
Persistent Test-time Adaptation in
Recurring Testing Scenarios

Trung-Hieu Hoang1 Duc Minh Vo2 Minh N. Do1,3

1Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign
2The University of Tokyo

3VinUni-Illinois Smart Health Center, VinUniversity
{hthieu, minhdo}@illinois.edu vmduc@nlab.ci.i.u-tokyo.ac.jp

Abstract

Current test-time adaptation (TTA) approaches aim to adapt a machine learn-
ing model to environments that change continuously. Yet, it is unclear whether
TTA methods can maintain their adaptability over prolonged periods. To answer
this question, we introduce a diagnostic setting - recurring TTA where envi-
ronments not only change but also recur over time, creating an extensive data
stream. This setting allows us to examine the error accumulation of TTA models,
in the most basic scenario, when they are regularly exposed to previous testing
environments. Furthermore, we simulate a TTA process on a simple yet repre-
sentative ϵ-perturbed Gaussian Mixture Model Classifier, deriving theoretical
insights into the dataset- and algorithm-dependent factors contributing to gradual
performance degradation. Our investigation leads us to propose persistent TTA
(PeTTA), which senses when the model is diverging towards collapse and adjusts
the adaptation strategy, striking a balance between the dual objectives of adaptation
and model collapse prevention. The supreme stability of PeTTA over existing
approaches, in the face of lifelong TTA scenarios, has been demonstrated over
comprehensive experiments on various benchmarks. Our project page is available
at https://hthieu166.github.io/petta.

1 Introduction

Machine learning (ML) models have demonstrated significant achievements in various areas [18, 38,
47, 23]. Still, they are inherently susceptible to distribution-shift [46, 13, 48, 21, 6] (also known as
the divergence between the training and testing environments), leading to a significant degradation in
model performance. The ability to deviate from the conventional testing setting appears as a crucial
aspect in boosting ML models’ adaptability when confronted with a new testing environment that
has been investigated [30, 53, 14]. Among common domain generalization methods [58, 24, 1],
test-time adaptation (TTA) takes the most challenging yet rewarding path that leverages unlabeled
data available at test time for self-supervised adaptation prior to the final inference [57, 39, 8, 41, 59].

Early TTA studies have concentrated on a simply ideal adaptation scenario where the test samples
come from a fixed single domain [57, 39, 41]. As a result, such an assumption is far from the ever-
changing and complex testing environments. To confront continually changing environments [59, 12],
Yuan et al. [61] proposed a practical TTA scenario where distribution changing and correlative
sampling occur [15] simultaneously. Though practical TTA is more realistic than what the previous
assumptions have made, it still assumes that any environment only appears once in the data stream, a
condition which does not hold true. Taking a surveillance camera as an example, it might accom-
modate varying lighting conditions recurringly day after day (Fig. 1-left). Based on this reality, we
hypothesize that the recurring of those conditions may reveal the error accumulation phenomenon in
TTA, resulting in performance degradation over a long period. To verify our hypothesis, we simulate a

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

123402 https://doi.org/10.52202/079017-3923

https://hthieu166.github.io/petta


Te
st

in
g 

Er
ro

r

Time

Day 1

Ill
um

in
at

io
n 

Co
nd

iti
on

Day 2 Day 3

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8
1 2 3 4 5 6 7 8 9 10111213141516171819201 2 3 4 5 6 7 8 9 1011121314151617181920

Test-time adaptation step

Te
st

in
g

E
rr

or

No TTA RoTTA PeTTA (ours)

Figure 1: Recurring Test-time Adaption (TTA). (left) Testing environments may change recurringly
and preserving adaptability when visiting the same testing condition is not guaranteed. (right) The
testing error of RoTTA [61] progressively raises (performance degradation) and exceeds the error of
the source model (no TTA) while our PeTTA demonstrates its stability when adapting to the test set
of CIFAR-10-C [19] 20 times. The bold lines denote the running mean and the shaded lines in the
background represent the testing error on each domain (excluding the source model, for clarity).

recurring testing environment and observe the increasing error rate by recurringly adapting to the test
set of CIFAR-10-C [19] multiple times. We showcase the testing error of RoTTA [61] after 20 cycles
of adaptation in Fig. 1-right. As expected, RoTTA can successfully adapt and deliver encouraging
outcomes within the first few passes. However, this advantage is short-lived as our study uncovers a
significant issue: TTA approaches in this setting may experience severe and persistent degradation in
performance. Consequently, the testing error of RoTTA gradually escalates over time and quickly
surpasses the model without adaptation. This result confirms the risk of TTA deployment in our
illustrative scenario, as an algorithm might work well in the first place and gradually degenerate.
Therefore, ensuring sustainable quality is crucial for real-world applications, especially given the
recurring nature of testing environments.

This study examines whether the adaptability of a TTA algorithm persists over an extended testing
stream. Specifically, in the most basic scenario, where the model returns to a previously encountered
testing environment after undergoing various adjustments. We thus propose a more general testing
scenario than the practical TTA [61], namely recurring TTA, where the environments not only change
gradually but also recur in a correlated manner over time. We first analyze a simulation using the
ϵ−perturbed Gaussian Mixture Model Classifier (ϵ−GMMC) on a synthesized dataset and derive a
theoretical analysis to confirm our findings, offering insights to tackle similar issues in deep neural
networks. The analysis provides hints for reasoning the success of many recent robust continual
TTA approaches [61, 12, 59, 15] and leading us to propose a simple yet effective baseline to avoid
performance degradation, namely Persistent TTA (PeTTA). PeTTA continuously monitors the chance
of collapsing and adjusts the adaptation strategy on the fly, striking a balance between the two
objectives: adaptation and collapse prevention. Our contributions can be summarized as follows:

• First, this work proposes a testing scenario - recurring TTA, a simple yet sufficient setup for
diagnosing the overlooked gradual performance degradation phenomenon of TTA.

• Second, we formally define the phenomenon of TTA collapsing and undertake a theoretical
analysis on an ϵ-GMMC, shedding light on dataset-dependent and algorithm-dependent
factors that contribute to the error accumulation during TTA processes.

• Third, we introduce persistent TTA (PeTTA) - a simple yet effective adaptation scheme that
surpasses all baseline models and demonstrates a persisting performance.

For more context on related work, readers are directed to visit our discussions in Appdx. A.

2 Background
Test-time Adaptation (TTA). A TTA algorithm operates on an ML classifier ft : X → Y with
parameter θt ∈ Θ (parameter space) gradually changing over time (t ∈ T ) that maps an input image
x ∈ X to a category (label) y ∈ Y . Let the capital letters (Xt, Yt) ∈ X × Y denote a pair of random
variables with the joint distribution Pt(x, y) ∈ Pd, t ∈ T . Here, Pd belongs to collection of D
sets of testing scenarios (domains) {Pd}Dd=1. The covariate shift [46] is assumed: Pt(x) and Pt′(x)
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could be different but Pt(y|x) = Pt′(y|x) holds ∀t ̸= t′. At t = 0, θ0 is initialized by a supervised
model trained on P0 ∈ P0 (source dataset). The model then explores an online stream of testing data.
For each t > 0, it receives Xt (typically in form of a batch of Nt testing samples) for adapting itself
ft−1 → ft before making the final prediction ft (Xt).

TTA with Mean Teacher Update. To achieve a stable optimization process, the main (teacher)
model ft are updated indirectly through a student model with parameters θ′t [57, 61, 12, 15, 55]. At
first, the teacher model in the previous step introduces a pseudo label [28] Ŷt for each Xt:

Ŷt = ft−1(Xt). (1)

With a classification loss LCLS (e.g., cross-entropy [16]), and a model parameters regularizerR, the
student model is first updated with a generic optimization operator Optim, followed by an exponential
moving average (EMA) update of the teacher model parameter θt−1:

θ′t = Optim
θ′∈Θ

EPt

[
LCLS

(
Ŷt, Xt; θ

′
)]

+ λR(θ′), (2)

θt = (1− α)θt−1 + αθ′t, (3)

with α ∈ (0, 1) - the update rate of EMA, and λ ∈ R+ - the weighting coefficient of the regularization
term, are the two hyper-parameters.

Practical TTA. In practical TTA [61], two characteristics of the aforementioned distribution of data
stream are noticeable. Firstly, Pt’s can be partitioned by td’s in which {Pt}tdt=td−1

⊂ Pd. Here, each
partition of consecutive steps follows the same underlying distribution which will change continually
through D domains [59] (P1 → P2 · · · → PD). Secondly, the category distribution in each testing
batch is temporally correlated [15]. This means within a batch, a small subset of categories is
dominant over others, making the marginal distribution Pt(y) = 0,∀y ̸∈ Yt ⊂ Y even though the
category distribution over all batches are balanced. Optimizing under this low intra-batch diversity
(|Yt| ≪ |Y|) situation can slowly degenerate the model [7].

3 Recurring TTA and Theoretical Analysis

This section conducts a theoretical analysis on a concrete failure case of a simple TTA model. The
results presented at the end of Sec. 3.2 will elucidate the factors contributing to the collapse (Sec. 3.1),
explaining existing good practices (Sec. 3.3) and give insights into potential solutions (Sec. 4).

3.1 Recurring TTA and Model Collapse

Recurring TTA. To study the gradual performance degradation (or model collapse), we propose a new
testing scenario based on practical TTA [61]. Conducting a single pass through D distributions, as
done in earlier studies [61, 59], may not effectively identify the degradation. To promote consistency,
our recurring TTA performs revisiting the previous distributions K times to compare the incremental
error versus the previous visits. For example, a sequence with K = 2 could be P1 → P2 → · · · →
PD → P1 → P2 → · · · → PD. Appdx. D extends our justifications on constructing recurring TTA.
Definition 1 (Model Collapse). A model is said to be collapsed from step τ ∈ T , τ < ∞ if there
exists a non-empty subset of categories Ỹ ⊂ Y such that Pr{Yt ∈ Ỹ} > 0 but the marginal
Pr{Ŷt ∈ Ỹ} converges to zero in probability:

lim
t→τ

Pr{Ŷt ∈ Ỹ} = 0.

Here, upon collapsing, a model tends to ignore almost categories in Ỹ . As it is irrecoverable once
collapsed, the only remedy would be resetting all parameters back to θ0.

3.2 Simulation of Failure and Theoretical Analysis

Collapsing behavior varies across datasets and the adaptation processes. Formally studying this
phenomenon on a particular real dataset and a TTA algorithm is challenging. Therefore, we propose a
theoretical analysis on ϵ-perturbed binary Gaussian Mixture Model Classifier (ϵ-GMMC) that shares
the typical characteristics by construction and demonstrates the same collapsing pattern in action
(Sec. 5.1) as observed on real continual TTA processes (Sec. 5.3).
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Pseudo-label Predictor
Ŷt = argmax

y∈Y
Pr(Xt|y; θt−1)

Xt

Mean-teacher Update
θ
′
t = Optim

θ′∈Θ

EPt

[
LCLS

(
Ŷt, Xt; θ

′
)]

θt = (1 − α)θt−1 + αθ
′
t

ϵt

· · · θt−1 θt · · ·

Figure 2: ϵ-perturbed binary Gaussian Mix-
ture Model Classifier, imitating a continual
TTA algorithm for theoretical analysis. Two
main components include a pseudo-label
predictor (Eq. 1), and a mean teacher up-
date (Eqs. 2, 3). The predictor is perturbed
for retaining a false negative rate of ϵt to
simulate an undesirable TTA testing stream.

Simulated Testing Stream. Observing a testing stream with (Xt, Yt) ∈ X × Y = R× {0, 1} and
the underlying joint distribution Pt(x, y) = py,t · N (x;µy, σ

2
y). The main task is predicting Xt was

sampled from cluster 0 or 1 (negative or positive). Conveniently, let py,t
∆
= Pt(y) = Pr(Yt = y) and

p̂y,t
∆
= Pr(Ŷt = y) be the marginal distribution of the true label Yt and pseudo label Ŷt.

GMMC and TTA. GMMC first implies an equal prior distribution by construction which is
desirable for the actual TTA algorithms (e.g., category-balanced sampling strategies in [61, 15]).
Thus, it simplifies ft into a maximum likelihood estimation ft(x) = argmaxy∈Y Pr(x|y; θt) with
Pr(x|y; θt) = N (x; µ̂y,t, σ̂

2
y,t). The goal is estimating a set of parameters θt = {µ̂y,t, σ̂

2
y,t}y∈Y . A

perfect classifier θ0 = {µy, σ
2
y}y∈Y is initialized at t = 0. For the consecutive steps, the simplicity of

GMMC allows solving the Optim (for finding θ′t, Eq. 2) perfectly by computing the empirical mean
and variance of new samples, approximating EPt

. The mean teacher update (Eq. 3) for GMMC is:

µ̂y,t =

{
(1− α)µ̂y,t−1 + αEPt

[
Xt|Ŷt

]
if Ŷt = y

µ̂y,t−1 otherwise
. (4)

The update of σ̂2
y,t is similar. Ŷt = ft−1(Xt) can be interpreted as a pseudo label (Eq. 1).

ϵ-GMMC. Severe distribution shifts or low intra-batch category diversity of recurring TTA/practical
TTA both result in an increase in the error rate of the predictor. Instead of directly modeling
the dynamic changes of py,t (which can be complicated depending on the dataset), we study an
ϵ−pertubed GMMC (ϵ−GMMC), where py,t is assumed to be static (defined below) and the pseudo-
label predictor of this model is perturbed to simulate undesirable effects of the testing stream on the
predictor. Two kinds of errors appear in a binary classifier [4]. Let

ϵt = Pr{Yt = 1|Ŷt = 0} (5)

be the false negative rate (FNR) of the model at step t. Without loss of generality, we study the
increasing type II collapse of ϵ-GMMC. By intentionally flipping the true positive pseudo labels in
simulation, an FNR of ϵt is maintained (Fig. 2).

