣∣∣∣ 1n
n∑

i=1

zi − E

[
1

n

n∑
i=1

zi

]∣∣∣∣∣ ≤ t

)
≤ 2 exp

(
−2nt2

M2

)
.

(C.24)
Therefore by taking h = h∗, with probability of at least 1− ρ/2, we have

(3) = LS(h
∗)− LPS

(h∗) ≤ M

√
ln(4/ρ)

2n
. (C.25)

Combining all together with the union bound, we have with probability of at least 1− ρ

LPS
(h)− LPS

(h∗) ≤ γ + 2Rad(ℓ ◦ H ◦ S) + 5M

√
2 ln(4/ρ)

n
. (C.26)

If we pick the loss function to be the p-norm, i.e., ℓ(h(xi), yi) = |h(xi)− yi|p, then the results in
Proposition C.4 become

P

(
h ∈ R

(
H,S, h∗, γ + 2pMp−1Rad(ℓ ◦ H ◦ S) + 5Mp

√
2 ln(4/ρ)

n

))
≥ 1− ρ. (C.27)
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Despite that we did not use Proposition C.4 in the main text, Eq. (C.22) stills provide us insights
on controlling the size of Rashomon sets. For example, γ and M reflect the boundedness of the
loss function, implying that CE loss, which is in general unbounded, could be a cause of a large
Rashomon set. Moreover, the Rademacher complexity Rad(ℓ◦H◦S) suggests that a larger hypothesis
space leaves the models a bigger “wiggle room” for multiplicity. Finally, note that as n → ∞, the
Rashomon parameter in Eq. (C.22) does no converge to 0.
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D Details on the experimental setup

We summarize the dataset descriptions and training setups in Section 4.

D.1 Dataset description and pre-processing

In this paper, we use 18 tabular datasets from the UCI machine learning repository [5], the ACS
Income dataset [24] and the COMPAS recidivism dataset [3]. We summarize the descriptions of
all tabular datasets, including the number of features, training/test split (seed = 42), and the label
description in Table D.3.

The UCI machine learning repository (accessible at DuBois [28]; license: CC BY 4.0) is a well-
known and widely used collection of 650 datasets for machine learning research and experimentation,
and contains a diverse and extensive collection of datasets across various domains. We select 18
datasets in specific domains, including medicine, economics, society, etc., that may possess critical
consequences if predictive multiplicity is not accounted for. For these UCI datasets, we remove
samples with missing values, one-hot encoded nominal features, re-scale numeric features, and set
the target label name to be 1 and the rest to be 0.

The ACS Income dataset (accessible at https://github.com/fairlearn/fairlearn; license:
MIT license) and the UCI Adult dataset are collected from the United States Census Bureau. The
goal of both datasets is to predict the income with demographic features of people. The UCI Adult
dataset has a smaller size and a binary record of the income label (Y = 1 if income > $50K and
Y = 0 otherwise). The ACS Income dataset has more than 1.6 million samples. The income attribute
is real-valued rather than a binary label. We transform the income to a binary labels by Y = 1 if
income > $39K (the median income) and Y = 0 otherwise.

The COMPAS Recidivism dataset (accessible at https://www.propublica.org/datastore/
dataset/compas-recidivism-risk-score-data-and-analysis; license: CC-BY-4.0) con-
tains the prior criminal history for criminal defendants and the demographic makeup of prisoners
in Brower County, Florida from 2013-2014. we select gender, age, number of prior crimes, length
of custody and likelihood of recidivism to be the features. We pre-process the dataset by dropping
missing/incomplete records, and convert categorical variables by one-hot encoding. For the group
fairness experiments in Section 4.2, we only keep two races, African American (S = 0) and Caucasian
(S = 1).

CIFAR-10 dataset (accessible at https://www.cs.toronto.edu/~kriz/cifar.html; license:
MIT License) contains 60,000 images and equally distributed to 10 classes, such as cars, cats, etc.
The dataset is split into 50,000 and 10,000 images for training and validation, respectively. Each
image is a colored image with size of 32×32. For the pre-processing, we normalize each channel of
image by the mean and standard deviation of the whole training set.

