
FairWire: Fair Graph Generation

O. Deniz Kose
Department of Electrical Engineering and Computer Science

University of California Irvine
Irvine, CA, USA
okose@uci.edu

Yanning Shen∗

Department of Electrical Engineering and Computer Science
University of California Irvine

Irvine, CA, USA
yannings@uci.edu

Abstract

Machine learning over graphs has recently attracted growing attention due to its
ability to analyze and learn complex relations within critical interconnected systems.
However, the disparate impact that is amplified by the use of biased graph structures
in these algorithms has raised significant concerns for their deployment in real-
world decision systems. In addition, while synthetic graph generation has become
pivotal for privacy and scalability considerations, the impact of generative learning
algorithms on structural bias has not yet been investigated. Motivated by this, this
work focuses on the analysis and mitigation of structural bias for both real and
synthetic graphs. Specifically, we first theoretically analyze the sources of structural
bias that result in disparity for the predictions of dyadic relations. To alleviate the
identified bias factors, we design a novel fairness regularizer that offers a versatile
use. Faced with the bias amplification in graph generation models brought to light
in this work, we further propose a fair graph generation framework, FairWire, by
leveraging our fair regularizer design in a generative model. Experimental results
on real-world networks validate that the proposed tools herein deliver effective
structural bias mitigation for both real and synthetic graphs.

1 Introduction

The volume of graph-structured data has been explosively growing due to the advancement in
interconnected systems. In this context, machine learning (ML) over graphs attracts increasing
attention (1), where specifically graph neural networks (GNNs) (2; 3; 4) have been proven to handle
complex learning tasks over graphs, such as social recommendation (5), traffic flow forecasting (6).

Despite the increasing research focus on graph ML, the deployment of these algorithms in real-world
decision systems requires guarantees preventing disparate impacts. Here, algorithmic disparity refers
to the performance gap incurred by ML algorithms with respect to certain sensitive attributes protected
by anti-discrimination laws or social norms (e.g., ethnicity, religion). While algorithmic bias is a
concern over tabular data (7; 8), such bias becomes more critical for learning over graphs, as the use
of graph structure in the algorithm design has been demonstrated to amplify the already existing bias
(9). Motivated by this, in this work, we specifically focus on structural bias and consequently the
disparity in the predictions of dyadic relationships among nodes. Note that since the link predictions

∗corresponding author

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

124451 https://doi.org/10.52202/079017-3953

are informed by the proximity principle (nodes connect to other nodes that are similar to themselves),
the bias in graph topology is directly reflected in link prediction. For example, in a social network,
the denser connectivity within people from the same ethnic group leads to higher recommendation
rates within these groups and may cause segregation in social relations (10). Hence, the development
of a fair link prediction algorithm is of crucial importance to prevent potential segregation.

Fairness-aware algorithms typically require the knowledge of the sensitive attributes, the sharing
of which can potentially create privacy concerns (11). From a scalability perspective, sharing real
graphs is also accompanied by difficulties due to the ever-increasing size of graphs. All these
factors contribute to the value of synthetic graph generation for a number of applications, such as
recommendation systems (12), anomaly detection (13). For graph generation, data-driven models are
shown to achieve state-of-the-art results (14; 15; 16), however, the fairness aspect of these models is
under-explored. Recent works demonstrate that, in general, generative models tend to amplify the
already existing bias in real data (17; 18), which is a potential issue for graph generation as well.

Faced with the aforementioned structural bias issues in graphs, in this work, we first carry out a
theoretical analysis investigating the sources of such structural bias. Specifically, we deduce the
factors that affect a commonly used bias metric, namely statistical parity (19), for link prediction.
Guided by the theoretical findings, a novel fairness regularizer, LFairWire is designed, which can
be utilized for various graph-related problems, including link prediction and graph generation. In
addition, an empirical analysis for a graph generation model is carried out, which reveals that the
use of generative algorithms amplifies the already existing structural bias in real graph data. To
resolve this issue, we design a new diffusion-based fair graph generation framework, FairWire,
which leverages the proposed regularizer LFairWire. The training of diffusion model in FairWire is
specifically designed to capture the correlations between the synthetic sensitive attributes and the
graph connectivity, which enables fair model training with the existing techniques without revealing
the real sensitive information. Overall, the contributions of this work can be summarized as follows:
c1) A theoretical analysis that reveals the causes of disparity in the predictions of dyadic relations
between nodes is derived. Differing from the existing analyses regarding the statistical parity in link
prediction, our analysis considers a more general setting where sensitive attributes can be non-binary.
c2) Based on the theoretical findings, we design a novel fairness regularizer, LFairWire, which can be
directly utilized for link prediction, as well as for graph generation models to alleviate the structural
bias in a task-agnostic way.
c3) We conduct an empirical analysis for the effect of graph generation models on the structural bias,
which reveals the possible bias amplification related to these models.
c4) FairWire, a novel fair graph generation framework, is developed by leveraging LFairWire within
a diffusion model. The diffusion model is trained to capture the relations between the sensitive
attributes and the graph topology, facilitating fair model training without private information leakage.
c5) Comprehensive experimental results over real-world networks show that the proposed framework
can effectively mitigate structural bias and create fair synthetic graphs.

2 Related Work

Fairness-aware learning over graphs. Fairness-aware graph ML has attracted increasing attention
in recent years (20; 21; 22). Existing works mainly focus on: 1) Group fairness (9; 23; 24; 25),
2) Individual fairness (26; 27), and 3) Counterfactual fairness (28; 29; 30). To mitigate bias in
graph ML, different strategies are leveraged, including but not limited to adversarial regularization
(9; 24; 31; 32), Bayesian debiasing (33), and graph editing (28; 34; 35; 36; 37). With a specific focus
on link prediction, (19; 38) propose fairness-aware strategies to alter the adjacency matrix, while (39)
designs a fairness-aware regularizer. Differing from the majority of existing strategies, our proposed
design herein is guided and supported by theoretical results. Specifically, we rigorously analyze the
factors in graph topology leading to disparity for link prediction considering non-binary sensitive
attributes. Furthermore, the developed bias mitigation tool can be employed in a versatile manner for
training the link prediction models, as well as for training the generative models to create synthetic,
fair graphs.

Synthetic Graph Generation. Generating synthetic graphs that simulate the existing ones has been
a topic of interest for a long time (40; 41), for which the success of deep neural networks has been
demonstrated (12; 42; 43). Recently, the use of diffusion-based graph generative models has been
increasing, due to their success in reflecting several important statistics of real graphs in the synthetic

2

124452https://doi.org/10.52202/079017-3953

ones (44; 45; 46; 16; 47; 48).To the best of our knowledge, the only existing work that considers
fair graph generation is (49) which only outputs a graph structure without nodal features, sensitive
attributes and node labels, and also requires class labels as input. Furthermore, it focuses on the
disparities in generation quality for different sensitive groups as the fairness metric, which may not
be predictive for the fairness performance in downstream tasks. In contrast, our scheme herein does
not require any class labels or training of a particular downstream task. In addition, differing from
the existing diffusion models, our generation of graph topology and nodal features is guided by
the sensitive attributes, which enables us to capture the correlations between the synthetic sensitive
attributes and synthetic graph structure/nodal features. To the best of our knowledge, this work
provides the first fairness-aware diffusion-based graph generation framework.

3 Preliminaries

Given an input graph G := (V, E), the focus of this study is investigating and mitigating the structural
bias that may lead to unfair results for learning algorithms. Here, V := {v1, v2, · · · , vN} denotes the
set of nodes and E ⊆ V × V stands for the set of edges. Nodal features and the adjacency matrix of
the input graph G are represented by X ∈ RN×F and A ∈ {0, 1}N×N , respectively, where Aij = 1
if and only if (vi, vj) ∈ E . This work considers a single, potentially non-binary sensitive attribute
for each node denoted by s ∈ {1, · · · ,K}N . In addition, S ∈ {0, 1}N×K represents the one-hot
encoding of the sensitive attributes. For the graphs with class information, y ∈ RN denotes the class
labels. Node representations output by the lth GNN layer are Hl+1, with hl+1

i ∈ RF l+1

denoting
the learned hidden representations for node vi. xi ∈ RF , and si represent the feature vector, and
the sensitive attribute of node vi, respectively. Furthermore, Sk denotes the set of nodes whose
sensitive attributes are equal to k. We define inter-edge set Eχ := {eij |vi ∈ Sa, vj ∈ Sb, a ̸= b}, and
intra-edge set Eω := {eij |vi ∈ Sa, vj ∈ Sb, a = b}. Similarly, dχi :=

∑
vj∈V−Sa

Aij ,∀vi ∈ Sa and
dωi :=

∑
vj∈Sa

Aij ,∀vi ∈ Sa are the inter- and intra-degrees of node vi, respectively. Finally, UA
represents the discrete uniform distribution over the elements of set A.

4 Inspection and Mitigation of Structural Bias

This section first derives the conditions for a graph topology that leads to optimal statistical parity
for link prediction. Guided by the obtained conditions, a fairness regularizer will then be presented.
Statistical parity for link prediction is defined as ∆SP := |E(vi,vj)∼UV×UV [g(vi, vj) | si = sj] −
E(vi,vj)∼UV×UV [g(vi, vj) | si ̸= sj]| (19), where g(vi, vj) denotes the predicted probability for an
edge between the nodes i and j. To the best of our knowledge, our analysis is the first theoretical
investigation for the relation between ∆SP and the graph topology considering multi-valued sensitive
attributes, thus it generalizes previous findings with binary sensitive attributes (19).

4.1 Bias Analysis

This subsection derives the conditions for a fair graph topology that achieves optimal statistical parity
in the ensuing link prediction task. First, we will introduce the GNN model considered in this work.

