
LLM Dataset Inference: Did you train on my dataset?

Pratyush Maini∗∗1,2 Hengrui Jia∗3,4 Nicolas Papernot3,4 Adam Dziedzic5
1Carnegie Mellon University 2DatologyAI 3University of Toronto
4Vector Institute 5CISPA Helmholtz Center for Information Security

Abstract

The proliferation of large language models (LLMs) in the real world has come
with a rise in copyright cases against companies for training their models on
unlicensed data from the internet. Recent works have presented methods to identify
if individual text sequences were members of the model’s training data, known as
membership inference attacks (MIAs). We demonstrate that the apparent success of
these MIAs is confounded by selecting non-members (text sequences not used for
training) belonging to a different distribution from the members (e.g., temporally
shifted recent Wikipedia articles compared with ones used to train the model).
This distribution shift makes membership inference appear successful. However,
most MIA methods perform no better than random guessing when discriminating
between members and non-members from the same distribution (e.g., in this case,
the same period of time). Even when MIAs work, we find that different MIAs
succeed at inferring membership of samples from different distributions. Instead,
we propose a new dataset inference method to accurately identify the datasets used
to train large language models. This paradigm sits realistically in the modern-day
copyright landscape, where authors claim that an LLM is trained over multiple
documents (such as a book) written by them, rather than one particular paragraph.
While dataset inference shares many of the challenges of membership inference, we
solve it by selectively combining the MIAs that provide positive signal for a given
distribution, and aggregating them to perform a statistical test on a given dataset.
Our approach successfully distinguishes the train and test sets of different subsets
of the Pile with statistically significant p-values < 0.1, without any false positives.

1 Introduction

Training of large language models (LLMs) on large scrapes of the web [Gem, Ope] has recently
raised significant privacy concerns [Rahman and Santacana, 2023, Wu et al., 2023]. The inclusion
of personally identifiable information (PII) and copyrighted material in the training corpora has
led to legal challenges, notably the lawsuit between The New York Times and OpenAI [Gry, 2023],
among others [Bak, 2023, Sil, 2023]. Such cases highlight the issue of using copyrighted content
without attribution and/or license. Potentially, they undermine the rights of creators and disincentivize
future artistic endeavors due to the lack of monetary compensation for works freely accessible online.
This backdrop sets the stage for the technical challenge of identifying training data within machine
learning models [Maini et al., 2021, Shokri et al., 2017]. Despite legal ambiguities, the task holds
critical importance for understanding LLMs’ operations and ensuring data accountability.

Membership inference [Shokri et al., 2017] is a long-studied privacy problem, intending to infer if a
given data point was included in the training data of a model. However, identifying example member-
ship is a challenging task even for models trained on small datasets Carlini et al. [2022], Duan et al.
[2023a,b], and Maini et al. [2021] presented an impossibility result suggesting that as the size of

∗Equal contribution. Code is available at https://github.com/pratyushmaini/llm_dataset_inference/.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

124069 https://doi.org/10.52202/079017-3941

https://github.com/pratyushmaini/llm_dataset_inference/


Split A

Suspect
Features

(A)

Val
Features

(A)

Split A

,  0 ,  1

Suspect
Features

(A)

Val
Features

(A)

, Attack

Stage 1: Aggregate Features with MIAs

+

Stage 2: Learn Correlations Stage 3: Perform Dataset Inference

Split B

Split B

+Attack

{0.3, 0.1, ..., 0.2}

{0.9, 0.2, ..., 0.7}

T-Test
Train Linear Model

Stage 0: Victim approaches with a Suspect set

Claim:
LLM trained on Suspect set

Assumption:
Suspect set and Val set are IID
Val set is private to the victim 

Split A

Split B

Suspect Set

...

Split A

Split B

...

Val Set

Figure 1: LLM Dataset Inference. Stage 0: Victim approaches an LLM provider. The victim’s data
consists of the suspect and validation (Val) sets. A victim claims that the suspect set of data points was
potentially used to train the LLM. The validation set is private to the victim, such as unpublished data
(e.g., drafts of articles, blog posts, or books) from the same distribution as the suspect set. Both sets are
divided into non-overlapping splits (partitions) A and B. Stage 1: Aggregate Features with MIAs. The
A splits from suspect and validation sets are passed through the LLM to obtain their features, which
are scores generated from various MIAs for LLMs. Stage 2: Learn Correlations (between features
and their membership status). We train a linear model using the extracted features to assign label 0
(denoting potential members of the LLM) to the suspect and label 1 (representing non-members) to
the validation features. The goal is to identify useful MIAs. Stage 3: Perform Dataset Inference. We
use the B splits of the suspect and validation sets, (i) perform MIAs on them for the suspect LLM to
obtain features, (ii) then obtain an aggregated confidence score using the previously trained linear
model, and (iii) apply a statistical T-Test on the obtained scores. For the suspect data points that are
members, their confidence scores are significantly closer to 0 than for the non-members.

the training set increases, the success of membership inference degrades to random chance. Is testing
the membership of individual sentences for LLMs trained for a single epoch on trillions of tokens of
text data feasible? In our work, we first demonstrate that previous claims of successful membership
inference for individual text sequences in LLMs [Mattern et al., 2023, Shi et al., 2024] are overly
optimistic (Section 4). Our evaluation of the MIA methods for LLMs reveals a crucial confounder:
they detect (temporal) distribution shifts rather than the membership of data points (as also concur-
rently observed by [Duan et al., 2024]). Specifically, we find that these MIAs infer whether an LLM
was trained on a concept rather than an individual sentence. Even when the outputs of such MIAs
(weakly) correlate with actual sentence membership, we find that they remain very brittle across sen-
tences from different data distributions, and no single MIA succeeds across all. Based on our exper-
iments, we conclude the discussion of MIAs with guidelines for future researchers to conduct robust
experiments, highlighting the importance of using IID splits (between members and non-members),
considering various data distributions, and evaluating false positives to mitigate confounding factors.