D.2 Training setups and results

The weak learners used for all tabular datasets are decision trees with the Python Scikit Learn
package [62]. The decision trees are expanded up to a maximal depth of 2, and the criterion for
splitting is the squared loss with a impurity gain greater than 10−7. The minimum number of
samples required to split an internal node is 2 and the maximum number of leaf nodes is 3. The
number of iterations for re-training and RashomonGB is T = 10. In each iteration we train
models with different random seeds for the splitting at each depth, and use a filtering process
in place that screens out models with an MSE loss greater than 0.1 (i.e., ϵt = 0.1) and retains
models with an MSE loss smaller than 0.01 until m = 10 models are collected at each iteration.
For RashomonGB, we randomly pick 2 out of m models in each iteration. For all experiments,
we set the learning rate to be α = 0.8, and the loss function is the binary cross-entropy loss
LCE(h) ≜ 1

n

∑n
i=1[−yi log softmax(h(xi))− (1− yi) log(1− softmax(h(xi)))]. For experiments

in Section 4.2, we use the AIF360 [7] and Fairlearn [8] packages to implement the fairness intervention
algorithms.

The weaker learner used for CIFAR-10 experiment is a 3-stage convolutional neural network with
Python Pytorch package [61], each stage is composed by a convolutional layer with kernel size 3×3
and output channel 64, a batch normalization layer and a ReLU layer, and the residual shortcut is
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added before ReLU for stage 2 and 3; at the end of each stage, an average pooling layer reduces
the spatial dimension by 2 with kernel size 3. After stage 3, a global average pooling is applied to
reduce the spatial dimension to 1×1, following by a linear layer for regression the pseudo-residual
of each class. For each weaker learner, we train with batch size 256 for 50 epochs, and we use
the AdamW [54] optimizer with fixed learning rate, 10−3 and weight decay, 10−4. Due to its
complexity, we use T = 6 and m = 50 for both re-training and RashomonGB. During inference
for RashomonGB, we random pick 3 out of m models for each boosting iteration but 4 for the last
iterations, which results in 972 models. We adopt the same learning rate (0.8) used in the experiments
for the tabular datasets.

Table D.3: Tabular dataset descriptions.

Dataset # of
features

Training
set size

Test
set size Label (# of classes)

ACS Income 10 1331k 332k income larger than median or not (2)
UCI Adult 104 22621 7541 income >50K (2)
AIDS-175 26 1283 856 patient death within the study period (2)
Bank Marketing 63 30891 10297 has deposit (2)
Cardiotocography (ctg) 84 1275 851 normal or not (2)
COMPAS 6 4222 1056 commit a crime again or not (2)
Contraception 9 1104 369 long or short term (2)
Credit Approval 51 414 276 credit card application approval or not (2)
Credit Card 23 24000 6000 default a payment or not (2)
Cylinder bands 39 324 216 band or no band (2)
Dropout 36 2654 1770 student drops out of school or not (2)
Epileptic seizure 178 6900 4600 subject has seizure or not (2)
German credit 20 600 400 good/bad credit risk (2)
Heart Disease (Cleveland) 13 181 122 absence/presence of heart disease (2)
ILPD 10 349 234 patient with/without liver disease (2)
Mammography 5 622 208 benign or malignant (2)
Mushroom Secondary 20 36641 24428 poisonous or not (2)
Qualitative Bankruptcy 18 150 100 had bankruptcy or not (2)
Taiwan Credit 23 18000 12000 borrower defaults on payment or not (2)
Wine 13 106 72 Wine type 2 vs. rest (2)
Wine Quality 13 3898 2599 Quality > 5 (2)
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E Additional results and experiments

We include an illustration on how to interpret Figure 3, additional experiments on other UCI
datasets (UCI Adult, Bank Marketing, Mammography), computational time comparison between
re-training and RashomonGB, ablation studies on different types of weak learners, number of
boosting iterations T , number of models in each iteration m, comparison with predictive uncertainty
estimation methods, and hyperparameters for mitigation predictive multiplicity (E, k, and λ).

E.1 How to interpret Figure 3

We provide an explanation on how to properly interpret Figure 3 in Figure E.7. We first perform
re-training with different random seeds and perform RashomonGB by using the same weak learners,
i.e., the training cost of RashomonGB and Re-training are the same and hence the comparison
presented in the paper is fair. Note that the ϵ we report here is the overall Rashomon parameter
after T = 10 iterations, i.e., T × ϵ. Moreover, we do not compare models with different ϵ as it is
clearly unfair. For the experiments of reporting predictive multiplicity in Section 4.1, we report the
Rashomon parameter ϵ in the vertical axis (leftmost column) in Figure 3. For the experiments of
fair model selection, we report the ϵ in the caption of Figure 4. For the experiments of mitigating
predictive multiplicity by model averaging, we report the ϵ (in terms of the improvement of accuracy)
in the vertical axis in Figure 5.