GNN model: Throughout the analysis, a stochastic graph view, Ã, is adopted, i.e., Ãij denotes
the probability of an edge between the nodes vi and vj , and Ãij = Ãji. Let Zl+1 represent the
aggregated representations by the lth GNN layer with ith row EÃ[zl+1

i] :=
∑

vj∈V Ãijc
l+1
j , where

cl+1
i := Wlhl

i. Then, the hidden representation output by lth GNN layer for node vi can be written
as EÃ[hl+1

i] = σ(
∑

vj∈V ÃijW
lhl

j) = σ(EÃ[zl+1
i]), where Wl is the weight matrix and σ(·) is

the non-linear activation employed in the lth GNN layer.

The following assumptions are made for Theorem 1 that will be presented in this subsection:
A1: ∥ci∥∞ ≤ δ, ∀vi ∈ V .
A2: EÃ[dω

i]

|Sk| ≥ EÃ[dχ
i]

N−|Sk| ,∀vi ∈ Sk,∀k ∈ {1, · · · ,K}.
A3:

∑
vi,vj∈V Ãij ≫ EÃ[dχi],∀vi ∈ V.

3

124453 https://doi.org/10.52202/079017-3953

These assumptions are naturally satisfied by most of the real-world graphs. Assumption A1 implies
that the representations, ci’s, are finite. For A2, note that most of the real-world social networks
have considerably more intra-edges than inter-edges (50), i.e., EÃ[dωi] ≥ EÃ[dχi]. Thus, unless
|Si∥ ≫ ∥Sj |, i ̸= j (extremely unbalanced sensitive group sizes), A2 holds. Finally, A3 holds with
high probability as EÃ[dχi] =

∑
vi∈Ssi

,vj∈V−Ssi
Ãij . We also demonstrate that these assumptions

are valid for the real-world networks we are using in Appendix A in order to further justify them.

Building upon these assumptions, Theorem 1 reveals the factors leading to the disparity between the
representations of different sensitive groups obtained at any GNN layer. Specifically, it upper bounds
the term δ

(l+1)
k := ∥EÃ,vi∼USk

[hl+1
i | si = k]− EÃ,vi∼U(V−Sk)

[hl+1
i | si ̸= k]∥2. The proof of the

theorem is presented in Appendix B.
Theorem 1. The disparity between the representations of nodes in a sensitive group Sk and the
representations of the remaining nodes output by the lth GNN layer, δ(l+1)

k , can be upper bounded by:

δ
(l+1)
k ≤ L

(
δ
√
F (l+1)

(∣∣∣∣ pωk|Sk|
−

pχk
N − |Sk|

∣∣∣∣+
∣∣∣∣∣
∑

vi,vj∈V Ãij − pωk − 2pχk

N − |Sk|
−

pχk
|Sk|

∣∣∣∣∣
)
+2

√
N∆z

)
,

(1)

where L is the Lipschitz constant of the activation function σ(·),
∥∥zl+1

i −mean(zl+1
j | vj ∈ V)

∥∥
∞ ≤

∆z , ∀vi ∈ V , and pχk :=
∑

vi∈Sk,vj /∈Sk
Ãi,j , p

ω
k :=

∑
vi∈Sk,vj∈Sk

Ãi,j .

Representation disparity resulting from the aforementioned GNN-based aggregation is examined and
explained by Theorem 1. The commonly used fairness measures, such as statistical parity (19), are
naturally a function of the representation disparity. Herein, we further investigate the said relation
between the representation disparity and ∆SP mathematically. Specifically, for a link prediction
model described by a function g(vi, vj) := h⊤

i Σhj , Proposition 1 directly upper bounds ∆SP. Here,
hi denotes the representation for node vi that is employed for the link prediction task, i.e., the hidden
representations in the final layer. The proof of Proposition 1 is presented in Appendix C.
Proposition 1. For a link prediction model described by g(vi, vj) := h⊤

i Σhj , ∆SP can be upper
bounded by:

∆SP ≤
∑K

k=1

|Sk|
N

q∥Σ∥2δmax, (2)

where ∥hi∥2 ≤ q,∀vi, δmax := max
k

(∥EÃ,vi∼USk
[hi | si = k]− EÃ,vj∼U(V−Sk)

[hj | sj ̸= k]∥2).

Combining the findings of Theorem 1 and Proposition 1, Corollary 1 further demonstrates the factors
(including the topological ones) that affect the resulting statistical parity in the link prediction task.

Corollary 1. For a link prediction model g(vi, vj) := (hL+1
i)⊤ΣhL+1

j , where hL+1
j is the represen-

tation created by Lth (final) GNN layer, ∆SP can be upper bounded by:

∆SP ≤
∑K

k=1

|Sk|
N

q∥Σ∥2L
(
δ
√
F (L+1)

(
α1 + α2

)
+ 2

√
N∆z

)
,

where α1 :=
∣∣∣ pω

k

|Sk| −
pχ
k

N−|Sk|

∣∣∣ and α2 :=
∣∣∣∑vi,vj∈V Ãij−pω

k−2pχ
k

N−|Sk| − pχ
k

|Sk|

∣∣∣.
4.2 A Regularizer for Fair Connections

The bias analysis in Subsection 4.1 brings to light the factors resulting in topological bias for a
probabilistic graph connectivity. Corollary 1 shows that the topological bias can be minimized
if α1 = 0 and α2 = 0. One can obtain α1 = 0 by ensuring pω

k

pχ
k

= |Sk|
N−|Sk| ,∀k. Meanwhile,

α2 = 0 if pωk =
∑

vi,vj∈V(Ã) − c|Sk| − cN and pχk = c|Sk| for any constant c ∈ R. Overall, the

optimal values of pωk and pχk that minimize both α1 and α2 follow as (pωk)
∗ =

∑
vi,vj∈V Ãij |Sk|2

N2 and

(pχk)
∗ =

(
∑

vi,vj∈V Ãij)(N |Sk|−|Sk|2)
N2 . Therefore, in order to mitigate structural bias, we can design a

regularizer that pushes the expected number of inter-edges and intra-edges towards (pχk)
∗ and (pωk)

∗:
L :=

∑K
k=1 |

∑
vi,vj∈V(Ã⊙(Sek)(Sek)

⊤)i,j−(pωk)
∗|+ |

∑
vi,vj∈V(Ã⊙(Sek)(1−(Sek))

⊤)i,j−

4

124454https://doi.org/10.52202/079017-3953

(pχk)
∗|. Here, ek ∈ RK is the basis vector with only non-zero entry 1, at the kth element, and ⊙

denotes the Hadamard product. Note that such a regularizer is compatible with any learning algorithm
that outputs probabilities of all possible edges in the graph, e.g., topology inference algorithms.

Although L can be applied to several graph ML algorithms and its theory-guided design can promise
effective topological bias mitigation, its design requires a single-batch learning setting due to the
definitions of pχk and pωk (resulting in a complexity growing exponentially with N). Specifically,
pχk and pωk are calculated based on all edge probabilities related to the all nodes in Sk. Therefore,
regularizing the values of pχk and pωk will lead to scalability issues for large graphs. To tackle this
challenge, we only focus on the optimal ratio between the expected number of intra- and inter-edges,
i.e., pω

k

pχ
k
= |Sk|

N−|Sk| ,∀k ∈ {1, · · · ,K}, which is governed by α1. The idea is to manipulate the ratio
between the expected number of intra- and inter-edges in each mini-batch of nodes for a better
scalability. We call the corresponding batch-wise fairness regularizer LFairWire, which follows as

LFairWire(Ã,B) :=
K∑

k=0

∣∣∣∣
∑

vi,vj∈B(Ã⊙ (Sek)(Sek)
⊤)ij

|Sk|
−
∑

vi,vj∈B(Ã⊙ (Sek)(1− (Sek))
⊤)ij

N − |Sk|

∣∣∣∣,
(3)

where B denotes the set of nodes within the utilized minibatch. Note that the aforementioned versatile
use of L also applies to LFairWire, which can directly be used in topology inference tasks. Specifically,
for link prediction, the following loss function can be employed in training to combat bias:

Llp =
∑

vi,vj∈B
LCE

(
Ãij ,Aij

)
+ λLFairWire(Ã,B), (4)

where Ãij denotes the predicted probability by the algorithm for an edge between vi and vj , and
LCE is cross-entropy loss. The hyperparameter λ is used to adjust the weight of fairness in training.

5 Fair Graph Generation

Generating synthetic graphs that capture the structural characteristics in real data attracts increasing
attention as a promising remedy for scalability (ever-increasing size of real-world graphs) and privacy
issues. Especially, sharing real sensitive attributes for fair model training exacerbates the privacy
concerns due to the sensitive attribute leakage problem (11). Thus, creating synthetic graphs with
generative models becomes instrumental in applications over interconnected systems. In this work,
we focus on diffusion models whose success in capturing the original data distribution has been
shown for various types of networks (45; 46; 16; 47). Despite the growing interest in these models,
their effects on fairness have not yet been investigated, which limits their use in critical real-world
decision systems. Motivated by this, in Subsection 5.1, we first empirically analyze the impact of
diffusion models on the algorithmic bias by comparing the original and synthetic graphs in terms of
different fairness metrics for link prediction. This empirical investigation reveals that the algorithmic
bias is amplified while using generative models for graph creation. To resolve this critical issue, we
develop FairWire in Subsection 5.2, a fair graph generation framework, which leverages our proposed
regularizer LFairWire during the training of a diffusion model.