Assumption 1 (Static Data Stream). The marginal distribution of the true label follows the same
Bernoulli distribution Ber(p0): p0,t = p0, (p1,t = p1 = 1− p0),∀t ∈ T .

Lemma 1 (Increasing FNR). Under Assumption 1, a binary ϵ-GMMC would collapsed (Def. 1)
with lim

t→τ
p̂1,t = 0 (or lim

t→τ
p̂0,t = 1, equivalently) if and only if lim

t→τ
ϵt = p1.

Lemma 1 states the negative correlation between p̂1,t and ϵt. Unsurprisingly, towards the collapsing
point where all predictions are zeros, the FNR also increases at every step and eventually reaches the
highest possible FNR of p1.

Lemma 2 (ϵ-GMMC After Collapsing). For a binary ϵ-GMMC model, with Assumption 1, if
lim
t→τ

p̂1,t = 0 (collapsing), the cluster 0 in GMMC converges in distribution to a single-cluster GMMC
with parameters:

N (µ̂0,t, σ̂
2
0,t)

d.→ N (p0µ0 + p1µ1, p0σ
2
0 + p1σ

2
1 + p0p1(µ0 − µ1)

2).

Lemma 2 states the resulting ϵ−GMMC after collapsing. Cluster 0 now covers the whole data
distribution (and assigning label 0 for all samples). Furthermore, collapsing happens when µ̂0,t

moves toward µ1. We next investigate the factors and conditions for this undesirable convergence.
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Theorem 1 (Convergence of ϵ−GMMC). For a binary ϵ-GMMC model, with Assumption 1, let the
distance from µ̂0,t toward µ1 is d0→1

t = |EPt [µ̂0,t]− µ1|, then:

d0→1
t − d0→1

t−1 ≤ α · p0 ·
(
|µ0 − µ1| −

d0→1
t−1

1− ϵt

)
.

From Thm. 1, we observe that the distance d0→1
t ’s converges (also indicating the convergence to the

distribution in Lemma 2) if d0→1
t < d0→1

t−1 . The model collapse happens when this condition holds
for a sufficiently long period.
Corollary 1 (A Condition for ϵ−GMMC Collapse). With fixed p0, α, µ0, µ1, ϵ−GMMC is collapsed
if there exists a sequence of {ϵt}ττ−∆τ

(τ ≥ ∆τ > 0) such that:

p1 ≥ ϵt > 1−
d0→1
t−1

|µ0 − µ1|
, t ∈ [τ −∆τ , τ ].

Corollary 1 introduces a condition ϵ-GMMC collapse. Here, ϵt’s are non-decreasing, lim
t→τ

ϵt = p1.

Remarks. Thm. 1 concludes two sets of factors contributing to collapse: (i) data-dependent
factors: the prior data distribution (p0), the nature difference between two categories (|µ0 − µ1|); and
(ii) algorithm-dependent factors: the update rate (α), the FNR at each step (ϵt). ϵ-GMMC analysis
sheds light on explaining model collapse on real datasets (Sec. 5.3), reasons the existing approaches
(Sec. 3.3) and motivates the development of our baseline (Sec. 4).

3.3 Connection to Existing Solutions
Prior TTA algorithms have already incorporated implicit mechanisms to mitigate model collapse.
The theoretical results in the previous section explain the rationale behind these effective strategies.

Regularization Term for θt. Knowing that f0 is always well-behaved, an attempt is restricting
the divergence of θt from θ0, e.g. using R(θt)

∆
= ∥θ0 − θt∥22 regularization [40]. The key idea is

introducing a penalty term to avoid an extreme divergence as happening in Thm. 1.

Memory Bank for Harmonizing Pt(x). Upon receiving Xt, samples in this batch are selectively
updated to a memory bankM (which already contains a subset of some instances of Xt′ , t

′ < t in the
previous steps). By keeping a balanced number of samples from each category, distribution PM

t (y)
of samples inM is expected to have less zero entries than Pt(y), making the optimization step over
PM
t more desirable. From Thm. 1,M moderates the extreme value of the category distribution (p0

term) which typically appears on batches with low intra-batch category diversity.

4 Persistent Test-time Adaptation (PeTTA)
Now we introduce our Persistent TTA (PeTTA) approach. Further inspecting Thm. 1, while ϵt
(Eq. 5) is not computable without knowing the true labels, the measure of divergence from the initial
distribution (analogously to d0→1

t−1 term) can provide hints to fine-tune the adaptation process.

Key Idea. A proper adjustment toward the TTA algorithm can break the chain of monotonically
increasing ϵt’s in Corollary 1 to prevent the model collapse. In the mean teacher update, the larger
value of λ (Eq. 2) prioritizes the task of preventing collapse on one hand but also limits its adaptability
to the new testing environment. Meanwhile, α (Eq. 3) controls the weight on preserving versus
changing the model from the previous step. Drawing inspiration from the exploration-exploitation
tradeoff [49, 25] encountered in reinforcement learning [54], we introduce a mechanism for adjusting
λ and α on the fly, balancing between the two primary objectives: adaptation and preventing model
collapse. Our strategy is prioritizing collapse prevention (increasing λ) and preserving the model
from previous steps (decreasing α) when there is a significant deviation from θ0.

In [40, 61, 59], λ and α were fixed through hyper-parameter tuning. This is suboptimal due to varying
TTA environments and the lack of validation set [62]. Furthermore, Thm. 1 suggests the convergence
rate quickly escalates when ϵt increases, making constant λ, α insufficient to prevent collapse.

Sensing the Divergence of θt. We first equip PeTTA with a mechanism for measuring its divergence
from θ0. Since ft(x) = argmax y∈Y Pr(y|x; θt), we can decompose Pr(y|x; θt) = [h (ϕθt(x))]y,
with ϕθt(·) is a θt-parameterized deep feature extractor followed by a fixed classification head (a
linear and softmax layer) h(·). The operator [·]y extracts the yth component of a vector.

5
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Since h(·) remains unchanged, instead of comparing the divergence in the parameter space (Θ) or
between the output probability Pr(y|x; θt) and Pr(y|x; θ0), we suggest an inspection over the feature
embedding space that preserves a maximum amount of information in our case (data processing
inequality [9]). Inspired by [31] and under Gaussian assumption, the Mahalanobis distance of the
first moment of the feature embedding vectors is compared. Let z = ϕθt(x), we keep track of a
collection of the running mean of feature vector z: {µ̂y

t }y∈Y in which µ̂y
t is EMA updated with

vector z if ft(x) = y. The divergence of θt at step t, evaluated on class y is defined as:

γy
t = 1− exp

(
−(µ̂y

t − µy
0)

T (Σy
0)

−1
(µ̂y

t − µy
0)
)
, (6)

where µy
0 and Σy

0 are the pre-computed empirical mean and covariant matrix of feature vectors in the
source dataset (P0). The covariant matrix here is diagonal for simplicity. In practice, without directly
accessing the training set, we assume a small set of unlabeled samples can be drawn from the source
distribution for empirically computing these values (visit Appdx. E.4 for further details).

Here, we implicitly expect the independence of each entry in z and TTA approaches learn to align
feature vectors of new domains back to the source domain (P0). Therefore, the accumulated statistics
of these feature vectors at each step should be concentrated near the vectors of the initial model. The
value of γy

t ∈ [0, 1] is close to 0 when θt = θ0 and increases exponentially as µ̂y
t diverging from µy

0 .

Adaptive Regularization and Model Update. With α0, λ0 are initial values, utilizing γy
t derived in

Eq. 6, a pair of (λt, αt) is adaptively chosen at each step:

γ̄t =
1

|Ŷt|

∑
y∈Ŷt

γy
t , Ŷt =

{
Ŷ

(i)
t |i = 1, · · · , Nt

}
;

λt = γ̄t · λ0, αt = (1− γ̄t) · α0, (7)

Ŷt is a set of unique pseudo labels in a testing batch (Ŷ (i)
t is the ith realization of Ŷt).

Anchor Loss. Penalizing the divergence with regular vector norms in high-dimensional space (Θ)
is insufficient (curse of dimensionality [5, 51]), especially with a large model and limited samples.
Anchor loss LAL can nail down the similarity between ft and f0 in the probability space [32, 12]:

LAL(Xt; θ) = −
∑
y∈Y

Pr(y|Xt; θ0) log Pr(y|Xt; θ), (8)

which is equivalent to minimizing the KL divergence DKL (Pr(y|Xt; θ0)∥Pr(y|Xt; θ)).

Persistent TTA. Having all the ingredients, we design our approach, PeTTA, following the convention
setup of the mean teacher update, with the category-balanced memory bank and the robust batch
normalization layer from [61]. Appdx. E.1 introduces the pseudo code of PeTTA. For LCLS, either the
self-training scheme [12] or the regular cross-entropy [16] is adopted. WithR(θ), cosine similarity
or L2 distance are both valid metrics for measuring the distance between θ and θ0 in the parameter
space. Fisher regularizer coefficient [40, 27] can also be used, optionally. To sum up, the teacher
model update of PeTTA is an elaborated version of EMA with λt, αt (Eq. 7) and LAL (Eq. 8):

θ′t = Optim
θ′∈Θ

EPt

[
LCLS

(
Ŷt, Xt; θ

′
)
+ LAL (Xt; θ

′)
]
+ λtR(θ′),

θt = (1− αt)θt−1 + αtθ
′
t.

5 Experimental Results
5.1 ϵ−MMC Simulation Result
Simulation Setup. A total of 6000 samples from two Gaussian distributions: N (µ0 = 0, σ2

0 = 1)
and N (µ1 = 2, σ2

1 = 1) with p0 = p1 = 1
2 are synthesized and gradually released in a batch of

B = 10 samples. For evaluation, an independent set of 2000 samples following the same distribution
is used for computing the prediction frequency, and the false negative rate (FNR). ϵ−GMMC update
follows Eq. 4 with α = 5e−2. To simulate model collapse, the predictor is intercepted and 10% of
the true-postive pseudo labels at each testing step are randomly flipped (Corollary 1).

Simulation Result. In action, both the likelihood of predicting class 0 (Fig. 3a-left) and the ϵt (Eq. 5)
(Fig. 3c-right, solid line) gradually increases over time as expected (Lemma 1). After collapsing,
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Figure 3: Simulation result on ϵ-perturbed Gaussian Mixture Model Classifier (ϵ-GMMC) and
GMMC (perturbed-free). (a) Histogram of model predictions through time. A similar prediction
frequency pattern is observed on CIFAR-10-C (Fig. 5a-left). (b) The probability density function
of the two clusters after convergence versus the true data distribution. The initial two clusters of
ϵ-GMMC collapsed into a single cluster with parameters stated in Lemma 2. In the perturbed-free,
GMMC converges to the true data distribution. (c) Distance toward µ1 (|EPt

[µ̂0,t]− µ1|) and false-
negative rate (ϵt) in simulation coincides with the result in Thm. 1 (with ϵt following Corollary 1).

ϵ-GMMC merges the two initial clusters, resulting in a single one (Fig. 3b-left) with parameters that
match Lemma 2. The distance from µ̂0,t (initialized at µ0) towards µ1 converges (Fig. 3c-left, solid
line), coincided with the analysis in Thm. 1 when ϵt is chosen following Corollary 1 (Fig. 3c, dashed
line). GMMC (perturbed-free) stably produces accurate predictions (Fig. 3a-right) and approximates
the true data distribution (Fig. 3b-right). The simulation empirically validates our analysis (Sec. 3.2),
confirming the vulnerability of TTA models when the pseudo labels are inaccurately estimated.

5.2 Setup - Benchmark Datasets

Datasets. We benchmark the performance on four TTA classification tasks. Specifically, CIFAR10
→ CIFAR10-C, CIFAR100→ CIFAR100-C, and ImageNet→ ImageNet-C [19] are three corrupted
images classification tasks (corruption level 5, the most severe). Additionally, we incorporate
DomainNet [44] with 126 categories from four domains for the task real→ clipart, painting, sketch.

Compared Methods. Besides PeTTA, the following algorithms are investigated: CoTTA [59],
EATA [40], RMT [12], MECTA [22], RoTTA [61], ROID [37] and TRIBE [52]. Noteworthy, only
RoTTA is specifically designed for the practical TTA setting while others fit the continual TTA setting
in general. A parameter-free approach: LAME [7] and a reset-based approach (i.e., reverting the
model to the source model after adapting to every 1, 000 images): RDumb [45] are also included.

Recurring TTA. Following the practical TTA setup, multiple testing scenarios from each testing set
will gradually change from one to another while the Dirichlet distribution (Dir(0.1) for CIFAR10-
C, DomainNet, and ImageNet-C, and Dir(0.01) for CIFAR100-C) generates category temporally
correlated batches of data. For all experiments, we set the number of revisits K = 20 (times) as this
number is sufficient to fully observe the gradual degradation on existing TTA baselines.

Implementation Details. We use PyTorch [43] for implementation. RobustBench [10] and
torchvision [35] provide pre-trained source models. Hyper-parameter choices are kept as close as
possible to the original selections of authors. Visit Sec. G for more implementation details. Unless
otherwise noted, for all PeTTA experiments, the EMA update rate for robust batch normalization [61]
and feature embedding statistics is set to 5e−2; α0 = 1e−3 and cosine similarity regularizer is used.
On CIFAR10/100-C and ImageNet-C we use the self-training loss in [12] for LCLS and λ0 = 10
while the regular cross-entropy loss [13] and λ0 = 1 (severe domain shift requires prioritizing
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Table 1: Average classification error of the task CIFAR-10→ CIFAR-10-C in recurring TTA. The
lowest error is in bold,(∗)average value across 5 runs (different random seeds) is reported for PeTTA.