If membership inference attacks are so brittle, do content writers and private individuals have no
recourse to claim that LLM providers unfairly trained on their data? As an alternative to membership
inference, we advocate for a shift in focus towards dataset inference [Maini et al., 2021], which is a
statistically grounded method to detect if a given dataset was in the training set of a model. We propose
a new dataset inference method for LLMs that aims at detecting sets of text sequences by specific
authors, thereby offering a more viable approach to dataset attribution than membership inference.
Our method is presented in Figure 1. The motivation behind dataset inference stems from the
observation that in the rapidly evolving discourse on copyright, individual data points have much less
agency than sets of data points attributed to a particular creator; and the fact that more often than not,
cases of unfair use emerge in scenarios when multiple such sequences or their clusters naturally occur.
For instance, consider the Harry Potter series written by J.K. Rowling. Dataset inference tests whether
a ‘dataset’ or a collection of paragraphs from her books was used for training a language model, rather
than testing the membership of individual sentences alone. We also outline the specific framework
required to operationalize dataset inference, including the necessary assumptions for the same.

We carry out our analysis of dataset inference using LLMs with known training and validation
data. Specifically, we leverage the Pythia suite of models Biderman et al. [2023] trained on the Pile
dataset Gao et al. [2020] (Section 5). This controlled experimental setup allows us to precisely analyze
the model behavior on members and non-members when they occur IID (without any temporal shift) as
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the training and validation splits of PILE are publicly accessible. Across all subsets, dataset inference
achieves p-values less than 0.1 in distinguishing between training and validation splits. At the same
time, our method shows no false positives, with our statistical test producing p-values larger than 0.5
in all cases when comparing two subsets of validation data. To its practical merit, dataset inference
requires only 1000 text sequences to detect whether a given suspect dataset was used to train an LLM.

2 Background and Baselines

Membership Inference. (MI) [Shokri et al., 2017]. The central question is: Given a trained
model and a particular data point, can we determine if the data point was in the model’s training
set? Applications of MI methods span across detecting contamination in benchmark datasets [Oren
et al., 2024, Shi et al., 2024], auditing privacy [Steinke et al., 2023], and identifying copyrighted
texts within pre-training data [Shafran et al., 2021]. The field has been studied extensively in the
realm of ML models trained via supervised learning on small datasets. The ability of membership
inference in the context of large-scale language models (LLMs) remains an open problem. Recently,
new methods [Mattern et al., 2023, Shi et al., 2024] have been proposed to close the gap and we
present them in § 2.1.

Dataset Inference. [Maini et al., 2021] provides a strong statistical claim that a given model is a
derivative of its own private training data. The key intuition behind the original method proposed for
supervised learning is that classifiers maximize the distance of training examples from the model’s
decision boundaries, while the test examples are closer to the decision boundaries since they have
no impact on the model weights. Subsequently, dataset inference was extended from supervised
learning to the self-supervised learning (SSL) models [Dziedzic et al., 2022] based on the observation
that representations of the training data points induce a significantly different distribution than the
representation of the test data points. We introduce dataset inference for large language models to
detect datasets used for training.

2.1 Metrics for LLM Membership Inference

This section explores various metrics used to assess Membership Inference Attacks (MIAs) against
LLMs. We study MIAs under gray-box access (which assumes access to the model loss, but not to
parameters or gradients). The adversary aims to learn an attack function Afθ : X → {0, 1} that takes
an input x from distribution X and determines whether x was in the training set Dtrain of the LM fθ
or not. Let us now describe the MIAs we use in our work.

Thresholding Based. These MIAs leverage loss [Yeom et al., 2018] or perplexity [Carlini et al.,
2021] as scores and then threshold them to classify samples as members or non-members. Specifically,
the decision rule for membership is: Afθ (x) = 1[L(fθ, x) < γ], where γ is a selected pre-defined
threshold. However, MIAs based solely on perplexity suffer from many false positives, where simple
and predictable sequences that never occur in the training set can be labeled as members.

MIN-K% PROB. As a remedy to the problem of predictability, Shi et al. [2024] proposed the
MIN-K% PROB metric which evaluates the likelihood of the K% of tokens in x that have the lowest
probability, conditioned on the preceding tokens. Hence, this MIA ignores highly predictable tokens
in the suspect sequence. The membership prediction is made by thresholding the average negative
log-likelihood of these tokens. The input sentence x is marked as included in pretraining data simply
by thresholding the MIN-K% PROB result: Afθ (x) = 1[MIN-K% PROB(x) < γ].

Perturbation Based. The central hypothesis behind Perturbation-based MIAs is that a sample
that an LLM saw during training should have a lower perplexity on its original version (x), as
opposed to a perturbed version of the same (x̃). Formally, the membership attack is defined as
Afθ (x) = 1 [Pfθ(x)/Pfθ(x̃) < γ], for a threshold γ. In our work, we investigate various forms of
perturbations such as (1) white-space perturbation, (2) synonym substitution [Mattern et al., 2023],
(3) character-level typos, (4) random deletion, and (5) changing character case.