5.1 Diffusion Models and Structural Bias

To evaluate the effect of synthetic graph generation on bias, we first sample 10 different synthetic
graphs for each of the 4 real-world networks (see Table 7 in Appendix E and Subsection 6.1 for more
details on the datasets). Synthetic graphs are sampled using a diffusion model that is trained following
the setup in (47), which is a state-of-the-art algorithm for diffusion-based graph generation. Upon
creating graphs, we evaluate them for the link prediction task on the same test set (generated from the
real data) and report the corresponding utility (AUC) and fairness performance. Fairness performance
is measured via two widely used bias metrics, statistical parity (∆SP) and equal opportunity (∆EO)
(19) for which lower values indicate better fairness (see Subsection 6.1 for more details on the link
prediction model and evaluation metrics). The obtained results are presented in Table 1.

In Table 1, G denotes the original graphs, and the synthetic graphs are represented by G̃. Overall,
Table 1 shows that graph generation via diffusion models indeed amplifies the already existing bias in
the original graphs consistently for all the considered datasets. This brings the potential bias-related
issues in synthetic graph creation to light and calls for robust bias mitigation solutions.

5

124455 https://doi.org/10.52202/079017-3953

Table 1: Comparative results

Cora Citeseer

Accuracy (%) ∆SP (%) ∆EO (%) Accuracy (%) ∆SP (%) ∆EO(%)

G 94.92 27.71 11.53 95.76 29.05 9.53

G̃ 87.29± 1.09 35.72± 1.74 13.27± 0.81 92.19± 1.06 37.56± 1.29 13.52± 0.92

Amazon Photo Amazon Computer

Accuracy (%) ∆SP (%) ∆EO (%) Accuracy (%) ∆SP (%) ∆EO(%)

G 96.91 32.58 8.24 96.14 22.90 4.63

G̃ 94.45± 0.21 33.49± 0.28 10.01± 0.56 94.04± 0.26 23.56± 0.55 6.23± 0.49

5.2 FairWire: A Fair Graph Generation Framework

The proposed fairness regularizer in Subsection 4.2, LFairWire, can be utilized in two different settings:
i) during model training for link prediction, ii) for training a graph generation model in a task-
agnostic way. Note that for both cases, a model is trained to predict a probabilistic graph adjacency
matrix, Ã, upon which LFairWire can be employed. Both use cases can facilitate several fairness-aware
graph-based applications. That said, the bias amplification issue in generative models (also observed
from Table 1) makes creating fair graphs via graph generation models of particular interest.

The proposed fair graph generation framework, FairWire, is built upon structured denoising diffusion
models for discrete data (51). In the forward diffusion, FairWire employs a Markov process to create
noisy graph data samples by independently adding or deleting edges. For denoising, a message-
passing neural network (MPNN) is trained to predict the clean graph based on noisy samples by using
the guidance of sensitive attributes (and node labels if available). Finally, we sample synthetic graphs
with the guidance of synthetic sensitive attributes that are initialized based on their distribution in
the original data. If input graph has also node labels, during graph generation, these node labels
are sampled based on their distribution conditioned on the sensitive attributes in the original graph.
In the sequel, as our main novelty lies in the denoising process, we discuss the training process
of FairWire (reverse diffusion process) in more detail, while the forward diffusion and sampling
processes are explained in Appendix D. Note that the diffusion process is presented for attributed
graphs, where synthetic nodal features X̃ are also generated. However, the proposed approach can be
readily adapted to graphs without nodal features.

Reverse diffusion process: For denoising, we train an MPNN, ϕθ parametrized by θ, which is
shown to be a scalable solution for the generation of large, attributed graphs (47). Specifically, ϕθ

inputs a noisy version of the input graph and the original sensitive attributes described by Xt,At,S
and aims to recover the original nodal features X0 and graph topology A0. Here, A0 ∈ RN×N×2

denotes the one-hot representations for the edge labels. Note that the sensitive attributes are used to
guide the MPNN to capture the relations between them and graph topology. Therefore, the sensitive
attributes are initialized and kept the same during both training and sampling (the original distribution
of sensitive attributes is used to initialize them during sampling). For a node v, the message passing
at the lth layer can be described as:

h(t,l+1)
v = σ

(
W

(l)
T→Hht + b

(l)
H +

∑
u∈N (t)(v)

1∣∣N (t)(v)
∣∣ [h(t,l)

u ∥S(l)
u

]
W

(l)
[H,S]→H

)
, (5)

S(l+1)
v = σ

(
b
(l)
S +

∑
u∈N (t)(v)

1∣∣N (t)(v)
∣∣S(l)

u W
(l)
S→S

)
, (6)

where ∥ stands for the concatenation operator. In this aggregation, W(l)
T→H ,W

(l)
[H,S]→H ,W

(l)
S→S ,b

(l)
H

and b
(l)
S are all learnable parameters, while σ(·) consists of ReLU (52) and LayerNorm (53) layers.

In addition, H(t,0) and ht are initialized as hidden representations created for Xt and time step
t via multi-layer perceptrons (MLP), respectively, and S(0) = S. After creating hidden represen-
tations for nodes and their sensitive attributes, final representation for a node v is generated via
hv = h

(t,0)
v ∥h(t,1)

v ∥ · · · ∥S(0)
v ∥S(1)

v ∥ · · · ∥ht. Note that when node labels are available, their one-hot
representations Y, are also employed in this MPNN in the same way as S are utilized. Based on these
final representations, node attributes, and edge labels are predicted. To create fair graph connections
in the synthetic graphs, we regularize the predicted edge probabilities, Ã, via the designed fairness

6

124456https://doi.org/10.52202/079017-3953

regularizer LFairWire. Overall, the training loss of the MPNN follows as:∑
vi∈B

LCE

(
X̃i:,X

0
i:

)
+
∑

vi,vj∈B
LCE

(
Ãij:,A

0
ij:

)
+ λLFairWire(Ã,B), (7)

where λ adjusts the focus on the fairness regularizer.

Remark (Applicability to general generative models): Although the designed regularizer in
Subsection 4.2 is embodied in a diffusion-based graph generation framework in Subsection 5.2,
LFairWire can be utilized in any generative model outputting synthetic graph topologies as a fairness
regularizer on the connections, including but not limited to graph autoencoder-based or random
walk-based graph generation models.

Remark (Creation of synthetic sensitive attributes): We design a generative framework in
Subsection 5.2 that outputs synthetic sensitive attributes whose effect on the connections is reflected
by inputting them in the training of MPNN. We emphasize that the creation of these synthetic sensitive
attributes also enables the use of existing fairness-aware schemes on the created graphs without
leaking the real sensitive attributes.

6 Experiments

6.1 Datasets and Experimental Setup

Datasets. In the experiments, four attributed networks are employed, namely Cora, Citeseer, Amazon
Photo and Amazon Computer for link prediction. Cora and Citeseer are widely utilized citation
networks, where the articles are nodes and the network topology depicts the citation relationships
between these articles (54). Amazon Photo and Amazon Computer are product co-purchase networks,
where the nodes are the products and the links are created if two products are often bought together
(55). In addition to link prediction, we also evaluate the synthetic graphs on node classification,
where the German credit (56) and Pokec-n (9) graphs are employed. For more details on the datasets
and their statistics, please see Appendix E.

Experimental Setup. In this section, we first report the performance of LFairWire for link pre-
diction. For this task, the area under the curve (AUC) is employed as the utility metric. As
fairness metrics, statistical parity and equal opportunity definitions in (19; 37) are used, where
∆SP := |E(vi,vj)∼UV×UV [Ãij = 1 | si = sj] − E(vi,vj)∼UV×UV [Ãij = 1 | si ̸= sj]| and ∆EO :=

|E(vi,vj)∼UV×UV [Ãij = 1 | Aij = 1, si = sj] − E(vi,vj)∼UV×UV [Ãij = 1 | Aij = 1si, ̸= sj]|.
Lower values for ∆SP and ∆EO indicate better fairness performance.

To evaluate the generated synthetic graphs, we use both the link prediction and node classification
tasks. Herein, we sample 10 synthetic graphs for each dataset with the trained diffusion models.
Afterward, we train link prediction/node classification models (for more details on these models,
please see Appendix G) on the sampled graphs, and test these models on the real graphs G (the
test set is the same for all baselines and FairWire). Here, we consider the scenario where there is
no access to the real graphs due to privacy concerns, and the models are trained on the synthetic
graphs for downstream tasks. To evaluate these synthetic graphs on link prediction, the same utility
and fairness metrics as in the link prediction task are used. For node classification, accuracy is
employed as the utility measure with ∆SP := |P (ŷj = 1 | sj = 0) − P (ŷj = 1 | sj = 1)|, and
∆EO := |P (ŷj = 1 | yj = 1, sj = 0)− P (ŷj = 1 | yj = 1, sj = 1)| being the fairness metrics.

For more details on the training of link prediction, node classification, diffusion models, and the
hyperparameter selection for FairWire and baselines, see Appendix G. A sensitivity analysis is
also provided in Appendix H for the effect of hyperparameter λ in (4) and in (7). Note that the
performance of the generative algorithms is generally reported in terms of the distances between the
statistics of real data and the synthetic ones, instead of the fairness performance. For completeness,
we report the distance metrics for node degree distribution and clustering coefficient distribution in
Appendix F.

Baselines. For link prediction, fairness-aware baselines include adversarial regularization (9),
FairDrop (37), and FairAdj (19). For graph generation, FairGen (49), is the only existing fairness-
aware baseline designed for node classification. For a comprehensive evaluation, we also employ
adversarial regularization (9) and FairAdj (19) as in-processing and post-processing fairness-aware
strategies within the generative model. For more details on the baselines, please see Appendix G.

7

124457 https://doi.org/10.52202/079017-3953

Table 2: Comparative link prediction results.