Recurring TTA visit −−−−−−−−−−−−−−−−−−−−−−−−−→
Method 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Avg

Source 43.5 43.5

LAME [7] 31.1 31.1

CoTTA [59] 82.2 85.6 87.2 87.8 88.2 88.5 88.7 88.7 88.9 88.9 88.9 89.2 89.2 89.2 89.1 89.2 89.2 89.1 89.3 89.3 88.3
EATA [40] 81.6 87.0 88.7 88.7 88.9 88.7 88.6 89.0 89.3 89.6 89.5 89.6 89.7 89.7 89.3 89.6 89.6 89.8 89.9 89.4 88.8
RMT [12] 77.5 76.9 76.5 75.8 75.5 75.5 75.4 75.4 75.5 75.3 75.5 75.6 75.5 75.5 75.7 75.6 75.7 75.6 75.7 75.8 75.8

MECTA [22] 72.2 82.0 85.2 86.3 87.0 87.3 87.3 87.5 88.1 88.8 88.9 88.9 88.6 89.1 88.7 88.8 88.5 88.6 88.3 88.8 86.9
RoTTA [61] 24.6 25.5 29.6 33.6 38.2 42.8 46.2 50.6 52.2 54.1 56.5 57.5 59.4 60.2 61.7 63.0 64.8 66.1 68.2 70.3 51.3
RDumb [45] 31.1 32.1 32.3 31.6 31.9 31.8 31.8 31.9 31.9 32.1 31.7 32.0 32.5 32.0 31.9 31.6 31.9 31.4 32.3 32.4 31.9

ROID [37] 72.7 72.6 73.1 72.4 72.7 72.8 72.7 72.7 72.9 72.8 72.9 72.9 72.8 72.5 73.0 72.8 72.5 72.5 72.7 72.7 72.7
TRIBE [52] 15.3 16.6 16.6 16.3 16.7 17.0 17.3 17.4 17.4 18.0 17.9 18.0 17.9 18.6 18.2 18.8 18.0 18.2 18.4 18.0 17.5

PeTTA (ours)(∗) 24.3 23.0 22.6 22.4 22.4 22.5 22.3 22.5 22.8 22.8 22.6 22.7 22.7 22.9 22.6 22.7 22.6 22.8 22.9 23.0 22.8

adaptability) are applied in DomainNet experiments. In Appdx. F.5, we provide a sensitivity analysis
on the choice of hyper-parameter λ0 in PeTTA.

5.3 Result - Benchmark Datasets

Recurring TTA Performance. Fig. 1-right presents the testing error on CIFAR-10-C in recurring
TTA setting. RoTTA [61] exhibits promising performance in the first several visits but soon raises
and eventually exceeds the source model (no TTA). The classification error of compared methods on
CIFAR-10→CIFAR-10-C, and ImageNet→ ImageNet-C [19] tasks are shown in Tab. 1, and Tab. 2.
Appdx. F.1 provides the results on the other two datasets. The observed performance degradation
of CoTTA [59], EATA [40], RoTTA [61], and TRIBE [52] confirms the risk of error accumulation
for an extensive period. While RMT [12], MECTA [22], and ROID [37] remain stable, they failed
to adapt to the temporally correlated test stream at the beginning, with a higher error rate than the
source model. LAME [7] (parameter-free TTA) and RDumb [45] (reset-based TTA) do not suffer
from collapsing. However, their performance is lagging behind, and knowledge accumulation is
limited in these approaches that could potentially favor a higher performance as achieved by PeTTA.
Furthermore, LAME [7] is highly constrained by the source model, and selecting a precise reset
frequency in RDumb [45] is challenging in practice (see Appdx. F.3 for a further discussion).

0 10 20 30 40

16

18

20

22

24

Recurring TTA Visit

C
la

ss
ifi

ca
tio

n
E

rr
or

PeTTA (ours)
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Figure 4: Classification error of TRIBE [52] and
PeTTA (ours) of the task CIFAR-10→CIFAR10-C
task in recurring TTA with 40 visits.

In average, PeTTA outperforms almost every
baseline approaches and persists across 20 vis-
its over the three datasets. The only exception
is at the case of TRIBE [52] on CIFAR-10-
C. While this state-of-the-art model provides
stronger adaptability, outweighing the PeTTA,
and baseline RoTTA [61] in several recurrences,
the risk of the model collapsing still presents in
TRIBE [52]. This can be clearly observed when
we increase the observation period to 40 recur-
ring visits in Fig. 4. As the degree of freedom
for adaptation in PeTTA is more constrained, it
takes a bit longer for adaptation but remains sta-
ble afterward. Fig. 5b-bottom exhibits the con-
fusion matrix at the last visit with satisfactory
accuracy. The same results are also observed
when shuffling the order of domain shifts within

each recurrence (Appdx. D.3), or extending the number of recurrences to 40 visits (Appdx. F.4).

Continuously Changing Corruption (CCC) [45] Performance. Under CCC [45], Tab. 3 reveals
the supreme performance of PeTTA over RoTTA [61] and RDumb [45]. Here, we report the average
classification error between two consecutive adaptation step intervals. An adaptation step in this table
corresponds to a mini-batch of data with 64 images. The model is adapted to 80, 000 steps in total
with more than 5.1M images, significantly longer than 20 recurring TTA visits. Undoubtedly, PeTTA
still achieves good performance where the corruptions are algorithmically generated, non-cyclic with
two or more corruption types can happen simultaneously. This experiment also empirically justifies
the construction of our recurring TTA as a diagnostic tool (Appdx. D.2) where similar observations
are concluded on the two settings. Obviously, our recurring TTA is notably simpler than CCC [45].
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Table 2: Average classification error of the task ImageNet→ ImageNet-C in recurring TTA scenario.

Recurring TTA visit −−−−−−−−−−−−−−−−−−−−−−−−−→
Method 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Avg

Source 82.0 82.0

LAME [7] 80.9 80.9

CoTTA [59] 98.6 99.1 99.4 99.4 99.5 99.5 99.5 99.5 99.6 99.7 99.6 99.6 99.6 99.6 99.6 99.6 99.6 99.6 99.7 99.7 99.5
EATA [40] 60.4 59.3 65.4 72.6 79.1 84.2 88.7 92.7 95.2 96.9 97.7 98.1 98.4 98.6 98.7 98.8 98.8 98.9 98.9 99.0 89.0
RMT [12] 72.3 71.0 69.9 69.1 68.8 68.5 68.4 68.3 70.0 70.2 70.1 70.2 72.8 76.8 75.6 75.1 75.1 75.2 74.8 74.7 71.8

MECTA [22] 77.2 82.8 86.1 87.9 88.9 89.4 89.8 89.9 90.0 90.4 90.6 90.7 90.7 90.8 90.8 90.9 90.8 90.8 90.7 90.8 89.0
RoTTA [61] 68.3 62.1 61.8 64.5 68.4 75.4 82.7 95.1 95.8 96.6 97.1 97.9 98.3 98.7 99.0 99.1 99.3 99.4 99.5 99.6 87.9
RDumb [45] 72.2 73.0 73.2 72.8 72.2 72.8 73.3 72.7 71.9 73.0 73.2 73.1 72.0 72.7 73.3 73.1 72.1 72.6 73.3 73.1 72.8

ROID [37] 62.7 62.3 62.3 62.3 62.5 62.3 62.4 62.4 62.3 62.6 62.5 62.3 62.5 62.4 62.5 62.4 62.4 62.5 62.4 62.5 62.4
TRIBE [52] 63.6 64.0 64.9 67.8 69.6 71.7 73.5 75.5 77.4 79.8 85.0 96.5 99.4 99.8 99.9 99.8 99.8 99.9 99.9 99.9 84.4

PeTTA (ours)(∗) 65.3 61.7 59.8 59.1 59.4 59.6 59.8 59.3 59.4 60.0 60.3 61.0 60.7 60.4 60.6 60.7 60.8 60.7 60.4 60.2 60.5

Table 3: Average classification error on CCC [45] setting. Each column presents the average error
within an adaptation interval (e.g., the second column provides the average error between the 6701
and 13400 adaptation steps). Each adaptation step here is performed on a mini-batch of 64 images.

CCC [45] Adaptation Step −−−−−−−−−−−−−−−−−−−−−−−−−→
Method 6700 13400 20100 26800 33500 40200 46900 53600 60200 66800 73400 80000 Avg

Source 0.83 0.83 0.83 0.83 0.83 0.84 0.84 0.83 0.84 0.83 0.83 0.83 0.83

RoTTA [61] 0.70 0.85 0.92 0.96 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.95
RDumb [45] 0.78 0.74 0.75 0.77 0.75 0.72 0.75 0.77 0.75 0.74 0.75 0.75 0.75

PeTTA (ours) 0.67 0.63 0.62 0.65 0.65 0.64 0.64 0.68 0.63 0.63 0.65 0.65 0.64
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Figure 5: Recurring TTA (20 visits) on CIFAR-10→CIFAR10-C task. (a) Histogram of model
predictions (10 labels are color-coded). PeTTA achieves a persisting performance while RoTTA [61]
degrades. (b) Confusion matrix at the last visit, RoTTA classifies all samples into a few categories (e.g.,
0: airplane, 4: deer). (c) Force-directed graphs showing (left) the most prone to misclassification
pairs (arrows indicating the portion and pointing from the true to the misclassified category); (right)
similar categories tend to be easily collapsed. Edges denote the average cosine similarity of feature
vectors (source model), only the highest similar pairs are shown. Best viewed in color.

Collapsing Pattern. The rise in classification error (Fig. 1-right) can be reasoned by the prediction
frequency of RoTTA [61] in an recurring TTA setting (Fig. 5a-left). Similar to ϵ-GMMC, the
likelihood of receiving predictions on certain categories gradually increases and dominates the others.
Further inspecting the confusion matrix of a collapsed model (Fig. 5b-top) reveals two major groups
of categories are formed and a single category within each group represents all members, thereby
becoming dominant. To see this, Fig. 5c-left simplifies the confusion matrix by only visualizing the
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Table 4: Average (across 20 visits) error of multiple
variations of PeTTA: without (w/o)R(θ),LAL; LAL

only; fixed regularization coefficient λ; adaptive coef-
ficient λt, update rate αt; using anchor loss LAL.

Method CF-10-C CF-100-C DN IN-C
Baseline w/oR(θ),LAL 42.6 63.0 77.9 93.4

R(θ) fixed λ = 0.1λ0 43.3 65.0 80.0 92.5
R(θ) fixed λ = λ0 42.0 64.6 66.6 92.9

LAL only 25.4 56.5 47.5 68.1

PeTTA - λt 27.1 55.0 59.7 92.7
PeTTA - λt + αt 23.9 41.4 44.5 75.7
PeTTA - λt + LAL 26.2 36.3 43.2 62.0

PeTTA - λt + αt + LAL 22.8 35.1 42.9 60.5

Table 5: Average (across 20 visits) error of
PeTTA. PeTTA favors various choices of reg-
ularizers R(θ): L2 and cosine similarity in
conjunction with Fisher [27, 40] coefficient.

Method CF-10-C CF-100-C DN IN-CR(θ) Fisher

L2 ✗ 23.0 35.6 43.1 70.8
✓ 22.7 36.0 43.9 70.0

Cosine ✗ 22.8 35.1 42.9 60.5
✓ 22.6 35.9 43.3 63.8

CF: CIFAR, DN: DomainNet, IN: ImageNet

top prone-to-misclassified pair of categories. Here, label deer is used for almost every living animal
while airplane represents transport vehicles. The similarity between categories in the feature space of
the source model (Fig. 5c-right) is correlated with the likelihood of being merged upon collapsing.
As distance in feature space is analogous to |µ0 − µ1| (Thm. 1), closer clusters are at a higher risk of
collapsing. This explains and showcases that the collapsing behavior is predictable up to some extent.

5.4 Ablation Study

Effect of Each Component. Tab. 4 gives an ablation study on PeTTA, highlighting the use of a
regularization term (R(θ)) with a fixed choice of λ, α not only fails to mitigate model collapse but
may also introduce a negative effect (rows 2-3). Trivially applying the anchor loss (LAL) alone is
also incapable of eliminating the lifelong performance degradation in continual TTA (row 4). Within
PeTTA, adopting the adaptive λt scheme alone (row 5) or in conjunction with either αt or anchor loss
LAL (rows 6-7) partially stabilizes the performance. Under the drastic domain shifts with a larger
size of categories or model parameters (e.g., on CIFAR-100-C, DomainNet, ImageNet-C), restricting
αt adjustment limits the ability of PeTTA to stop undesirable updates while a common regularization
term without LAL is insufficient to guide the adaptation. Thus, leveraging all elements secures the
persistence of PeTTA (row 8).

Various Choices of Regularizers. The design of PeTTA is not coupled with any specific regu-
larization term. Demonstrated in Tab. 5, PeTTA works well for the two common choices: L2 and
cosine similarity. The conjunction use of Fisher coefficent [27, 40] for weighting the model parameter
importance is also studied. While the benefit (in terms of improving accuracy) varies across datasets,
PeTTA accommodates all choices, as the model collapse is not observed in any of the options.

6 Discussions and Conclusion

On a Potential Risk of TTA in Practice. We provide empirical and theoretical evidence on the risk
of deploying continual TTA algorithms. Existing studies fail to detect this issue with a single pass
per test set. The recurring TTA could be conveniently adopted as a straightforward evaluation, where
its challenging test stream magnifies the error accumulation that a model might encounter in practice.

Limitations. PeTTA takes one step toward mitigating the gradual performance degradation of
TTA. Nevertheless, a complete elimination of error accumulation cannot be guaranteed rigorously
through regularization. Future research could delve deeper into expanding our efforts to develop
an algorithm that achieves error accumulation-free by construction. Furthermore, as tackling the
challenge of the temporally correlated testing stream is not the focus of PeTTA, using a small memory
bank as in [61, 15] is necessary. It also assumes the features statistics from the source distribution are
available (Appdx. E.3, E.4). These constraints potentially limit its scalability in real-world scenarios.