DetectGPT. This is a special case of perturbation-based MIAs, originally used to detect machine-
generated text [Mitchell et al., 2023]. The key difference is that perturbations to the input are made
using an external language model that infills randomly masked-out spans of the original input. It then
compares the log-probability of x with expected value of the same from multiple infilled neighbors x̃i.
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Reference Model Based. These methods compare the perplexity ratio between a suspect model
and a reference model on a given string. The suspect model may have seen the string during training,
while the reference model has not. The corresponding MIA is: Afθ (x) = 1[L(fθ, x) < L(f ′

θ, x)],
where f ′

θ is the reference model. In our work, we use the SILO [Min et al., 2023], Tinystories-
33M [Eldan and Li, 2023], Tinystories-1M [Eldan and Li, 2023], and Phi-1.5 [Li et al., 2023] models
as reference models. Notably, these models were not trained on general web data. In particular, the
Phi-1.5 and Tinystories models were trained on synthetic data generated by GPT models, and the
SILO model was trained on data that is freely licensed for training.

zlib Ratio. Another simple MI baseline uses the zlib library [Gailly and Adler, 2004], where
a potential member has a low ratio of the model’s perplexity to the entropy of the text, which is
computed as the number of bits for the sequence when compressed with the zlib library: Afθ (x) =
1[Pfθ

(x)/zlib(x) < γ] [Carlini et al., 2021]. The idea is that a model trained on a dataset will have low
perplexity for its members because it was optimized for them, unlike the zLib algorithm, which was
not tailored to the training data.

3 Problem Setup

LLMs train on trillions of tokens, and the sizes of the training sets are only likely to increase [Met,
dbr]. To increase training efficiency (in terms of time, financial costs, and environmental impact),
improve performance, and decrease the risk of privacy leakage, many LLM practitioners deduplicate
their pre-training data [Biderman et al., 2023, Carlini et al., 2021, Lee et al., 2022]. In our work, we
ask this question: How to detect if a given dataset was used to train an LLM? and propose the idea of
dataset inference for LLMs.

Access Levels. In the black-box setting, we assume an input-output access to an LLM along
with access to model loss, hence we are not allowed to inspect individual weights or hidden states
(e.g., attention layer parameters) of the language model. This threat model is realistic in the case
of LLM’s users since many language models can be accessed through APIs that provide limited
visibility into their inner workings. For instance, OpenAI [Ope] offers API access to GPT-3 and
GPT-4, while Google [Gem] offers Gemini, without revealing the full architecture of the models or
training methodology. The gray-box access, commonly assumed for MIAs, additionally assumes that
we can obtain the perplexity or the loss values from an LLM, however, no additional information
such as model weights or gradients. In the white-box access, we assume full access to the model,
where we can inspect model weights.

Operationalizing Dataset Inference. Dataset inference for LLMs serves as a detection method for
data used to train an LLM. We consider the following three actors during a dispute:

1. Victim (V). We consider a victim creator whose private or copyrighted content was used to train an
LLM without explicit consent. The actor is presumed to have only black-box access to the suspect
model, which limits their ability to evaluate if their dataset was used in the LLM’s training process.

2. Suspect (A). The suspect (or potential adversary in this case) is an LLM provider who may have
potentially trained their model on the victim’s proprietary, or private data.

3. Arbiter. We assume the presence of an arbiter, i.e., a third-trusted party, such as law enforcement,
that executes the dataset inference procedure. The arbiter can obtain gray-box access to the suspect
LLM. For instance, in scenarios when API providers only give black-box access to users, legal
arbiters may have access to model loss to perform MIAs.

Scenario. Consider a scenario where a book writer discovers that their publicly available but
copyrighted manuscripts have been used without their consent to train an LLM. The writer, the victim
V in this case, gathers a small set of text sequences (say 100) from their manuscripts that they
believe the model was trained on. The suspect A in this scenario is the LLM provider, who may have
included the writer’s published work in their training data without obtaining explicit permission. The
provider is under suspicion of potentially infringing on the writer’s manuscripts. An arbiter, such as
a law enforcement agency, steps in to resolve the dispute. The arbiter obtains gray-box access to the
suspect LLM, allowing them to execute our dataset inference procedure and resolve the dispute. By
performing dataset inference (as depicted in Figure 1), the arbiter determines whether the writer’s
published manuscripts were used in the training of the LLM. This process highlights the practical
application and significance of dataset inference in safeguarding the rights of artists.
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Notation. We consider x to be an input sentence with N tokens x = x1, x2, ..., xN and fθ is a
Language Model (LM) with parameters θ. We can compute the probability of an arbitrary sequence
fθ(x1, ..., xn), and obtain next-token xn+1 predictions. For simplicity, assume that the next token is
sampled under greedy decoding, as the next token with the highest probability given the first n tokens.

4 Failure of Membership Inference

We demonstrate that the challenge of successfully performing membership inference for large
language models (LLMs) remains unresolved. This problem is inherently difficult because LLMs
are typically trained for a single epoch on trillions of tokens of web data. In their work, Maini et al.
[2021] demonstrated a near impossibility result (Theorem 2), suggesting that as the size of the training
set increases, the success rate of any MIA approaches 0.5 (as good as a coin flip). While this was
shown in a simplified theoretical model, we assess how this holds up for contemporary LLMs with
billions of parameters. As a demonstrative example, we consider the most recent (and supposedly
best performing) work that proposed the MIN-K% PROB [Shi et al., 2024] membership inference
attack, alongside a dedicated dataset to facilitate future evaluations. In their work, they show that this
method performs notably better than other MIAs such as perplexity thresholding and DetectGPT that
they benchmark their work against.