Cora Citeseer

AUC (%) ∆SP (%) ∆EO (%) AUC (%) ∆SP (%) ∆EO(%)

GNN 94.43± 0.74 27.01± 1.38 9.11± 1.43 96.16± 0.28 27.40± 1.24 7.37± 1.33
Adversarial 87.77± 1.64 24.33± 6.36 2.96± 2.24 93.53± 0.51 13.97± 10.36 6.52± 4.68
FairDrop 94.10± 0.81 7.86± 4.30 4.05± 0.32 95.92± 0.42 13.77± 6.15 5.60± 1.85
FairAdj 82.01± 1.56 14.76± 0.89 7.35± 1.24 84.76± 1.08 16.00± 11.93 5.91± 3.42
LFairWire 92.18± 1.03 4.76± 0.24 2.05± 0.37 96.00± 0.23 8.62± 0.80 1.29± 0.68

Amazon Photo Amazon Computer

AUC (%) ∆SP (%) ∆EO (%) AUC (%) ∆SP (%) ∆EO(%)

GNN 97.01± 0.26 32.65± 0.95 8.01± 0.52 96.13± 0.06 23.70± 0.79 5.51± 0.79
Adversarial 96.17± 0.09 29.57± 0.91 8.03± 1.05 95.64± 0.12 22.72± 1.11 4.71± 0.99
FairDrop 95.36± 0.33 28.63± 1.39 8.49± 1.54 95.61± 0.13 21.30± 0.59 4.30± 0.77
LFairWire(λ = c) 97.25± 0.11 27.75± 0.52 7.11± 0.41 96.05± 0.05 20.44± 0.44 4.24± 0.51
LFairWire(λ = 5c) 94.85± 0.32 24.61± 0.96 6.24± 1.22 93.86± 0.23 15.36± 1.02 0.17± 0.21

Table 3: Comparative results for graph generation on Link Prediction.

Cora Citeseer

AUC (%) ∆SP (%) ∆EO (%) AUC (%) ∆SP (%) ∆EO(%)

G 94.92 27.71 11.53 95.76 29.05 9.53

G̃ 87.29± 1.09 35.72± 1.74 13.27± 0.81 92.19± 1.06 37.56± 1.29 13.52± 0.92
FairAdj 82.13± 1.07 15.47± 2.39 6.26± 2.05 82.67± 2.78 15.45± 2.68 7.98± 1.47
Adversarial 83.66± 5.64 16.35± 9.80 7.82± 5.84 89.59± 2.70 24.20± 5.82 10.34± 1.66
FairWire 86.49± 2.79 12.91± 6.35 4.31± 3.59 91.27± 2.78 18.35± 6.91 7.80± 2.76

6.2 Link Prediction Results

Comparative results for the link prediction task are presented in Table 2, where we consider the
setting LFairWire is employed as a fairness regularizer while training a GNN model for link prediction.
The natural baseline here is to employ the same GNN model without any fairness interventions,
which is denoted by GNN in Table 2. Note that in Table 2, c equals to 0.01 for Amazon Photo and
the results are presented for c = 0.1 for Amazon Computer.

The results in Table 2 demonstrate that employing LFairWire as a fairness regularizer leads to better
fairness measures compared to the naive baseline, while also providing similar utility. Specifically, the
proposed regularizer is observed to improve both fairness metrics, ∆SP and ∆EO, with improvements
ranging from 20% to 80% for every evaluated dataset compared to the natural baseline, GNN.
Furthermore, the obtained results show that LFairWire also outperforms the fairness-aware baselines
Adversarial (9), FairDrop (37), and FairAdj (19) in both fairness metrics. For certain datasets (e.g.,
Amazon Photo, Amazon Computer), we report the results of FairWire for different values of λ to
illustrate the trade-off between fairness and utility and to show that FairWire leads to a better trade-off
compared to the other fairness-aware baselines. Note that we could not include the results of FairAdj
over the product networks (i.e., Amazon Photo, Amazon Computer) due to its substantial memory
use during its optimization process, which led to out-of-memory errors for the infrastructure we use.
In addition to the improved fairness performance, it can be observed that the employment of LFairWire
generally results in the lowest standard deviation values for fairness metrics, which demonstrates the
stability of the proposed strategy for bias mitigation. Overall, the results corroborate the effectiveness
of LFairWire in enhancing fairness while also providing similar utility compared to the state-of-the-art
fairness-aware baselines.

6.3 Results for Graph Generation

Comparative results for graph generation are presented in Tables 3 and 4, where the link prediction
and node classification tasks are used to evaluate the synthetic graphs, respectively. In these tables, G
represents the original data, and G̃ stands for the synthetic graphs generated by the fairness-agnostic
GraphMaker (47). Overall, Tables 3 and 4 show that FairWire improves fairness metrics compared
to G̃, fairness-agnostic synthetic graphs created via diffusion, without a significant utility loss for

8

124458https://doi.org/10.52202/079017-3953

Table 4: Comparative results for graph generation on Node Classification.

German Pokec-n

Acc (%) ∆SP (%) ∆EO (%) Acc (%) ∆SP (%) ∆EO(%)

G 70.00 2.13 1.78 68.73 8.58 9.68

FairGen 73.60 28.71 15.34 51.73 0.00 0.00

G̃ 68.92± 2.37 2.61± 5.83 2.29± 5.06 66.19± 2.05 3.63± 2.58 2.66± 2.50
FairAdj 70.08± 1.08 2.17± 4.49 1.11± 2.24 - - -
Adversarial 70.00± 0.62 1.57± 2.70 1.34± 2.86 69.36± 0.70 2.16± 1.73 2.73± 2.01
FairWire 69.76± 0.51 0.63± 1.53 0.30± 0.61 68.23± 0.45 1.91± 0.92 1.35± 0.92

both link prediction and node classification. Specifically, FairWire can achieve improvements in both
∆SP and ∆EO ranging from 25% to 90% for all datasets compared to G̃ with similar utility.

Note that, for link prediction, the fairness improvement reported for FairAdj in Table 3 is accompanied
by a significant utility drop. Specifically, for a larger λ value (i.e., λ = 1), FairWire can provide
better fairness measures (∆SP = 7.01± 6.25 and ∆EO = 3.06± 2.95) on Citeseer with a similar
accuracy (83.47± 7.79) to FairAdj. Thus, the results in Table 3 demonstrate that FairWire provides a
better utility/fairness trade-off compared to fairness-aware baselines on all evaluated datasets.

In Table 4, similar to the link prediction experiments (Table 2), the results of FairAdj for the Pokec-n
network could not be obtained due to computational limitations. For FairGen (49), we directly input
the synthetic graph output by the algorithm to the node classification model we train, thus the results
are obtained for a single synthetic graph. A possible explanation for the better accuracy of FairGen
on the German dataset is that the algorithm is observed to output a denser synthetic network, which
might be useful for the utility. It is observed that the synthetic graph output by FairGen for Pokec-n
was not informative enough for the node classification task (we provide the codes for the FairGen
algorithm in our supplementary material for the reproducibility of these results.) All in all, the results
in Table 4 signify that the superior performance of FairWire in terms of fairness/utility trade-off can
also be observed for node classification, which validates the efficacy of FairWire in creating fair
synthetic graphs that also capture the real data distribution.

6.4 Visualization of Synthetic Graphs

Figure 1: Distribution of the intra-edges
(blue) and inter-edges (red) in the synthetic
graphs created for Cora dataset by Graph-
Maker (47) (left) and FairWire (right).

Our analysis in Subsection 4.1 reveals that the ratio of intra-
(edges connecting the same sensitive group) and inter-
edges (edges between different sensitive groups) is a factor
contributing to the structural bias. Specifically, the bias
factor α1 is minimized when pω

k

pχ
k
= |Sk|

N−|Sk| ,∀k, where pωk
and pχk are the expected number of intra-and inter-edges
for the nodes in Sk. This finding suggests that for a graph
with multiple (> 2) sensitive groups, given the sizes of
sensitive groups are not catastrophically unbalanced, the
number of inter-edges (related to pχk) should be larger
than the number of intra-edges (related to pωk) to alleviate
structural bias (i.e., |Sk| ≤ N − |Sk|). However, for graphs encountered in several domains, the
number of intra-edges is significantly larger than the number of inter-edges, due to the homophily
principle (10). Motivated by this, in Figure 1, we visualize the distributions of intra- and inter-edges
in synthetic graphs created by i) a fairness-agnostic strategy, GraphMaker (47), and ii) FairWire,
for Cora. In Figure 1, intra- and inter-edges are colored with blue and red, respectively. Figure 1
reveals that the graph created by GraphMaker (47) predominantly consists of intra-edges, leading to
the structural bias reflected in Table 3. In contrast, FairWire exhibits a remarkable balancing effect,
which provides a potential explanation for the improvement in fairness.

9

124459 https://doi.org/10.52202/079017-3953

7 Conclusion

This study focuses on the investigation and mitigation of structural bias for both real and synthetic
graphs, where a novel fairness regularizer, LFairWire, is designed to alleviate the effects of bias factors
identified in a developed theoretical bias analysis. Furthermore, the proposed fairness regularizer
is leveraged in a fair graph generation framework, FairWire, which alleviates the bias amplification
observed in graph generative models. Experimental results corroborate the effectiveness of the
proposed tools in bias mitigation for both real and synthetic graphs.

Limitations: This paper considers the setting where sensitive attributes are available during model
training, which might limit its use for certain real-world applications. Thus, one future direction of
this work would be to consider the partial availability of these sensitive attributes in the input graph
data. Furthermore, although we showed that real-world graphs typically satisfy the assumptions
in Subsection 4.1, another possible future work we consider is deriving a theoretical bias analysis
without the dependency on these assumptions.

Acknowledgement

Work in this paper is supported by NSF ECCS 2412484.

References
[1] I. Chami, S. Abu-El-Haija, B. Perozzi, C. Ré, and K. Murphy, “Machine learning on graphs:

A model and comprehensive taxonomy,” The Journal of Machine Learning Research, vol. 23,
no. 1, pp. 3840–3903, 2022.