Figure E.7: This figure is part of the Figure 3. For illustration, we draw a red dashed line at CE Loss = 0.542.
In the leftmost column, each marker represents a model for Re-training (cross) and RashomonGB (square),
and the shaded area covers all models from either Re-training or RashomonGB that has CE Loss smaller
than 0.542. In other words, cross and square markers in the shaded area form the Rashomon set building by
Re-training and RashomonGB respectively. The values of predictive multiplicity metrics on the rightmost
4 columns at the intersection of the red dashed line are the predictive multiplicity metrics estimated with the
Rashomon set of LPS (f

∗
T ) + Tϵ = 0.542. Scanning the red dashed line upward leads to a larger Rashomon

set. We would like to emphasize that our comparison between Re-training and RashomonGB is fair as those
models are obtained from the same training cost.
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E.2 Estimating predictive multiplicity metrics of other UCI datasets

We include additional results in Figure E.8 on comparing the effectiveness of estimation prediction
multiplicity metrics between re-training and RashomonGB (similar to Figure 3) for UCI Adult,
Bank marketing, and Mammography datasets [5]. The UCI Adult dataset aims to predict whether the
income of an individual exceeds 50,000 per year based on 1994 census data. The Bank Marketing
dataset is related with direct marketing campaigns of a Portuguese banking institution based on
phone calls in order to predict if the client will subscribe a bank term deposit or not. The Mam-
mography dataset aims to discriminate between benign and malignant mammographic masses based
on BI-RADS attributes and the patient’s age. Our observation is that for decision-based predictive
multiplicity metrics such as disagreement and discrepancy, RashomonGB outperforms re-training
in terms of the effectiveness. For score-based predictive multiplicity metrics, when the CE loss
constraint is small, RashomonGB performs better for all three datasets. When CE loss constraint is
large, the size of the Rashomon set grows fast, and re-training captures more diverse models in
the Rashomon set. These observations are consistent with the results shown in the main text.

Figure E.8: Re-training vs. RashomonGB in exploring the Rashomon set for predictive multiplicity metrics
estimation. In the leftmost column, each marker represents a model. The rightmost 4 figures in a row share the
same y-axis for the loss difference (values shown at the right), i.e., LPS (h

∗) + ϵ in Eq. (1). Higher predictive
multiplicity values mean a better estimate.
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E.3 Computational time comparison

We compare the training time, and the time to obtained one model for re-training and RashomonGB
with T = 10, m = 10, α = 0.8 and depth-2 decision tree as weak learners. We repeated the
experiments 3 times with different random seeds and report the time (in seconds) in Table E.4. Note
that re-training and RashomonGB share the same training time, and the values we show for the
columns re-training and RashomonGB are the inference time. It is clear that the time cost to obtain
a model from RashomonGB is consistently and significantly smaller than that from re-training. All
the runtimes we reported here are computed on the same machine in an Amazon EC2 g4dn.8xlarge
instance.

Table E.4: Comparisons of training time, and the time to obtained a model for re-training and RashomonGB.
All values are in seconds, and are repeated with 3 experiments with different seeds.

Datasets Training retraining per model RashomonGB per model

UCI Adult 2.6667± 0.4714 0.0010± 0.0000 0.0000± 0.0000
ACS Income 54.6667± 0.4714 0.4000± 0.0000 0.0273± 0.0000
Bank Marketing 2.6667± 0.4714 0.0333± 0.0471 0.0013± 0.0005
Mammography 0.0000± 0.0000 0.0010± 0.0000 0.0000± 0.0000
Contraception 0.0000± 0.0000 0.0667± 0.0471 0.0003± 0.0005
Credit Card 0.6667± 0.4714 0.0007± 0.0005 0.0000± 0.0000
COMPAS 0.3333± 0.4714 0.0667± 0.0471 0.0003± 0.0005

E.4 Supporting experiments for Section 3.3

We validate our discussion in Section 3.3 that more boosting iterations could lead to a larger Rashomon
set. We perform RashomonGB on the UCI Adult dataset with m = 100, α = 0.8, and decision trees
as weak learners with different numbers of boosting iterations T = [1, · · · , 10] in Figure E.9. On
the left side, we show the CE Loss vs. accuracy of the models in each iteration. It is clear that the
CE losses decreases and the accuracy increases with more boost iterations. On the right side, we
show the percentage of models in the Rashomon set in each boosting iteration under different loss
constraints. For example, when the loss constraint is around 0.40, more than 90% of the models in
iteration T = 10 are in the Rashomon set but only 50% of the models in iteration T = 4.