Temporal Shift and the Need for IID Analysis. The evaluation dataset used to showcase the
success of MIN-K% PROB was the WikiMIA dataset, a dataset constructed using spans of Wikipedia
articles written before (train set) and after the cut-off year 2023 (validation set). This was chosen
considering the training of the Pythia models [Biderman et al., 2023], which was based on scrapes of
Wikipedia before 2023. Note that such an evaluation setup naturally has the potential confounder
of a temporal shift in the concepts in data before and after 2023. Any article written after 2023
was naturally a non-member of the Pythia models, and those written before 2023 were considered
members. However, with changing times, we also encounter temporal shifts in writing styles and
concepts in the Wikipedia dataset. This raises concerns if membership tests using WikiMIA actually
assess membership of a particular data point, or of that concept/style. A similar question was
concurrently asked by Duan et al. [2024], who independently showed that MIAs are only successful
because of the temporal shift in such datasets.

To critically assess the robustness of the MIN-K% PROB method, we conducted an exploration using
the Pythia models and their (original) train and validation splits that come from the PILE [Gao et al.,
2020] dataset, as provided by the authors during pre-training. This facilitates a confounder-free
evaluation of the capabilities of membership inference attacks. In particular, the PILE dataset has
more than 20 different domain-specific subsets with their own training and validation splits, such as
Arxiv, Wikipedia, OpenWebtext to name a few. Some of the key observations from our experiments
on the PILE were (Figure 2a):
1. Contrary to performance on the WikiMIA dataset where MIN-K% PROB metric achieved an AUC

close to 0.7, the method got an AUC close to 0.5 when tested on IID train and validation splits of
Wikipedia from the PILE dataset, hinting at a performance akin to random guessing.

2. We found that the method shows very high variance in AUC between different random subsets of
the training and validation sets of the PILE dataset, oscillating between 0.4 and 0.7.

3. Results on Arxiv and OpenWebText2 subsets of the PILE show AUC values near 0.4, suggesting
that MIN-K% PROB suffers from false positives, labeling validation set examples as members.

False Positive Assessment by Reversing Train and Val Sets. Do membership inference attacks
actually test membership? To answer this question, we do the following modification to the WikiMIA
setup: For every sentence in the pre-2023 subset of Wikipedia, we replace it with a sentence from the
validation set for Wikipedia as given in the PILE dataset. We keep the post-2023 Wikipedia subset
as it is. On the one hand, since Pythia models were trained before 2023, it is clear that they never
trained on data on Wikipedia from pages written after 2023. On the other hand, we also know that the
validation set of the PILE dataset was not trained on and was also deduplicated from the train set. We
now perform the same membership inference test on these two data splits Wikipedia Val (as the now
designated ‘suspect’ set) versus Wikipedia post-2023 (as the supposed unseen set). Remarkably, the
method demonstrates an extremely high AUC of 0.7 in labeling examples from the suspect (validation
set) as members of the training set (Figure 2b). This confirms that these membership inference attacks
(such as MIN-K% PROB) only distinguish between concepts across different temporal phases rather
than verifying specific data membership, which they were originally designed for.
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Figure 2: Comparative analysis of the MIN-K% PROB [Shi et al., 2024]. We measure the
performance (a) across different model sizes and (b) the observed reversal effect. The method
performs close to a random guess on non-members from the Pile validation sets.
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Figure 3: Performance of various MIAs on different subsets of the Pile dataset. We report 6
different MIAs based on the best performing ones across various categories like reference based, and
perturbation based methods (Section 2.1). An effective MIA must have an AUC much greater than 0.5.
Few methods meet this criterion for specific datasets, but the success is not consistent across datasets.

No single MIA works across distributions. Now, we further expand our experimentation across
multiple different membership inference attacks outlined in Section 2.1, across 20 different subsets
of the PILE dataset. The goal is to analyze if there is any MIA that consistently performs well across
all such distributions. In Figure 3, we show a heatmap of the performance of various (selected)
MIA methods across different distributions of the PILE (refer to Appendix C for full results). While
some MIAs perform well and achieve high AUC (such as synonym substitution on PhilPapers),
the same methods have an AUC of less than 0.5 on the next dataset of Pubmed Abstracts. These
results consolidate the finding that no single MIA for LLMs works across all datasets, and we need
to potentially find methods that adapt the choice of metric to the distribution. In Section 5, we will
leverage a (selective) combination of different MIAs to improve over the performance of any single
MIA in order to perform successful LLM Dataset Inference.

Guidelines for Future Research. Based on our observations in this section, we outline four
important practices for future research in membership inference to enable sound experimentation
and inferences. In particular, (1) assessment for membership inference must be done in an IID setup
where train and validation splits are from the same distribution, (2) experiments must be repeated
over multiple random splits of the datasets, (3) experiments must be performed over multiple data
distributions (4) careful experimentation must be done on both false positives and false negatives to
ensure MIAs do not wrongly label non-members as members.

5 LLM Dataset Inference

Dataset inference builds on the idea of membership inference by leveraging distributional properties
to determine if a model was trained on a particular dataset. While MIAs operate at the instance level—
aiming to identify whether each example was part of the training data. In the previous sections, we
have shown that MIAs often yield signals that is close to random in determining example membership.
However, if we achieve even slightly better than random accuracy in inferring membership, we can
aggregate these attacks across multiple examples to perform a statistical test. This test can then
distinguish between the distributions of the model’s training and validation sets. In the context of
LLM dataset inference, we combine all the MIA methods discussed in Section 2.1.
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5.1 Procedure for the LLM Dataset Inference

We describe the procedure for LLM dataset inference in four stages (see also visualization in Figure 1).
Recall the initial example of a book writer who suspects that a portion of their books was trained on.
We use this as a running example to describe the four stages of LLM dataset inference.