Conclusion. Towards trustworthy and reliable TTA applications, we rigorously study the performance
degradation problem of TTA. The proposed recurring TTA setting highlights the limitations of modern
TTA methods, which struggle to prevent the error accumulation when continuously adapting to
demanding test streams. Theoretically inspecting a failure case of ϵ−GMMC paves the road for
designing PeTTA- a simple yet efficient solution that continuously assesses the model divergence for
harmonizing the TTA process, balancing adaptation, and collapse prevention.
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A Related Work

Towards Robust and Practical TTA. While forming the basis, early single-target TTA ap-
proaches [53, 57, 39, 41, 33] is far from practice. Observing the dynamic of many testing envi-
ronments, a continual TTA setting is proposed where an ML model continuously adapts to a sequence
of multiple shifts [36, 59]. Meanwhile, recent studies [15, 7] point out that the category distribution
realistic streams is highly temporally correlated. Towards real-world TTA setting, Yuan et al. [61]
launch the practical TTA which considers the simultaneous occurrence of the two aforementioned
challenges.

For a robust and gradual adaptation, an update via the mean teacher [55] mechanism is exploited in
many continual TTA algorithms [59, 61, 12, 22]. To moderate the temporally correlated test stream,
common approaches utilize a small memory bank for saving a category-balanced subset of testing
samples [15, 61], inspired by the replay methods [50, 2] to avoid forgetting in the task of continual
learning [34, 3, 11]. Our study emphasizes another perspective: beyond a supreme performance, a
desirable TTA should also sustain it for an extended duration.

Temporal Performance Degradation. By studying the quality of various ML models across multiple
industry applications [56, 60] the issue of AI “aging" with the temporal model degradation progress,
even with data coming from a stable process has been confirmed. In TTA, the continuous changes of
model parameters through gradient descent aggravate the situation, as also recently noticed in [45].
Apart from observation, we attempt to investigate and provide theoretical insights towards the
mechanism of this phenomenon.

Accumulated Errors in TTA. In TTA, the issue of accumulated error has been briefly acknowledged.
Previous works strive to avoid drastic changes to model parameters as a good practice. Up to some
degree, it helps to avoid performance degradation. Nevertheless, it is still unclear whether their
effectiveness truly eliminates the risk. To preserve in-distribution performance, regularization [27, 40]
or replaying of training samples at test-time [12] have been used. Other studies explore reset
(recovering the initial model parameters) strategies [59, 45], periodically or upon the running entropy
loss approaches a threshold [41]. Unfortunately, knowledge accumulated in the preceding steps
will vanish, and a bad heuristic choice of threshold or period leads to highly frequent model resets.
Noteworthy, tuning those hyper-parameters is exceedingly difficult due to the unavailability of the
validation set [62]. LAME [7] suggests a post-processing step for adaptation (without updating
the parameters). This approach, however, still limits the knowledge accumulation. Our PeTTA is
reset-free by achieving an adaptable continual test-time training.

B Proof of Lemmas and Theorems

In this section, we prove the theoretical results regarding the ϵ−perturbed Gaussian Mixture Model
Classifier (ϵ−GMMC) introduced in Sec. 3.2. We first briefly summarize the definition of model
collapse and the static data stream assumption:

Definition 1 (Model Collapse). A model is said to be collapsed from step τ ∈ T , τ < ∞ if there
exists a non-empty subset of categories Ỹ ⊂ Y such that Pr{Yt ∈ Ỹ} > 0 but the marginal
Pr{Ŷt ∈ Ỹ} converges to zero in probability:

lim
t→τ

Pr{Ŷt ∈ Ỹ} = 0.

Assumption 1 (Static Data Stream). The marginal distribution of the true label follows the same
Bernoulli distribution Ber(p0): p0,t = p0, (p1,t = p1 = 1− p0),∀t ∈ T .

Preliminary. Following the same set of notations introduced in the main text, recall that we denoted
py,t

∆
= Pr{Yt = y}, p̂y,t

∆
= Pr{Ŷt = y} (marginal distribution of the true label Yt and pseudo label

Ŷt receiving label y, respectively) and ϵt = Pr{Yt = 1|Ŷt = 0} (the false negative rate (FNR) of
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ϵ−GMMC). At testing step t, we obtain the following relations:

EPt

[
Xt|Ŷt = 0

]
= (1− ϵt)µ0 + ϵtµ1, (9)

EPt

[
Xt|Ŷt = 1

]
= µ1, (10)

VarPt

(
Xt|Ŷt = 0

)
= (1− ϵt)σ

2
0 + ϵtσ

2
1 + ϵt(1− ϵt)(µ0 − µ1)

2, (11)

VarPt

(
Xt|Ŷt = 1

)
= σ2

1 . (12)

In addition, under Assumption 1, the marginal distribution Pt(x) (also referred as data distribution in
our setup) is:

Pt(x) = N (x; p0µ0 + p1µ1, p0σ
2
0 + p1σ

2
1 + p0p1(µ0 − µ1)

2) ∀t ∈ T . (13)

B.1 Proof of Lemma 1

Lemma 1 (Increasing FNR). Under Assumption 1, a binary ϵ-GMMC would collapsed (Def. 1)
with lim

t→τ
p̂1,t = 0 (or lim

t→τ
p̂0,t = 1, equivalently) if and only if lim

t→τ
ϵt = p1.

Proof. Under Assumption 1, we have EPt [Xt] = p0µ0 + (1− p0)µ1. Also note that:

EPt [Xt] = EPt

[
EPt

[
Xt|Ŷt

]]
= EPt

[
Xt|Ŷt = 0

]
p̂0,t + EPt

[
Xt|Ŷt = 1

]
p̂1,t (14)

= [(1− ϵt)µ0 + ϵtµ1] p̂0,t + µ1(1− p̂0,t)

= [(1− ϵt)p̂0,t]µ0 + [1− p̂0,t(1− ϵt)]µ1

= p0µ0 + (1− p0)µ1,

where the second equality follows Eqs. 9-10. Therefore:

p̂0,t =
p0

1− ϵt
. (15)

Eq. 15 shows positive correlation between p̂0,t and ϵt. Given lim
t→τ

ϵt = p1, taking the limit introduces:

lim
t→τ

p̂0,t = lim
t→τ

p0
1− ϵt

=
p0

1− p1
= 1.

Similarly, having lim
t→τ

p̂0,t = 1, the false negative rate ϵt when t→ τ is:

lim
t→τ

ϵt = 1− p0 = p1.

Since p̂0,t + p̂1,t = 1, lim
t→τ

p̂1,t = 0, equivalently. Towards the collapsing point, the model tends to
predict a single label (class 0 in the current setup). In addition, the FNR of the model ϵt also raises
correspondingly.

B.2 Proof of Lemma 2.

Lemma 2 (ϵ-GMMC After Collapsing). For a binary ϵ-GMMC model, with Assumption 1, if
lim
t→τ

p̂1,t = 0 (collapsing), the cluster 0 in GMMC converges in distribution to a single-cluster GMMC
with parameters:

N (µ̂0,t, σ̂
2
0,t)

d.→ N (p0µ0 + p1µ1, p0σ
2
0 + p1σ

2
1 + p0p1(µ0 − µ1)

2).

Proof. From Eqs. 9-10, under the increasing type II collapse of ϵ−GMMC setting, the perturbation
does not affect the approximation of µ1. Meanwhile, when ϵt increases, one can expect that µ̂0,t
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moves further away from µ0 toward µ1. Frist, the mean teacher model of GMMC (Eq. 4, main text)
gives:

EPt

[
µ̂0,t|Ŷt = 1

]
= EPt−1

[µ̂0,t−1] ,

EPt

[
µ̂0,t|Ŷt = 0

]
= (1− α)EPt−1

[
µ̂0,t−1|Ŷt = 0

]
+ αEPt

[
Xt|Ŷt = 0

]
= (1− α)EPt−1

[µ̂0,t−1] + α
(
EPt

[
Xi|Ŷt = 0

])
,

EPt

[
µ̂1,t|Ŷt = 1

]
= (1− α)EPt−1

[
µ̂1,t−1|Ŷt = 1

]
+ αEPt

[
Xt|Ŷt = 1

]
= (1− α)EPt−1

[µ̂1,t−1] + α
(
EPt

[
Xi|Ŷt = 1

])
,

EPt

[
µ̂1,t|Ŷt = 0

]
= EPt−1

[µ̂1,t−1] .

By defining uy,t = EPt [µ̂y,t], we obtain the following recurrence relation between u0,t and u0,t−1:

u0,t = EPt

[
µ̂0,t|Ŷt = 0

]
p̂0,t + EPt

[
µ̂0,t|Ŷt = 1

]
p̂1,t

=
(
(1− α)u0,t−1 + αEPt

[
Xt|Ŷt = 0

])
p̂0,t + u0,t−1p̂1,t

= [(1− α)p̂0,t + p̂1,t]u0,t−1 + αp̂0,tEPt

[
Xt|Ŷt = 0

]
= (1− αp̂0,t)u0,t−1 + αp̂0,tEPt

[
Xt|Ŷt = 0

]
= (1− αp̂0,t)u0,t−1 + αp̂0,t [(1− ϵt)µ0 + ϵtµ1] . (16)

Given lim
t→τ

p̂0,t = 1, it follows that lim
t→τ

ϵ0,t = p1 by Lemma 1. From this point:

u0,t = (1− α)u0,t−1 + α (p0µ0 + p1µ1) ∀t > τ.

Taking the limit t→∞:

lim
t→∞

u0,t = lim
t→∞

(1− α)u0,t−1 + α (p0µ0 + p1µ1)

= lim
t→∞

(1− α)tµ̂0,0 + α

t∑
i=1

(1− α)i−1 (p0µ0 + p1µ1)

= lim
t→∞

(1− α)tµ̂0,0 + (1− (1− α)t)(p0µ0 + p1µ1)

= p0µ0 + p1µ1.

The second equation is obtained by solving the recurrence relation. When lim
t→τ

p̂0,t = 1, {µ̂y,t}y∈{0,1}

becomes a deterministic values. Hence, giving uy,t = EPt
[µ̂y,t] = µ̂0,t(∀t > τ) and

lim
t→∞

µ̂0,t = lim
t→∞

u0,t = p0µ0 + p1µ1. (17)

Repeating the steps above with Eqs. 11-12 in place of Eqs. 9-10, we obtain a similar result for σ2
0,t:

lim
t→∞

σ̂2
0,t = p0σ

2
0 + p1σ

2
1 + p0p1(µ0 − µ1)

2. (18)

By Lévy’s continuity theorem (p. 302, [42]), from Eqs. 17-18, when t → ∞, the estimated
distribution of the first cluster N (x; µ̂0,tσ̂

2
0,t) converges to the whole data distribution Pt(x) (Eq. 13)

when collapsing.

B.3 Proof of Theorem 1 and Corollary 1.

Theorem 1 (Convergence of ϵ−GMMC). For a binary ϵ-GMMC model, with Assumption 1, let the
distance from µ̂0,t toward µ1 is d0→1

t = |EPt [µ̂0,t]− µ1|, then:

d0→1
t − d0→1

t−1 ≤ α · p0 ·
(
|µ0 − µ1| −

d0→1
t−1

1− ϵt

)
.
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Proof. Substituting Eq. 15 into p̂0,t of Eq. 16 gives:

u0,t =

(
1− αp0

1− ϵt

)
u0,t−1 +

αp0
1− ϵt

[(1− ϵt)µ0 + ϵtµ1] .

Hence, we have the distance from u0,t toward µ1:

|u0,t − µ1| =
∣∣∣∣(1− αp0

1− ϵt

)
u0,t−1 + αp0µ0 +

αp0ϵtµ1

1− ϵt
− µ1

∣∣∣∣
=

∣∣∣∣(1− αp0
1− ϵt

)
(u0,t−1 − µ1) + αp0µ0 +

αp0ϵtµ1

1− ϵt
− αp0µ1

1− ϵt

∣∣∣∣
=

∣∣∣∣(1− αp0
1− ϵt

)
(u0,t−1 − µ1) + αp0µ0 −

αp0µ1(1− ϵt)

1− ϵt

∣∣∣∣
=

∣∣∣∣(1− αp0
1− ϵt

)
(u0,t−1 − µ1) + αp0(µ0 − µ1)

∣∣∣∣
≤

(
1− αp0

1− ϵt

)
|u0,t−1 − µ1|+ αp0|µ0 − µ1|.

The last inequality holds due to the triangle inequality. Equivalently,

|u0,t − µ1| − |u0,t−1 − µ1| ≤ α · p0 ·
(
|µ0 − µ1| −

|u0,t−1 − µ1|
1− ϵt

)
.

Let d0→1
t = |EPt

[µ̂0,t]− µ1|, we conclude that:

d0→1
t − d0→1

t−1 ≤ α · p0 ·
(
|µ0 − µ1| −

d0→1
t−1

1− ϵt

)
.

Corollary 1 (A Condition for ϵ−GMMC Collapse). With fixed p0, α, µ0, µ1, ϵ−GMMC is collapsed
if there exists a sequence of {ϵt}ττ−∆τ

(τ ≥ ∆τ > 0) such that:

p1 ≥ ϵt > 1−
d0→1
t−1

|µ0 − µ1|
, t ∈ [τ −∆τ , τ ].

Proof. Initialized at µ0, ϵ-GMMC is collapsing when µ̂0,t converges to the mid-point p0µ0 + p1µ1

(Lemma 2), i.e., moving closer to µ1. From Thm. 1, the distance towards µ1 d
0→1
t < d0→1

t−1 if

|µ0 − µ1| −
|u0,t−1 − µ1|

1− ϵt
< 0⇔ |µ0 − µ1| <

|u0,t−1 − µ1|
1− ϵt

⇔ ϵt > 1− |u0,t−1 − µ1|
|µ0 − µ1|

.

When there exists this sequence {ϵt}ττ−∆τ
(τ ≥ ∆τ > 0) it follows that d0→1

t < d0→1
t−1 and ϵt > ϵt−1

is guaranteed ∀t ∈ [τ −∆τ , τ ]. Hence, lim
t→τ

ϵt = p1 (model collapsed, by Lemma 1).

