
On the Convergence of Loss and Uncertainty-based
Active Learning Algorithms

Daniel Haimovich
Meta, Central Applied Science

danielha@meta.com

Dima Karamshuk
Meta, Central Applied Science

karamshuk@meta.com

Fridolin Linder
Meta, Central Applied Science

flinder@meta.com

Niek Tax
Meta, Central Applied Science

niek@meta.com

Milan Vojnović
London School of Economics
m.vojnovic@lse.ac.uk

Abstract

We investigate the convergence rates and data sample sizes required for training
a machine learning model using a stochastic gradient descent (SGD) algorithm,
where data points are sampled based on either their loss value or uncertainty
value. These training methods are particularly relevant for active learning and
data subset selection problems. For SGD with a constant step size update, we
present convergence results for linear classifiers and linearly separable datasets
using squared hinge loss and similar training loss functions. Additionally, we
extend our analysis to more general classifiers and datasets, considering a wide
range of loss-based sampling strategies and smooth convex training loss functions.
We propose a novel algorithm called Adaptive-Weight Sampling (AWS) that utilizes
SGD with an adaptive step size that achieves stochastic Polyak’s step size in
expectation. We establish convergence rate results for AWS for smooth convex
training loss functions. Our numerical experiments demonstrate the efficiency of
AWS on various datasets by using either exact or estimated loss values.

1 Introduction

In practice, when training machine learning models for prediction tasks (classification or regression),
one often has access to an abundance of unlabeled data, while obtaining the corresponding labels may
entail high costs. This may especially be the case in fields like computer vision, natural language
processing, and speech recognition. Active learning algorithms are designed to efficiently learn a
prediction model by employing a label acquisition, with the goal of minimizing the number of labels
used to train an accurate prediction model.

Various label acquisition strategies have been proposed, each aiming to select informative points for
the underlying model training task; including query-by-committee [Seung et al., 1992], expected
model change [Settles et al., 2007], expected error reduction [Roy and McCallum, 2001], expected
variance reduction [Wang et al., 2016], and mutual information maximization [Kirsch et al., 2019,
Kirsch and Gal, 2022].

A common label acquisition strategy involves estimating uncertainty, which can be viewed as
self-disagreement about predictions made by a given model. Algorithms using an uncertainty

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

122770 https://doi.org/10.52202/079017-3901

acquisition strategy are referred to as uncertainty-based active learning algorithms. Different variants
of uncertainty strategies include margin of confidence, least confidence, and entropy-based sampling
[Nguyen et al., 2022]. Recently, a loss-based active learning approach gained attention in research Yoo
and Kweon [2019], Lahlou et al. [2022], Nguyen et al. [2021], Luo et al. [2021], and is now applied
at scale in industry, such as for training integrity violation classifiers at Meta. This method involves
selecting points for which there is a disagreement between the predicted label and the true label, as
measured by a loss function. Since the true loss of a data point is unknown prior to the acquisition
of the label, in practice, it is estimated using supervised learning. Loss-based sampling aligns
with the spirit of the perceptron algorithm [Rosenblatt, 1958], which updates the model only for
falsely-classified points.

Convergence guarantees for some uncertainty-based active learning algorithms have recently been
established, such as for margin of confidence sampling [Raj and Bach, 2022]. By contrast, there are
only limited results on the convergence properties of loss-based active learning algorithms, as these
only recently been started to be studied, e.g., Liu and Li [2023].

The primary focus of this paper is to establish convergence guarantees for stochastic gradient
descent (SGD) algorithms where points are sampled based on their loss. Our work provides new
results on conditions that ensure certain convergence rates and bounds on the expected sample size,
accommodating various data sampling strategies. Our theoretical results are under assumption that
the active learner has access to an oracle that provides unbiased estimate of the conditional expected
loss for a point, given the feature vector of the point and the current prediction model. In practice,
the loss cannot be evaluated at acquisition time since labels are yet unknown. Instead, a separate
prediction model is used for loss estimation. In our experiments, we assess the impact of the bias and
noise in such a loss estimator. Our convergence rate analysis accommodates also uncertainty-based
data selection, for which we provide new results.

Uncertainty and loss-based acquisition strategies are also of interest for the data subset selection
problem, often referred to as core-set selection or data pruning. This problem involves finding a small
subset of training data such that the predictive performance of a classifier trained on it is close to
that of a classifier trained on the full training data. Recent studies have explored this problem in the
context of training neural networks, as seen in works like Toneva et al. [2019], Coleman et al. [2020],
Paul et al. [2021], Sorscher et al. [2022], Mindermann et al. [2022]. In such scenarios, the oracle can
evaluate an underlying loss function exactly, avoiding the need for using a loss estimator.

There is a large body of work on convergence of SGD algorithms, e.g. see Bubeck [2015] and
Nesterov [2018]. These results are established for SGD algorithms under either constant, diminishing
or adaptive step sizes. Recently, Loizou et al. [2021], studied SGD with the stochastic Polyak’s step
size, depending on the ratio of the loss and the squared gradient of the loss of a point. Our work
proposes an adaptive-window sampling algorithm and provides its convergence analysis, with the
algorithm defined as SGD with a sampling of points and an adaptive step size update that conform to
the stochastic Polyak’s step size in expectation. This is unlike to the adaptive step size SGD algorithm
by Loizou et al. [2021] which does not use sampling.

1.1 Summary of our Contributions

Our contributions can be summarizes as given in the following points:

• For SGD with a constant step size, we present conditions under which a non-asymptotic convergence
rate of order O(1/n) holds, where n represents the number of iterations of the algorithm, i.e., the
number of unlabeled points presented to the algorithm. These conditions enable us to establish
convergence rate results for loss-based sampling in the case of linear classifiers and linearly separable
datasets, with the loss function taking on various forms such as the squared hinge loss function,
generalized hinge loss function, or satisfying other specified conditions. Our results provide bounds
for both expected loss and the number of sampled points, encompassing different loss-based strategies.
These results are established by using a convergence rate lemma that may be of independent interest.

• For SGD with a constant step size, we provide new convergence rate results for more general classi-
fiers and datasets, with sampling of points according to an increasing function π of the conditional
expected loss of a point. In this case, we present conditions for smooth convex training loss functions
under which a non-asymptotic convergence rate of order O(Π−1(1/

√
n)) holds, where Π is the

primitive function of π. These results are established by leveraging the fact that the algorithm behaves

2

122771https://doi.org/10.52202/079017-3901

akin to a SGD algorithm with an underlying objective function, as referred to as an equivalent loss in
Liu and Li [2023], allowing us to apply known convergence rate results for SGD algorithms.

• We propose Adaptive-Weight Sampling (AWS), a novel learning algorithm that combines a sampling-
based acquisition strategy with an adaptive step-size SGD update, achieving the stochastic Polyak’s
step size update in expectation, which can be used with any differentiable loss function. We establish
a condition under which a non-asymptotic convergence rate of order O(1/n) holds for AWS with
smooth convex loss functions. We present uncertainty and loss-based strategies that satisfy this
condition for binary classification, as well as an uncertainty strategy for multi-class classification.

• We present numerical results that demonstrate the efficiency of AWS on various datasets.

1.2 Related Work

The early proposal of the query-by-committee (QBC) algorithm by [Seung et al., 1992] demonstrated
the benefits of active learning, an analysis of which was conducted under the selective sampling
model by Freund et al. [1997] and Gilad-bachrach et al. [2005]. Dasgupta et al. [2009] showed that
the performance of QBC can be efficiently achieved by a modified perceptron algorithm with adaptive
filtering. The efficient and label-optimal learning of halfspaces was studied by Yan and Zhang [2017]
and, subsequently, by Shen [2021]. Online active learning algorithms, studied under the name of
selective sampling, include works by [Cesa-Bianchi et al., 2006, 2009, Dekel et al., 2012, Orabona
and Cesa-Bianchi, 2011, Cavallanti et al., 2011, Agarwal, 2013]. For a survey, refer to Settles [2012].

Uncertainty sampling has been utilized for classification tasks since as early as [Lewis and Gale,
1994], and subsequently in many other works, such as [Schohn and Cohn, 2000, Zhu et al., 2010,
Yang et al., 2015, Yang and Loog, 2016, Lughofer and Pratama, 2018]. Mussmann and Liang
[2018] demonstrated that threshold-based uncertainty sampling on a convex loss can be interpreted
as performing a pre-conditioned stochastic gradient step on the population zero-one loss. However,
none of these works have provided theoretical convergence guarantees.

The convergence of margin of confidence sampling was recently studied by Raj and Bach [2022],
who demonstrated linear convergence for linear classifiers and linearly separable datasets, specifically
for the hinge loss function, for a family of selection probability functions and an algorithm that
performs a SGD update with respect to the squared hinge loss function. However, our results for linear
classifiers and linearly separable datasets differ, as our focus lies on loss-based sampling strategies
and providing bounds on the convergence rate of a loss function and the expected number of sampled
points. These results are established using a convergence rate lemma, which may be of independent
interest. It is noteworthy that the convergence rate for uncertainty-based sampling, as in Theorem 3.1
of Raj and Bach [2022], can be derived by checking the conditions of the convergence rate lemma.

A loss-based active learning algorithm was proposed by Yoo and Kweon [2019], comprising a loss
prediction module and a target prediction model. The algorithm uses the loss prediction module
to compute a loss estimate and prioritizes sampling points with a high estimated loss under the
current prediction model. Lahlou et al. [2022] generalize this idea within a framework for uncertainty
prediction. However, neither Yoo and Kweon [2019] nor Lahlou et al. [2022] provided theoretical
guarantees for convergence rates. Recent analysis of convergence for loss and uncertainty-based
active learning strategies has been presented by Liu and Li [2023]. Specifically, they introduced
the concept of an equivalent loss, demonstrating that a gradient descent algorithm employing point
sampling can be viewed as a SGD algorithm optimizing an equivalent loss function. While they
focused on specific cases like sampling proportional to conditional expected loss, our results allow
for sampling based on any continuous increasing function of expected conditional loss, and provide
explicit convergence rate bounds in terms of the underlying sampling probability function.

In addition, Loizou et al. [2021] introduced a SGD algorithm featuring an adaptive stochastic Polyak’s
step size, which has theoretical convergence guarantees under various assumptions. This algorithm
showcased robust performance in comparison to state-of-the-art optimization methods, especially
when training over-parametrized models. Our work proposes a novel sampling method that employs
stochastic Polyak’s step size in expectation, offering a convergence rate guarantee for smooth convex
loss functions, contingent on a condition related to the sampling probability function. Notably, we
demonstrate the fulfillment of this condition for logistic regression and binary cross-entropy loss
functions, encompassing both a loss-based strategy involving proportional sampling to absolute error

3

122772 https://doi.org/10.52202/079017-3901

loss and an uncertainty sampling strategy. Furthermore, we extend this condition to hold for an
uncertainty sampling strategy designed for multi-class classification.

2 Problem Statement

We consider the setting of streaming algorithms where a machine learning model parameter θt
is updated sequentially, upon encountering each data point, with (x1, y1), . . . , (xn, yn) ∈ X × Y
denoting the sequence of data points with the corresponding labels, assumed to be independent and
identically distributed with distribution D. Specifically, we consider the class of projected SGD
algorithms defined as: given an initial value θ1 ∈ Θ,

θt+1 = PΘ0 (θt − zt∇θℓ(xt, yt, θt)) , for t ≥ 1 (1)

where ℓ : X × Y × Θ → R is a training loss function, zt is a stochastic step size with mean
ζ(xt, yt, θt) for some function ζ : X × Y ×Θ 7→ R+, Θ0 ⊆ Θ, and PΘ0 is the projection function,
i.e., PΘ0(u) = argminv∈Θ0 ||u − v||. Unless specified otherwise, we consider the case Θ0 = Θ,
which requires no projection. For binary classification tasks, we assume Y = {−1, 1}. For every
t > 0, we define θ̄t = (1/t)

∑t
s=1 θs.

By defining the distribution of the stochastic step size zt in Equation (1) appropriately, we can
accommodate different active learning and data subset selection algorithms. In the context of active
learning algorithms, at each step t, the algorithm observes the value of xt and decides whether or not
to observe the value of the label yt. The value of zt determine whether or not we observe the label yt.
Deciding not to observe the value of the label yt implies the step size zt of value zero (not updating
the machine learning model).

For the choice of the stochastic step size, we consider two cases: (a) Constant-Weight Sampling: a
Bernoulli sampling with a constant step size, and (b) Adaptive-Weight Sampling: a sampling that
achieves stochastic Polyak’s step size in expectation. For case (a), zt is the product of a constant
step size γ and a Bernoulli random variable with mean π(xt, yt, θt). For case (b), ζ(x, y, θ) is
the "stochastic" Polyak’s step size, and zt is equal to ζ(xt, yt, θt)/π(xt, yt, θt) with probability
π(xt, yt, θt) and is equal to 0 otherwise. Note that using the notation π(x, y, θ) allows for the case
when the sampling probability does not depend on the value of the label y.

For a loss-based sampling, π is an increasing function of some loss function ℓ⋆, which does not
necessarily correspond to the training loss function ℓ. Specifically, for a binary classifier with p(x, y, θ)
denoting the expected prediction label, sampling proportional to the absolute error loss is defined
as π(ℓ∗) = ωℓ∗ where ℓ∗(x, y, θ) = |y − p(x, y, θ)| and ω ∈ (0, 1/2]. For an uncertainty-based
sampling, π is a function of some quantity reflecting the uncertainty of the prediction model.

Our focus is on finding convergence conditions for algorithm (1) and convergence rates under these
conditions, as well as bounds on the expected number of points sampled by the algorithm.

Additional Assumptions and Notation For binary classification, we say that data is separable if,
for every point (x, y) ∈ X × Y , either y = 1 with probability 1 or y = −1 with probability 1. The
data is linearly separable if there exists θ∗ ∈ Θ such that y = sgn(x⊤θ∗) for every x ∈ X . Linearly
separable data has a ρ∗-margin if |x⊤θ∗| ≥ ρ∗ for every x ∈ X , for some θ∗ ∈ Θ.