Figure E.9: Fraction of models in the Rashomon set in different number of boosting iterations T and CE loss
constraints.
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E.5 Ablation study on different types of weak learners

We compare re-training and RashomonGB on the UCI Adult dataset with T = 10, m = 10,
α = 0.8, and different weak learners (depth-2 decision trees, feedforward neural networks (one-
hidden layer with 10 neurons, RelU activations, Adam optimizer, trained with 10 epochs with
a constant learning rate 0.001), and linear regression) in Figure E.10. RashomonGB outperforms
re-training on decision tree and neural network regressors as these two types of weak learners
are more complicated. Linear regression is too simple and therefore RashomonGB is not able to find
diverse models in the Rashomon set. Neural network weak learners achieves the highest accuracy
(1% higher) than linear regression and decision trees.

Figure E.10: Re-training vs. RashomonGB in exploring the Rashomon set for predictive multiplicity metrics
estimation with different weak learners.

E.6 Ablation study on different depths of decision tree regressors

We compare re-training and RashomonGB on the UCI Adult dataset with T = 10, m = 10,
α = 0.8, and decision trees of different depths as weak learners in Figure E.11. As the tree depth
increases, i.e., weak learners are more complicated, and both re-training and RashomonGB achieve
higher accuracy and lower CE losses. For the same loss constraints, e.g., CE loss ≈ 0.370, a more
complicated weak learner will lead to more predictive multiplicity compared to simpler weak learners,
since the hypothesis space is larger, leading to a larger Rashomon set.

Figure E.11: Re-training vs. RashomonGB in exploring the Rashomon set for predictive multiplicity metrics
estimation with decision tree regressors of different depths as weak learners.
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E.7 Ablation study on number of boosting iterations

We compare re-training and RashomonGB on the UCI Adult dataset with m = 10, α = 0.8,
and decision trees as weak learners with different numbers of boosting iterations T = [2, 5, 10] in
Figure E.12. For T = 5, RashomonGB finds models with higher losses and does not perform as good
as re-training. For T = 2 and T = 10, RashomonGB outperforms re-training as usual. Note
that for the same size of Rashomon set with CE losses ≈ 0.370, more boosting iterations (T = 10 vs.
T = 2) could lead to a larger effect of predictive multiplicity, as discussed in Section 3.3.

Figure E.12: Re-training vs. RashomonGB in exploring the Rashomon set for predictive multiplicity metrics
estimation with different boosting iterations T .

E.8 Ablation study on the number of model in each iteration

We compare re-training and RashomonGB on the UCI Adult dataset with T = 10, α = 0.8,
decision trees as weak learners, and different number of model in each iteration m = [2, 5, 10] in
Figure E.13. When m = 2, re-training only obtains 2 models whereas RashomonGB is still able
to find more than 1000 models in the Rashomon set. Therefore, when m is smaller, i.e., less budget
on computational resources, RashomonGB consistently performs better than re-training.

Figure E.13: Re-training vs. RashomonGB in exploring the Rashomon set for predictive multiplicity metrics
estimation with different number of models m in each iteration.
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E.9 Comparison with predictive uncertainty estimation in gradient boosting

Prediction uncertainty [35, 2] indeed differs fundamentally from predictive multiplicity. Prediction
uncertainty, derived from a Bayesian perspective, seeks to reconstruct the distribution p(Y |x) for
a given sample x and assess metrics such as variance or negative log-likelihood of Y , typically
involving only one model without specific loss constraints. Conversely, predictive multiplicity
involves evaluating multiple models within the Rashomon set that exhibit similar loss, thereby
reflecting a variety of potential outcomes for the same inputs. To elucidate these distinctions, we have
compared our re-training strategy, RashomonGB, with the prediction uncertainty methods—NGBoost
[27], PGBM [70], and IBUG [13]—using the UCI Contraception dataset. For a rigorous comparison,
in Figure E.14, we applied these prediction uncertainty methods to estimate p(Y |x) (parameterized as
Gaussian), sampled 1024 values of y, and computed the corresponding Rashomon set and predictive
multiplicity metrics. The results demonstrate that RashomonGB encompasses the widest range of
models, thereby providing consistently higher and more robust estimates of predictive multiplicity
metrics. This comparison highlights the unique capabilities of RashomonGB in capturing a broader
spectrum of potential model behaviors within the dataset.