C Further Justifications on Gaussian Mixture Model Classifier

One may notice that in ϵ-GMMC (Sec. 4.2), the classifier is defined ft(x) = argmaxy∈Y Pr(x|y; θt)
(maximum likelihood estimation) while in general, ft(x) = argmaxy∈Y Pr(y|x; θt) (maximum a
posterior estimation), parameterized by a neural network. In this case, since the equal prior (i.e.,
Pr(y; θt) = Pr(y′; θt),∀y, y′ ∈ C) is enforced in ϵ-GMMC, the two definitions are equivalent.

Proof. Having:

argmaxy∈Y Pr(y|x; θt) = argmaxy∈Y
Pr(x|y; θt) Pr(y; θt)∑

y′∈Y Pr(x|y′; θt) Pr(y′; θt)
= argmaxy∈Y Pr(x|y; θt).

We conclude that the two definitions are equivalent. In fact, it is well-known that maximum likelihood
estimation is a special case of maximum a posterior estimation when the prior is uniform.
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D Further Justifications on the Recurring Testing Scenario

D.1 Recurring TTA Follows the Design of a Practical TTA Stream

Note that in recurring TTA, besides the recurrence of environments (or corruptions) as in [59, 40], the
distribution of class labels is also temporally correlated (non-i.i.d.) as suggested by [15, 61] to reflect
the practical testing stream better. In short, recurring TTA is formed by recurring the environments of
practical TTA scenario introduced in [61] multiple times (readers are encouraged to visit the original
paper for additional motivations on this scenario).

D.2 Recurring TTA as a Diagnostic Tool

Noticeably, CoTTA [59] also performed 10-round repetition across multiple domain shifts to simulate
a lifelong TTA testing stream just like our recurring TTA. However, the key difference is CoTTA
assumes the distribution of class labels is i.i.d., which does not hold in many real-life testing scenarios
as argued in [15, 61]. Our recurring TTA lifts this assumption and allows temporally correlated
(non-i.i.d.) label distribution (more challenging, more practical). This extension allows recurring
TTA to spot the risk of model collapse on CoTTA [59] and other methods. The over-simplicity of the
repeating scheme in CoTTA for spotting performance degradation is also suggested in [45]. Clearly,
it seems not to be a problem at first glance in Tab. 5 of [59] (CoTTA’s 10-round repetition), but in
fact, the risk in CoTTA remains, as explored in our scenario and also on CCC [45].

The construction of our recurring TTA is notably simple - a technical effort to extend the testing
stream. However, this simplicity is on purpose, serving as a diagnostic tool for lifelong continual
TTA. Counterintuitively, our experiments on four different tasks with the latest methods verify that
even if the model is exposed to the same environment (the most basic case), their adaptability and
performance are still consistently reduced (demonstrated visually in Fig. 1, quantitatively in Sec. 5.3).

We believe that the extensive testing stream by recurrence in our setup is a simple yet sufficient
scenario to demonstrate the vulnerability of existing continual TTA methods when facing the issue
of model collapse (compared to CCC [45], a notably more complicated scenario than our recurring
TTA). Indeed, recurring shifts are sufficient to show this failure mode and any lifelong TTA method
should necessarily be able to handle recurring conditions.

D.3 Recurring TTA with Random Orders

Recall that in Sec. 3.1, recurring TTA is constructed by repeating the same sequence of D distributions
K times. For example, a sequence with K = 2 could be P1 → P2 → · · · → PD → P1 →
P2 → · · · → PD. For simplicity and consistency that promote reproducibility, the same order of
image corruptions (following [61]) is used for all recurrences. This section presents supplementary
experimental findings indicating that the order of image corruptions within each recurrence, indeed,
does not affect the demonstration of TTA model collapse and the performance of our PeTTA.

Experiment Setup. We refer to the setting same-order as using one order of image corruptions
in [61] for all recurrences (specifically, on CIFAR-10/100-C and ImageNet-C: motion→ snow→
fog→ shot→ defocus→ contrast→ zoom→ brightness→ frost→ elastic→ glass→ gaussian
→ pixelated → jpeg → impulse). Conversely, in random-order, the order of image corruptions
is randomly shuffled at the beginning of each recurrence. Hence, the corruption orders across K
recurrences are now entirely different. We redo the experiment of the second setting three times (with
different random seeds = 0, 1, 2). Nevertheless, different TTA methods are ensured to be evaluated
on the same testing stream, since it is fixed after generation. Without updating its parameters, the
performance of the source model is trivially independent of the order of corruptions.

Experimental Result. The experimental results are visualized in Fig. 6. The first column plots the
experiments under the same-order, while the remaining three columns plot the experiments in the
random-order setting, with varying random seeds. Note that the message conveyed by each sub-figure
entirely matches that of Fig. 1-right.

Discussions. Clearly, a similar collapsing pattern is observed in all three TTA tasks, with three
combinations of 20 image corruption orders. This pattern also matches the easiest setting using the
same order of image corruptions we promoted in recurring TTA.

20

123421https://doi.org/10.52202/079017-3923



1 5 10 15 20
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 5 10 15 20
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 5 10 15 20
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 5 10 15 20
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Same-order Random-order (seed=0) Random-order (seed=1) Random-order (seed=2)

Te
st

in
g

E
rr

or

Recurring TTA visit Recurring TTA visit Recurring TTA visit Recurring TTA visit

(a) CIFAR-10→ CIFAR-10-C task.
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(b) CIFAR-100→ CIFAR-100-C task.
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(c) ImageNet→ ImageNet-C task.

Figure 6: Recurring TTA with different order of corruptions. This figure plots the testing error of
two TTA approaches: RoTTA - - [61], and, PeTTA- - (ours), and source model-×- as a reference
performance under our recurring TTA (with 20 visits) across three TTA tasks. On the same-order
experiments (column 1), the same order of image corruptions is applied for all 20 visits. Meanwhile,
in random-order, this order is reshuffled at the beginning of each visit (columns 2-4). Random-order
experiments are redone three times with different random seeds. Here, we empirically validate that
using the same order of domain shifts (image corruptions) in our recurring TTA is sufficient to
showcase the model collapse and evaluate the persistence of our PeTTA. Best viewed in color.

E Further Justifications on Persistent TTA (PeTTA)

E.1 Pseudo Code

We summarize the key steps of our proposed PeTTA in Alg. 1, with the key part (lines 4-13)
highlighted in blue. Our approach fits well in the general workflow of a TTA algorithm, enhancing
the regular mean-teacher update step. Appdx. E.5 elaborates more on our contributions in PeTTA,
distinguishing them from other components proposed in previous work. The notations and definitions
of all components follow the main text (described in detail in Sec. 4). On line 8 of Alg. 1, as a
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Algorithm 1 Persistent TTA (PeTTA)
Input: Classification model ft and its deep feature extractor ϕθt , both parameterized by θt ∈ Θ.

Testing stream {Xt}Tt=0, initial model parameter (θ0), initial update rate (α0), regularization
term coefficient (λ0), empirical mean ({µy

0}y∈Y) and covariant matrix ({Σy
0}y∈Y) of feature

vectors in the training set, µ̂y
t EMA update rate (ν).

1 µ̂y
0 ← µy

0,∀y ∈ Y ; // Initialization
2 for t ∈ [1, · · · , T ] do
3 Ŷt ← ft−1(Xt) ; // Obtaining pseudo-labels for all samples in Xt

4 // Persistent TTA (PeTTA)

5 Ŷt ←
{
Ŷ

(i)
t |i = 1, · · · , Nt

}
; // Set of (unique) pseudo-labels in Xt

6 γ̄t ← 0 ;
7 for y ∈ Ŷt do
8 γy

t ← 1− exp
(
−(µ̂y

t − µy
0)

T (Σy
0)

−1
(µ̂y

t − µy
0)
)

; // Divergence sensing term

on category y

9 γ̄t ← γ̄t +
γy
t

|Ŷt|
; // Average divergence sensing term for step t

10 µ̂y
t ← (1− ν)µ̂y

t−1 + νϕθt−1
(Xt|Ŷt = y) ; // EMA update of µ̂y

t for samples with
Ŷt = y

11 end
12 λt ← γ̄t · λ0 ; // Computing adaptive regularization term coefficient
13 αt ← (1− γ̄t) · α0 ; // Computing adaptive update rate
14 // Regular Mean-teacher Update

15 θ′t ← Optim
θ′∈Θ

EPt

[
LCLS

(
Ŷt, Xt; θ

′
)
+ LAL (Xt; θ

′)
]
+ λtR(θ′) ; // Student model

update
16 θt ← (1− αt)θt−1 + αtθ

′
t. ; // Teacher model update

17 // Final prediction
18 yeild ft(Xt) ; // Returning the final inference with updated model ft
19 end

shorthand notation, ϕθt−1
(Xt|Ŷt = y) denotes the empirical mean of all feature vectors of X(i)

t

(extracted by ϕθt−1

(
X

(i)
t

)
) if Ŷ (i)

t = y, i = 1, · · · , Nt in the current testing batch.

E.2 Anchor Loss

KL Divergence Minimization-based Interpretation of Anchor Loss. In Sec. 4, we claimed that
minimizing the anchor loss LAL is equivalent to minimizing the relative entropy (or KL divergence)
between the output probability of two models parameterized by θ0 and θ.

Proof. Having:

DKL (Pr(y|Xt; θ0)||Pr(y|Xt; θ)) =
∑
y∈Y

Pr(y|Xt; θ0) log
Pr(y|Xt; θ0)

Pr(y|Xt; θ)

= −
∑
y∈Y

Pr(y|Xt; θ0) log Pr(y|Xt; θ)︸ ︷︷ ︸
LAL(Xt;θ)

−H(Pr(y|Xt; θ0))︸ ︷︷ ︸
constant

.

Hence,

argmin
θ∈Θ

LAL(Xt; θ) = argmin
θ∈Θ

DKL (Pr(y|Xt; θ0)||Pr(y|Xt; θ)) .
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Intuitively, a desirable TTA solution should be able to adapt to novel testing distributions on the one
hand, but it should not significantly diverge from the initial model. LAL fits this purpose, constraining
the KL divergence between two models at each step.

Connections between Anchor Loss and Regularizer Term. While supporting the same objective
(collapse prevention by avoiding the model significantly diverging from the source model), the
major difference between Anchor loss (LAL) and the Regularizer term (R(θ)) is that the anchor
loss operates on the probability space of model prediction while the regularizer term works on the
model parameter spaces. Tab. 4 (lines 1 and 5) summarizes the ablation study when each of them is
eliminated. We see the role of the regularization term is crucial for avoiding model collapse, while
the anchor loss guides the adaptation under the drastic domain shift. Nevertheless, fully utilizing all
components is suggested for maintaining TTA persistence.

E.3 The Use of the Memory Bank

The size of Memory Bank. The size of the memory bank in PeTTA is relatively small, equal to the
size of one mini-batch for update (64 images, specifically).

The Use of the Memory Bank in PeTTA is Fair with Respect To the Compared Methods. Our
directly comparable method - RoTTA [61] also takes this advantage (referred to as category-balanced
sampling, Sec. 3.2 of [61]). Hence, the comparison between PeTTA and RoTTA is fair in terms
of additional memory usage. Noteworthy, the use of a memory bank is a common practice in TTA
literature (e.g., [15, 8, 61]), especially in situations where the class labels are temporally correlated or
non-i.i.d. distributed (as we briefly summarized in Appdx. A - Related Work section). CoTTA [59],
EATA [40] and MECTA [22] (compared method) assume labels are i.i.d. distributed. Hence, a
memory bank is unnecessary, but their performance under temporally correlated label distribution has
dropped significantly as a trade-off. The RMT [12] (compared method) does not require a memory
bank but it needs to cache a portion of the source training set for replaying (Sec. 3.3 in [12]) which
even requires more resources than the memory bank.

Eliminating the Need for a Memory Bank. As addressing the challenge of temporally correlated
label distribution on the testing stream is not the focus of PeTTA, we have conveniently adopted
the use of the memory bank proposed in [61]. Since this small additional memory requirement is
not universally applied in every real-world scenario, we believe that this is a reasonable assumption,
and commonly adopted in TTA practices. Nevertheless, exploring alternative ways for reducing
the memory size (e.g., storing the embedded features instead of the original image) would be an
interesting future direction.

E.4 Empirical Mean and Covariant Matrix of Feature Vectors on the Source Dataset

Two Ways of Computing µy
0 and Σy

0 in Practice. One may notice that in PeTTA, computing γy
t

requires the pre-computed empirical mean (µy
0) and covariance (Σy

0) of the source dataset. This
requirement may not be met in real-world situations where the source data is unavailable. In practice,
the empirical mean and covariance matrix computed on the source distribution can be provided in the
following two ways:

1. Most ideally, these values are computed directly by inference on the entire training set
once the model is fully trained. They will be provided alongside the source-distribution
pre-trained model as a pair for running TTA.

2. With only the source pre-trained model available, assume we can sample a set of unlabeled
data from the source distribution. The (pseudo) labels for them are obtained by inferring
from the source model. Since the source model is well-performed in this case, using pseudo
is approximately as good as the true label.

Accessing the Source Distribution Assumption in TTA. In fact, the second way is typically
assumed to be possible in previous TTA methods such as EATA [40], and MECTA [22] (a compared
method) to estimate a Fisher matrix (for anti-forgetting regularization purposes). Our work - PeTTA
follows the same second setup as the previous approaches mentioned above. A variation of RMT [12]
(a compared method) approach even requires having the fully labeled source data available at test-time
for source replaying (Sec. 3.3 of [12]). This variation is used for comparison in our experiments.
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We believe that having the empirical mean and covariant matrix pre-computed on a portion of the
source distribution in PeTTA is a reasonable assumption. Even in the ideal way, revealing the
statistics might not severely violate the risk of data privacy leakage or require notable additional
computing resources.