Some of our results are for linear classifiers, where the predicted label of a point x is a function
of x⊤θ. For example, a model with a predicted label sgn(x⊤θ) is a linear classifier. For logistic
regression, the predicted label is 1 with probability σ(x⊤θ) and −1 otherwise, where σ is the
logistic function defined as σ(z) = 1/(1 + e−z). For binary classification, we model the prediction
probability of the positive label as σ(x⊤θ), where σ : R+ → [0, 1] is an increasing function, and
σ(−u) + σ(u) = 1 for all u ∈ R. The absolute error loss takes value 1− σ(x⊤θ) if y = 1 or value
σ(x⊤θ) if y = −1, which corresponds to 1 − σ(yx⊤θ). The binary cross-entropy loss for a point
(x, y) under model parameter θ can be written as ℓ(x, y, θ) = − log(σ(yx⊤θ)). Hence, absolute
error loss-based sampling corresponds to the sampling probability function π(ℓ) = 1− e−ℓ.

For any given (x, y) ∈ X × Y , the loss function ℓ(x, y, θ) is considered smooth on Θ′ ⊆ Θ if
it has a Lipschitz continuous gradient on Θ′, i.e., there exists Lx,y such that ||∇θℓ(x, y, θ1) −
∇θℓ(x, y, θ2)|| ≤ Lx,y||θ1 − θ2|| for all θ1, θ2 ∈ Θ′. For any distribution q over X × Y ,
E(x,y)∼q[ℓ(x, y, θ)] is E(x,y)∼q[Lx,y]-smooth.

4

122773https://doi.org/10.52202/079017-3901

3 Convergence Rate Guarantees

In this section, we present conditions on the stochastic step size of algorithm (1) under which we
can bound the total expected loss and the expected number of samples. For the Constant-Weight
Sampling, we provide conditions that allow us to derive bounds for linear classifiers and linearly
separable datasets and more general cases. For Adaptive-Weight Sampling, we offer a condition that
allows us to establish convergence bounds for both loss and uncertainty-based sampling.

3.1 Constant-Weight Sampling

Linear Classifiers and Linearly Separable Datasets We focus on binary classification and briefly
discuss extension to multi-class classification. We consider the linear classifier with the predicted
label sgn(x⊤θ). With a slight abuse of notation, let ℓ(x, y, θ) ≡ ℓ(u) and π(x, y, θ) ≡ π(u) where
u = yx⊤θ. We assume that the domain X is bounded, i.e., there exists R such that ||x|| ≤ R for all
x ∈ X , ||θ1 − θ∗|| ≤ S for some S ≥ 0, and that the data is ρ∗-margin linearly separable.

We present convergence rate results for the training loss function corresponding to the squared hinge
loss function, i.e. ℓ(u) = (1/2)max{1 − u, 0}2. Our additional results also cover other cases,
including a class of smooth convex loss functions and a generalized smooth hinge loss function,
which are presented in the Appendix.

Theorem 3.1. Assume that ρ∗ > 1, the loss function is the squared hinge loss function, and the
sampling probability function π is such that for all u ≤ 1, π(u) ≤ β/2 and

π(u) ≥ π∗(ℓ(u)) :=
β

2

(
1− 1

1 + µ
√
ℓ(u)

)
(2)

for some constants 0 < β ≤ 2 and µ ≥
√
2/(ρ∗ − 1). Then, for any initial value θ1 such that

||θ1 − θ∗|| ≤ S and {θt}t>1 according to algorithm (1) with γ = 1/R2,

E
[
ℓ(yx⊤θ̄n)

]
≤ E

[
1

n

n∑
t=1

ℓ(ytx
⊤
t θt)

]
≤ R2S2

β

1

n
,

where (x, y) is an independent sample of a labeled data point from D.

Moreover, if the sampling is according to π∗, then the expected number of sampled points satisfies

E

[
n∑

t=1

π∗(ℓ(ytx
⊤
t θt))

]
≤ min

{
1

2
RSµ

√
β
√
n,

1

2
βn

}
.

Condition (2) requires that the sampling probability function π is lower bounded by an increasing,
concave function π∗ of the loss value. This fact, along with the expected loss bound, implies the
asserted bound for the expected number of samples. The expected number of samples is O(

√
n)

concerning the number of iterations and is O(1/(ρ∗ − 1)) concerning the margin ρ∗ − 1.

Theorem 3.1, and our other results for linear classifiers and linearly separable datasets, are established
using a convergence rate lemma, which is presented in Appendix A.2, along with its proof. This lemma
generalizes the conditions used to establish the convergence rate for an uncertainty-based sampling
algorithm by Raj and Bach [2022], with the sampling probability function π(u) = 1/(1 + µ|u|), for
some constant µ > 0. It can be readily shown that Theorem 3.1 in Raj and Bach [2022] follows from
our convergence rate lemma with the training loss function corresponding to the squared hinge loss
function and the evaluation loss function (used for convergence rate guarantee) corresponding to the
hinge loss function. Further details on the convergence rate lemma are discussed in Appendix A.2.1.

The convergence rate conditions for multi-class classification with the set of classes Y are the same
as for binary classification, with u(x, y, θ) := x⊤θy −maxy′∈Y\{y} x

⊤θy′ , except for an additional
factor of 2 in one of the conditions (see Lemma A.10 in the Appendix). Hence, all the observations
remain valid for the multi-class classification case.

5

122774 https://doi.org/10.52202/079017-3901

Table 1: Examples of sampling probability functions.

π(x) Π(x) Π−1(x)

1− e−x x+ e−x − 1 ≈
√
2x for small x

min{x, 1}
{

1
2
x2 x ≤ 1

x− 1
2

x ≥ 1

{ √
2x x ≤ 1/2

x+ 1
2

x ≥ 1/2

min{(x/b)a, 1}, a > 0, b > 0

{ 1
ba(1+a)

x1+a x ≤ a

x− a
1+a

x ≥ a

{
b

a
1+a (1 + a)

1
1+a x

1
1+a x ≤ b

1+a

x+ a
1+a

b x ≥ b
1+a

1− 1
1+µx

x− 1
µ
log(1 + µx) ≈

√
(2/µ)x for small x

1− 1
1+µ

√
x

x− 2
µ

√
x+ 2

µ2 log(1 + µ
√
x) ≈ (((3/2)/µ)x)2/3 for small x

More General Classifiers and Datasets We consider algorithm (1) where zt is product of a fixed
step size γ and a Bernoulli random variable ζt with mean π(x, y, θ). Let gt = ζt∇θℓ(xt, yt, θt),
which is random vector because ζt is a random variable and (xt, yt) is a sampled point. Following
Liu and Li [2023], we note that the algorithm (1) is an SGD algorithm with respect to an objective
function ℓ̃ with gradient

∇θ ℓ̃(θ) = E[π(x, y, θ)∇θℓ(x, y, θ)] (3)
where the expectation is with respect to x and y. This observation allows us to derive convergence
rate results by deploying convergence rate results that are known to hold for SGD under various
assumptions on function ℓ̃, variance of stochastic gradient vector and step size. A function ℓ̃ satisfying
condition (3) is referred to as an equivalent loss in Liu and Li [2023].

Assume that the sampling probability π is an increasing function of the conditional expected loss
ℓ(x, θ) = Ey[ℓ(x, y, θ) | x]. With a slight abuse of notation, we denote this probability as π(ℓ(x, θ))
where π : R+ → [0, 1] is an increasing and continuous function. Let Π be the primitive of π, i.e.
Π′ = π. We then have

ℓ̃(θ) = E[Π(ℓ(x, θ))]. (4)

If ℓ(x, y, θ) is a convex function, for every (x, y) ∈ X × Y , then ℓ̃ is a convex function.

This framework for establishing convergence rates allows us to accommodate different sampling
strategies and loss functions. The next lemma allows us to derive convergence rate results for expected
loss with respect to loss function ℓ by applying convergence rate results for expected loss with respect
to loss function ℓ̃ (which, recall, is the equivalent loss function).
Lemma 3.2. Assume that for algorithm (1) with loss-based sampling according to π, for some
functions f1, . . . , fm, we have

E

[
1

n

n∑
t=1

ℓ̃(θt)

]
≤ inf

θ
ℓ̃(θ) +

m∑
i=1

fi(n). (5)

Then, it holds:

E

[
1

n

n∑
t=1

ℓ(θt)

]
≤ inf

θ
Π−1(ℓ̃(θ)) +

m∑
i=1

Π−1(fi(n)).

We apply Lemma 3.2 to obtain the following result.

Theorem 3.3. Assume that ℓ is a convex function, ℓ̃ is L-smooth, Θ0 is a convex set, S =
supθ∈Θ0

||θ − θ1||, and E[π(ℓ(x, θ))||∇θℓ(x, y, θ)||2] − ||∇θ ℓ̃(θ)||2 ≤ σ2
π. Then, for algorithm

(1) with γ = 1/(L+ (σ/R)
√
n/2),

E[ℓ(θ̄n)] ≤ E

[
1

n

n∑
t=1

ℓ(θt)

]
≤ inf

θ
Π−1(ℓ̃(θ)) + Π−1

(√
2Sσπ√
n

)
+Π−1

(
LS2

n

)
.

Note that the bound on the expected loss in Theorem 3.3 depends on π through Π−1 and σ2
π.

Specifically, we have a bound depending on π only through Π−1 by upper bounding σ2
π with

supθ∈Θ0
E[||∇θℓ(x, y, θ)||2].

6

122775https://doi.org/10.52202/079017-3901

For convergence rates for large values of the number of iterations n, the bound in Theorem 3.2
crucially depends on how Π−1(x) behaves for small values of x. In Table 1, we show Π and Π−1

for several examples of sampling probability function π. For all examples in the table, Π−1(x) is
sub-linear in x for small x. For instance, for absolute error loss sampling under binary cross-entropy
loss function, π(x) = 1− e−x, Π−1(x) is approximately

√
2x for small x. For this case, we have

the following corollary.

Corollary 3.4. Under assumptions of Theorem 3.3, sampling probability π(x) = 1 − e−x, and

n ≥ max
{(

16
9

)2
2Sσ2

π,
16
9 LS

2
}

it holds

E[ℓ(θ̄n)] ≤ E

[
1

n

n∑
t=1

ℓ(θt)

]
≤ inf

θ
Π−1(ℓ̃(θ)) + 25/4

√
Sσπ

1
4
√
n
+ 2

√
LS

1√
n
.

By using a bound on the expected total loss, we can bound the expected total number of sampled
points under certain conditions as follows.

Lemma 3.5. The following bounds hold:

1. Assume that π is a concave function, then E [
∑n

t=1 π(ℓ(xt, θt))] ≤ π
(
E
[
1
n

∑n
t=1 ℓ(θt)

])
n.

2. Assume that π is K-Lipschitz or that for some K > 0, π(ℓ) ≤ min{Kℓ, 1} for all ℓ ≥ 0,
then E [

∑n
t=1 π(ℓ(xt, θt))] ≤ min {KE [

∑n
t=1 ℓ(θt)] , n} .

We remark that π is a concave function for all examples in Table 1 without any additional conditions,
except for π(ℓ) = min{(ℓ/b)a, 1} which is concave under assumption 0 < a ≤ 1. We remark also
that for every example in Table 1 except the last one, π(ℓ) ≤ min{Kℓ, 1} for some K > 0. Hence,
for all examples in Table 1, we have a bound for the expected number of sampled points provided we
have a bound for the expected loss.

3.2 Adaptive-Weight Sampling

In this section we propose the Adaptive-Weight Sampling (AWS) algorithm that combines Bernoulli
sampling and an adaptive SGD update, and provide a convergence rate guarantee. The algorithm
is defined by (1) with the stochastic step size zt being a binary random variable that takes value
γt := ζ(xt, yt, θt)/π(xt, yt, θt) with probability π(xt, yt, θt) and takes value 0 otherwise, where π
is some sampling probability function. Here, ζ(x, y, θ) is the expected SGD (1) step size, defined as

ζ(x, y, θ) = βmin

{
1

ψ(x, y, θ)
, ρ

}
whenever ||∇θℓ(x, y, θ)|| > 0 and ζ(x, y, θ) = 0 otherwise, for constants β, ρ > 0, where

ψ(x, y, θ) :=
||∇θℓ(x, y, θ)||2

ℓ(x, y, θ)− infθ′ ℓ(x, y, θ′)
.

The expected step size ζ(x, y, θ) corresponds to the stochastic Polyak’s step size used by a gradient
descent algorithm proposed by [Loizou et al., 2021], which is accommodated as a special case
when π(x, y, θ) = 1 for all x, y, θ. AWS introduces a sampling component and re-weighting of
the update to ensure that the step size remains according to the stochastic Polyak’s step size in
expectation. For many loss functions, infθ′ ℓ(x, y, θ) = 0, for every x, y. In these cases, ψ(x, y, θ) =
||∇θℓ(x, y, θ)||2/ℓ(x, y, θ). For instance, for binary cross-entropy loss function, infθ′ ℓ(x, y, θ) =
infθ′(− log(σ(yx⊤θ′))) = 0, for all x, y.

We next show a convergence rate guarantee for AWS.

Theorem 3.6. Assume that ℓ is a convex, L-smooth function, there exists Λ∗ such that E[ℓ(x, y, θ∗)]−
E[infθ ℓ(x, y, θ)] ≤ Λ∗, and the sampling probability function π is such that, for some constant
c ∈ (0, 1), for all x, y, θ such that ||∇θℓ(x, y, θ)|| > 0,

π(x, y, θ) ≥ β

2(1− c)
min {ρψ(x, y, θ), 1} . (6)

7

122776 https://doi.org/10.52202/079017-3901

Then, we have

E

[
1

n

n∑
t=1

(ℓ(xt, yt, θt)− ℓ(xt, yt, θ
∗
t))

]
≤ ρβ

cκ
Λ∗ +

1

2cκ
||θ1 − θ∗||2 1

n

where κ = βmin{1/(2L), ρ} and θ∗t is a minimizer of ℓ(xt, yt, θ′) over θ′.