Stage 0: Victim approaches an LLM provider. A victim (author) V approaches an arbiter with a
claim of ownership over data (book) that they suspect a model trainer or adversary S utilized. This
stage involves the arbiter validating if the claim by V satisfies the assumptions under which dataset
inference operates, that is, they provide an IID set of data that they suspect was trained on, and an
equivalent dataset that S could not have seen, denoted as the validation set. This can, for instance,
happen when authors have multiple drafts of a book chapter, and only one of the drafts makes it to the
actual print. In such a case, V claims that S trained on the published version of their book, because
fθ (S) responds differently to the final versus rejected drafts of the book. Both suspect and validation
sets are divided into non-overlapping splits (partitions) A and B. We will use Aval, Asus in Stages 1, 2
and Bval, Bsus in Stage 3 to actually perform the ownership assessment.

Stage 1: Aggregate Features with MIAs. This step involves aggregating scores from various MIA
methods described in the previous Section 2.1. Aval, Asus sets are passed through the LLM under
question to obtain their features derived from MIAs. Note that we use an aggregation of all the MIA
methods discussed in the previous sections to create a single feature vector. In the next step, we will
determine which MIAs are useful for identifying dataset membership for the given distribution.

Stage 2: Learn MIA correlations. In this stage, we train a linear regressor to learn the importance
of weights for different MIA attacks to use for the final dataset inference procedure. Across each
MIA feature value, we first modify the top 5% outliers by changing their values to the mean of the
distribution. This step is crucial to prevent issues in Step 3, where the model might learn skewed
correlations due to a few outlier samples. We then pass the data through a linear regression model
to learn weights for each feature. All ‘suspect’ samples in Asus are labeled as 0, and all validation
samples in Aval are labeled as 1. A regressor is trained to predict the label given the samples,
effectively learning the correlation between the features and their membership status.

Stage 3: Perform Dataset Inference. We use B splits of the suspect and validation sets, holding out
up to 1000 samples in these splits for ownership assessment. Each sample is assigned a membership
value using a trained linear classifier. These values are used to perform a statistical t-test to determine
if the suspect set was used in training the model. We then report whether the model was trained on
the suspect dataset based on the t-test results. For members of the suspect set, their confidence scores
are significantly closer to 0 compared to non-members. The null hypothesis (H0) is that the suspect
dataset was not used for training. Assume that µM(Bsus) and µM(Bval) are the mean membership
values of the suspect and validation sets, respectively. Then, H0 and H1 (alternate hypothesis) are:

H0 : µM(Bsus) ≥ µM(Bval); H1 : µM(Bsus) ≤ µM(Bval). (1)

Combining p-values for Dependent Tests. To assess the significance of the results, we performed
multiple t-tests using 10 different random seeds to obtain various splits of examples between A and B
sets. Since the subsets had overlapping examples, the statistical tests are dependent [Vovk and Wang,
2020], and p-values must be aggregated accordingly [Brown, 1975, Kost and McDermott, 2002,
Meng, 1994, Rüschendorf, 1982]. Based on the observation in Blakesley et al. [2009], the Sidak-
method [Šidák, 1967] for combing p-values is typically conservative and helps avoid Type-1 errors.
Let p1, p2, . . . , pn denote the p-values obtained from the n t-tests, then the aggregated p-value:

pcombined = 1− exp

(
n∑

i=1

log(1− pi)

)
(2)

Score Aggregation. To aggregate scores from different MIAs, we (i) normalize feature values to
ensure that all features aggregated across various membership inference attacks are on a comparable
scale. Then, we (ii) adjust values of outliers before learning correlations with the classifier by
replacing the top and bottom 2.5% of outlier values with the mean of that (normalized) feature. Finally,
we (iii) remove outliers before performing t-test in Stage 3 once we have a single membership
value from the regressor outputs for each sample in the B splits of the suspect and validation sets.
Once again we remove the top and bottom 2.5% of outlier.
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Figure 4: p-values of dataset inference By applying dataset inference to Pythia-12b models with
1000 data points, we observe that we can correctly distinguish train and validation splits of the PILE
with very low p-values (always below 0.1). Also, when considering false positives for comparing two
validation subsets, we observe a p-value higher than 0.1 in all cases, indicating no false positives.

5.2 Assumptions for Dataset Inference

In order to operationalize dataset inference, we must obey certain assumptions on both the datasets
(points 1 and 2 below), and the suspect language model (point 3 below).

1. The suspect train set and the unseen validation sets should be IID. This prevents the results from
being confounded due to distribution shifts (such as temporal shifts in the case of WikiMIA).

2. We must ensure no leakage between the (suspected) train and (unseen) validation sets. The
validation set should be strictly private, and only accessible to the victim.

3. We need access to the output loss of the suspect LLM in order to perform various MIAs.

5.3 Experimental Details

Datasets and Architectures. We perform dataset inference experiments on all 20 subsets of the
PILE. For experiments with false positives, we split the validation sets into two subsets of 500
examples each. In all other experiments, we compare 1000 examples of train and validation sets of
the PILE [Gao et al., 2020]. We perform dataset inference on models from the Pythia [Biderman
et al., 2023] family at 410M, 1.4B, 6.9B, and 12B scales. These open-source models allow us to
know exactly which examples trained on.

MIAs used. In our experiments, we aggregate 52 different Membership Inference Attacks (MIAs)
in Stage 1 (many of which are overlapping and only differ in whether they capture the perplexity or
the log-likelihood, or contrast the ratios or differences of model predictions). For the linear regression
model trained in Stage 2, we train for 1000 updates over the data using simple weights over the 52
features. A total of 1000 examples are saved for training the regressor to learn correlations for stage
2, except in the false positive experiments where we use half the data. A complete list of all the MIAs
used in our work is present in Appendix C.