Number of Samples Needed for Computation. To elaborate more on the feasibility of setting (2)
mentioned above, we perform a small additional experiment on the performance of PeTTA while
varying the number of samples used for computing the empirical mean and covariant matrix on
the source distribution. In this setting, we use the test set of CIFAR-10, CIFAR-100, DomainNet
validation set of ImageNet (original images, without corruption, or the real domain test set of
DomainNet), representing samples from the source distribution. The total number of images is
10, 000 in CIFAR-10/A00, 50, 000 in ImageNet, and 69, 622 in DomainNet. We randomly sample
25%, 50%, 75%, and 100% of the images in this set to run PeTTA for 20 rounds of recurring. The
result is provided in Tab. 6 below.

Table 6: Average classification error of PeTTA (across 20 visits) with varying sizes of source samples
used for computing feature empirical mean (µy

0) and covariant matrix (Σy
0).

TTA Task 25% 50% 75% 100%
CIFAR-10→ CIFAR-10-C 22.96 22.99 23.03 22.75

CIFAR-100→ CIFAR-100-C 35.01 35.11 35.09 35.15
DomainNet: real→ clip→ paint→ sketch 43.18 43.12 43.15 42.89

ImageNet→ ImageNet-C 61.37 59.68 61.05 60.46

The default choice of PeTTA is using 100% samples of the validation set of the source dataset.
However, we showcase that it is possible to reduce the number of unlabeled samples from the source
distribution to compute the empirical mean and covariant matrix for PeTTA, without significantly
impacting its performance.

E.5 Novelty of PeTTA

PeTTA is composed of multiple components. Among them, the anchor loss is an existing idea
(examples of previous work utilizing this idea are [32, 12]). Similarly, the mean-teacher update;
and regularization are well-established techniques and very useful for the continual or gradual TTA
scenario. Hence, we do not aim to improve or alternate these components.

Nevertheless, the novelty of our contribution is the sensing of the divergence and adaptive model
update, in which the importance of minimizing the loss (adaptation) and regularization (collapse
prevention) is changed adaptively. In short, we propose a harmonic way of combining those elements
adaptively to achieve a persistent TTA process.

The design of PeTTA draws inspiration from a theoretical analysis (Sec. 3.2), empirically surpassing
both the conventional reset-based approach [45] (Appdx. F.3) and other continual TTA approaches [61,
12, 59, 22, 7] on our proposed recurring TTA (Sec. 3.1, Appdx. F.1), as well as the previously
established CCC [45] benchmark.

F Additional Experimental Results of PeTTA

F.1 Performance of PeTTA Versus Compared Methods

Performance on CIFAR-100-C and Domainnet Datasets. Due to the length constraint, the
classification errors on the tasks CIFAR-100→CIFAR-100-C, and real→ clipart, painting, sketch of
DomainNet are provided in Tab. 7 and Tab. 8. To prevent model collapse, the adaptability of PeTTA
is more constrained. As a result, it requires more time for adaptation initially (e.g., in the first visit)
but remains stable thereafter. Generally, consistent trends and observations are identified across all
four TTA tasks.

Standard Deviation of PeTTA Performance Across Multiple Runs. For PeTTA experiments
marked with (*) in Tab. 1, Tab. 2, Tab. 7, and Tab. 8, the average performance across five independent
runs with different random seeds is reported. Due to the space constraint, the corresponding standard
deviation values are now reported in Tab. 9. Generally, the average standard deviation across runs
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Table 7: Average classification error of the task CIFAR-100 → CIFAR-100-C in recurring TTA
scenario. The lowest error is highlighted in bold, (∗)average value across 5 runs (different random
seeds) is reported for PeTTA.

Recurring TTA visit −−−−−−−−−−−−−−−−−−−−−−−−−→
Method 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Avg

Source 46.5 46.5

LAME [7] 40.5 40.5

CoTTA [59] 53.4 58.4 63.4 67.6 71.4 74.9 78.2 81.1 84.0 86.7 88.8 90.7 92.3 93.5 94.7 95.6 96.3 97.0 97.3 97.6 83.1
EATA [40] 88.5 95.0 96.8 97.3 97.4 97.2 97.2 97.3 97.4 97.5 97.5 97.5 97.6 97.7 97.7 97.7 97.8 97.8 97.7 97.7 96.9
RMT [12] 50.5 48.6 47.9 47.4 47.3 47.1 46.9 46.9 46.6 46.8 46.7 46.5 46.5 46.6 46.5 46.5 46.5 46.5 46.5 46.5 47.1

MECTA [22] 44.8 44.3 44.6 43.1 44.8 44.2 44.4 43.8 43.8 43.9 44.6 43.8 44.4 44.6 43.9 44.2 43.8 44.4 44.9 44.2 44.2
RoTTA [61] 35.5 35.2 38.5 41.9 45.3 49.2 52.0 55.2 58.1 61.5 64.6 67.5 70.7 73.2 75.4 77.1 79.2 81.5 82.8 84.5 61.4
RDumb [45] 36.7 36.7 36.6 36.6 36.7 36.8 36.7 36.5 36.6 36.5 36.7 36.6 36.5 36.7 36.5 36.6 36.6 36.7 36.6 36.5 36.6

ROID [37] 76.4 76.4 76.2 76.2 76.3 76.1 75.9 76.1 76.3 76.3 76.6 76.3 76.8 76.7 76.6 76.3 76.2 76.0 75.9 76.0 76.3
TRIBE [52] 33.8 33.3 35.3 34.9 35.3 35.1 37.1 37.2 37.2 39.1 39.2 41.1 41.0 43.1 45.1 45.1 45.0 44.9 44.9 44.9 39.6

PeTTA (ours)(∗) 35.8 34.4 34.7 35.0 35.1 35.1 35.2 35.3 35.3 35.3 35.2 35.3 35.2 35.2 35.1 35.2 35.2 35.2 35.2 35.2 35.1

Table 8: Average classification error of the task real→ clipart→ painting→ sketch on DomainNet
dataset in recurring TTA scenario.

Episodic TTA visit −−−−−−−−−−−−−−−−−−−−−−−−−→
Method 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Avg

Source 45.3 45.3

LAME [7] 45.6 45.6

CoTTA [59] 96.2 97.1 97.4 97.8 98.1 98.2 98.4 98.4 98.4 98.5 98.6 98.6 98.6 98.6 98.6 98.7 98.7 98.7 98.7 98.7 98.3
RMT [12] 76.2 77.1 77.3 77.3 77.2 77.1 76.8 76.9 76.5 76.4 76.4 76.3 76.4 76.2 76.2 76.1 76.4 76.1 76.0 75.8 76.5

MECTA [22] 94.6 98.4 98.6 98.8 99.1 99.0 99.0 99.0 99.0 99.0 99.0 99.0 99.0 99.0 99.0 99.0 99.0 99.0 99.0 99.0 98.7
RoTTA [61] 44.3 43.8 44.7 46.7 48.7 50.8 52.7 55.0 57.1 59.7 62.7 65.1 68.0 70.3 72.7 75.2 77.2 79.6 82.6 85.3 62.1
RDumb [45] 44.3 44.4 44.3 44.5 44.2 44.2 44.3 44.5 44.4 44.2 44.3 44.3 44.3 44.3 44.5 44.3 44.2 44.3 44.4 44.3 44.3

PeTTA (ours)(∗) 43.8 42.6 42.3 42.3 42.6 42.8 42.8 43.0 42.9 42.9 43.1 43.0 42.9 43.0 43.0 43.1 43.0 42.8 42.9 42.9 42.9

stays within ±0.1% for small datasets (CIFAR-10-C, CIFAR-100-C) and ±0.5% for larger datasets
(ImageNet-C, DomainNet).

Table 9: Mean and standard deviation classification error of PeTTA on the four datasets: CIFAR-10-C
(CF-10-C), CIFAR-100-C (CF-100-C), DomainNet (DN), and ImageNet-C (IN-C) with recurring
TTA scenario. Each experiment is run 5 times with different random seeds.

Recurring TTA visit −−−−−−−−−−−−−−−−−−−−−−−−−→
Dataset 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Avg

CF-10-C 24.3 23.0 22.6 22.4 22.4 22.5 22.3 22.5 22.8 22.8 22.6 22.7 22.7 22.9 22.6 22.7 22.6 22.8 22.9 23.0 22.8
±0.4 ±0.3 ±0.4 ±0.3 ±0.3 ±0.3 ±0.4 ±0.2 ±0.3 ±0.4 ±0.4 ±0.2 ±0.1 ±0.3 ±0.5 ±0.2 ±0.2 ±0.3 ±0.4 ±0.5 ±0.1

CF-100-C 35.8 34.4 34.7 35.0 35.1 35.1 35.2 35.3 35.3 35.3 35.2 35.3 35.2 35.2 35.1 35.2 35.2 35.2 35.2 35.2 35.1
±0.4 ±0.4 ±0.2 ±0.2 ±0.1 ±0.1 ±0.2 ±0.2 ±0.1 ±0.2 ±0.1 ±0.2 ±0.2 ±0.1 ±0.1 ±0.1 ±0.1 ±0.1 ±0.2 ±0.2 ±0.1

DN 43.8 42.6 42.3 42.3 42.6 42.8 42.8 43.0 42.9 42.9 43.1 43.0 42.9 43.0 43.0 43.1 43.0 42.8 42.9 42.9 42.9
±0.1 ±0.1 ±0.2 ±0.2 ±0.3 ±0.3 ±0.3 ±0.4 ±0.4 ±0.4 ±0.4 ±0.4 ±0.4 ±0.3 ±0.3 ±0.2 ±0.4 ±0.3 ±0.3 ±0.3 ±0.3

IN-C 65.3 61.7 59.8 59.1 59.4 59.6 59.8 59.3 59.4 60.0 60.3 61.0 60.7 60.4 60.6 60.7 60.8 60.7 60.4 60.2 60.5
±0.6 ±0.5 ±0.5 ±0.5 ±1.4 ±1.1 ±1.0 ±0.5 ±0.8 ±0.9 ±0.4 ±0.8 ±0.9 ±0.8 ±0.9 ±0.8 ±1.0 ±0.6 ±0.6 ±0.7 ±0.5

F.2 An Inspection of PeTTA

In Fig. 7, we showcase an inspection of our PeTTA on the task CIFAR-10→ CIFAR-10-C [19] in
a typical recurring TTA with 20 visits. Specifically, the visualizations of PeTTA parameters (γ̄t,
λt, and αt), adaptation losses (LCLS,LAL) and regularization term (R(θ)) are provided. Here, we
observe the values of adaptive parameters λt and αt continuously changing through time, as the
testing scenarios evolve during recurring TTA. This proposed mechanism stabilizes the value of the
loss functions, and regularization term, balancing between the two primary objectives: adaptation
and preventing model collapse. Thus, the error rate persists as a result. A similar pattern is observed
on other datasets (CIFAR-100-C [19] and DomainNet [44]).

F.3 Does Model Reset Help?

Experiment Setup. We use the term “model reset” to represent the action of “reverting the
current TTA model to the source model”. This straightforward approach is named RDumb [45].
We thoroughly conducted experiments to compare the performance of RDumb with PeTTA. The
implementation of RDumb in this setting is as follows. We employ RoTTA [61] as the base test-time
adaptor due to the characteristics of the practical TTA [61] stream. The model (including model
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parameters, the optimizer state, and the memory bank) is reset after adapting itself to T images.1 For
each dataset, three values of this hyper-parameter T are selected:

• T = 1, 000: This is the value selected by the RDumb’s authors [45]. Unless specifically
stated, we use this value when reporting the performance of RDumb [45] in all other tables.

• T = 10, 000 (CIFAR-10/100-C), T = 5, 000 (ImageNet-C) and T = 24, 237 (Domain-
Net).2 This value is equal to the number of samples in the test set of a single corruption
type, i.e., the model is reset exactly after visiting each Pi’s (see Sec. 3.1 for notations). For
DomainNet [44], since the number of images within each domain is unequal, the average
number of images is used instead.

• T = 150, 000 (CIFAR-10/100-C), T = 75, 000 (ImageNet-C) and T = 72, 712 (Domain-
Net). This number is equal to the number of samples in one recurrence of our recurring
TTA, i.e., the model is reset exactly after visiting P1 → · · · → PD. Here, D = 15 - types of
corruptions [19] for CIFAR-10/100-C and ImageNet-C and D = 3 for DomainNet (clipart,
painting, sketch). For example, the model is reset 20 times within a recurring TTA setting
with 20 recurrences under this choice of T .

The second and the last reset scheme could be interpreted as assuming the model has access to an
oracle model with a capability of signaling the transitions between domains, or recurrences. Typically,
this is an unrealistic capability in real-world scenarios, and a desirable continual TTA algorithm
should be able to operate independently without knowing when the domain shift happening.

Experimental Results. An empirical comparison between RDumb [45] and our PeTTA are reported
in Tab. 10, Tab. 11, Tab. 12 and Tab. 13 for all four tasks.

Table 10: Average classification error comparison between RDumb [45] (a reset-based approach)
with different reset frequencies and our PeTTA on CIFAR-10→ CIFAR-10-C task.

Recurring TTA visit −−−−−−−−−−−−−−−−−−−−−−−−−→
Reset Every 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Avg

T = 1000 31.1 32.1 32.3 31.6 31.9 31.8 31.8 31.9 31.9 32.1 31.7 32.0 32.5 32.0 31.9 31.6 31.9 31.4 32.3 32.4 31.9
T = 10000 25.8 25.9 26.5 26.1 26.4 25.4 25.8 25.8 26.1 26.2 26.1 26.1 26.1 26.1 26.1 25.9 25.5 25.5 25.7 26.2 26.0
T = 150000 24.8 25.3 24.3 24.1 25.3 25.4 25.4 24.5 25.0 24.9 25.0 24.8 25.0 24.5 24.9 24.1 24.0 24.7 24.9 24.4 24.8

PeTTA (ours)(∗) 24.3 23.0 22.6 22.4 22.4 22.5 22.3 22.5 22.8 22.8 22.6 22.7 22.7 22.9 22.6 22.7 22.6 22.8 22.9 23.0 22.8

Table 11: Average classification error comparison between RDumb [45] (a reset-based approach)
with different reset frequencies and our PeTTA on CIFAR-100-C dataset.