The bound on the expected average loss in Theorem 3.6 boils down to Λ∗/c+(L/(cβ))||θ1−θ∗||2/n
by taking ρ = 1/(2L). Notably, under the condition on the sampling probability in Theorem 3.6,
the convergence rate is of order O(1/n). A similar bound is known to hold for SGD with adaptive
stochastic Polyak step size for the finite-sum problem, as seen in Theorem 3.4 of Loizou et al. [2021].
A difference is that Theorem 3.6 allows for sampling of the points.

Loss and Uncertainty-based Sampling for Linear Binary Classifiers We consider linear binary
classifiers, focusing particularly on logistic regression and the binary cross-entropy training loss
function. The following corollaries of Theorem 3.6 hold for sampling proportional to absolute error
loss and an uncertainty-based sampling probability function, respectively.
Corollary 3.7. For sampling proportional to absolute error loss, π(u) = ω(1 − σ(u)), with
β/(4(1− c)L′) ≤ ω ≤ 1 and ρ = 1/(2L), the bound on the expected loss in Theorem 3.6 holds.
Corollary 3.8. For the uncertainty-based sampling according to

π(u) =
β

2(1− c)
min

{
ρR2 1

H(a) + (1− a)|u|
, 1

}
where a ∈ (0, 1/2] and H(a) = a log(1/a) + (1 − a) log(1/(1 − a)), the bound on the expected
loss in Theorem 3.6 holds.

Other Cases For a constant sampling probability function with a value of at least κ/(2(1− c)),
condition (6) holds when κ ≤ 2(1− c). When π(x, y, θ) = ζ(x, y, θ)η , where η ≥ 0 and ρβ ∈ (0, 1],
condition (6) holds under β1−η ≤ 2(1− c)(1/(2L))η, as shown in Appendix A.14. Condition (6)
also holds for an uncertainty-based sampling in multi-class classification, as shown in Appendix A.15.

4 Numerical Results

In this section we evaluate our AWS algorithm, defined in Section 3.2. In particular, we focus on an
instance of AWS with stochastic Polyak’s expected step size for logistic regression and the loss-based
sampling proportional to absolute error loss, which we refer to as Adaptive-Weight Sampling - Polyak
Absloss (AWS-PA). By, Corollary 3.7, AWS-PA converges according to Theorem 3.6. Here we
demonstrate convergence on real-world datasets and compare with other algorithms.

The implementation of AWS-PA algorithm along with all the other code run the experimental setup
that is described in this section is available at https://www.github.com/facebookresearch/
AdaptiveWeightSampling.

We use a modified version of the mushroom binary classification dataset [Chang and Lin, 2011]
that was used by Loizou et al. [2021] for evaluation of their algorithm. This modification uses RBF
kernel features, resulting in a linearly separable dataset for a linear classifier like logistic regression.
Furthermore, we include five datasets that we selected at random from the 44 real-world datasets that
were used in Yang and Loog [2018], a benchmark study of active learning for logistic regression:
MNIST 3 vs 5 LeCun et al. [1998], parkinsons Little et al. [2007], splice Noordewier et al. [1990],
tictactoe Aha [1991], and credit Quinlan [1987]. While these datasets are not necessarily linearly
separable, Yang and Loog [2018] has shown that logistic regression achieves a good quality-of-fit.

In our evaluation, we deliberately confine the training to a single epoch. Throughout this epoch,
we sequentially process each data instance, compute the loss for each individual instance, and
subsequently update the model’s weights. This approach, known as progressive validation [Blum
et al., 1999], enables us to monitor the evolution of the average loss. The constraint to a single
epoch ensures that we calculate losses only for instances that haven’t influenced model weights. For
each sampling scheme, we conduct a hyper-parameter sweep to minimize the average progressive
loss and apply a procedure to ensure that all algorithms sample comparable numbers of instances.

8

122777https://doi.org/10.52202/079017-3901

https://www.github.com/facebookresearch/AdaptiveWeightSampling
https://www.github.com/facebookresearch/AdaptiveWeightSampling

0 1000 2000 3000 4000 5000 6000
iteration

0.2

0.4

0.6

av
er

ag
e

cr
os

s-
en

tro
py

 lo
ss

random
absloss
polyak_absloss
polyak_random

(a) Mushrooms dataset

0 2000 4000 6000 8000 10000
iteration

0.5

1.0

1.5

av
er

ag
e

cr
os

s-
en

tro
py

 lo
ss

random
absloss
polyak_absloss
polyak_random

(b) MNIST binary classification of 3s vs 5s

0 20 40 60 80 100 120 140
iteration

0.600

0.625

0.650

0.675

0.700

av
er

ag
e

cr
os

s-
en

tro
py

 lo
ss

random
absloss
polyak_absloss
polyak_random

(c) Parkinsons dataset

0 200 400 600 800 1000
iteration

0.3

0.4

0.5

0.6

0.7

0.8

av
er

ag
e

cr
os

s-
en

tro
py

 lo
ss

random
absloss
polyak_absloss
polyak_random

(d) Splice dataset

0 100 200 300 400 500 600 700
iteration

0.60

0.65

0.70

0.75

av
er

ag
e

cr
os

s-
en

tro
py

 lo
ss

random
absloss
polyak_absloss
polyak_random

(e) Tictactoe dataset

100 200 300 400 500
iteration

0.4

0.5

0.6

0.7

av
er

ag
e

cr
os

s-
en

tro
py

 lo
ss

random
absloss
polyak_absloss
polyak_random

(f) Credit dataset

Figure 1: Convergence in terms of average cross-entropy progressive loss of random sampling, loss-
based sampling based on the absolute error loss, and our proposed algorithm (loss-based sampling
with stochastic Polyak’s step size). Our proposed algorithm outperforms the baselines in most cases.

In Appendix B.1 we include further details on this procedure, the hyper-parameter tuning, and other
aspects of the experimental setup.

Figure 1 demonstrates that AWS-PA leads to faster convergence than the traditional loss-based
sampling with a constant step size (akin to Yoo and Kweon [2019]). It also shows that the traditional
loss-based sampling approach converges more rapidly than random sampling on five of the six
datasets. These results are obtained under a hyper-parameter tuning such that different algorithms
have comparable data sampling rates. We provide additional experimental results that demonstrate
the efficiency of AWS-PA in Appendix B.2.

In active learning applications, the true loss of a point cannot be computed before the corresponding
label is obtained. Hence, in practice we do not know the true loss at the moment of making the
sampling decision. Therefore, we assess the effect of using a loss estimator, instead of using the true
loss values. We use a Random Forest regressor to estimate absolute error loss based on the same set
of features as the target model and the target’s model prediction as an extra feature. We retrain this
estimator on every sampling step using the labeled points observed so far.

Figure 2 demonstrates that AWS-PA with the estimated absolute error losses performs similarly on
all datasets to AWS-PA with the true absolute error losses. Moreover, for a majority of the datasets,
the two variants of AWS-PA achieve similar data sampling rates; this is shown Appendix B.3 along
with further discussion.

5 Conclusion

We have provided convergence rate guarantees for loss and uncertainty-based active learning algo-
rithms under various assumptions. Furthermore, we introduced the novel Adaptive-Weight Sampling
(AWS) algorithm that combines sampling with an adaptive size, conforming to stochastic Polyak’s
step size in expectation, and demonstrated its convergence rate guarantee, contingent on a condition
related to the sampling probability function.

9

122778 https://doi.org/10.52202/079017-3901

0 1000 2000 3000 4000 5000 6000
iteration

0.2

0.4

0.6

av
er

ag
e

cr
os

s-
en

tro
py

 lo
ss

polyak_absloss
polyak_absloss_estimator

(a) Mushrooms dataset

0 2000 4000 6000 8000 10000
iteration

0.25

0.50

0.75

1.00

1.25

1.50

av
er

ag
e

cr
os

s-
en

tro
py

 lo
ss

polyak_absloss
polyak_absloss_estimator

(b) MNIST binary classification of 3s vs 5s

0 20 40 60 80 100 120 140
iteration

0.62

0.64

0.66

0.68

0.70

av
er

ag
e

cr
os

s-
en

tro
py

 lo
ss

(c) Parkinsons dataset

0 200 400 600 800 1000 1200
iteration

0.3

0.4

0.5

0.6

0.7

av
er

ag
e

cr
os

s-
en

tro
py

 lo
ss

(d) Splice dataset

0 100 200 300 400 500 600 700
iteration

0.62

0.64

0.66

0.68

0.70

0.72

av
er

ag
e

cr
os

s-
en

tro
py

 lo
ss

(e) Tictactoe dataset

0 100 200 300 400 500
iteration

0.4

0.6

0.8

av
er

ag
e

cr
os

s-
en

tro
py

 lo
ss

(f) Credit dataset

Figure 2: Active learning sampling based on an estimator of the absolute error loss performs on par
with the sampling based on the ground truth value of absolute error loss.

For future research, it would be interesting to establish tight convergence rates for the training
loss function and the sampling cost, especially comparing policies using sampling with a constant
probability with those using adaptive loss-based sampling probabilities. It would be interesting to
explore adaptive-weight sampling algorithms with adaptive sizes different than those studied in this
paper. Additionally, exploring a theoretical study on the impact of bias and noise in the loss estimator,
used for evaluating the sampling probability function, on the convergence properties of algorithms
could open up a valuable avenue for investigation.

10

122779https://doi.org/10.52202/079017-3901

References
Alekh Agarwal. Selective sampling algorithms for cost-sensitive multiclass prediction. In Sanjoy

Dasgupta and David McAllester, editors, Proceedings of the 30th International Conference on
Machine Learning, volume 28 of Proceedings of Machine Learning Research, pages 1220–1228,
Atlanta, Georgia, USA, 17–19 Jun 2013. PMLR.

David Aha. Tic-Tac-Toe Endgame. UCI Machine Learning Repository, 1991. DOI:
https://doi.org/10.24432/C5688J.

James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algorithms for hyper-parameter
optimization. Advances in Neural Information Processing Systems, 24, 2011.

James Bergstra, Daniel Yamins, and David Cox. Making a science of model search: Hyperparameter
optimization in hundreds of dimensions for vision architectures. In Proceedings of the 30th
International Conference on Machine Learning, pages 115–123. PMLR, 2013.

Avrim Blum, Adam Kalai, and John Langford. Beating the hold-out: Bounds for k-fold and
progressive cross-validation. In Proceedings of the Twelfth Annual Conference on Computational
Learning Theory (COLT), pages 203–208, 1999.

Sébastien Bubeck. Convex optimization: Algorithms and complexity. Found. Trends Mach. Learn., 8
(3–4):231–357, nov 2015.

Giovanni Cavallanti, Nicolò Cesa-Bianchi, and Claudio Gentile. Learning noisy linear classifiers via
adaptive and selective sampling. Machine Learning, 83(1):71–102, 2011.

Nicoló Cesa-Bianchi, Claudio Gentile, and Luca Zaniboni. Worst-case analysis of selective sampling
for linear classification. Journal of Machine Learning Research, 7(44):1205–1230, 2006.

Nicolò Cesa-Bianchi, Claudio Gentile, and Francesco Orabona. Robust bounds for classification
via selective sampling. In Proceedings of the 26th Annual International Conference on Machine
Learning, ICML ’09, page 121–128, New York, NY, USA, 2009. Association for Computing
Machinery.

Chih-Chung Chang and Chih-Jen Lin. Libsvm: a library for support vector machines. ACM
transactions on intelligent systems and technology (TIST), 2(3):1–27, 2011.

Cody Coleman, Christopher Yeh, Stephen Mussmann, Baharan Mirzasoleiman, Peter Bailis, Percy
Liang, Jure Leskovec, and Matei Zaharia. Selection via proxy: Efficient data selection for deep
learning. In 8th International Conference on Learning Representations, ICLR 2020, Addis Ababa,
Ethiopia, April 26-30, 2020, 2020.

Koby Crammer and Yoram Singer. On the algorithmic implementation of multiclass kernel-based
vector machines. J. Mach. Learn. Res., 2:265–292, mar 2002. ISSN 1532-4435.

Sanjoy Dasgupta, Adam Tauman Kalai, and Claire Monteleoni. Analysis of perceptron-based active
learning. Journal of Machine Learning Research, 10(11):281–299, 2009.

Ofer Dekel, Claudio Gentile, and Karthik Sridharan. Selective sampling and active learning from
single and multiple teachers. J. Mach. Learn. Res., 13(1):2655–2697, sep 2012. ISSN 1532-4435.

Yoav Freund, H. Sebastian Seung, Eli Shamir, and Naftali Tishby. Selective sampling using the query
by committee algorithm. Machine Learning, 28(2):133–168, 1997.

Ran Gilad-bachrach, Amir Navot, and Naftali Tishby. Query by committee made real. In Y. Weiss,
B. Schölkopf, and J. Platt, editors, Advances in Neural Information Processing Systems, volume 18.
MIT Press, 2005.

Andreas Kirsch and Yarin Gal. Unifying approaches in active learning and active sampling via fisher
information and information-theoretic quanties. Transactions on Machine Learning Research,
2022.

11

122780 https://doi.org/10.52202/079017-3901

Andreas Kirsch, Joost van Amersfoort, and Yarin Gal. Batchbald: Efficient and diverse batch
acquisition for deep bayesian active learning. In H. Wallach, H. Larochelle, A. Beygelzimer,
F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing
Systems, volume 32. Curran Associates, Inc., 2019.

Salem Lahlou, Moksh Jain, Hadi Nekoei, Victor I Butoi, Paul Bertin, Jarrid Rector-Brooks, Maksym
Korablyov, and Yoshua Bengio. Deup: Direct epistemic uncertainty prediction. Transactions on
Machine Learning Research, 2022.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

David D. Lewis and William A. Gale. A sequential algorithm for training text classifiers. In Bruce W.
Croft and C. J. van Rijsbergen, editors, SIGIR ’94, pages 3–12, London, 1994. Springer London.