[2] T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolutional networks,”
in Proc. International Conference on Learning Representations (ICLR), Apr. 2017.

[3] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Bengio, “Graph attention
networks,” in International Conference on Learning Representations, 2018.

[4] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are graph neural networks?” in
International Conference on Learning Representations, 2018.

[5] J. Yu, H. Yin, J. Li, Q. Wang, N. Q. V. Hung, and X. Zhang, “Self-supervised multi-channel
hypergraph convolutional network for social recommendation,” in Proceedings of the web
conference 2021, 2021, pp. 413–424.

[6] M. Li and Z. Zhu, “Spatial-temporal fusion graph neural networks for traffic flow forecasting,”
in Proceedings of the AAAI conference on artificial intelligence, vol. 35, no. 5, 2021, pp.
4189–4196.

[7] N. Mehrabi, F. Morstatter, N. Saxena, K. Lerman, and A. Galstyan, “A survey on bias and
fairness in machine learning,” ACM computing surveys (CSUR), vol. 54, no. 6, pp. 1–35, 2021.

[8] D. Pessach and E. Shmueli, “A review on fairness in machine learning,” ACM Computing
Surveys (CSUR), vol. 55, no. 3, pp. 1–44, 2022.

[9] E. Dai and S. Wang, “Say no to the discrimination: Learning fair graph neural networks
with limited sensitive attribute information,” in Proceedings of the 14th ACM International
Conference on Web Search and Data Mining, 2021, pp. 680–688.

[10] B. Hofstra, R. Corten, F. Van Tubergen, and N. B. Ellison, “Sources of segregation in social
networks: A novel approach using facebook,” American Sociological Review, vol. 82, no. 3, pp.
625–656, 2017.

[11] E. Dai and S. Wang, “Learning fair graph neural networks with limited and private sensitive
attribute information,” IEEE Transactions on Knowledge and Data Engineering, 2022.

[12] A. Bojchevski, O. Shchur, D. Zügner, and S. Günnemann, “Netgan: Generating graphs via
random walks,” in International conference on machine learning. PMLR, 2018, pp. 610–619.

10

124460https://doi.org/10.52202/079017-3953

[13] L. Akoglu, M. McGlohon, and C. Faloutsos, “Rtm: Laws and a recursive generator for weighted
time-evolving graphs,” in 2008 Eighth IEEE International Conference on Data Mining. IEEE,
2008, pp. 701–706.

[14] N. Goyal, H. V. Jain, and S. Ranu, “Graphgen: A scalable approach to domain-agnostic labeled
graph generation,” in Proceedings of The Web Conference 2020, 2020, pp. 1253–1263.

[15] Y. Li, O. Vinyals, C. Dyer, R. Pascanu, and P. W. Battaglia, “Learning deep generative models
of graphs. corr abs/1803.03324 (2018),” 1803.

[16] C. Vignac, I. Krawczuk, A. Siraudin, B. Wang, V. Cevher, and P. Frossard, “Digress: Discrete
denoising diffusion for graph generation,” in The Eleventh International Conference on Learning
Representations, 2022.

[17] K. Schwarz, Y. Liao, and A. Geiger, “On the frequency bias of generative models,” Advances in
Neural Information Processing Systems, vol. 34, pp. 18 126–18 136, 2021.

[18] S. Zhao, H. Ren, A. Yuan, J. Song, N. Goodman, and S. Ermon, “Bias and generalization
in deep generative models: An empirical study,” Advances in Neural Information Processing
Systems, vol. 31, 2018.

[19] P. Li, Y. Wang, H. Zhao, P. Hong, and H. Liu, “On dyadic fairness: Exploring and mitigating
bias in graph connections,” in International Conference on Learning Representations, 2021.

[20] Y. Dong, J. Ma, S. Wang, C. Chen, and J. Li, “Fairness in graph mining: A survey,” IEEE
Transactions on Knowledge and Data Engineering, 2023.

[21] M. Choudhary, C. Laclau, and C. Largeron, “A survey on fairness for machine learning on
graphs,” arXiv preprint arXiv:2205.05396, 2022.

[22] Y. Dong, O. D. Kose, Y. Shen, and J. Li, “Fairness in graph machine learning: Recent advances
and future prospectives,” in Proceedings of the 29th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, 2023, pp. 5794–5795.

[23] T. Rahman, B. Surma, M. Backes, and Y. Zhang, “Fairwalk: towards fair graph embedding,”
in Proceedings of the 28th International Joint Conference on Artificial Intelligence, 2019, pp.
3289–3295.

[24] A. Bose and W. Hamilton, “Compositional fairness constraints for graph embeddings,” in
International Conference on Machine Learning. PMLR, 2019, pp. 715–724.

[25] J. Palowitch and B. Perozzi, “Debiasing graph representations via metadata-orthogonal train-
ing,” in IEEE International Conference on Advances in Social Networks Analysis and Mining
(ASONAM), 2020, pp. 435–442.

[26] Y. Dong, J. Kang, H. Tong, and J. Li, “Individual fairness for graph neural networks: A ranking
based approach,” in Proc ACM Conference on Knowledge Discovery & Data Mining (SIGKDD),
2021, pp. 300–310.

[27] W. Song, Y. Dong, N. Liu, and J. Li, “Guide: Group equality informed individual fairness in
graph neural networks,” in Proceedings of the 28th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, 2022, pp. 1625–1634.

[28] C. Agarwal, H. Lakkaraju, and M. Zitnik, “Towards a unified framework for fair and stable
graph representation learning,” in Uncertainty in Artificial Intelligence. PMLR, 2021, pp.
2114–2124.

[29] J. Ma, R. Guo, M. Wan, L. Yang, A. Zhang, and J. Li, “Learning fair node representations with
graph counterfactual fairness,” in Proceedings of the Fifteenth ACM International Conference
on Web Search and Data Mining, 2022, pp. 695–703.

[30] Z. Guo, J. Li, T. Xiao, Y. Ma, and S. Wang, “Towards fair graph neural networks via graph
counterfactual,” in Proceedings of the 32nd ACM International Conference on Information and
Knowledge Management, 2023, pp. 669–678.

11

124461 https://doi.org/10.52202/079017-3953

[31] J. Fisher, A. Mittal, D. Palfrey, and C. Christodoulopoulos, “Debiasing knowledge graph
embeddings,” in Proc. Conference on Empirical Methods in Natural Language Processing
(EMNLP), 2020, pp. 7332–7345.

[32] D. Guo, C. Wang, B. Wang, and H. Zha, “Learning fair representations via distance correlation
minimization,” IEEE Transactions on Neural Networks and Learning Systems (TNNLS), 2022.

[33] M. Buyl and T. De Bie, “Debayes: a bayesian method for debiasing network embeddings,” in
International Conference on Machine Learning (ICML). PMLR, 2020, pp. 1220–1229.

[34] Y. Dong, N. Liu, B. Jalaian, and J. Li, “Edits: Modeling and mitigating data bias for graph
neural networks,” in Proceedings of the ACM Web Conference 2022, 2022, pp. 1259–1269.

[35] O. D. Kose and Y. Shen, “Fair contrastive learning on graphs,” IEEE Transactions on Signal
and Processing over Networks, vol. 8, pp. 475–488, 2022.

[36] ——, “Demystifying and mitigating bias for node representation learning,” IEEE Transactions
on Neural Networks and Learning Systems, 2023.

[37] I. Spinelli, S. Scardapane, A. Hussain, and A. Uncini, “Fairdrop: Biased edge dropout for en-
hancing fairness in graph representation learning,” IEEE Transactions on Artificial Intelligence,
vol. 3, no. 3, pp. 344–354, 2021.

[38] C. Laclau, I. Redko, M. Choudhary, and C. Largeron, “All of the fairness for edge prediction
with optimal transport,” in International Conference on Artificial Intelligence and Statistics.
PMLR, 2021, pp. 1774–1782.

[39] M. Buyl and T. D. Bie, “The KL-divergence between a graph model and its fair I-projection as a
fairness regularizer,” in Joint European Conf. on Machine Learning and Knowledge Discovery
in Databases. Springer, 2021, pp. 351–366.

[40] X. Ying and X. Wu, “Graph generation with prescribed feature constraints,” in Proceedings of
the 2009 SIAM International Conference on Data Mining. SIAM, 2009, pp. 966–977.

[41] D. Chakrabarti and C. Faloutsos, “Graph mining: Laws, generators, and algorithms,” ACM
computing surveys (CSUR), vol. 38, no. 1, pp. 2–es, 2006.

[42] L. Rendsburg, H. Heidrich, and U. Von Luxburg, “Netgan without gan: From random walks to
low-rank approximations,” in International Conference on Machine Learning. PMLR, 2020,
pp. 8073–8082.

[43] M. Simonovsky and N. Komodakis, “Graphvae: Towards generation of small graphs using
variational autoencoders,” in Artificial Neural Networks and Machine Learning–ICANN 2018:
27th International Conference on Artificial Neural Networks, Rhodes, Greece, October 4-7,
2018, Proceedings, Part I 27. Springer, 2018, pp. 412–422.

[44] J. Liu, A. Kumar, J. Ba, J. Kiros, and K. Swersky, “Graph normalizing flows,” Advances in
Neural Information Processing Systems, vol. 32, 2019.

[45] C. Niu, Y. Song, J. Song, S. Zhao, A. Grover, and S. Ermon, “Permutation invariant graph
generation via score-based generative modeling,” in International Conference on Artificial
Intelligence and Statistics. PMLR, 2020, pp. 4474–4484.

[46] J. Jo, S. Lee, and S. J. Hwang, “Score-based generative modeling of graphs via the system of
stochastic differential equations,” in International Conference on Machine Learning. PMLR,
2022, pp. 10 362–10 383.