Figure E.14: Re-training (1st row) vs. RashomonGB (2nd row) vs. prediction uncertainty methods (NGBoost
(3rd row), PGBM (4th row), and IBUG (5th row)) in exploring the Rashomon set for predictive multiplicity
metrics estimation on the UCI Contraception dataset. For the prediction uncertainty methods, we following the
assumption of Gaussianity of P (Y |x) and estimate the mean and covariance from NGBoost, PGBM, and IBUG.
Using the estimated mean θ and covariance Σ, we sample 1024 y from the distribution P (Y |x) ≈ N (θ,Σ).
In the leftmost column, each marker represents a model for Re-training and RashomonGB, or a realization
of Y sampled from prediction uncertainty methods . The rightmost 4 figures in a row share the same y-axis
for the loss difference (values shown at the right), i.e., LPS (f

∗
T ) + Tϵ. Higher predictive multiplicity values

mean a better estimate. For the leftmost column, it is clear that RashomonGB covers a widest range of models,
leading to consistently higher estimates of VPR and the Rashomon Capacity. For decision-based metrics such as
disagreement, RashomonGB has the better estimate when CE Loss is higher; however, for discrepancy IBUG has
the better estimate.
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E.10 Hyperparameter sensitivity results related to mitigation methods in Section 4.3

Figure E.15 illustrates the effect of model hyperparameters on our two measures of interest: 0-
disagreement and accuracy. We report mean of each measure over 20 random train/test splits. We
evaluate several datasets with larger ∆0-disagreement in Figure 5. In (a), varying the ensemble size
E tends to reduce disagreement on the 5 datasets evaluated. From this result, we use E = 20 when
fixing E in our experiments. In (b), 0-disagreement increases over increasing k. We select the k
weak learners from the candidate set in ascending order of loss. Therefore, increasing k tends to add
models of decreasing quality. Furthermore, the 0-disagreement measure is strict; it requiring every
additional model to have the same prediction on the sample. In (c), 0-disagreement tends to decrease
to around λ = 5. From this result, we tune on λ ∈ [0, ..., 5] in our experiments. Finally, the bottom
row demonstrates that accuracy is not sensitive to changes in any of these hyperparameters.

(a) (b) (c)

(d) (e) (f)

Figure E.15: Comparison of varying hyperparameters of the ensemble size (E) the loss reweighting penalty (λ),
and the total number of trained models k. The first row reports the 0-disagreement (Lower is better), the second
reports the accuracy. We report average statistics over 20 random train-test splits.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We include a list of contributions at the end of the introduction, where each
contribution and the claims made therein are specifically referred to a section in this paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We include a discussion of limitations regarding theoretical extensions and
computational overhead in the last section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: We clearly state all the assumptions and lemmas that we have used with
citations in our theoretical results. We also provide the sketch of proof/intuition in the main
text.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide details descriptions of the proposed methodology in the main text
and in the appendix. Our methodology is tested on over 20 datasets with consistent and
explainable results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: Due to intellectual property protection and anonymity requirements, we choose
to release our codes upon decision. We provide details scripts on how to access the datasets,
implement our methodology, and reproduce the empirical results. We may be able to release
the codes during the review process.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide detailed information on data pre-processing, train/test split with
random seeds, hyper-parameter settings, etc. in the main text and appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: All results we reported in the main text are from experiments repeated 3 −
20 times with different random seeds for initialization. We report all the numbers with
mean and standard deviation (error bars). Our methodology shows statistically significant
improvements.
Guidelines:

• The answer NA means that the paper does not include experiments.
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide the specific type of machine we used for the experiments, especially
for the runtime comparison.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have reviewed and complied the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We cover the positive and negative impacts of the Rashomon effect and
predictive multiplicity in the introduction and related work
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Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We provide proper citations for all datasets including licenses and how to
access, and programming packages (Python, Pytorch, Scikit Learn, AIF360, and Fairlearn)
used in this paper.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
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• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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