Max Little, Patrick Mcsharry, Stephen Roberts, Declan Costello, and Irene Moroz. Exploiting
nonlinear recurrence and fractal scaling properties for voice disorder detection. Nature Precedings,
pages 1–1, 2007.

Shang Liu and Xiaocheng Li. Understanding uncertainty sampling, 2023. URL https://arxiv.
org/abs/2307.02719.

Nicolas Loizou, Sharan Vaswani, Issam Hadj Laradji, and Simon Lacoste-Julien. Stochastic Polyak
step-size for SGD: An adaptive learning rate for fast convergence. In Arindam Banerjee and Kenji
Fukumizu, editors, Proceedings of The 24th International Conference on Artificial Intelligence and
Statistics, volume 130 of Proceedings of Machine Learning Research, pages 1306–1314. PMLR,
13–15 Apr 2021.

Edwin Lughofer and Mahardhika Pratama. Online active learning in data stream regression using
uncertainty sampling based on evolving generalized fuzzy models. IEEE Transactions on Fuzzy
Systems, 26(1):292–309, 2018.

Jian Luo, Jianzong Wang, Ning Cheng, and Jing Xiao. Loss prediction: End-to-end active learning
approach for speech recognition. In 2021 International Joint Conference on Neural Networks
(IJCNN), pages 1–7. IEEE, 2021.

Sören Mindermann, Jan M Brauner, Muhammed T Razzak, Mrinank Sharma, Andreas Kirsch, Winnie
Xu, Benedikt Höltgen, Aidan N Gomez, Adrien Morisot, Sebastian Farquhar, et al. Prioritized
training on points that are learnable, worth learning, and not yet learnt. In International Conference
on Machine Learning, pages 15630–15649. PMLR, 2022.

Stephen Mussmann and Percy S Liang. Uncertainty sampling is preconditioned stochastic gradient
descent on zero-one loss. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi,
and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 31. Curran
Associates, Inc., 2018.

Yuri Nesterov. Lectures on Convex Optimization. Springer, 2018.

Minh-Tien Nguyen, Guido Zuccon, Gianluca Demartini, et al. Loss-based active learning for named
entity recognition. In 2021 International Joint Conference on Neural Networks (IJCNN), pages
1–8. IEEE, 2021.

Vu-Linh Nguyen, Mohammad Hossein Shaker, and Eyke Hüllermeier. How to measure uncertainty
in uncertainty sampling for active learning. Machine Learning, 111(1):89–122, 2022.

Michiel Noordewier, Geoffrey Towell, and Jude Shavlik. Training knowledge-based neural networks
to recognize genes in dna sequences. Advances in neural information processing systems, 3, 1990.

Francesco Orabona and Nicolò Cesa-Bianchi. Better algorithms for selective sampling. In Pro-
ceedings of the 28th International Conference on International Conference on Machine Learning,
ICML’11, page 433–440, Madison, WI, USA, 2011. Omnipress. ISBN 9781450306195.

12

122781https://doi.org/10.52202/079017-3901

https://arxiv.org/abs/2307.02719
https://arxiv.org/abs/2307.02719

Mansheej Paul, Surya Ganguli, and Gintare Karolina Dziugaite. Deep learning on a data diet: Finding
important examples early in training. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and
J. Wortman Vaughan, editors, Advances in Neural Information Processing Systems, volume 34,
pages 20596–20607. Curran Associates, Inc., 2021.

J. Ross Quinlan. Simplifying decision trees. International journal of man-machine studies, 27(3):
221–234, 1987.

Anant Raj and Francis Bach. Convergence of uncertainty sampling for active learning. In Kamalika
Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato, editors, Pro-
ceedings of the 39th International Conference on Machine Learning, volume 162 of Proceedings
of Machine Learning Research, pages 18310–18331. PMLR, 17–23 Jul 2022.

Jason Rennie. Smooth hinge classification, 2005. URL http://qwone.com/~jason/writing/
smoothHinge.pdf.

Jason Rennie and Nathan Srebro. Loss functions for preference levels: Regression with discrete
ordered labels. Proceedings of the IJCAI Multidisciplinary Workshop on Advances in Preference
Handling, 01 2005.

F. Rosenblatt. he perceptron: a probabilistic model for information storage and organization in the
brain. Psychological review, 65(6):386–408, 1958.

Nicholas Roy and Andrew McCallum. Toward optimal active learning through sampling estimation of
error reduction. In Proceedings of the Eighteenth International Conference on Machine Learning,
page 441–448, San Francisco, CA, USA, 2001. Morgan Kaufmann Publishers Inc.

Greg Schohn and David Cohn. Less is more: Active learning with support vector machines. In
Proceedings of the Seventeenth International Conference on Machine Learning, ICML ’00, page
839–846, San Francisco, CA, USA, 2000. Morgan Kaufmann Publishers Inc.

Burr Settles. Active learning: Synthesis lectures on artificial intelligence and machine learning.
Springer Cham, 2012.

Burr Settles, Mark Craven, and Soumya Ray. Multiple-instance active learning. In J. Platt, D. Koller,
Y. Singer, and S. Roweis, editors, Advances in Neural Information Processing Systems, volume 20.
Curran Associates, Inc., 2007.

H. S. Seung, M. Opper, and H. Sompolinsky. Query by committee. COLT ’92, page 287–294, New
York, NY, USA, 1992. Association for Computing Machinery. ISBN 089791497X.

Jie Shen. On the power of localized perceptron for label-optimal learning of halfspaces with
adversarial noise. In Marina Meila and Tong Zhang, editors, Proceedings of the 38th International
Conference on Machine Learning, volume 139 of Proceedings of Machine Learning Research,
pages 9503–9514, 18–24 Jul 2021.

Ben Sorscher, Robert Geirhos, Shashank Shekhar, Surya Ganguli, and Ari Morcos. Beyond neural
scaling laws: beating power law scaling via data pruning. Advances in Neural Information
Processing Systems, 35:19523–19536, 2022.

Mariya Toneva, Alessandro Sordoni, Remi Tachet des Combes, Adam Trischler, Yoshua Bengio,
and Geoffrey J. Gordon. An empirical study of example forgetting during deep neural network
learning. In 7th International Conference on Learning Representations, ICLR 2019, New Orleans,
LA, USA, May 6-9, 2019, 2019.

Ran Wang, Chi-Yin Chow, and Sam Kwong. Ambiguity-based multiclass active learning. IEEE
Transactions on Fuzzy Systems, 24(1):242–248, 2016.

Songbai Yan and Chicheng Zhang. Revisiting perceptron: Efficient and label-optimal learning of
halfspaces. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,
and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 30. Curran
Associates, Inc., 2017.

13

122782 https://doi.org/10.52202/079017-3901

http://qwone.com/~jason/writing/smoothHinge.pdf
http://qwone.com/~jason/writing/smoothHinge.pdf

Y. Yang and M. Loog. Active learning using uncertainty information. In Proceedings of the
International Conference on Pattern Recoginition (ICPR), page 2646–2651, 2016.

Yazhou Yang and Marco Loog. A benchmark and comparison of active learning for logistic regression.
Pattern Recognition, 83:401–415, 2018.

Yi Yang, Zhigang Ma, Feiping Nie, Xiaojun Chang, and Alexander G. Hauptmann. Multi-class active
learning by uncertainty sampling with diversity maximization. International Journal of Computer
Vision, 113(2):113–127, 2015.

Donggeun Yoo and In So Kweon. Learning loss for active learning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), June 2019.

Jingbo Zhu, Huizhen Wang, Benjamin K. Tsou, and Matthew Ma. Active learning with sampling by
uncertainty and density for data annotations. IEEE Transactions on Audio, Speech, and Language
Processing, 18(6):1323–1331, 2010.

14

122783https://doi.org/10.52202/079017-3901

A Appendix: Proofs, Discussion, and Additional Results

A.1 Limitations & Discussion

It remains an open problem to investigate the tightness of convergence rate bounds for constant-weight
sampling under the assumptions outlined in Theorem 3.3.

The convergence rate results presented in Theorems 3.3 and 3.6 pertain to smooth convex training
loss functions. Future research may explore weaker assumptions regarding the training loss function.

Regarding loss-based sampling strategies, our theoretical analysis assumes an unbiased and noiseless
loss estimator. Extending this to account for estimation bias and noise would be a valuable avenue
for further investigation.

Our numerical results demonstrate the effectiveness of our proposed algorithm and the robustness
of our theoretical findings to loss estimation bias and noise across different datasets, utilizing the
logistic regression model as a binary classifier. Future work could explore the application of other
classification models, such as multi-layer neural networks.

A.2 A Set of Convergence Rate Conditions

We present and prove two convergence rate lemmas for algorithm (1): the first providing sufficient
conditions for a certain convergence rate and the second restricted to linear classifiers and linearly
separable datasets.

The first lemma relies on the following condition involving the loss function ℓ used by algorithm (1)
and the loss function ℓ̃ used for evaluating the performance of the algorithm.

Assumption A.1. There exist constants α, β > 0 such that for all (x, y) ∈ X × Y and θ ∈ Θ,

π(x, y, θ)||∇θℓ(x, y, θ)||2 ≤ αℓ̃(x, y, θ) (7)

and
π(x, y, θ)∇θℓ(x, y, θ)

⊤(θ − θ∗) ≥ βℓ̃(x, y, θ). (8)

Lemma A.2. Under Assumption A.1, for any θ1 and {θt}t>1 according to algorithm (1) with
γ = β/α,

E

[
n∑

t=1

ℓ̃(xt, yt, θt)

]
≤ ||θ1 − θ∗||2 α

β2
.

Moreover, if for every (x, y) ∈ X × Y , ℓ̃(x, y, θ) is a convex function in θ, then we have

E[ℓ̃(x, y, θ̄n)] ≤ ||θ1 − θ∗||2 α
β2

1

n

where θ̄n = (1/n)
∑n

t=1 θt.

Proof. For any θ∗ ∈ Θ and t ≥ 1, we have

||θt+1 − θ∗||2 = ||θt − θ∗||2 − 2zt∇θℓ(xt, yt, θt)
⊤(θt − θ∗) + z2t ||∇θℓ(xt, yt, θt)||2.

Taking expectation in both sides of the equation, conditional on xt, yt and θt, we have

E[||θt+1 − θ∗||2 | xt, yt, θt] = ||θt − θ∗||2 − 2γπ(xt, yt, θt)∇θℓ(xt, yt, θt)
⊤(θt − θ∗)

+γ2π(xt, yt, θt)||∇θℓ(xt, yt, θt)||2.

Under Assumption A.1, we have

E[||θt+1 − θ∗||2 | xt, yt, θt] ≤ ||θt − θ∗||2 − 2γβℓ̃(xt, yt, θt) + γ2αℓ̃(xt, yt, θt).

Hence, it holds

(2γβ − γ2α)E[ℓ̃(xt, yt, θt)] ≤ E[||θt − θ∗||2]− E[||θt+1 − θ∗||2].

15

122784 https://doi.org/10.52202/079017-3901

Summing over t, we have

(2γβ − γ2α)

n∑
t=1

E[ℓ̃(xt, yt, θt)] ≤ ||θ1 − θ∗||2.

By taking γ = β/α, we have
n∑

t=1

E[ℓ̃(xt, yt, θt)] ≤ ||θ1 − θ∗||2 α
β2
.

The second statement of the lemma follows from the last above inequality and Jensen’s inequality.

For the case of linear classifiers and linearly separable datasets, it can be readily checked that
Lemma A.2 implies the following lemma.

Lemma A.3. Assume that there exist constants α, β > 0 such that for all u ∈ R,

π(u)ℓ′(u)2R2 ≤ αℓ̃(u) (9)

and
π(u)(−ℓ′(u))(ρ∗ − u) ≥ βℓ̃(u). (10)

Then, for any θ1 such that ||θ1 − θ∗|| ≤ S and {θt}t>1 according to algorithm (1) with γ = β/α,

E

[
n∑

t=1

ℓ̃(ytx
⊤
t θt)

]
≤ S2 α

β2
.

Moreover, if ℓ̃ is a convex function, then E
[
ℓ̃(yx⊤θ̄n)

]
≤ S2α/(β2n) where θ̄n = (1/n)

∑n
t=1 θt.

A.2.1 Discussion

We discuss some implications of conditions (9) and (10). Some of this discussion will help us identify
the types of loss functions to which the conditions cannot be applied.

First, we note that ℓ̃(u) > 0 implies π(u) > 0. Hence, equivalently, π(u) = 0 implies ℓ̃(u) = 0.

Second, we note that under conditions (9) and (10) it is necessary that for all u ∈ R, either

−ℓ′(u) ≤ α

βR2
max{ρ∗ − u, 0} or π(u) = 0.

Hence, whenever ℓ̃(u) > 0 (and thus π(u) > 0), then −ℓ′(u) ≤ α
βR2 max{ρ∗ − u, 0}. The latter

condition means that ℓ′(u) = 0 whenever u ≥ ρ∗ and otherwise the derivative of ℓ at u is bounded
such that ℓ′(u) ≥ −(α/(βR2))(ρ∗ − u). In other words, function ℓ must not decrease too fast on
(−∞, ρ∗].

Third, assume ℓ and ℓ̃ are such that ℓ(u) = 0 and ℓ̃(u) = 0 for all u ≥ 1 and ℓ̃(u) > 0 for all u < 1.
Then, for every u ≤ 1 ∫ 1

u

(−ℓ(v))dv ≤ α

βR2

∫ 1

u

(ρ∗ − v)dv

which by integrating is equivalent to

ℓ(u) ≤ α

βR2

(
(ρ∗ − 1)(1− u) +

1

2
(1− u)2

)
.

This shows that ℓ must be upper bounded by a linear combination of hinge and squared hinge loss
function.

Forth, assume that π is decreasing in u, then for every fixed u0 ∈ R,

ℓ̃(u) ≥ π(u0)R
2

α
(−ℓ′(u))2 for every u ≤ u0.