[47] M. Li, E. Kreačić, V. K. Potluru, and P. Li, “Graphmaker: Can diffusion models generate large
attributed graphs?” arXiv preprint arXiv:2310.13833, 2023.

[48] X. Chen, J. He, X. Han, and L.-P. Liu, “Efficient and degree-guided graph generation via discrete
diffusion modeling,” arXiv preprint arXiv:2305.04111, 2023.

[49] L. Zheng, D. Zhou, H. Tong, J. Xu, Y. Zhu, and J. He, “Fairgen: Towards fair graph generation,”
arXiv preprint arXiv:2303.17743, 2023.

12

124462https://doi.org/10.52202/079017-3953

[50] B. Hofstra, R. Corten, F. Van Tubergen, and N. B. Ellison, “Sources of segregation in social
networks: A novel approach using facebook,” American Sociological Review, vol. 82, no. 3, pp.
625–656, May 2017.

[51] J. Austin, D. D. Johnson, J. Ho, D. Tarlow, and R. Van Den Berg, “Structured denoising diffusion
models in discrete state-spaces,” Advances in Neural Information Processing Systems, vol. 34,
pp. 17 981–17 993, 2021.

[52] K. Jarrett, K. Kavukcuoglu, M. Ranzato, and Y. LeCun, “What is the best multi-stage architecture
for object recognition?” in 2009 IEEE 12th international conference on computer vision. IEEE,
2009, pp. 2146–2153.

[53] J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization,” arXiv preprint arXiv:1607.06450,
2016.

[54] P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Galligher, and T. Eliassi-Rad, “Collective classifica-
tion in network data,” AI magazine, vol. 29, no. 3, pp. 93–93, 2008.

[55] O. Shchur, M. Mumme, A. Bojchevski, and S. Günnemann, “Pitfalls of graph neural network
evaluation,” arXiv preprint arXiv:1811.05868, 2018.

[56] D. Dua, C. Graff et al., “Uci machine learning repository,” 2017.

[57] O. D. Kose and Y. Shen, “Fairgat: Fairness-aware graph attention networks,” arXiv preprint
arXiv:2303.14591, 2023.

[58] J. Ho, C. Saharia, W. Chan, D. J. Fleet, M. Norouzi, and T. Salimans, “Cascaded diffusion
models for high fidelity image generation,” The Journal of Machine Learning Research, vol. 23,
no. 1, pp. 2249–2281, 2022.

[59] C. Vignac, I. Krawczuk, A. Siraudin, B. Wang, V. Cevher, and P. Frossard, “Digress: Discrete
denoising diffusion for graph generation,” in Proceedings of the 11th International Conference
on Learning Representations, 2023.

[60] P. Erdos and A. Renyi, “On random graphs i,” Publ. math. debrecen, vol. 6, no. 290-297, p. 18,
1959.

[61] P. W. Holland, K. B. Laskey, and S. Leinhardt, “Stochastic blockmodels: First steps,” Social
networks, vol. 5, no. 2, pp. 109–137, 1983.

[62] T. Chen, W. Zhang, Q. Lu, K. Chen, Z. Zheng, and Y. Yu, “Svdfeature: a toolkit for feature-
based collaborative filtering,” The Journal of Machine Learning Research, vol. 13, no. 1, pp.
3619–3622, 2012.

[63] T. N. Kipf and M. Welling, “Variational graph auto-encoders,” arXiv preprint arXiv:1611.07308,
2016.

[64] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedforward neural
networks,” in Proc. International Conference on Artificial Intelligence and Statistics (AISTATS),
May 2010, pp. 249–256.

[65] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint
arXiv:1412.6980, 2014.

[66] J. Gasteiger, A. Bojchevski, and S. Günnemann, “Predict then propagate: Graph neural networks
meet personalized pagerank,” in International Conference on Learning Representations, 2018.

[67] M. Y. Wang, “Deep graph library: Towards efficient and scalable deep learning on graphs,” in
ICLR workshop on representation learning on graphs and manifolds, 2019.

[68] L. Takac and M. Zabovsky, “Data analysis in public social networks,” in International Scientific
Conference and International Workshop. ’Present Day Trends of Innovations’, vol. 1, no. 6,
May 2012.

13

124463 https://doi.org/10.52202/079017-3953

A Assumptions and Real-World Graphs

In order to show that the assumptions made in Subsection 4.1 are typically valid for real-world graphs,
here we present the exact values of the terms within Assumptions 2 and 3 for the datasets we use.
Specifically, we make the following assumptions:

A2: EÃ[dω
i]

|Sk| ≥ EÃ[dχ
i]

N−|Sk| ,∀vi ∈ Sk,∀k ∈ {1, · · · ,K},
A3:

∑
vi,vj∈V Ãij ≫ EÃ[dχi],∀vi ∈ V.

First, for Assumption 2, we obtained the real values of the terms lk :=
EÃ,vi∼USk

[dω
i]

|Sk| and rk :=
EÃ,vi∼USk

[dχ
i]

N−|Sk| , where we want lk ≥ rk∀k ∈ {1, · · · ,K}. For all different sensitive groups, these
values are presented in Table 5 for all the used datasets.

Table 5: Validity of Assumption 2 for real-world graphs.

Cora l0 l1 l2 l3 l4 l5 l6

0.0087 0.0174 0.0095 0.0035 0.0073 0.0094 0.0156
r0 r1 r2 r3 r4 r5 r6

0.0024 0.0023 0.0021 0.0021 0.0019 0.0019 0.018

Citeseer l0 l1 l2 l3 l4 l5

0.0028 0.0026 0.0047 0.0026 0.0039 0.0034
r0 r1 r2 r3 r4 r5

0.0011 0.0012 0.0018 0.0011 0.0013 0.0009

Amazon Photo l0 l1 l2 l3 l4 l5 l6 l7

0.0874 0.0094 0.0428 0.0214 0.0260 0.0262 0.0202 0.0484
r0 r1 r2 r3 r4 r5 r6 r7

0.0055 0.0037 0.0045 0.0057 0.0054 0.0032 0.0088 0.0088

Amazon Computer l0 l1 l2 l3 l4 l5 l6 l7 l8 l9

0.0381 0.0078 0.0178 0.0281 0.0080 0.0891 0.0376 0.0219 0.0096 0.0696
r0 r1 r2 r3 r4 r5 r6 r7 r8 r9

0.0025 0.0033 0.0026 0.0034 0.0064 0.0024 0.0040 0.0017 0.0036 0.0024

For Assumption 3, we present the real values of the terms
∑

vi,vj∈V Ãij and EÃ,vi∼UV
[dχi], where we

want
∑

vi,vj∈V Ãij ≫ EÃ,vi∼UV
[dχi]. For all real-world datasets we use, these values are reported

in Table 6.

Table 6: Validity of Assumption 3 for real-world graphs.

Cora Citeseer Amazon Photo Amazon Computer∑
vi,vj∈V Ãij 10556 9104 238162 491722

EÃ,vi∼UV
[dχi] 1.48 1.45 10.76 15.93

Overall, the results presented in both Tables 5 and 6 demonstrate that the assumptions made for the
theoretical bias analysis in Section 4.1 are valid for the real-world graphs we are using. This supports
that our analysis is applicable to most of the real-world data and settings.

B Proof of Theorem 1

Here, without loss of generality, we will focus on the lth GNN layer, where the input representations
are represented by Hl and output representations are denoted Hl+1. The considered disparity measure
follows as:

δ
(l+1)
k :=

∥∥∥EÃ,vi∼USk
[hl+1

i | si = k]− EÃ,vi∼U(V−Sk)
[hl+1

i | si ̸= k]
∥∥∥
2
. (8)

14

124464https://doi.org/10.52202/079017-3953

Let’s re-write the disparity measure δ
(l+1)
k by using definitions cl+1

i := Wlhl
i, and EÃ[hl+1

i] =

σ(
∑

vj∈V Ãijc
l+1
j).

δ
(l+1)
k :=

∥∥∥EÃ,vi∼USk
[hl+1

i | si = k]− EÃ,vi∼U(V−Sk)
[hl+1

i | si ̸= k]
∥∥∥
2
,

=

∥∥∥∥∥∥ 1

|Sk|
∑

vi∈Sk

σ

∑
vj∈V

Ãijcj

− 1

N − |Sk|
∑

vi /∈Sk

σ

∑
vj∈V

Ãijcj

∥∥∥∥∥∥
2

.
(9)

Using Lemma A.1. in (57), it can be shown that δ(l+1)
k can be upper-bounded as:

δ
(l+1)
k =

∥∥∥∥∥∥ 1

|Sk|
∑

vi∈Sk

σ

∑
vj∈V

Ãijcj

− 1

N − |Sk|
∑

vi /∈Sk

σ

∑
vj∈V

Ãijcj

∥∥∥∥∥∥
2

,

≤ L

∥∥∥∥∥∥ 1

|Sk|
∑

vi∈Sk

∑
vj∈V

Ãijcj −
1

N − |Sk|
∑

vi /∈Sk

∑
vj∈V

Ãijcj

∥∥∥∥∥∥
2

+ 2
√
N∆z

 .

(10)

Then, we can divide the sums over all nodes into two: nodes in Sk and the remaining ones.