5.4 Analysis and Results with Dataset Inference

We analyze the performance of LLM dataset inference on the Pythia suite of models [Biderman et al.,
2023] trained on the Pile dataset [Gao et al., 2020]. We separately perform dataset inference on each
and every subset of the PILE using the provided train and validation sets, and report the p-values for
correctly identifying the training dataset. Before diving into various design choices, the key result
is that dataset inference reliably finds the training distribution in all subsets of the PILE. (Figure 4).
For the analysis of false positives, we carry out dataset inference on two splits of the validation set
for each subset of the PILE. Since neither of the validation subsets was used to train the model fθ,
the returned p-values should be (and are) significantly above the selected threshold of 0.1 for any
useful attribution framework. It is worth noting that the p-values for these tests are often remarkably
low in the order of 10−30 and lower, suggesting high confidence in attributing dataset ownership.
When contrasted with the lack of reliability of membership inference, dataset inference indeed shows
great promise for future discourse on inspecting training datasets. We will now dive deeper into
various ablations and results around dataset inference such as the features (membership inference
attacks) chosen by the regressor, choice of pre-processing function, change in performance of dataset
inference with model size, data duplication and number of permitted queries.

Feature Selection. For each domain, we find that the most important metrics are different. Hence,
the linear classifier is essential to appropriately determine the importance of each feature for deter-
mining per example membership, based on the dataset statistics. We present the results for a subset of
MIAs in Figure 5a (all MIAs in Appendix Figure 8). For example, while the Perturbation-based met-
ric is necessary to be present for the CC dataset, it is not useful for the OWT2 dataset, which instead
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(a) Feature Selection. A positive value indicates a correlation of the feature with the validation set, while a
negative one denotes a correlation with the train set.
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(b) Feature pre-processing. We present the p-values for a given dataset using differently pre-processed features.
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(c) Analysis of false-positives. A p-value smaller than 0.1 indicates a false positive.

Figure 5: Ablation study for dataset inference. We analyze which features based on or derived from
the previous membership inference methods increase the success of dataset inference. (a) Our results
indicate that no single feature contributes consistently, thus we need a linear model to selectively
aggregate their impact on the final outputs from dataset inference. (b) Given the selected features,
we consider different ways of how to pre-process them before building the classifier. The proposed
method (denoted as Removal (Norm.)) removes outliers and normalizes the feature values. (c) We
evaluate the selected and pre-processed features using suspect set that come from the validation data.
We do not observe any false positives as shown in the last row in (c).

requires the Perplexity metric. Dataset inference automatically learns which MIAs are positively
correlated with a given distribution. The linear regressor can be trained quickly on a CPU since it is
only learning a weight assignment for each feature. Now, we investigate which MIAs get selected by
dataset inference by analyzing the importance weights given by our linear regression to various MIAs.

Feature Pre-Processing. Considering the chosen features, we explore various pre-processing
techniques to apply before training the linear regressor. The selected approach, referred to as Removal
(Norm.) in Figure 5b, involves eliminating outliers and normalizing the feature values. We tried
other approaches such as mean correction, and outlier clipping, but we found that these approaches
make the dataset inference procedure less reliable by artificially modifying the score distributions
and modifying the feature correlations learned by the linear model. Its effect can be seen through the
occurrence of false positives for some of the datasets.

Number of Queries. We analyze the number of queries that have to be executed against the tested
model fθ to determine if a given dataset was used for training. We present the results in Figure 6a. It
can be seen more than half of datasets only require about 100 points, while 1000 points are sufficient
to obtain p-values smaller than the significance threshold of 0.1 for all datasets.

Size of LLMs and Training Set Deduplication. By studying the Pythia suite of models [Biderman
et al., 2023] which are trained on the same dataset, we observe the success of dataset inference is
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Figure 6: Ablation studies for the amount of data and model size. In (a), we plot the maximum and
median p-values across all datasets, alongside the p-value of Wikipedia, as a function of the number
of data points. In (b), a violin plot is made to show the distribution of p-values of the datasets with
respect to the number of model parameters. Observe that dataset inference is more successful with
more data and larger LLMs. It is also noteworthy that (a) dataset inference for a majority of datasets
is accurate with less than 100 points, and (b) it is more accurate with respect to the non-deduplicated
models that are trained on datasets with duplicated points. We hypothesize this is because the
membership signal for most MIAs becomes stronger with the duplication of data. Deduped denotes a
version of the Pile dataset where the documents are deduplicated within, and across the data splits
(train/test/validation). Non-Deduped is the original version of Pile without any deduplication.

positively correlated with the number of parameters in the LLMs. We present this result in Figure 6b as
a violin plot to allow for visualizing distributions of the datasets’ p-values. It can be seen as the size of
the model increases, the p-value distribution concentrates below the threshold of 0.1. This correlation
can be explained by the phenomenon that memorization by LLMs increases as their parameter
size increases [Carlini et al., 2021], which provides a stronger signal for the intermediate MIAs
responsible for dataset inference to succeed. We also contrast the models trained on deduplicated or
non-deduplicated training sets when we are only allowed 500 query points. Observe that while the
aforementioned trend holds for both kinds of models, the p-value distribution is more concentrated
below 0.1 for the non-deduplicated models. Following the same explanation as above, this also
indicates that memorization is more severe when some training data is duplicated, allowing various
membership inference attacks to have a stronger signal.