16

122785https://doi.org/10.52202/079017-3901

If ℓ̃ = ℓ, then

ℓ(u) ≤
(√

ℓ(u0) +
1

2R

√
α

π(u0)
(u0 − u)

)2

for all u ≤ u0.

Fifth, and last, assume that π is an even function and that there exists c > 0 and u0 ≤ ρ∗ such that
ℓ̃(u) ≥ c for every u ≤ u0. Then,

π(u) = Ω

(
1

|u|2

)
which limits the rate at which π(u) is allowed to decrease with |u|. To see, this, from conditions (9)
and (10), for every u ≤ ρ∗,

ℓ̃(u) ≤ α

β2R2
π(u)(ρ∗ − u)2.

Hence, π(u) ≥ (cβ2R2/α)/(ρ∗ − u)) for every u ≤ u0. The lower bound is tight in case when ℓ is
squared hinge loss function and ℓ̃(u) = c for every u ≤ u0 < 1. In this case, from conditions (9) and
(10), for every u ≤ u0,

cβ
1

(1− u)(ρ∗ − u)
≤ π(u) ≤ cα

R2

1

(1− u)2

which implies π(u) = Θ(1/|u|2).

A.3 Proof of Theorem 3.1

We show that conditions of the theorem imply conditions (9) and (10) to hold, for ℓ̃ = ℓ, which in
turn imply conditions (7) and (8) and hence we can apply the convergence result of Lemma A.3.

We first consider condition (7). For squared hinge loss function ℓ and ℓ̃ = ℓ, clearly condition (7)
holds for every u ≥ 1 as in this case both side of the inequality are equal to zero. For every u ≤ 1,

ℓ(u)

ℓ′(u)2
=

1

2
.

Since by assumption π(u) ≤ β/2 for all u, condition α/β ≥ R2 implies condition (7).

We next consider condition (8). Again, clearly, condition holds for every u ≥ 1 as in this case both
sides of the inequality are equal to zero. For u ≤ 1, we can write (8) as follows

π(u) ≥ β
ℓ(u)

(−ℓ′(u))(ρ∗ − u)
=

β

2

1− u

ρ∗ − u

=
β

2

(
1− 1

1 + (1/(ρ∗ − 1))(1− u)

)
=

β

2

(
1− 1

1 + (
√
2/(ρ∗ − 1))

√
ℓ(u)

)
.

This condition is implied by π(u) ≥ π∗(ℓ(u)) where

π∗(ℓ) =
β

2

(
1− 1

1 + µ
√
ℓ

)
with µ ≥

√
2/(ρ∗ − 1).

The result of the theorem follows from Lemma A.3 with α/β = R2, 0 < β ≤ 2 and π(u) ≥ π∗(ℓ(u))
for all u ≤ 1.

For the expected number of samples we proceed as follows. First by concavity and monotonicity of
function π∗ and the expected loss bound, we have

E

[
n∑

t=1

π∗(ℓ(xt, yt, θt))

]
≤ π∗

(
E

[
1

n

n∑
t=1

ℓ(xt, yt, θt)

])
n ≤ π∗

(
||θ1 − θ∗||2R2

βn

)
n.

17

122786 https://doi.org/10.52202/079017-3901

Then, combined with the fact π∗(v) ≤ βµ
2

√
v for all v ≥ 0, it follows

E

[
n∑

t=1

π∗(ℓ(xt, yt, θt))

]
≤ ||θ1 − θ∗||µ

√
β

2

√
n.

Since π∗(v) ≤ β/2 for all v, it obviously holds E [
∑n

t=1 π
∗(ℓ(xt, yt, θt))] ≤ (β/2)n, which com-

pletes the proof of the theorem.

A.4 Linear Classifiers: Zero-one Loss and Absolute Error Loss-based Sampling

Here we consider training loss functions satisfying:
Assumption A.4. Function ℓ is continuously differentiable on (−∞, 0], convex, and ℓ′(0) ≤ −c1
and limu→−∞ ℓ′(u) ≥ −c2, for some constants c1, c2 > 0.

We consider sampling proportional to either zero-one loss or absolute error loss. The zero-one loss
is defined as ℓ01(u) := 1{u≤0} = 1{y ̸=sgn(x⊤θ)}. The absolute error loss is defined as ℓabs(u) :=
2
(
1{u<0} +

1
21{u=0}

)
= |y − sgn(x⊤θ)|. Sampling proportional to zero-one loss is defined as

π(u) = ωℓ01(u) for some constant ω ∈ (0, 1], while sampling proportional to absolute error loss is
defined as π(u) = ωℓabs(u) for some constant ω ∈ (0, 1/2].
Theorem A.5. Assume that the loss function ℓ satisfies Assumption A.4 and ρ∗ > 0. Then, under
sampling proportional to zero-one loss, for any initial value θ1 such that ||θ1 − θ∗|| ≤ S and {θt}t>1

according to algorithm (1) with γ = c1ρ
∗/(c22R

2),

E

[
n∑

t=1

ℓ01(ytx
⊤
t θt)

]
≤ c22R

2S2

c21ω

1

ρ∗2
. (11)

Furthermore, under sampling proportional to absolute error loss and γ = 2c1ρ
∗/(c22R

2), the bound
in (11) holds but with an additional factor of 2.

Proof is provided in Appendix A.4.1.

The bound in (11) is a well-known bound on the number of mistakes made by the perceptron
algorithm, of the order O(1/ρ∗2). It can be readily observed that under sampling proportional to
zero-one loss, the expected number of sampled points is bounded by (c2/c1)

2R2S2/ρ∗2, which also
holds for sampling proportional to absolute error loss but with an additional factor of 4.

A.4.1 Proof of Theorem A.5

We first consider the case when sampling is proportional to zero-one loss. We show that conditions of
the theorem imply conditions (9) and (10) to hold, for ℓ̃ = ℓ01 and π = ωℓ01, which in turn imply
conditions (7) and (8) and hence we can apply the convergence result of Lemma A.3.

Conditions (9) and (10) are equivalent to:

ωℓ′(u)2R2 ≤ α, for every u ≤ 0

and
ω(−ℓ′(u))(ρ∗ − u) ≥ β for every u ≤ 0.

Since ℓ is a convex function ℓ′(u)2 is decreasing in u and (−ℓ′(u))(ρ∗ − u) is decreasing in u.
Therefore, conditions are equivalent to

ω(lim
u→−∞

(−ℓ′(u)))2R2 ≤ α

and
ω(−ℓ′(0))ρ∗ ≥ β.

These conditions hold true by taking α = ωc22R
2 and β = ωc1ρ

∗.

We next consider the case when sampling is proportional to absolute error loss. We show that
conditions of the theorem imply conditions (9) and (10) to hold, for ℓ̃ = ℓ01 and π = ωℓabs, which in
turn imply conditions (7) and (8) and hence we can apply the convergence result of Lemma A.3.

18

122787https://doi.org/10.52202/079017-3901

Conditions (9) and (10) correspond to

2ω(−ℓ′(u))2R2 ≤ α for every u < 0 and ω(−ℓ′(0))2R2 ≤ α

and
2ω(−ℓ′(u))(ρ∗ − u) ≥ β for every u < 0 and ω(−ℓ′(0))ρ∗ ≥ β.

Again, since (−ℓ′(u))2 is decreasing in u and (−ℓ′(u))(ρ∗ − u) is decreasing in u, it follows that the
conditions are equivalent to

2ω(lim
u→−∞

(−ℓ′(u)))2R2 ≤ α

and
ω(−ℓ′(0))ρ∗ ≥ β.

Hence, conditions (9) and (10) hold by taking α = 2ωc22R
2 and β = ωc1ρ

∗.

A.5 Linear Classifiers: Generalized Smooth Hinge Loss Function

Here we consider the training loss function corresponding to the generalized smooth hinge loss
function [Rennie, 2005], defined for a ≥ 1 as follows:

ℓ(u) =


a

a+1 − u if u ≤ 0
a

a+1 − u+ 1
a+1u

a+1 if 0 ≤ u ≤ 1
0 otherwise.

(12)

This is a continuously differentiable function that converges to the value of the hinge loss function,
max{1− u, 0}, as a goes to infinity. The family of loss functions parameterized by a accommodates
the smooth hinge loss function with a = 1, introduced by Rennie and Srebro [2005].
Theorem A.6. Assume that ρ∗ > 1, the loss function is the generalized smooth hinge loss function,
and the sampling probability is according to the function π∗, which, for β ∈ (0, 1] and ρ ∈ (1, ρ∗], is
defined as

π∗(u) =


β

a
a+1−u

ρ−u if u ≤ 0

β
a

a+1
1

1−ua (1−u)− 1
a+1u

ρ−u if 0 ≤ u ≤ 1
0 if u ≥ 1.

Then, for any initial value θ1 such that ||θ1 − θ∗|| ≤ S and {θt}t>1 according to algorithm (1) with
γ = 1/(ca,ρR

2), where ca,ρ = a/(a(ρ− 1) + 1), we have

E
[
ℓ(yx⊤θ̄n)

]
≤ E

[
1

n

n∑
t=1

ℓ(ytx
⊤
t θt)

]
≤ ca,ρ

R2S2

β

1

n
.

Furthermore, the same bound holds for every π such that π∗(u) ≤ π(u) ≤ β for all u ∈ R, with
ca,ρ = 2a.

Proof is provided in Appendix A.5.1.

Note that π∗ is increasing in a and is upper-bounded by π∗∗(u) = β(1− u)/(ρ− 1), which may be
regarded as the limit for the hinge loss function. See Figure 3 for an illustration.

We remark that the expected loss bound in Theorem A.6 is the same as for the squared hinge loss
function in Theorem 3.1, except for an additional factor ca,ρ = a/(a(ρ − 1) + 1). This factor is
increasing in a but always lies in the interval [1/ρ, 1/(ρ−1)], where the boundary values are achieved
for a = 1 and a→ ∞, respectively.
Theorem A.7. Assuming ρ∗ > 1, the loss function is the generalized smooth hinge loss, and
the sampling probability function π∗ satisfies the assumptions in Theorem A.6, with n > ((a +
1)/a)ca,ρR

2S2/β, the expected number of sampled points is bounded as

E

[
n∑

t=1

π∗(ytx
⊤
t θt)

]
≤ κmax

{√
βca,ρRS

(ρ− 1)
√
a

√
n,
ca,ρR

2S2

ρ− 1

}
,

where κ is some positive constant.

19

122788 https://doi.org/10.52202/079017-3901

Figure 3: Sampling probability function for the family of generalized smooth hinge loss functions.

Proof is provided in Appendix A.5.2.

For any fixed number of iterations n satisfying the condition of the theorem, the expected number
of sampled points is bounded by a constant for sufficiently large value of parameter a. The bound
in Theorem A.7 depends on how the loss function ℓ(u) varies with u. When a is large, ℓ(u) is
approximately 1− u (hinge loss), otherwise, it is approximately a

2 (1− u)2 for 0 ≤ u ≤ 1 (squared
hinge loss).

A.5.1 Proof of Theorem A.6

Assume that π∗ is such that for given ρ ∈ (1, ρ∗], π∗(u)(−ℓ′(u))(ρ − u) = βℓ(u) for all u ∈ R.
Then, π∗ satisfies equation (10) for all u ∈ R. Note that

π∗(u) = β
ℓ(u)

(−ℓ′(u))(ρ− u)
=


β

a
a+1−u

ρ−u if u ≤ 0

β
(

a
a+1

1
1−ua (1− u)− 1

a+1u
)

1
ρ−u if 0 ≤ u ≤ 1

0 if u ≥ 1.

By condition (9), we must have
−ℓ′(u)
ρ− u

≤ α

βR2
.

Note that

ℓ′(u) =

{ −1 if u ≤ 0
−(1− ua) if 0 ≤ u ≤ 1
0 otherwise.

Hence, for every u ≤ 0, it must hold
1

ρ− u
≤ α

βR2

which is equivalent to α/β ≤ R2/ρ. For every 0 ≤ u ≤ 1, it must hold

fa(u) :=
1− ua

ρ− u
≤ α

βR2
.

Thus, it must hold α/β ≥ ca,ρR
2 where ca,ρ = supu∈[0,1] fa(u).

Function fa has boundary values fa(0) = 1/ρ and fa(1) = 0. Furthermore, note

f ′a(u) =
1 + (a− 1)ua − ρaua−1

(ρ− u)2
.

Note fa(0) = 1/ρ2 > 0 and f ′a(1) = −(ρ− 1)a < 0. Let u∗ be such that f ′a(u∗) = 0, which holds
if, and only if, ga(u∗) := (a− 1)u∗

a − ρau∗
a−1 + 1 = 0.

20

122789https://doi.org/10.52202/079017-3901

Note that
ca,ρ = sup

u∈[0,1]

fa(u) = fa(u∗) = aua−1
∗ .

For a = 1, f1 is decreasing on [0, 1] hence c1,ρ = f1(0) = 1/ρ. For a = 2, u∗ is a solution of a
quadratic equation, and it can be readily shown that c2,ρ = 2ρ(1−

√
ρ2 − 1). For every a ≥ 1, we

have ca,ρ ≤ a/(1 + a(ρ − 1)). This obviously holds with equality for a = 1, hence it suffices to
show that the inequality holds for a > 1.

Consider the case a > 1. Note that ga(u∗) = 0 is equivalent to

aua−1
∗ =

1

ρ− a−1
a u∗

. (13)

Combined with the fact u∗ ∈ [0, 1], it immediately follows

aua−1
∗ ≤ a

a(ρ− 1) + 1
.

Furthermore, note that lima→∞ ca,ρ = 1/(ρ−1). To see this, consider (13). Note that u∗ goes to 1 as
a goes to infinity. This can be shown by contradiction as follows. Assume that there exists a constant
c ∈ [0, 1) and a0 such that u∗ ≤ c for all a ≥ a0. Then, from (13), aca−1 ≥ 1/ρ∗. The left-hand
side in the last inequality goes to 0 as a goes to infinity while the right-hand side is a constant greater
than zero, which yields a contradiction. From (13), it follows that aua−1

∗ goes to 1/(ρ− 1) as a goes
to infinity.