Recurring TTA visit −−−−−−−−−−−−−−−−−−−−−−−−−→
Reset Every 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Avg

T = 1000 36.7 36.7 36.6 36.6 36.7 36.8 36.7 36.5 36.6 36.5 36.7 36.6 36.5 36.7 36.5 36.6 36.6 36.7 36.6 36.5 36.6
T = 10000 43.5 43.6 43.7 43.7 43.4 43.5 43.6 43.4 43.5 43.6 43.8 43.5 43.5 43.6 43.4 43.6 43.5 43.8 43.7 43.6 43.6
T = 150000 35.4 35.4 35.4 35.3 35.4 35.4 35.5 35.6 35.4 35.4 35.5 35.3 35.2 35.4 35.1 35.8 35.1 35.6 35.3 35.8 35.4

PeTTA (ours)(∗) 35.8 34.4 34.7 35.0 35.1 35.1 35.2 35.3 35.3 35.3 35.2 35.3 35.2 35.2 35.1 35.2 35.2 35.2 35.2 35.2 35.1

Table 12: Average classification error comparison between RDumb [45] (a reset-based approach)
with different reset frequencies and our PeTTA on DomainNet dataset.

Recurring TTA visit −−−−−−−−−−−−−−−−−−−−−−−−−→
Reset Every 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Avg

T = 1000 44.3 44.4 44.3 44.5 44.2 44.2 44.3 44.5 44.4 44.2 44.3 44.3 44.3 44.3 44.5 44.3 44.2 44.3 44.4 44.3 44.3
T = 24237 44.1 44.3 43.9 44.2 44.1 44.3 44.2 44.4 44.1 44.1 44.0 44.3 44.1 44.0 44.0 44.2 44.1 44.1 44.1 44.4 44.1
T = 72712 44.3 44.3 44.0 44.3 44.1 44.3 44.2 44.4 44.2 44.1 44.0 44.1 44.2 44.1 44.1 44.1 44.1 44.0 44.0 44.3 44.2

PeTTA (ours)(∗) 43.8 42.6 42.3 42.3 42.6 42.8 42.8 43.0 42.9 42.9 43.1 43.0 42.9 43.0 43.0 43.1 43.0 42.8 42.9 42.9 42.9

Discussions. Across datasets and reset frequencies, our PeTTA approach is always better than
RDumb [45]. The supreme performance holds even when RDumb has access to the oracle information
that can reset the model exactly at the transition between each domain shift or recurrence. Importantly,
this oracle information is typically unavailable in practice.

1A slight abuse of notation. T here is the number of images between two consecutive resets, following the
notation on Sec. 3 of [45], not the sample indices in our notations.

2A subset of 5, 000 samples from ImageNet-C are selected following RobustBench [10] for a consistent
evaluation with other benchmarks.
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Table 13: Average classification error comparison between RDumb [45] (a reset-based approach)
with different reset frequencies and our PeTTA on ImageNet-C dataset.

Recurring TTA visit −−−−−−−−−−−−−−−−−−−−−−−−−→
Reset Every 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Avg

T = 1000 72.2 73.0 73.2 72.8 72.2 72.8 73.3 72.7 71.9 73.0 73.2 73.1 72.0 72.7 73.3 73.1 72.1 72.6 73.3 73.1 72.8
T = 5000 70.2 70.8 71.6 72.1 72.4 72.6 72.9 73.1 73.2 73.6 73.7 73.9 74.0 74.0 74.3 74.1 74.1 73.8 73.5 71.9 73.0
T = 75000 67.0 67.1 67.2 67.5 67.5 67.6 67.8 67.6 67.6 67.6 67.5 67.7 67.6 67.9 68.1 67.9 67.4 67.5 67.7 67.5 67.6

PeTTA (ours)(∗) 65.3 61.7 59.8 59.1 59.4 59.6 59.8 59.3 59.4 60.0 60.3 61.0 60.7 60.4 60.6 60.7 60.8 60.7 60.4 60.2 60.5

Noteworthy, it is clear that the performance of RDumb varies when changing the choice of the reset
frequency. For a given choice of T , the better performance on one dataset does not guarantee the
same performance on other datasets. For example, T = 1, 000 - the best empirical value found by
RDumb authors [45] on CCC, does not give the best performance on our recurring TTA scenario; the
second choice of T negatively impact the performance on many tasks; the third choice gives the best
results, but knowing this exact recurrence frequency of the testing stream is unrealistic. The result
highlights the challenge in practice when tuning this parameter (too slow/frequent), especially in the
TTA setting where a validation set is unavailable. Our PeTTA, in contrast, is reset-free.

F.4 PeTTA with 40 Recurring Visits

To demonstrate the persistence of PeTTA over an even longer testing stream, in Tab. 14 and Fig. 8,
we provide the evaluation results of PeTTA on recurring with 40 recurrences.

F.5 The Sensitivity of Hyper-parameter Choices in PeTTA

Table 15: Sensitivity of PeTTA with different choices of λ0.
Dataset λ0 = 1e0 λ0 = 5e0 λ0 = 1e1 λ0 = 5e1 λ0 = 1e2

CIFAR-10-C 22.9 22.7 22.8 23.2 24.1
CIFAR-100-C 35.7 35.3 35.1 35.6 36.1
ImageNet-C 61.2 61.0 60.5 61.3 62.4

There are two hyper-parameters in PeTTA: α0 and λ0. The initial learning rate of α0 = 1e−3 is used
for all experiments. We do not tune this hyper-parameter, and the choice of α0 is universal across all
datasets, following the previous works/compared methods (e.g., RoTTA [61], CoTTA [59]).

Since λ0 is more specific to PeTTA, we included a sensitive analysis with different choices of λ0

on PeTTA, evaluated with images from CIFAR-10/100-C and ImageNet-C in Tab. 15. Overall, the
choice of λ0 is not extremely sensitive, and while the best value is 1e1 on most datasets, other choices
such as 5e0 or 5e1 also produce roughly similar performance. Selecting λ0 is intuitive, the larger
value of λ0 stronger prevents the model from collapsing but also limits its adaptability as a trade-off.

In action, λ0 is an initial value and will be adaptively scaled with the sensing model divergence
mechanism in PeTTA, meaning it does not require careful tuning. More generally, this hyper-
parameter can be tuned similarly to the hyper-parameters of other TTA approaches, via an additional
validation set, or some accuracy prediction algorithm [29] when labeled data is unavailable.

F.6 More Details on the Ablation Study

We provide the detailed classification error for each visit in the recurring TTA setting of each row
entry in Tab. 4 (PeTTA Ablation Study): Tab. 16, Tab. 17, Tab. 18, Tab. 19; and Tab. 5 (PeTTA with
various choices of regularizers): Tab. 20, Tab. 21, Tab. 22, Tab. 23.

Fig. 9 presents an additional examination of the ablation study conducted on the task CIFAR-100
→ CIFAR-100-C [19] for our PeTTA approach. We plot the classification error (top) and the value
of γ̄t (bottom) for various PeTTA variations. As the model diverges from the initial state, the value
of γ̄t increases. Unable to adjust αt or constraint the probability space via LAL limits the ability of
PeTTA to prevent model collapse. In all variations with the model collapse in ablation studies, the
rapid saturation of γ̄t is all observed. Therefore, incorporating all components in PeTTA is necessary.
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Table 16: Average classification error of multiple variations of PeTTA. Experiments on CIFAR10→
CIFAR10-C [19] task.

Episodic TTA visit −−−−−−−−−−−−−−−−−−−−−−−−−→
Method 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Avg
Baseline w/oR(θ) 23.5 24.0 27.4 29.9 33.4 35.6 38.0 40.7 43.1 45.0 46.0 48.6 50.0 49.7 50.8 51.5 52.3 53.3 54.3 55.5 42.6

R(θ) fixed λ = 0.1λ0 23.5 24.0 27.2 29.8 33.4 35.3 37.9 40.5 43.3 45.3 46.8 49.3 50.9 51.0 52.1 53.2 54.0 54.8 56.0 57.6 43.3
R(θ) fixed λ = λ0 23.5 23.6 26.2 28.4 31.6 33.5 36.4 38.7 41.1 43.1 44.8 47.6 49.3 49.5 50.9 52.1 53.1 54.2 55.6 57.0 42.0

PeTTA- λt 24.9 25.3 26.0 26.4 27.2 26.5 27.2 27.1 27.4 27.7 27.8 28.0 27.5 28.0 27.7 27.4 27.0 27.6 27.8 27.8 27.1
PeTTA- λt + αt 25.5 24.5 23.7 23.1 23.2 22.4 23.3 23.2 23.7 24.1 23.9 24.5 24.3 24.0 23.8 23.9 23.8 24.1 24.6 24.7 23.9
PeTTA- λt + LAL 23.3 23.9 24.6 25.3 26.2 25.9 26.4 26.6 26.9 26.6 26.7 26.7 26.7 26.8 26.8 27.2 26.9 26.9 26.8 27.0 26.2

PeTTA αt + LAL 24.3 23.0 22.6 22.4 22.4 22.5 22.3 22.5 22.8 22.8 22.6 22.7 22.7 22.9 22.6 22.7 22.6 22.8 22.9 23.0 22.8

Table 17: Average classification error of multiple variations of PeTTA. Experiments on CIFAR-100
→ CIFAR100-C [19] task.

Episodic TTA visit −−−−−−−−−−−−−−−−−−−−−−−−−→
Method 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Avg
Baseline w/oR(θ) 40.2 46.3 51.2 54.4 57.3 59.4 61.3 62.6 63.9 65.1 66.3 67.1 68.1 68.9 69.6 70.3 71.1 71.6 72.4 72.9 63.0

R(θ) fixed λ = 0.1λ0 40.5 46.1 51.5 55.1 58.2 60.5 62.6 64.2 65.7 67.3 68.6 69.5 70.6 71.6 72.5 73.4 74.2 74.9 75.8 76.5 65.0
R(θ) fixed λ = λ0 41.8 47.6 52.6 56.1 58.9 60.7 62.5 63.9 65.0 66.2 67.1 68.3 69.5 70.3 71.4 72.4 73.4 74.1 75.0 75.6 64.6

PeTTA- λt 39.4 43.4 46.6 49.1 51.0 52.6 53.8 54.7 55.7 56.5 57.1 57.7 58.3 58.8 59.3 59.9 60.6 61.0 61.6 62.1 55.0
PeTTA- λt + αt 39.4 40.1 40.8 40.7 41.2 41.5 41.4 41.6 41.5 41.5 41.7 41.6 41.8 41.7 41.8 42.0 41.9 41.9 42.0 41.8 41.4
PeTTA- λt + LAL 36.2 35.6 35.7 36.1 36.2 36.4 36.4 36.5 36.2 36.2 36.6 36.5 36.5 36.6 36.5 36.6 36.5 36.5 36.3 36.5 36.3

PeTTA λt + αt + LAL 35.8 34.4 34.7 35.0 35.1 35.1 35.2 35.3 35.3 35.3 35.2 35.3 35.2 35.2 35.1 35.2 35.2 35.2 35.2 35.2 35.1

Table 18: Average classification error of multiple variations of PeTTA. Experiments on real→ clipart,
painting, sketch task from DomainNet [44] task.

Recurring TTA visit −−−−−−−−−−−−−−−−−−−−−−−−−→
Method 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Avg
Baseline w/oR(θ) 52.3 69.0 68.6 68.6 69.4 70.5 71.8 73.4 75.6 77.6 78.8 81.0 82.8 84.3 85.9 87.4 88.5 89.9 90.8 92.1 77.9

R(θ) fixed λ = 0.1λ0 52.5 70.0 69.8 70.0 71.1 72.5 74.6 76.1 77.8 80.4 81.9 83.5 85.2 87.2 89.1 90.2 91.5 93.2 94.1 94.9 80.0
R(θ) fixed λ = λ0 54.6 69.8 63.7 56.0 61.7 76.4 70.4 62.5 58.2 76.0 73.6 66.8 58.6 62.3 80.8 75.5 67.0 59.9 59.3 78.3 66.6

PeTTA- λt 49.2 64.5 62.4 60.9 59.6 58.6 57.7 57.8 57.6 57.7 58.0 58.5 59.0 59.5 59.8 61.1 62.0 62.6 63.6 64.9 59.7
PeTTA- λt + αt 43.9 42.5 42.3 42.3 42.6 42.8 43.1 43.7 43.9 44.3 44.6 45.1 45.4 45.7 45.7 46.1 46.1 46.2 46.5 46.4 44.5
PeTTA- λt + LAL 43.6 42.5 42.6 42.6 42.9 43.0 43.3 43.4 43.1 43.2 43.1 43.3 43.3 43.2 43.2 43.9 43.7 43.0 43.2 43.5 43.2

PeTTA λt + αt + LAL 43.8 42.6 42.3 42.3 42.6 42.8 42.8 43.0 42.9 42.9 43.1 43.0 42.9 43.0 43.0 43.1 43.0 42.8 42.9 42.9 42.9

Table 19: Average classification error of multiple variations of PeTTA. Experiments on ImageNet→
ImageNet-C [19] task.