6 Discussions

Membership Inference for LLMs. In this work, we question the central foundations of research
on membership inference in the context of LLMs trained on trillions of tokens of web data. Our
findings indicate that current membership inference attacks for LLMs are as good as random guessing.
We demonstrate that past successes in MIAs are often due to specific experimental confounders
rather than inherent vulnerabilities. We provide guidelines for future researchers to conduct robust
experiments, emphasizing the use of IID splits, considering various data distributions, assessing false
positives, and using multiple random seeds to avoid confounders.

Shift to LLM Dataset Inference. Historically, membership inference focused on whether an
individual data point was part of a training dataset. Instead, we aggregate multiple data points from
individual entities, forming what we now consider a dataset. In our work, we have not only put thought
towards the scientific framework of dataset inference but also the ways it will operationalize in real-
world settings, for instance, through our running example of a writer who suspects that their books
were trained on. Our research demonstrates that LLM dataset inference is effective in minimizing
false positives and detecting even minute differences between training and test splits of IID samples.

Limitations. A central limitation to dataset inference is the assumptions under which it can be
performed. More specifically, we require that the training and validation sets must be IID, and the
validation set must be completely private to the victim. While this may appear elusive a priori, we
outline concrete scenarios to show how these sets naturally occur. For instance, through multiple
drafts of a book, until one gets finalized. The same applies to many artistic and creative uses of LLMs
across language and vision today. In terms of data and model access, we assume that the victim or a
trusted third party, such as law enforcement, is responsible for running the dataset inference so that
there are no privacy-related concerns. This will require the necessary legal framework to be brought
in place, or otherwise suspect adversaries may deny querying their model altogether.
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A Broader Impact

The use of large amounts of text scrapes from the web to train large language models (LLMs)
has recently sparked significant privacy concerns. Including personally identifiable information
(PII) and copyrighted material in these datasets has resulted in legal disputes, such as the lawsuit
between The New York Times and OpenAI, among others. These disputes emphasize the problem of
using copyrighted content without proper attribution, potentially infringing on creators’ rights and
discouraging future artistic work due to the lack of financial compensation for publicly available
content. This scenario underscores the technical challenge of identifying data used to train machine
learning models. Despite the legal uncertainties, this task is essential for understanding LLM behavior
and ensuring data privacy. In our work, we propose a new dataset inference method to accurately
identify the datasets used to train large language models. Our LLM dataset inference method is
statistically grounded and we thoroughly evaluate our approach.

B Compute

To aggregate various membership inference attacks, we required performing forward passes for both
suspect and reference models. We need enough GPU memory to load a model. To allow for large
batch forward passes, we utilized NVIDIA A6000 48GB machines for aggregating such metrics. We
used a total of 4 machines at any given point to speed up the aggregation of metrics.

C Additional Experiments

Setup. Note that for the perturbation-based MIAs (e.g., [Mattern et al., 2023]), we use the implemen-
tation of the perturbations from the NLAugmenter library Dhole et al. [2023].

Performance of MIAs. We provide an extended version of the performance of various MIAs on
different subsets of the Pile dataset in Figure 7. For an MIA to be effective, it must achieve an AUC
significantly higher than 0.5. Only a few methods meet this standard for certain datasets, and their
success is not consistent across different datasets. We note that, for example, the DetectGPT [Bao
et al., 2024] performs significantly better on a few datasets, for example, bookcorpus2 and books3,
than any other metric.

Feature Selection. We provide an extended version of the importance of features used in dataset
inference in Figure 8.

Additional ablation studies on model size, processing technique, and number of data points. We
analyze the number of required data points for successful dataset inference, with processing techniques
used in dataset inference and different sizes of LLMs, in Figure 9 and Figure 10 respectively. To
visualize the distribution of p-values impacted by the number of data points and size of the models,
violin plots are presented in Figure 11.
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Figure 7: Extended version of Figure 3 with more types of membership inference attacks. The results
are consistent: none of the membership inference attacks can consistently achieve high ROAUC
across different datasets.
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Figure 8: Extended version of Figure 5a with more features that we leverage for the LLM dataset
inference. The results are consistent—one can see most features contribute positively to dataset
inference for some datasets, while negatively to other datasets.
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(d) Outlier Removal (Normalized)
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Figure 9: Extended version of Figure 6a with different pre-processing techniques used in dataset
inference. Similarly, the three curves correspond to the median, and maximal p-value across the
datasets in Pile, and the p-value of Wikipedia dataset. It is noteworthy that the processing techniques
(see details in Section 5.3) do not impact the median and Wikipedia curves significantly. However,
normalization has a positive contribution to the max p-value across different datasets.
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(a) Pythia-410m
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(b) Pythia-1.4b
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(c) Pythia-6.9b
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Figure 10: Extended version of Figure 6a with different model sizes. Similarly, the three curves
correspond to the median, and maximal p-value across the datasets in Pile, and the p-value of
Wikipedia dataset. An interesting observation is that the curves for median p-values and Wikipedia’s
p-value stay similar with respect to models of different sizes. However, this is not the case for the max
p-value curve. This indicates that dataset inference does not rely on a large number of data points or
model parameters for most datasets, whereas they may be necessary for some particular datasets.
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(c) 500 data points
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Figure 11: Extended version of Figure 6b with different numbers of data points used in dataset
inference. As expected, a larger number of data points allow the p-values to be more concentrated
below the threshold, especially when the model size is large.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?

Answer: [Yes]

Justification: The contributions of the paper are clearly stated in the abstract and introduction, and
supported by empirical results in Sections 4 and 5.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims made in the
paper.