We prove the second statement of the theorem as follows. It suffices to show that condition (9)
holds true as condition (10) clearly holds for every π such that π(u) ≥ π∗(u) for every u ∈ R. For
condition (9) to hold, it is sufficient that

f(u) :=
ℓ(u)

ℓ′(u)2
≥ βR2

α
, for all u ≤ 1.

Note that

f(u) =

{
a

a+1 − u if u ≤ 0
1

a+1
ua+1−(a+1)u+a

(1−ua)2 if 0 ≤ u ≤ 1.

Function f is a decreasing function. This is obviously true for u ≤ 0. For 0 ≤ u ≤ 1, we show this
as follows. Note that

f ′(u) =
2au2a − (2a− 1)(a+ 1)ua + 2a2ua−1 − (a+ 1)

(a+ 1)(1− ua)3
.

Hence, f ′(u) ≤ 0 is equivalent to

2aua−1(ua+1 + a) ≤ (a+ 1)(1− (2a− 1)ua).

In the last inequality, the left-hand side is increasing in u and the right-hand side is decreasing in u.
Hence the inequality holds for every u ∈ [0, 1] is equivalent to the inequality holding for u = 1. For
u = 1, the inequality holds with equality.

Note that

f(1) =
0

0

=
1

a+ 1

(a+ 1)ua − (a+ 1)

−2(1− ua)aua−1
|u=1 =

0

0

=
1

a+ 1

(a+ 1)aua−1

2a2u2(a−1) − 2(1− ua)a(a− 1)ua−2
|u=1 =

1

a+ 1

(a+ 1)a

2a2

=
1

2a
.

It follows that infu≤1 f(u) = f(1) = 1
2a ≤ α/(βR2), hence it is suffices that α/β ≥ R2/(2a).

21

122790 https://doi.org/10.52202/079017-3901

A.5.2 Proof of Theorem A.7

Lemma A.8. For every a ≥ 1,

π∗(u) ≤ π∗∗(u) = β
1− u

ρ− 1
for every u ≤ 1.

Proof. For u ≤ 1, π∗(u) = β(a/(a + 1) − u)/(ρ − u), so obviously, π∗(u) ≤ β(1 − u)/(ρ − u).
For 0 ≤ u ≤ 1, we show that next that a(1 − u)/(1 − ua) − u ≤ a(1 − u), which implies that
π∗(u) ≤ (a/(a+ 1))β(1− u)/(ρ− u). To show the asserted inequality, by straightforward calculus
it can be shown that the inequality is equivalent to (1− (1− u))1−a ≥ 1− (1− a)(1− u) which
clearly holds true.

Lemma A.9. For every c ∈ (1, 6/5), for every 0 ≤ u ≤ 1, if (a+ 1)(1− u) ≥ c, then

ℓ(u) ≥
(
1− 1

c

)
(1− u)

and, otherwise,

ℓ(u) ≥
(
1− 1

3

c

1− c/2

)
a

2
(1− u)2.

Proof. We first show the first inequality. For u ≤ 1, it clearly holds ℓ(u) ≤ 1− u, and

a
a+1 − u

1− u
=

1− u− 1
a+1

1− u
= 1− 1

(a+ 1)(1− u)

thus, for every c > 1, ℓ(u) ≥ (1− 1/c)(1− u) whenever (a+ 1)(1− u) ≥ c.

For 0 ≤ u < 1, it holds ℓ(u) = 1− u− (1/(a+ 1))(1− ua+1), hence it clearly holds ℓ(u) ≤ 1− u.
Next, note

ℓ(u)

1− u
= 1

1− ua+1

(a+ 1)(1− u)
≥ 1− 1

(a+ 1)(1− u)
.

Hence, again, for every c > 1, ℓ(u) ≥ (1− 1/c)(1− u) whenever (a+ 1)(1− u) ≥ c.

We next show the second inequality. For 0 < u ≤ 1, note that ℓ′(u) = −(1− ua), ℓ′′(u) = aua−1

and ℓ′′′(u) = a(a− 1)ua−2. In particular, ℓ′(1) = 0, ℓ′′(1) = a and ℓ′′′(1) = a(a− 1). By limited
Taylor development, for some u0 ∈ [u, 1],

ℓ(u) =
a

2
(1− u)2 − a(a− 1)

6
ua−2
0 (1− u)3.

From this, it immediately follows that ℓ(u) ≤ a
2 (1 − u)2 for every u ≤ 1. For the case a ≥ 2, we

have

ℓ(u) ≥ a

2
(1− u)2

(
1− 1

3
(a− 1)(1− u)

)
.

Hence, for every c ≥ 0, ℓ(u) ≥ a
2 (1− u)2(1− c/3) whenever (a+ 1)(1− u) ≤ c. For 1 ≤ a ≤ 2,

we have

ℓ(u) ≥ a

2
(1− u)2

(
1− 1

3

(a− 1)(1− u)

u2−a

)
≥ a

2
(1− u)2

(
1− 1

3

(a− 1)(1− u)

u

)
.

Under (a+ 1)(1− u) ≤ c, with 0 ≤ c < 2, we have

(a− 1)(1− u)

u
≤ c

1− c
a+1

≤ c

1− c
2

.

Hence, it follows

ℓ(u) ≥ a

2
(1− u)2

(
1− 1

3

c

1− c
2

)
.

22

122791https://doi.org/10.52202/079017-3901

Next, note that for every x, y, θ,

π∗(yx⊤θ) ≤ π∗∗(yx⊤θ) ≤ β

ρ∗ − 1
(1− yx⊤θ) =

β

ρ∗ − 1
(1− ℓ−1(ℓ(x, y, θ)))

where ℓ−1 is the inverse function of ℓ(u) for u < 1 and ℓ−1(0) = 0.

Hence, we have

E

[
n∑

t=1

π∗(ytx
⊤
t θt)

]
≤ β

ρ− 1

(
1− ℓ−1

(
E

[
1

n

n∑
t=1

ℓ(xt, yt, θt)

]))
n

≤ β

ρ− 1

(
1− ℓ−1

(
ca,ρ

||θ1 − θ∗||2R2

β

1

n

))
n

where the first inequality is by concavity of the function 1− ℓ−1(ℓ) and the second inequality is by
Theorem A.6.

To apply Lemma A.9, we need that

ℓ−1

(
ca,ρ

||θ1 − θ∗||2R2

β

1

n

)
> 0

which is equivalent to

ca,ρ
||θ1 − θ∗||2R2

β

1

n
< ℓ(0) =

a

a+ 1

i.e.

n >
a+ 1

a
ca,ρ

||θ1 − θ∗||2R2

β
.

By Lemma A.9, we can distinguish two cases when

1− ℓ−1

(
ca,ρ

||θ1 − θ∗||2R2

β

1

n

)
≥ c

a+ 1

or, otherwise, where c is an arbitrary constant in (1, 6/5).

In the first case,

1− ℓ−1

(
ca,ρ

||θ1 − θ∗||2R2

β

1

n

)
≤ c1ca,ρ

||θ1 − θ∗||2R2

β

1

n

where c1 = 1/(1− 1/c) while in the second case

1− ℓ−1

(
ca,ρ

||θ1 − θ∗||2R2

β

1

n

)
≤ c2

√
2

a

√
ca,ρ

||θ1 − θ∗||2R2

β

1

n

where c2 = 1/(1− (1/3)c/(1− c/2).

It follows that for some constant κ > 0,

E

[
n∑

t=1

π∗(ytx
⊤
t θt)

]
≤ κmax

{ √
βca,ρ

(ρ− 1)
√
a
||θ1 − θ∗||R

√
n,

ca,ρ
ρ− 1

||θ1 − θ∗||2R2

}
.

A.6 Multi-class Classification for Linearly Separable Data

We consider multi-class classification with k ≥ 2 classes. Let Y = {1, . . . , k} denote the set of
classes. For every y ∈ Y , let θy ∈ Rd and let θ = (θ⊤1 , . . . , θ

⊤
k)

⊤ ∈ Rkd be the parameter. For given
x and θ, predicted class is an element of argmaxy∈Y x

⊤θy .

The linear separability condition is defined as follows: there exists θ∗ ∈ Rkd such that for some
ρ∗ > 1, for every x ∈ X and y ∈ Y ,

x⊤θ∗y − max
y′∈Y\{y}

x⊤θ∗y′ ≥ ρ∗.

23

122792 https://doi.org/10.52202/079017-3901

Let
u(x, y, θ) = x⊤θy − max

y′∈Y\{y}
x⊤θy′ .

We consider margin loss functions which are according to a decreasing function of u(x, y, θ), i.e.
ℓ(x, y, θ) ≡ ℓ(u(x, y, θ)) and ℓ̃(x, y, θ) ≡ ℓ̃(u(x, y, θ)). For example, this accomodates hinge loss
function for multi-class classification Crammer and Singer [2002].

Lemma A.10. Conditions in Assumption A.1 hold provided that for every x, y and θ,

π(x, y, θ)(−ℓ′(u(x, y, θ))22R2 ≤ αℓ̃(u(x, y, θ))

and
π(x, y, θ)(−ℓ′(u(x, y, θ)))(ρ∗ − u(x, y, θ)) ≥ βℓ̃(u(x, y, θ)).

Proof. For x ∈ X and y ∈ Y , let ϕ(x, y) = (ϕ1(x, y)
⊤, . . . , ϕk(x, y)

⊤)⊤ where ϕi(x, y) = x if
i = y and ϕi(x, y) is the d-dimensional null-vector, otherwise. Note that

u(x, y, θ) = θ⊤ϕ(x, y)− 1

|Y∗(x, y, θ)|
∑

y′∈Y∗(x,y,θ)

θ⊤ϕ(x, y′) (14)

where
Y∗(x, y, θ) = arg max

y′∈Y∗(x,y,θ)
θ⊤y′x.

Note that
||∇θℓ(x, y, θ)||2 = ℓ′(u(x, y, θ))2||∇θu(x, y, θ)||2.

From (14),

∇θu(x, y, θ) = ϕ(x, y)− 1

|Y∗(x, y, θ)|
∑

y′∈Y∗(x,y,θ)

ϕ(x, y′).

It can be readily shown that

||∇θu(x, y, θ)||2 =

(
1 +

1

|Y∗(x, y, θ)|

)
||x||2 ≤ 2||x||2.

Hence, we have
||∇θℓ(x, y, θ)||2 ≤ 2(−ℓ′(u(x, y, θ))2||x||2. (15)

Next, note that ∇θℓ(x, y, θ) = ℓ′(u(x, y, θ))∇θu(x, y, θ),

∇θℓ(x, y, θ)
⊤(θ − θ∗) = (−ℓ′(u(x, y, θ)))∇θu(x, y, θ)

⊤(θ∗ − θ).

and
∇θu(x, y, θ)

⊤θ∗ = x⊤θ∗y − max
y′∈Y\{y}

x⊤θ∗y′ ≥ ρ∗.

It follows
∇θℓ(x, y, θ)

⊤(θ − θ∗) ≥ (−ℓ′(u(x, y, θ))(ρ∗ − u(x, y, θ)). (16)

Using (15) and (16), for conditions (7) and (8) to hold, it suffices that

π(x, y, θ)(−ℓ′(u(x, y, θ)))22R2 ≤ αℓ̃(u(x, y, θ))

and
π(x, y, θ)(−ℓ′(u(x, y, θ))(ρ∗ − u(x, y, θ)) ≥ βℓ̃(u(x, y, θ)).

Note that these conditions are equivalent to those for the binary case in (9) and (10) except for an
additional factor 2 in the first of the last above inequalities.

24

122793https://doi.org/10.52202/079017-3901

A.7 Proof of Lemma 3.2

Function Π is a convex function because, by assumption, π is an increasing function. By (4 and
Jensen’s inequality, we have

E

[
1

n

n∑
t=1

ℓ̃(θt)

]
= E

[
1

n

n∑
t=1

Π(ℓ(xt, θt))

]

≥ Π

(
E

[
1

n

n∑
t=1

ℓ(xt, θt)

])

= Π

(
E

[
1

n

n∑
t=1

ℓ(xt, yt, θt)

])

= Π

(
E

[
1

n

n∑
t=1

ℓ(θt)

])
.

Therefore, we have

E

[
1

n

n∑
t=1

ℓ(θt)

]
≤ Π−1

(
E

[
1

n

n∑
t=1

ℓ̃(θt)

])
.

Combined with condition (5), we have

E

[
1

n

n∑
t=1

ℓ(θt)

]
≤ Π−1

(
inf
θ
ℓ̃(θ) +

m∑
i=1

fi(n)

)

≤ inf
θ
Π−1(ℓ̃(θ)) +

m∑
i=1

Π−1(fi(n))

where the last inequality holds because Π−1 is a concave function, and hence, it is a subadditive
function.

A.8 Proof of Theorem 3.3

Under assumptions of the theorem, by Theorem 6.3 Bubeck [2015],

E
[
ℓ̃(θ̄n)

]
≤ E

[
1

n

n∑
t=1

ℓ̃(θt)

]
≤ inf

θ
ℓ̃(θ) +

√
2Sσπ

1√
n
+ LS2 1

n
.

Combining with Lemma 3.2, we obtain the assertion of the theorem.

A.9 Proof of Corollary 3.4

Lemma A.11. For Π(x) = x− 1 + e−x,

Π−1(y) ≤ 2
√
y for y ∈ [0, (3/4)2].

Proof. We consider
Π(x) = x− (1− e−x).

By limited Taylor development,

1− e−x ≤ x =
1

2
x2 +

1

6
x3.

Hence,

Π(x) ≥ 1

2
x2
(
1− 1

3
x

)
.