Recurring TTA visit −−−−−−−−−−−−−−−−−−−−−−−−−→
Method 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Avg
Baseline w/oR(θ) 66.9 61.9 72.7 93.6 97.4 97.8 98.0 98.2 98.3 98.3 98.4 98.4 98.5 98.5 98.6 98.6 98.6 98.6 98.7 98.7 93.4

R(θ) fixed λ = 0.1λ0 65.5 70.9 79.1 85.2 90.3 92.6 95.8 95.8 95.4 97.3 96.9 97.7 97.9 98.2 98.0 98.7 98.6 98.4 98.4 98.7 92.5
R(θ) fixed λ = λ0 66.5 62.1 73.0 93.5 97.0 97.2 97.5 97.5 97.6 97.5 97.7 97.7 97.7 97.8 97.9 97.9 98.0 98.0 98.0 97.9 92.9

PeTTA- λt 65.9 62.1 76.3 96.7 97.0 96.9 96.9 96.9 97.0 97.1 97.0 97.2 97.0 97.1 97.1 97.0 97.0 97.0 97.0 97.0 92.7
PeTTA- λt + αt 64.8 70.5 74.6 75.8 75.5 75.8 76.1 76.2 76.2 76.5 76.7 77.0 76.9 77.4 77.1 77.3 77.2 77.4 77.6 77.4 75.7
PeTTA- λt + LAL 64.8 61.1 60.0 59.8 60.4 60.4 61.2 61.2 61.8 61.9 62.1 62.2 62.1 62.9 62.1 62.8 62.7 62.1 62.8 66.6 62.0

PeTTA (ours)(∗) 65.3 61.7 59.8 59.1 59.4 59.6 59.8 59.3 59.4 60.0 60.3 61.0 60.7 60.4 60.6 60.7 60.8 60.7 60.4 60.2 60.5

Table 20: Average classification error of PeTTA with various choices of regularizers. Experiments on
CIFAR-10→ CIFAR-10-C [19] task.

Episodic TTA visit −−−−−−−−−−−−−−−−−−−−−−−−−→
Method 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Avg
L2 25.6 24.8 23.8 23.1 23.2 22.7 23.0 22.7 22.7 22.7 22.8 22.7 22.8 22.7 22.5 22.3 22.2 22.4 22.7 22.8 23.0
L2+Fisher 25.2 23.7 22.5 21.8 22.3 21.5 22.3 22.1 22.5 22.8 22.6 22.6 22.6 22.8 22.6 22.9 22.6 22.9 23.0 23.3 22.7

Cosine 24.3 23.0 22.6 22.4 22.4 22.5 22.3 22.5 22.8 22.8 22.6 22.7 22.7 22.9 22.6 22.7 22.6 22.8 22.9 23.0 22.8
Cosine+Fisher 25.1 23.8 22.2 21.6 22.0 21.4 22.0 21.8 22.1 22.3 22.5 22.4 22.6 22.6 22.4 22.7 22.6 22.8 22.8 23.3 22.6

Table 21: Average classification error of PeTTA with various choices of regularizers. Experiments on
CIFAR-100→ CIFAR-100-C [19] task.

Recurring TTA visit −−−−−−−−−−−−−−−−−−−−−−−−−→
Method 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Avg
L2 36.9 35.5 35.5 35.5 35.7 35.6 35.6 35.5 35.5 35.4 35.6 35.5 35.7 35.7 35.7 35.7 35.8 35.5 35.4 35.5 35.6
L2+Fisher 36.8 35.4 35.4 35.8 35.9 36.0 35.9 35.9 35.9 35.8 36.1 36.1 36.1 36.1 36.1 36.1 36.2 36.0 36.0 35.9 36.0

Cosine 35.8 34.4 34.7 35.0 35.1 35.1 35.2 35.3 35.3 35.3 35.2 35.3 35.2 35.2 35.1 35.2 35.2 35.2 35.2 35.2 35.1
Cosine+Fisher 36.7 35.2 35.5 35.6 35.9 35.9 36.1 36.0 36.0 35.9 36.0 36.0 36.0 36.1 36.0 36.0 35.9 35.9 35.9 36.0 35.9
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Table 22: Average classification error of PeTTA with various choices of regularizers. Experiments on
real→ clipart, painting, sketch task from DomainNet [44] dataset.

Recurring TTA visit −−−−−−−−−−−−−−−−−−−−−−−−−→
Method 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Avg
L2 43.8 42.7 42.5 42.4 42.8 42.9 43.0 43.1 43.1 43.2 43.4 43.3 43.2 43.3 43.2 43.2 43.4 43.0 43.1 43.1 43.1
L2+Fisher 43.9 42.8 42.7 43.0 43.2 43.4 43.6 43.8 43.9 44.1 44.0 44.2 44.2 44.2 44.4 44.4 44.5 44.5 44.5 44.5 43.9

Cosine 43.8 42.6 42.3 42.3 42.6 42.8 42.8 43.0 42.9 42.9 43.1 43.0 42.9 43.0 43.0 43.1 43.0 42.8 42.9 42.9 42.9
Cosine+Fisher 43.7 42.5 42.5 42.6 42.9 43.2 43.2 43.5 43.4 43.5 43.4 43.5 43.4 43.6 43.5 43.5 43.4 43.5 43.3 43.4 43.3

Table 23: Average classification error of PeTTA with various choices of regularizers. Experiments on
ImageNet→ ImageNet-C [19] task.

Recurring TTA visit −−−−−−−−−−−−−−−−−−−−−−−−−→
Method 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Avg
L2 70.8 72.2 71.5 69.8 72.3 69.3 70.3 70.5 70.0 70.8 70.2 72.1 71.4 70.8 70.9 70.9 69.7 71.0 71.1 70.4 70.8
L2+Fisher 70.5 70.0 69.5 69.4 69.6 69.9 69.2 69.3 72.2 70.4 71.0 70.5 71.7 71.5 71.3 68.4 68.6 68.8 68.7 68.7 70.0

Cosine 65.3 61.7 59.8 59.1 59.4 59.6 59.8 59.3 59.4 60.0 60.3 61.0 60.7 60.4 60.6 60.7 60.8 60.7 60.4 60.2 60.5
Cosine+Fisher 65.1 61.7 60.9 61.2 61.9 62.6 62.8 63.2 64.2 63.4 64.3 64.4 63.9 64.3 65.8 65.5 64.9 65.0 65.2 65.2 63.8

F.7 More Confusion Matrices in Recurring TTA Setting

For the task CIFAR-10→ CIFAR-10-C [19] in recurring TTA setting (with 20 visits), we additionally
showcase the confusion matrix of RoTTA [61] (Fig. 10) and our proposed PeTTA (Fig. 11) at each
visit. Our PeTTA persistently achieves competitive performance across 20 visits while RoTTA [61]
gradually degrades.

G Experimental Details

G.1 Computing Resources

A computer cluster equipped with an Intel(R) Core(TM) 3.80GHz i7-10700K CPU, 64 GB RAM,
and one NVIDIA GeForce RTX 3090 GPU (24 GB VRAM) is used for our experiments.

G.2 Experiments on CCC Testing Stream

In this section, we further evaluate the performance of our PeTTA on the testing data stream of
Continuous Changing Corruption (CCC) [45] setting. Here we use the baseline accuracy 20%,
transition speed 1000, and random seed 44.3 The compared methods are source model (ResNet 50),
PeTTA, RoTTA [61], and RDumb [45]. Noteworthy, different from recurring TTA, the class labels
here are i.i.d. distributed. The adaptation configuration of PeTTA follows the same settings as used on
ImageNet-C, while the same setting introduced in Sec. F.3, with T = 1000 is used for RDumb [45].

G.3 Test-time Adaptation Methods

Pre-trained Model on Source Distribution. Following previous studies [57, 61, 12, 59], only
the batch norm layers are updated. As stated in Sec. 5.2, RobustBench [10] and torchvision [35]
provide pre-trained models trained on source distributions. Specifically, for ImageNet-C and Do-
mainNet experiments, a ResNet50 model [17] pre-trained on ImageNet V2 (specifically, checkpoint
ResNet50_Weights.IMAGENET1K_V2 of torchvision) is used. From RobustBench, the model
with checkpoint Standard and Hendrycks2020AugMix_ResNeXt [20] are adopted for CIFAR10-C
and CIFAR-100-C experiments, respectively. Lastly, experiments on DomainNet dataset utilize the
checkpoint (best_real_2020) provided in AdaContrast [8] study.4

Optimizer. Without specifically stated, Adam [26] optimizer with learning rate equal 1e−3, and
β = (0.9, 0.999) is selected as a universal choice for all experiments.

More Details on PeTTA. Since designing the batch normalization layers, and the memory bank is
not the key focus of PeTTA, we conveniently adopt the implementation of the Robust Batch Norm
layer and the Category-balanced Sampling strategy using a memory bank introduced in RoTTA [61].

3https://github.com/oripress/CCC
4https://github.com/DianCh/AdaContrast
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G.4 The Use of Existing Assets

Many components of PeTTA is utilized from the official repository of RoTTA [61] 5 and RMT [12]. 6

These two assets are released under MIT license. All the datasets, including CIFAR-10-C, CIFAR-
100-C and ImageNet-C [19] are publicly available online, released under Apache-2.0 license.7
DomainNet dataset [44] (cleaned version) is also released for research purposes.8

5https://github.com/BIT-DA/RoTTA
6https://github.com/mariodoebler/test-time-adaptation
7https://github.com/hendrycks/robustness
8https://ai.bu.edu/M3SDA/
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Figure 7: An inspection of PeTTA on the task CIFAR-10→ CIFAR-10-C [19] in a recurring with 20
visits (visits are separated by the vertical dashed lines). Here, we visualize (rows 1-3) the dynamic
of PeTTA adaptive parameters (γ̄t, λt, αt), (rows 4-5) the value of the loss functions (LCLS,LAL)
and (row 6) the value of the regularization term (R(θ)) and (row 7) the classification error rate at
each step. The solid line in the foreground of each plot denotes the running mean. The plots show an
adaptive change of λt, αt through time in PeTTA, which stabilizes TTA performance, making PeTTA
achieve a persisting adaptation process in all observed values across 20 visits.
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Figure 8: Testing error of PeTTA with 40 recurring
TTA visits.

Total Visits CF-10-C CF-100-C IN-C
20 visits 22.8 35.1 60.5
40 visits 22.9 35.1 61.0

Table 14: Average testing error of PeTTA in
recurring TTA with 20 and 40 visits. PeTTA
demonstrates its persistence over an extended
testing time horizon beyond the 20th visit
milestone (Fig. 8’s horizontal dashed line).
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Figure 9: An inspection on the ablation study of multiple variations of PeTTA on the task CIFAR-100
→ CIFAR-100-C [19] in an episodic TTA with 20 visits (visits are separated by the vertical dashed
lines). (top): testing error of multiple variations of PeTTA. The performance of PeTTA without
(w/o) R(θ), or fixed regularization coefficient (λ = λ0/0.1λ0) degrades through time (the top 3
lines). The degradation of PeTTA -λt is still happening but at a slower rate (justification below). The
performance of the other three variations persists through time with PeTTA -λt + αt +LAL achieves
the best performance. (bottom): changes of γ̄t in multiple variations of PeTTA. When limiting
the degree of freedom in adjusting αt or lacking of supervision from LAL (e.g., PeTTA -λt + αt,
PeTTA -λt + LAL, and especially PeTTA -λt), the value of γt, unfortunately, escalates and eventually
saturated. After this point, PeTTA has the same effect as using a fixed regularization coefficient.
Therefore, fully utilizing all components is necessary to preserve the persistence of PeTTA. Best
viewed in color.
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Figure 10: The dynamic of the confusion matrix of RoTTA [61] in episodic TTA with 20 visits.
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Figure 11: The dynamic of the confusion matrix of PeTTA (ours) in episodic TTA with 20 visits.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We have highlighted the three main claims and contributions of our work in
both the abstract (highlighted in bold font) and the introduction section (listed as bullet
points).
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have discussed the limitations and potential future work of our study in
Sec. 6. Specifically, three main limitations are included: (1) Collapse prevention can not be
guaranteed through regularization, PeTTA requires (2) the use of a relatively small memory
bank is available and (3) the empirical mean and covariant matrix of feature vectors on the
source dataset is computable. We also include discussions in Appdx. E.3 and Appdx. E.4 to
further elaborate (2), and (3) respectively.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: We have provided the full proof of all lemmas and theorem in Appdx. B.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: This study propose a new TTA approach - PeTTA. A full description of this
approach is given in Sec. 4 with its pseudo-code provided in Appdx. E.1. The implementation
of PeTTA in Python is also attached as supplemental material. Additionally, Sec. 5.2 and
Appdx. G are dedicated to providing further implementation details for reproducing the
main experimental results. Lastly, the construction of recurring TTA is notably simple, and
can be easily extended to other TTA streams. Its configuration on each tasks is described in
the Recurring TTA paragraph of Sec. 5.2.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: This study does not involve any private datasets. All datasets used in our exper-
iments are publicly available online from previous works (more information in Appdx. G.4).
The source code of PeTTA is also attached as supplemental material.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The experimental settings of the key results in the paper have been provided in
Sec. 5.1 (Simulation Setup) and Sec. 5.2 (Setup - Benchmark Datasets). In the supplementary
material, any additional experimental results beyond the main paper, such as those in
Appdx. D.3, and Appdx. F.3, are consistently preceded by a subsection titled Experiment
Setup summarizing the experimental details before presenting the results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
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Answer: [Yes]
Justification: Due to the limited computing resources, we only extensively evaluate the
performance of our proposed method (PeTTA) across 5 independent runs, with different
random seeds. Specifically, the mean values in 5 runs are reported in Tab. 1, Tab. 2, Tab. 7,
and Tab. 8. The corresponding standard deviation values are provided in Appdx. F.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We have provided the information on the computing resources used in our
experiments in Appdx. G.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The authors have reviewed and to the best of our judgment, this study has
conformed to the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
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• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [No]
Justification: This study advances the research in test-time adaptation area in general, and not
tied to particular applications. Hence, there are no significant potential societal consequences
of our work which we feel must be specifically highlighted here.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: To the best of our judgment, this study poses no risks for misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
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Answer: [Yes]

Justification: The original papers that produced the code package or dataset have been
properly cited throughout the paper. Further information on the licenses of used assets are
provided in Appdx. G.4.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: This study does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This study does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This study does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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