• The abstract and/or introduction should clearly state the claims made, including the contributions
made in the paper and important assumptions and limitations. A No or NA answer to this
question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how much the
results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals are not
attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We describe the limitations in Section 6.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that the
paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to violations of

these assumptions (e.g., independence assumptions, noiseless settings, model well-specification,
asymptotic approximations only holding locally). The authors should reflect on how these
assumptions might be violated in practice and what the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was only tested
on a few datasets or with a few runs. In general, empirical results often depend on implicit
assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low or
images are taken in low lighting. Or a speech-to-text system might not be used reliably to
provide closed captions for online lectures because it fails to handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms and how
they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by reviewers
as grounds for rejection, a worse outcome might be that reviewers discover limitations that
aren’t acknowledged in the paper. The authors should use their best judgment and recognize
that individual actions in favor of transparency play an important role in developing norms that
preserve the integrity of the community. Reviewers will be specifically instructed to not penalize
honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and a
complete (and correct) proof?

Answer: [NA]

Justification: The paper does not include theoretical results
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Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if they appear

in the supplemental material, the authors are encouraged to provide a short proof sketch to
provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main experi-
mental results of the paper to the extent that it affects the main claims and/or conclusions of the
paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Sections 4 and 5 contain sufficient information for reproducing the results. The code
is released on GitHub and the link is provided in the footnote of the first page.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived well by the

reviewers: Making the paper reproducible is important, regardless of whether the code and data
are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken to make
their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might
suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary
to either make it possible for others to replicate the model with the same dataset, or provide
access to the model. In general. releasing code and data is often one good way to accomplish
this, but reproducibility can also be provided via detailed instructions for how to replicate the
results, access to a hosted model (e.g., in the case of a large language model), releasing of a
model checkpoint, or other means that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of the
contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe the

architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should either

be a way to access this model for reproducing the results or a way to reproduce the model
(e.g., with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: The code is released on GitHub and the link is provided in the footnote of the first
page.
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Guidelines:

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be possible,
so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless
this is central to the contribution (e.g., for a new open-source benchmark).

• The instructions should contain the exact command and environment needed to run to reproduce
the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how to access
the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state which
ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized versions (if
applicable).

• Providing as much information as possible in supplemental material (appended to the paper) is
recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: The experimental setup is described in Section 5.3, and details of specific experiments
are provided when the corresponding results are presented.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail that is

necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The majority of the experiments, including the ones that support the main claims
of the paper, are repeated using 10 different random seed. The resulting p-values are aggregated
using standard methods like Sidak’s method and then reported.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the main claims
of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

• The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably
report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of
errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how they were
calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experi-
ments?

Answer: [Yes]

Justification: We describe the computer resources used in Appendix B.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud

provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual experimental

runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute than the

experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it
into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS
Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The experiments are conducted on publicly available datasets without known
concerns. We do not expect the method proposed in the paper to lead to negative social impacts
since it is designed to protect copyrighted data from unauthorized use in language models.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a deviation

from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consideration due

to laws or regulations in their jurisdiction).

10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal
impacts of the work performed?

Answer: [Yes]

Justification: The broader impacts of the paper are explicitly discussed in Appendix A.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal impact or

why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses (e.g., dis-

information, generating fake profiles, surveillance), fairness considerations (e.g., deployment of
technologies that could make decisions that unfairly impact specific groups), privacy considera-
tions, and security considerations.
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• The conference expects that many papers will be foundational research and not tied to particular
applications, let alone deployments. However, if there is a direct path to any negative applica-
tions, the authors should point it out. For example, it is legitimate to point out that an improve-
ment in the quality of generative models could be used to generate deepfakes for disinformation.
On the other hand, it is not needed to point out that a generic algorithm for optimizing neural
networks could enable people to train models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is being used
as intended and functioning correctly, harms that could arise when the technology is being used
as intended but gives incorrect results, and harms following from (intentional or unintentional)
misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation strategies
(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for
monitoring misuse, mechanisms to monitor how a system learns from feedback over time,
improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators,
or scraped datasets)?
Answer: [NA]
Justification: The outcomes of the paper do not include releasing data or models.
Guidelines:
• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with necessary

safeguards to allow for controlled use of the model, for example by requiring that users adhere
to usage guidelines or restrictions to access the model or implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not require
this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper,
properly credited and are the license and terms of use explicitly mentioned and properly respected?
Answer: [Yes]
Justification: The datasets and models used in the paper are properly cited. The URLs to them are
included if existing.
Guidelines:
• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of service of

that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package should

be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for
some datasets. Their licensing guide can help determine the license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of the derived
asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [Yes]
Justification: The only new asset introduced in the paper is code which is released on GitHub. We
include bash scripts for ease of running our code, and a README.md file containing detailed
documentation in the GitHub repository.
Guidelines:
• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their submis-

sions via structured templates. This includes details about training, license, limitations, etc.
• The paper should discuss whether and how consent was obtained from people whose asset is

used.
• At submission time, remember to anonymize your assets (if applicable). You can either create

an anonymized URL or include an anonymized zip file.
14. Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as well as
details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with human

subjects.
• Including this information in the supplemental material is fine, but if the main contribution of

the paper involves human subjects, then as much detail as possible should be included in the
main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other
labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human Sub-
jects
Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals
(or an equivalent approval/review based on the requirements of your country or institution) were
obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with human

subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent) may be

required for any human subjects research. If you obtained IRB approval, you should clearly
state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for
their institution.

• For initial submissions, do not include any information that would break anonymity (if applica-
ble), such as the institution conducting the review.
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