25

122794 https://doi.org/10.52202/079017-3901

Note that Π(x) ≥ cx2 for some constant c > 0 provided that

1

2
x2
(
1− 1

3
x

)
≥ cx2

which is equivalent to x ≤ 3(1− 2c). Hence, for any fixed c ∈ [0, 1/2), we have

Π(x) ≥ cx2, for every x ∈ [0, 3(1− 2c)].

Now, condition x ≤ 3(1−2c) is implied by
√
Π(x)/c ≤ 3(1−2c), i.e. Π(x) ≤ 9c(1−2c)2. Hence,

Π−1(y) ≤
√

1

c
y for y ∈ [0, 9c(1− 2c)2].

In particular, by taking c = 1/4, we have

Π−1(y) ≤ 2
√
y for y ∈ [0, (3/4)2].

We have the bound in Theorem 3.3. Under
√
2Sσπ/

√
n ≤ (3/4)2, we have

Π−1

(√
2Sσπ

1√
n

)
≤ 25/4

√
Sσπ

1
4
√
n
.

Under LS2/n ≤ (3/4)2, we have

Π−1

(
LS2 1

n

)
≤ 2

√
LS

1√
n
.

This completes the proof of the corollary.

A.10 Proof of Theorem 3.6

To simplify notation, we write ℓt(θ) ≡ ℓ(xt, yt, θ), γt = γ(xt, yt, θt) and πt = π(xt, yt, θt).

Since ℓ is an L-smooth function, we have ℓ(x, y, θ) − infθ′ ℓ(x, y, θ′) ≥ 1/(2L2)||∇θℓ(x, y, θ)||2.
Hence, for any x, y, θ such that ||∇θℓ(x, y, θ)|| > 0, we have

ℓ(x, y, θ)−minθ′ ℓ(x, y, θ′)

||∇θℓ(x, y, θ)||2
≥ 1

2L
. (17)

Combined with the definition of ζ and the fact ζ(xt, yt, θt) = γtπt, we have

κ := βmin

{
1

2L
, ρ

}
≤ γtπt whenever ||∇θℓ(x, y, θ)|| > 0. (18)

From the definition of ζ and the fact ζ(xt, yt, θt) = γtπt, we have

γtπt ≤ ρβ. (19)

Next, note

E[||θt+1 − θ∗||2 | xt, yt, θt]
= ||θt − θ∗||2 − 2E[zt | xt, yt, θt]∇θℓt(θt)

⊤(θt − θ∗) + E[z2t | xt, yt, θt]||∇θℓt(θt)||2

= ||θt − θ∗||2 − 2γtπt∇θℓt(θt)
⊤(θt − θ∗) + γ2t πt||∇θℓt(θt)||2

≤ ||θt − θ∗||2 − 2γtπt(ℓt(θt)− ℓt(θ
∗)) + γ2t πt

||∇θℓt(θt)||2

ℓt(θt)− ℓt(θ∗t)
(ℓt(θt)− ℓt(θ

∗
t))

= ||θt − θ∗||2 − γtπt

(
2− γt

||∇θℓt(θt)||2

ℓt(θt)− ℓt(θ∗t)

)
(ℓt(θt)− ℓt(θ

∗
t)) + 2γtπt(ℓt(θ

∗)− ℓt(θ
∗
t))

≤ ||θt − θ∗||2 − 2cκ(ℓt(θt)− ℓt(θ
∗
t)) + 2ρβ(ℓt(θ

∗)− ℓt(θ
∗
t))

26

122795https://doi.org/10.52202/079017-3901

where the first inequality is by convexity of ℓ, the second inequality is by condition (6), and (18) and
(19). Hence, we have

E[||θt+1 − θ∗||2] ≤ E[||θt − θ∗||2]− 2cκ1E[ℓt(θt)− ℓt(θ
∗
t)] + 2κ0E[ℓt(θ∗)− ℓt(θ

∗
t)].

By summing over t from 1 to n, we have

E

[
1

n

n∑
t=1

(ℓt(θt)− ℓt(θ
∗
t))

]
≤ ρβ

cκ
E

[
1

n

n∑
t=1

(ℓt(θ
∗)− ℓt(θ

∗
t))

]
+

1

2cκ
||θ1 − θ∗||2 1

n

≤ ρβ

cκ
(E[ℓ(x, y, θ∗)]− E[inf

θ
ℓ(x, y, θ)]) +

1

2cκ
||θ1 − θ∗||2 1

n
.

A.11 Proofs of Corollaries 3.7 and 3.8

For linear classifiers,
||∇θℓ(x, y, θ)||2

ℓ(x, y, θ)
= h(yx⊤θ)||x||2

where h(u) = ℓ′(u)2/ℓ(u) which plays a pivotal role in condition (6).

For the condition (6) to hold it suffices that

π(x, y, θ) ≥ β

2(1− c)
min

{
ρR2h(yx⊤θ), 1

}
.

Note that under assumption that ℓ(u) is an L′-smooth function in u, ℓ(yx⊤θ) is an L′||x||2-smooth
function in θ. Taking ρ = 1/(2L) with L = L′R2, we have ρR2 = 1/(2L′).

For the binary cross-entropy loss function, we have h(u) = σ′(u)2/(σ(u)2(− log(σ(u)))). Specifi-
cally, for the logistic regression case

h(u) =
1

(1 + eu)2 log(1 + e−u)
(20)

which is increasing in u for u ≤ 0 and is decreasing in u otherwise. Note that h(u) = (1 −
e−ℓ(u))2/ℓ(u).

A.11.1 Proof of Corollary 3.7

We first note the following lemma, whose proof is provided in Appendix A.12.
Lemma A.12. Function h, defined in (20), satisfies

h(u) ≤ 1

1 + eu
= 1− σ(u) for all u ∈ R. (21)

Furthermore h(u) ∼ 1− σ(u) for large u.

See See Figure 4, left, for a graphical illustration.

By Lemma A.12, condition (6) in Theorem 3.6 is satisfied with ρ = 1/(2L), by sampling proportional
to absolute error loss π∗(u) = ω(1− σ(u)) with β/(4(1− c)L′) ≤ ω ≤ 1.

A.11.2 Proof of Corollary 3.8

We have the following lemma, whose proof is provided in A.13.
Lemma A.13. Function h, defined in (20), satisfies, for every fixed a ∈ (0, 1/2],

h(u) ≤ 1

H(a) + (1− a)|u|
for all u ∈ R (22)

where H(a) = a log(1/a) + (1− a) log(1/(1− a)). Furthermore, h(u) ∼ 1/|u| as u tends to −∞.

See See Figure 4, right, for a graphical illustration.

By Lemma A.13, it follows that condition (6) in Theorem 3.6 is satisfied by uncertainty sampling
according to

π∗(u) =
β

2(1− c)
min

{
ρR2 1

H(a) + (1− a)|u|
, 1

}
.

27

122796 https://doi.org/10.52202/079017-3901

Figure 4: Upper bounds for function h defined in (20): (left) bound of Lemma A.12, (right) bounds
of Lemma A.13.

A.12 Proof of Lemma A.12

We need to prove that for every u ∈ R,

(1 + eu)2 log(1 + e−u) ≥ 1 + eu.

By dividing both sides in the last inequality with (1+eu)2 and the fact 1/(1+eu) = 1−1/(1+e−u),
we note that the last above inequality is equivalent to

log(1 + e−u) ≥ 1− 1

1 + e−u
.

By straightforward calculus, this can be rewritten as

log

(
1−

(
1− 1

1 + e−u

))
≤ −

(
1− 1

1 + e−u

)
.

This clearly holds true because 1− 1/(1 + e−u) ∈ (0, 1) and log(1− z) ≤ −z for every z ∈ (0, 1).

It remains only to show that limu→∞ h(u)/(1− σ(u)) = 1. This is clearly true as

h(u)

1− σ(u)
=

1

(1 + eu) log(1 + e−u)

which goes to 1 as u goes to infinity.

A.13 Proof of Lemma A.13

We first consider the case u ≤ 0. Fix an arbitrary v ≤ 0. Since u 7→ log(1 + eu) is a convex function
it is lower bounded by the tangent passing through v, i.e.

log(1 + e−u) ≥ log(1 + e−v)− 1

1 + ev
(u− v).

Now, let a be such that 1− a = 1/(1 + ev). Since v ≤ 0, we have a ∈ (0, 1/2]. It follows that for
any fixed a ∈ (0, 1/2],

log(1 + e−u) ≥ H(a)− (1− a)u.

Using this along with the obvious fact (1 + eu)2 ≥ 1, we have that for every u ≤ 0,

h(u) ≤ 1

log(1 + e−u)
≤ 1

H(a) + (1− a)|u|
.

We next consider the case u ≥ 0. It suffices to show that for every u ≥ 0, h(u) ≤ h(−u), and hence
the upper bound established for the previous case applies. The condition h(u) ≤ h(−u) is equivalent
to

1

(1 + eu)2 log(1 + e−u)
≤ 1

(1 + e−u)2 log(1 + eu)
.

28

122797https://doi.org/10.52202/079017-3901

By straightforward calculus, this is equivalent to

f(u) := (1− e−2u) log(1 + eu)− u ≥ 0.

This holds because function (i) f is increasing on [0, u0] and decreasing on [u0,∞), for some u0 ≥ 0,
(ii) f(0) = 0 and (iii) limu→∞ f(u) = 0. Properties (ii) and (iii) are easy to check. We only show
that property (i) holds true. By straightforward calculus,

f ′(u) = e−2u(2 log(1 + eu)− eu).

It suffices to show that there is a unique u∗ ∈ R such that f ′(u∗) = 0. For any such u∗ it must hold
2 log(1 + eu

∗
)− eu

∗
. Let v = ev

∗
. Then, 2 log(1 + v) = v, which is equivalent to

1 + v = e
v
2 .

Both sides of the last equation are increasing in v, and the left-hand side is larger than the right-hand
side for v = 1. Since the right-hand side is larger than the left-hand side for any large enough v, it
follows that there is a unique point v at which the sides of the equation are equal. This shows that
there is a unique u∗ ≥ 0 such that f ′(u∗) = 0.

It remains to show that limu→−∞ h(u)/(1/|u|) = 1, i.e.

lim
u→−∞

−u
(1 + eu)2 log(1 + e−u)

= 1

which clearly holds true as both 1/(1 + eu)2 and −u/ log(1 + e−u) go to 1 as u goes to −∞.

A.14 Convergence Conditions for π(x, y, θ) = ζ(x, y, θ)η

It suffices to show that under given conditions, the sampling probability function satisfies condition
(6). Using the definition of the sampling probability function, condition (6) can be written as follows(

ℓ(x, y, θ)− infθ′ ℓ(x, y, θ′)

||∇θℓ(x, y, θ)||2

)η

≥ 1

2(1− c)
min

{
β, ρβ

||∇θℓ(x, y, θ)||2

ℓ(x, y, θ)− infθ′ ℓ(x, y, θ)

}1−η

. (23)

In the inequality (23), by (17), the left-hand side is at least (1/(2L))η and clearly the right-hand side
is at most β1−η/(2(1− c)). Hence, it follows that it suffices that(

1

2L

)η

≥ 1

2(1− c)
β1−η.

A.15 Uncertainty-based Sampling for Multi-class Classification

We consider multi-class classification according to prediction function

p(y | x, θ) = ex
⊤θy∑

y′∈Y e
x⊤θy′

, for y ∈ Y.

Assume that ℓ is the cross-entropy function. Let

u(x, y, θ) = − log

 ∑
y′∈Y\{y}

e−(x⊤θy−x⊤θy′)

 .

It can be shown that
||∇θℓ(x, y, θ)||2

ℓ(x, y, θ)
≤ 2||x||2h(u(x, y, θ))

where function h is defined in (20). Hence, condition of Theorem 3.6 holds under

π(u) ≥ β

2(1− c)
min

{
2ρR2h(u), 1

}
.

29

122798 https://doi.org/10.52202/079017-3901

For given θ and x, let θ(1), . . . , θ(k) be an ordering of θ1, . . . , θk such that x⊤θ(1) ≥ · · · ≥ x⊤θ(k).
Sampling according to function π∗ of the gap g = |x⊤θ(1) − x⊤θ(k)|,

π∗(g) =
β

2(1− c)
min

{
2ρR2h∗(g), 1

}
,

where
h∗(g) =

1

H(a) + (1− a)max{g − log(k − 1), 0}
,

satisfies condition of Theorem 3.6.

We next provide proofs for assertions made above. The loss function is assumed to be the cross-
entropy loss function, i.e.

ℓ(x, y, θ) = − log

(
ex

⊤θy∑
y′∈Y e

x⊤θy′

)
.

Note that we can write

ℓ(x, y, θ) = −

ϕ(x, y)⊤θ − log

 ∑
y′∈Y\{y}

eϕ(x,y
′)⊤θ

 .

We consider
||∇θℓ(x, y, θ)||2

ℓ(x, y, θ)

which is plays a key role in the condition of Theorem 3.6.

It holds

∇θℓ(x, y, θ) = −

(
ϕ(x, y)−

∑
y′∈Y\{y} e

ϕ(x,y′)⊤θϕ(x, y′)∑
y′∈Y\{y} e

ϕ(x,y′)⊤θ

)
and

||∇θℓ(x, y, θ)||2 =

(
1− eϕ(x,y)

⊤θ∑
z∈Y\{y} e

ϕ(x,z)⊤θ

)2

||x||2 +
∑

y′∈Y\{y}

(
eϕ(x,y

′)⊤θ∑
z∈Y\{y} e

ϕ(x,z)⊤θ

)2

||x||2

=

(1− e−ℓ(x,y,θ)
)2

+
∑

y′∈Y\{y}

(
e−ℓ(x,y′,θ)

)2 ||x||2.

From the last equation, it follows

||x||2
(
1− e−ℓ(x,y,θ)

)2
≤ ||∇θℓ(x, y, θ)||2 ≤ 2||x||2

(
1− e−ℓ(x,y,θ)

)2
.