δ
(l+1)
k ≤ L

∥∥∥∥∥∥ 1

|Sk|
∑

vi∈Sk

∑
vj∈V

Ãijcj −
1

N − |Sk|
∑

vi /∈Sk

∑
vj∈V

Ãijcj

∥∥∥∥∥∥
2

+ 2
√
N∆z

 ,

= L

(∥∥∥∥∥
 1

|Sk|
∑

vi∈Sk

∑
vj∈Sk

Ãijcj +
1

|Sk|
∑

vi∈Sk

∑
vj /∈Sk

Ãijcj


−

 1

N − |Sk|
∑

vi /∈Sk

∑
vj∈Sk

Ãijcj +
1

N − |Sk|
∑

vi /∈Sk

∑
vj /∈Sk

Ãijcj

∥∥∥∥∥
2

+ 2
√
N∆z

)

= L

(∥∥∥∥∥ ∑
vj∈Sk

 1

|Sk|
∑

vi∈Sk

Ãij −
1

N − |Sk|
∑

vi /∈Sk

Ãij

 cj

+
∑

vj /∈Sk

 1

|Sk|
∑

vi∈Sk

Ãij −
1

N − |Sk|
∑

vi /∈Sk

Ãij

 cj

∥∥∥∥∥
2

+ 2
√
N∆z

)

(11)

Then, by triangle inequality, it follows that:

δ
(l+1)
k ≤ L

(∥∥∥∥∥∥
∑

vj∈Sk

 1

|Sk|
∑

vi∈Sk

Ãij −
1

N − |Sk|
∑

vi /∈Sk

Ãij

 cj

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥
∑

vj /∈Sk

 1

|Sk|
∑

vi∈Sk

Ãij −
1

N − |Sk|
∑

vi /∈Sk

Ãij

 cj

∥∥∥∥∥∥
2

+ 2
√
N∆z

)
.

(12)

Assumption 2 in Subsection 4.1 ensures that
(

1
|Sk|

∑
vi∈Sk

Ãij − 1
N−|Sk|

∑
vi /∈Sk

Ãij

)
≥

0,∀vj ∈ Sk. Furthermore, third assumption presented in Subsection 4.1 guarantees that(
1

|Sk|
∑

vi∈Sk
Ãij − 1

N−|Sk|
∑

vi /∈Sk
Ãij

)
≤ 0,∀vj /∈ Sk. Utilizing Assumption 1 in Subsection

4.1, ∥ci∥∞ ≤ δ, ∀vi ∈ V , the following upper bound can be derived.

δl+1
k ≤ L

(∥∥∥∥∥ ∑
vj∈Sk

 1

|Sk|
∑

vi∈Sk

Ãij −
1

N − |Sk|
∑

vi /∈Sk

Ãij

 δF (l+1)

∥∥∥∥∥
2

+

∥∥∥∥∥ ∑
vj /∈Sk

 1

|Sk|
∑

vi∈Sk

Ãij −
1

N − |Sk|
∑

vi /∈Sk

Ãij

 δF (l+1)

∥∥∥∥∥
2

+ 2
√
N∆z

)
,

(13)

15

124465 https://doi.org/10.52202/079017-3953

where δF (l+1) stands for an F (l+1) dimensional vector with all elements being equal to δ. Then, by
utilizing the definitions pχk :=

∑
vi∈Sk,vj /∈Sk

Ãi,j , p
ω
k :=

∑
vi∈Sk,vj∈Sk

Ãi,j , the upper bound in
(13) can be rewritten as:

δ
(l+1)
k ≤ L

(∥∥∥∥∥∥
∑

vj∈Sk

 1

|Sk|
∑

vi∈Sk

Ãij −
1

N − |Sk|
∑

vi /∈Sk

Ãij

 δF (l+1)

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥
∑

vj /∈Sk

 1

|Sk|
∑

vi∈Sk

Ãij −
1

N − |Sk|
∑

vi /∈Sk

Ãij

 δF (l+1)

∥∥∥∥∥∥
2

+ 2
√
N∆z

)
,

= L

(∥∥∥∥(pωk
|Sk|

−
pχk

N − |Sk|

)
δF (l+1)

∥∥∥∥
2

+

∥∥∥∥∥
(∑

vi,vj∈V Ãij − pωk − 2pχk

N − |Sk|
−

pχk
|Sk|

)
δF (l+1)

∥∥∥∥∥
2

+ 2
√
N∆z

)

= L

(∣∣∣∣ pωk|Sk|
−

pχk
N − |Sk|

∣∣∣∣ ∥δF (l+1)∥2 +

∣∣∣∣∣
∑

vi,vj∈V Ãij − pωk − 2pχk

N − |Sk|
−

pχk
|Sk|

∣∣∣∣∣ ∥δF (l+1)∥2 + 2
√
N∆z

)
.

(14)

The final result follows from the inequality, ∥δF (l+1)∥2 ≤ δ
√
F (l+1):

δ
(l+1)
k :=

∥∥∥EÃ,vi∼USk
[hl+1

i | si = k]− EÃ,vi∼U(V−Sk)
[hl+1

i | si ̸= k]
∥∥∥
2
,

≤ L

(
δ
√
F (l+1)

(∣∣∣∣ pωk|Sk|
−

pχk
N − |Sk|

∣∣∣∣+
∣∣∣∣∣
∑

vi,vj∈V Ãij − pωk − 2pχk

N − |Sk|
−

pχk
|Sk|

∣∣∣∣∣
)

+ 2
√
N∆z

)
,

(15)

which concludes the proof.

C Proof of Proposition 1

Statistical parity for link prediction is defined as (19):

∆SP := |E(vi,vj)∼UV×UV [g(vi, vj) | si = sj]− E(vi,vj)∼UV×UV [g(vi, vj) | si ̸= sj]|. (16)

By considering each sensitive group explicitly, statistical parity can also be written as:

∆SP :=

∣∣∣∣ K∑
k=1

|Sk|
N

(
EÃ[g(vi, vj) | si = sj , si = k]− EÃ[g(vi, vj) | si ̸= sj , si = k]

)∣∣∣∣. (17)

Define EÃ,vi∼USk
[hi | si = k] := pk and EÃ,vi∼U(V−Sk)

[hi | si ̸= k] := qk. We further assume
that ∥hi∥2 ≤ q,∀vi ∈ V and it holds that ∥EÃ,vi∼USk

[hi | si = k] − EÃ,vj∼U(V−Sk)
[hj | sj ̸=

k]∥2 ≤ δmax
k . Using the definitions for pk and qk and link prediction model g(vi, vj) := h⊤

i Σhj ,
∆SP can be reformulated as:

∆SP :=

∣∣∣∣ K∑
k=1

|Sk|
N

(
p⊤
k Σpk − p⊤

k Σqk

)∣∣∣∣,
=

∣∣∣∣ K∑
k=1

|Sk|
N

(
p⊤
k Σ(pk − qk)

)∣∣∣∣.
(18)

By triangle inequality, it follows that

∆SP ≤
K∑

k=1

|Sk|
N

∣∣∣∣(p⊤
k Σ(pk − qk)

)∣∣∣∣. (19)

16

124466https://doi.org/10.52202/079017-3953

Finally, by using Cauchy-Schwarz inequality and the assumption ∥hi∥2 ≤ q,∀vi ∈ V , we can
conclude that

∆SP ≤
K∑

k=1

|Sk|
N

q∥Σ∥2
∥∥∥∥(pk − qk)

∥∥∥∥
2

,

∆SP ≤
K∑

k=1

|Sk|
N

q∥Σ∥2δmax
k ,

(20)

where the final inequality follows from the assumption that ∥EÃ,vi∼USk
[hi | si = k] −

EÃ,vj∼U(V−Sk)
[hj | sj ̸= k]∥2 ≤ δmax

k .

D Diffusion Model

Diffusion Models for Graph Generation. Briefly, diffusion models are composed of two main
elements: a noise model q, and a denoising neural network ϕθ. The noise model q progressively
corrupts data to create a sequence of increasingly noisy data points. Inspired by the success of
Gaussian noise for diffusion-based image generation (58), the earlier diffusion-based graph generation
models employ Gaussian noise to create noisy graph data (45; 46). However, such a noise model
cannot properly capture the structural properties of discrete graph connections. Motivated by this, a
discrete noise model is introduced in (51). The discrete noise model for graph structure is typically
applied in the form of edge deletion and additions (16; 47). After creating noisy data, a denoising
network ϕθ is trained to invert this process by predicting the original graph structure A from the noisy
samples. While different neural network structures are examined as candidates for the denoising
network, message-passing neural networks are shown to be a scalable solution for the creation of
medium- to large-scale graphs (47).

Forward diffusion process: introduced in (51), we employ a Markov process herein to add noise to
the input graph structure in the form of edge additions or deletions. These edge modifications can be
executed by modeling the existence/non-existence of an edge as the edge class labels, where we have
2 classes, and applying a transition matrix that switches the labels with a certain probability. Then,
given A0 ∈ RN×N×2 denotes the one-hot representations for the edge labels, the noise model can be
described by the transition matrices Qt

A ∈ R2×2 for t = 1, · · · , T , where q(At | At−1) = At−1Qt
A,

q(At | A0) = A0Q̄t
A, and Q̄t

A = Q1
AQ

2
A · · ·Qt

A. For a uniform transition model, (59) proves
that the empirical data distribution (the probability for the existence of an edge) is the optimal prior
distribution. Following this finding, we specifically employ the transition matrix:

Qt
A = αtI+ (1− αt)1m⊤

E , (21)
where I ∈ R2×2 is the identity matrix, 1 ∈ R2 is a vector of ones, and mE ∈ R2 describes the
distribution of edge labels in the original graph. For the assignment of αt, cosine schedule is utilized,
where ᾱt := cos(0.5π(t/T + s)/(1 + s))2 with a small s value for ᾱt = Πt

τ=1α
τ . Note that for

categorical nodal features, the forward diffusion process follows the same procedure.

Sampling: Using the trained MPNN, synthetic graphs can be sampled iteratively. During
sampling, we first sample the sensitive attributes of the nodes, S̃, based on its original distri-
bution in the real graph. As the next step, we need to estimate the reverse diffusion iterations
pθ
(
Gt−1 = (At−1,Xt−1) | Gt = (At,Xt)

)
, which is modeled as a product over nodes and edges

(59):

pθ

(
Gt−1 | Gt, S̃, t

)
=

N∏
i=1

F∏
f=1

pθ

(
Xt−1

if | Gt, S̃, t
)

∏
1≤i<j≤N

pθ

(
At−1

ij | Gt, S̃, t
)
.