Note that ℓ(x, y, θ) = log(1 + e−u(x,y,θ)) where

u(x, y, θ) = − log

 ∑
y′∈Y\{y}

e−(x⊤θy−x⊤θy′)

 .

It follows

||x||2h(u(x, y, θ)) ≤ ||∇θℓ(x, y, θ)||2

ℓ(x, y, θ)
≤ 2||x||2h(u(x, y, θ))

where h is function defined in (20).

The following equation holds

u(x, y, θ) = θ⊤y x− max
z∈Y\{y}

x⊤θz − log

 ∑
y′∈Y\{y}

e−(maxz∈Y\{y} x⊤θz−x⊤θy′)

 .

30

122799https://doi.org/10.52202/079017-3901

Note that

|u(x, y, θ)| ≥ |x⊤θy − max
z∈Y\{y}

x⊤θz| − log

 ∑
y′∈Y\{y}

e−(maxz∈Y\{y} x⊤θz−x⊤θy′)


≥ |x⊤θ(1) − x⊤θ(2)| − log(k − 1).

Combining with Lemma A.13, for every a ∈ (0, 1/2],

h(u(x, y, θ)) ≤ 1

H(a) + (1− a)|u|
≤ h∗(|x⊤θ(1) − x⊤θ(2)|)

where

h∗(g) =

{
1

H(a) if g ≤ log(k − 1)
1

H(a)−(1−a) log(k−1)+(1−a)g if g > log(k − 1).

B Appendix: Additional Material for Numerical Experiments

B.1 Further Details on Experimental Setup

Hyperparameter Tuning We used the Tree-structured Parzen Estimator (TPE) [Bergstra et al.,
2011] algorithm in the hyperopt package [Bergstra et al., 2013] to tune the relevant hyperparameters
for each method and minimize the average progressive cross entropy loss. For Polyak absloss and
Polyak exponent we set the search space of η to [0.01, 1] and the search space of ρ to [0, 1]. Note that
the values of η and ρ influence the rate of sampling.

In line with the typical goal of active learning, we aim to learn efficiently and minimize loss under
some desired rate of sampling. Therefore, for every configuration of η and ρ we use binary search to
find the value of β that achieves some target empirical sampling rate.

Observe that if we would not control for β, then our hyperparameter tuning setup would simply find
values of η and ρ that lead to very high sampling rates, which is not in line with the goal of active
learning. In the hyperparameter tuning we set the target empirical sampling rate to 50%.

Compute Resources All experiments were performed on a single machine with 72 CPU cores and
228 GB RAM. It took us around 2,000 seconds to complete a training run for an AWS-PA with an
absloss estimator on Mushrooms dataset, our slowest experiment. The training runs for other datasets
and algorithms were considerably faster.

B.2 Further Details on Numerical Experiments with Different Algorithms

In Section 4, we presented numerical results for comparing AWS-PA with other algorithms. These
results are shown in Figure 1. Below are some additional details for these experiments.

Tuning Sampling Rate In Figure 1 we compare Polyak absolute loss sampling to absolute loss
sampling and random sampling. In this setting we have no control over the sampling rate of absolute
loss sampling. Hence, we first run absolute loss sampling to find an empirical sampling rate of
14.9%. We then again use binary search to find the value of β to match this sampling rate with Polyak
absolute loss sampling. Again, this setup is conservative with respect to the gains of Polyak absolute
loss sampling as η and ρ were optimized for a sampling rate of 50%.

Sampling Efficiency of AWS-PA In Figure 1 we had demonstrated on various datasets that AWS-
PA leads to faster convergence than the traditional loss-based sampling Yoo and Kweon [2019].
Figure 5 presents results as a function of the number of sampled instances, i.e., the number of labeled
instances that were selected for training (i.e., cost). This contrasts Figure 1, which showed on the
X-axis the total number of iterations. The results confirm that sampling with AWS-PA not only leads
to faster convergence than traditional loss-based sampling when expressed in terms of number of
iterations, but also when expressed in the number of sampled instances.

31

122800 https://doi.org/10.52202/079017-3901

0 100 200 300 400 500 600 700 800
cost

0.1

0.2

0.3

0.4

0.5

0.6

0.7

av
er

ag
e

cr
os

s e
nt

ro
py

 lo
ss random

absloss
polyak_absloss

Figure 5: Average cross entropy loss as a function of labeling cost for different sampling methods.

0 1000 2000 3000 4000 5000 6000
iteration

0.3

0.4

0.5

0.6

0.7

av
er

ag
e

te
st

 se
t l

os
s

absloss
random

0 1000 2000 3000 4000 5000 6000
iteration

0.2

0.3

0.4

0.5

0.6

0.7

av
er

ag
e

te
st

 se
t l

os
s

absloss
polyak_absloss

Figure 6: Average cross entropy loss on a hold-out testing set for different sampling methods.

AWS-PA Results on a Holdout Test Set The results in Figure 1 were obtained using a progressive
validation Blum et al. [1999] procedure where the average loss is measured during an online learning
procedure where for each instance the loss is calculated prior to the weight update. Figures 6 and 7
show that our finding that AWS-PA leads to faster convergence than traditional loss-based sampling
and than random sampling also holds true on a separate hold out test set.

B.3 Further Details on the Robustness of AWS-PA to Loss Estimation

In Section 4, we presented numerical results for comparison of the training loss achieved by our
AWS-PA algorithm using the ground truth absolute error loss and estimated absolute error loss. These
results are shown in Figure 2. Here, we provide more details for the underlying setup of experiments,
and the number of sampled points.

Details on the Absloss Estimator For the experiments in Figure 2 we use a separate Random
Forest (RF) regressor which estimates absolute error loss based on the same set of features as the
target model with an addition of the target’s model prediction as an extra feature. The estimator is
retrained on every sampling step using the labeled points observed so far. We used the scikit-learn
implementation of the RF regressor and manually tuned two hyperparameters for different datasets:
(a) number of tree estimators (b) number of "warm-up" steps during which we sample content with
a constant probability until we collect enough samples to train an RF estimator. We parallelized
training of the RF estimator across all available CPU cores and used default values for all other
hyperparameters.

The statistics of the absloss as well as the parameters of the RF estimators for different datasets are
summarized in Table 2. From the table, we note that the mean ground truth values of the absloss

0 200 400 600 800 1000
iteration

0.5

0.6

0.7

0.8

0.9

1.0

te
st

 se
t a

cc
ur

ac
y

absloss
random

0 1000 2000 3000 4000 5000 6000
iteration

0.5

0.6

0.7

0.8

0.9

1.0

av
er

ag
e

te
st

 se
t a

cc
ur

ac
y

absloss
polyak_absloss

Figure 7: Test accuracy for different sampling methods.

32

122801https://doi.org/10.52202/079017-3901

Table 2: Hyperparameters of the absloss estimator and the comparison of the mean of ground truth
and the mean of estimated absolute loss values.

Dataset Number of trees Warm-up steps Mean absloss Mean estimated absloss

Mushrooms 25 1 0.100 0.104
MNIST 3s vs 5s 25 50 0.089 0.087
Parkinsons 100 5 0.448 0.443
Splice 100 25 0.163 0.160
Tictactoe 100 1 0.435 0.416
Credit 100 50 0.277 0.294

0 1000 2000 3000 4000 5000 6000
iteration

0

200

400

600

800

1000

sa
m

pl
ed

 la
be

ls

polyak_absloss
polyak_absloss_estimator

(a) Mushrooms dataset

0 2000 4000 6000 8000 10000
iteration

0

200

400

600

800

1000

sa
m

pl
ed

 la
be

ls

polyak_absloss
polyak_absloss_estimator

(b) MNIST binary classification of 3s vs 5s

0 20 40 60 80 100 120 140
iteration

0

20

40

60

sa
m

pl
ed

 la
be

ls

polyak_absloss
polyak_absloss_estimator

(c) Parkinsons dataset

0 200 400 600 800 1000 1200
iteration

0

50

100

150

200
sa

m
pl

ed
 la

be
ls

polyak_absloss
polyak_absloss_estimator

(d) Splice dataset

0 100 200 300 400 500 600 700
iteration

0

100

200

300

sa
m

pl
ed

 la
be

ls

polyak_absloss
polyak_absloss_estimator

(e) Tictactoe dataset

0 100 200 300 400 500
iteration

0

50

100

150

200

sa
m

pl
ed

 la
be

ls

polyak_absloss
polyak_absloss_estimator

(f) Credit dataset

Figure 8: Sampling efficiency for sampling based on the ground truth of absolute loss v.s. on
estimated absolute loss.

are largely in line with the mean estimated absloss. This suggests that it is possible to train absloss
estimator with low bias or is even unbiased.

Sampling efficiency of the absloss estimator In Figure 8 we compare the cost of sampling based
on the ground truth absolute loss versus sampling based on the estimated absloss. We note that in 4
out 6 datasets, the sampling cost closely matches that of sampling based on the ground truth absloss.
However, in one of the cases (Splice) the sampling cost is lower and in one of the cases (Credit) it is
higher than the baseline.

Alternative absloss estimators In Figure 2 we shared results of AWS-PA using a Random Forest
regressor to estimate the absolute loss. Figure 9 shows the results the credit dataset of an otherwise
identical experimental setup where we have replaced the Random Forest regressor absloss estimator
with an MLP neural network.

33

122802 https://doi.org/10.52202/079017-3901

0 100 200 300 400 500
iteration

0.4

0.5

0.6

0.7

0.8

av
er

ag
e

cr
os

s-
en

tro
py

 lo
ss

polyak_absloss
polyak_absloss_estimator

Figure 9: Credit dataset with an MLP neural network loss estimator.

0 2000 4000 6000
iteration

0.00

0.25

0.50

av
er

ag
e

cr
os

s-
en

tro
py

 lo
ss sampling probability: 0.010

random
polyak_power_function

0 2000 4000 6000
iteration

0.00

0.25

0.50

sampling probability: 0.100

Figure 10: Average cross-entropy progressive loss of Polyak’s step size compared to SGD with
constant step size, for 1% and 10% sampling from the mushrooms data.

B.4 Additional experiments

Experiments with different sampling rates Loizou et al. [2021] demonstrated that stochastic
gradient descent with a step size corresponding to their stochastic Polyak’s step size converges faster
than gradient descent. Figure 10 illustrates that these findings extend to scenarios where we selectively
sample from the dataset rather than training on the full dataset, and the step size is according to
stochastic Polyak’s step size only in expectation.

To perform these experiments, similarly to the procedure described in Appendix B.1, we used binary
search to find the value of β that correspondingly achieves the two target values 1% and 10% with
Polyak power function, while using the values of η and ρ that were optimised for a sampling rate of
50%. Therefore, our findings of the gains achieved for selective sampling according to stochastic
Polyak’s step size are likely conservative since η and ρ were not optimised for specifically these
sampling rates.

Experiments with synthetic absloss estimator We simulate a noisy estimator of the absolute error
loss in AWS-PA. We model an unbiased noisy estimator ℓ̂abs of the absolute error loss ℓabs ∈ [0, 1]

as a random variable following the beta distribution, denoted as ℓ̂abs ∼ Beta(α, β), where α and β
are parameters set to ensure E[ℓ̂abs] = ℓabs. The variance of the noise can be controlled by the tuning
parameter α, given by

var[ℓ̂abs] =
ℓabs(1− ℓabs)

α+ ℓabs
.

Figure 11 shows that the convergence results are robust against estimation noise of the absolute error
loss for a wide range of values for α ≥ 1.

34

122803https://doi.org/10.52202/079017-3901

0 1000 2000 3000 4000 5000 6000
number of iterations

0.1

0.2

0.3

0.4

0.5

0.6

0.7

av
er

ag
e

cr
os

s e
nt

ro
py

 lo
ss polyak_absloss

polyak_absloss_high_noise
polyak_absloss_med_noise
polyak_absloss_low_noise

Figure 11: Robustness of the proposed sampling approach with adaptive Polyak’s step size for
different variance var[ℓ̂abs] = ℓ2abs(1− ℓabs)/(α+ ℓabs) noise levels of absolute error loss estimator:
(low) α = 100, (medium) α = 2.5, and (high) α = 1.

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: In the abstract and introduction, we summarize the problem settings that we
consider and our results in these settings.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: In the limitations section (Section A.1), we indicate several avenues for future
work that could be pursued to extend our work.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

35

122804 https://doi.org/10.52202/079017-3901

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: We present basic assumptions and definitions in Section 2. We list all the
assumptions in the statements of the theorems. Complete proofs of our theoretical results
are provided in Appendix A.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: In Section 4, we provide the information for reproducing our numerical results,
along with more details provided in Appendix B.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed

36

122805https://doi.org/10.52202/079017-3901

instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The datasets that we use are available in public domain and we have provided
references for these datasets. We have provided detailed information about algorithms
and experimental setups, which should be sufficient for reproducing our experiments.
The code itself is publicly available at https://github.com/facebookresearch/
AdaptiveWeightSampling.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

37

122806 https://doi.org/10.52202/079017-3901

https://github.com/facebookresearch/AdaptiveWeightSampling
https://github.com/facebookresearch/AdaptiveWeightSampling
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

Justification: We have explained how the data is fed to the SGD algorithms that we consider,
along with the sampling component and setting of the step size, hyperparameter tuning and
other relevant details.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Our experimental results show the training loss versus the number of iterations
for a single epoch. This is a standard way for comparing convergence rates of different
algorithms. Consistency of our results is demonstrated through validation by using different
training datasets.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We have provided details on the compute resources we had used for running
our experiments in Appendix B.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.

38

122807https://doi.org/10.52202/079017-3901

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have reviewed the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Given that this study primarily focuses on theoretical analysis, we do not
foresee any negative social consequences.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.

39

122808 https://doi.org/10.52202/079017-3901

https://neurips.cc/public/EthicsGuidelines

• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We have cited references for the datasets that we used as well as for any other
assets we used.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.

40

122809https://doi.org/10.52202/079017-3901

paperswithcode.com/datasets

Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

41

122810 https://doi.org/10.52202/079017-3901