(22)

To compute each independent term, we marginalize over the predictions of the MPNN:

pθ

(
At−1

ij | Gt, S̃, t
)
=
∑
e∈Ec

pθ
(
At−1

ij | Aij = e,Gt
)
pθ

(
Aij = e | Gt, S̃, t

)
≈
∑
e∈Ec

pθ
(
At−1

ij | Aij = e,Gt
)
Ãije,

(23)

17

124467 https://doi.org/10.52202/079017-3953

where Ec denotes all possible labels for edges, which are {0, 1} for an unweighted graph. Then, we
can use our Markovian noise to model pθ

(
At−1

ij | Aij = e,Gt
)
:

pθ
(
At−1

ij | Aij = e,Gt
)
=

{
q
(
At−1

ij | Aij = e,At
ij

)
if q
(
At

ij | Aij = e
)
> 0

0 otherwise.

Note that posterior q
(
At−1

ij | Aij = e,At
ij

)
can be computed in closed-form using Bayes rule.

Leveraging this model, Gt−1 can be sampled, which becomes the input of the MPNN at the next time
step.

E Additional Details on Datasets and Datasets Statistics

For citation networks (Cora and Citeseer), the one-hot encoding representations of the words in the
article descriptions constitute the binary nodal attributes. In these networks, similar to the setups in
(19; 37), the category of the articles is employed as the sensitive attribute. Furthermore, for product
co-purchase networks, nodal attributes are again the one-hot encodings of the words in the product
reviews and the product categories are utilized as the sensitive attributes. For the evaluation of node
classification, we employ German (56) and Pokec-n (9) networks. Specifically, the German credit
graph has 1,000 nodes representing the clients in a German bank, where the links are created based
on the similarity of credit accounts. For this graph, the node labels classify clients into good vs.
bad credit risks, where the clients’ gender are employed as the sensitive attribute (28). In addition,
Pokec-n is sampled from an anonymized version of the Pokec network of 2012 (a social network from
Slovakia), where nodes correspond to users who live in two major regions, and the region information
is utilized as the sensitive attribute (9). The working field of the users is binarized and utilized as the
labels to be predicted in node classification.

Table 7: Dataset statistics.

Dataset |V| |E| F K

Cora 2708 10556 1433 7
Citeseer 3327 9228 3703 6

Amazon Photo 7650 238163 745 8
Amazon Computer 13752 491722 767 10

Credit 1000 22242 27 2
Pokec-n 6185 21844 59 2

Statistical information for the utilized datasets are presented in Table 7, where F is the total number
of nodal features and K represents the number of sensitive groups.

F Evaluation with Statistics

We evaluate the created synthetic graphs by FairWire via link prediction in Subsection 6.2. In order to
provide a more traditional evaluation scheme, here we also report the 1-Wasserstein distance between
the node degree distribution and clustering coefficient distribution of original graph and the synthetic
ones. Table 8 presents the corresponding distance measures, where lower values for all metrics signify
better performance. In Table 8, ER and SBM stand for traditional baselines Erdos–Rényi model (60)
anf SBM stochastic block model (61), respectively. Furthermore, as deep learning based baselines,
Feature-based MF represents feature-based matrix factorization (62), GAE and VGAE stand for
graph autoencoder and variational graph autoencoder (63), respectively. Finally, GraphMaker in
Table 8 corresponds to a diffusion-based graph generation baseline (47). Note that all these baselines
are fairness-agnostic. Overall, results in Table 8 signify that FairWire can create synthetic graphs that
follow a similar distribution to the original data while also improving the fairness metrics.

G Implementation Details

Link Prediction Model. For link prediction, we train a one-layer graph convolutional network
(GCN), where the inner product between the output node representations signifies the corresponding
edge probability. For training, 80% of the edges are used, where the remaining edges are split equally
into two for the validation and test sets. For link prediction experiments, results are obtained for five

18

124468https://doi.org/10.52202/079017-3953

Cora Citeseer Amazon Photo
Degree ↓ Cluster↓ Degree↓ Cluster↓ Degree↓ Cluster↓

ER 1.0 2.4e1 8.5e−1 1.4e1 1.9e1 4.0e1

SBM 9.6e−1 2.3e1 8.0e−1 1.4e1 1.5e1 3.8e1

Feature-based MF 1.3e3 2.4e1 1.7e3 1.4e1 3.8e3 4.0e1

GAE 1.3e3 2.4e1 1.7e3 1.4e1 3.8e3 4.0e1

VGAE 1.4e3 2.4e1 1.7e3 1.4e1 3.8e3 4.0e1

GraphMaker 2.8 2.3e1 5.6e−1 1.4e1 1.1e2 1.4
FairWire 1.9 2.4e1 8.7e−1 1.4e1 8.2e1 1.5

Table 8: Distances of statistical measures between the real graph and synthetic ones.

random data splits, and their average along with the standard deviations are reported. The weights of
the GNN model for link prediction are initialized utilizing Glorot initialization (64), where it is trained
for 1000 epochs by employing Adam optimizer (65). The learning rate, the dimension of hidden
representations, and the dropout rate are selected via grid search for the proposed scheme and all
baselines, where the value leading to the best validation set performance is selected. For learning rate
the, the dimension of hidden representations, and the dropout rate, the corresponding hyperparameter
spaces are {1e− 1, 1e− 2, 3e− 3, 1e− 3}, {32, 128, 512}, and {0.0, 0.1, 0.2}, respectively.

Diffusion Model. Diffusion models are trained for 10000 epochs by employing Adam optimizer
(65), where the number of diffusion steps is 3. In the MPNN described in Subsection 5.2, hidden
representation size for time step t is 32 for Cora and Citeseer and 16 for the Amazon Photo, German
credit, and Pokec-n networks. In addition, hidden representation sizes for the nodal attributes and
sensitive attributes are 512 and 64, respectively, for all datasets. The MPNN consists of two layers.

Node Classification Model. For node classification, we employ one-layer and two-layers APPNP
(66) networks for German credit and Pokec-n graphs, respectively. For training, 50% of the nodes are
used, where the remaining nodes are split equally into two for the validation and test sets. The weights
of the GNN model for node classification are initialized utilizing Glorot initialization (64), where it
is trained for 1000 epochs by employing Adam optimizer (65). The learning rate, the dimension of
hidden representations, and the dropout rate are selected via grid search for the proposed scheme
and all baselines, where the value leading to the best validation set performance is selected. For
learning rate the, the dimension of hidden representations, and the dropout rate, the corresponding
hyperparameter spaces are {3e− 2, 1e− 2, 3e− 3}, {32, 128, 512}, and {0.0, 0.1}, respectively.

Hyperparameter Selection. For the link prediction task, we select the multiplier of LFairWire among
the values {0.01, 0.05, 0.1, 0.5} via grid search (the multiplier of the cross-entropy loss is 1). The
results for LFairWire in Table 2 are obtained for the λ values 0.05, 0.1, 0.01/0.05, 0.1 on Cora, Citeseer,
Amazon Photo, and Amazon Computer, respectively. For adversarial regularization (9), the multiplier
of the regularizer is selected via a grid search among the values {0.1, 1, 10} (the multiplier of link
prediction loss is again 1). The multiplers of the adversarial regularization for the results in Table 2
are {10, 1, 1, 1} on Cora, Citeseer, Amazon Photo, and Amazon Computer, respectively. Furthermore,
the hyperparameter δ in FairDrop algorithm is tuned among the values {0.16, 0.25} (0.16 is the
default value in their codes), where 0.16 led to the best fairness/utility trade-off on each dataset. For
FairAdj (19), we use the hyperparameter values suggested by (19) directly for the citation networks.

For the generative models, we select the multiplier of LFairWire (λ in (7)) among the values
{0.05, 0.1, 1.0, 10.0} via grid search. The results for FairWire in Table 3 are reported for the λ
values 10.0, 0.1 on Cora, and Citeseer, respectively (λ = 0.05 for Amazon photo in Table 11).
For the results in Table 4, λ equals to 10 and 1 for German credit and Pokec-n, respectively. For
adversarial regularization (9), the multiplier of the regularizer (again in the training loss of the MPNN)
is selected via a grid search among the values {0.001, 0.01, 0.1}. The multiplers of the adversarial
regularization for the results in Table 3 are {0.01, 0.01, 0.01} on Cora, Citeseer, and Amazon Photo,
respectively. Furthermore, the hyperparameter η in FairAdj (19) algorithm is tuned among the values
{0.001, 0.005, 0.01}, where 0.001 led to the best fairness/utility trade-off on each dataset.

Baselines. Fairness-aware baselines in the experiments include adversarial regularization (9),
FairDrop (37), FairAdj (19), and FairGen (49). Adversarial regularization refers to the bias mitigation
technique where an adversary is trained to predict the sensitive attributes. In link prediction, the

19

124469 https://doi.org/10.52202/079017-3953

adversary is trained to predict the sensitive attributes of the nodes that are incident to the edges whose
labels are of interest. Furthermore, FairDrop (37) is an edge dropout strategy where the dropout
probabilities vary for intra- or inter-edges so as to create a more balanced graph topology. FairAdj
(19) optimizes a fair adjacency with certain structural constraints for link prediction in an iterative
manner considering both fairness and utility. Finally, FairGen (35) focuses on the disparities in
generation quality (distances between different graph statistics) for different sensitive groups and
employs fairness-aware regularizers during graph generation via a transformer-based model.

For graph generation experiments, GraphMaker (47) is utilized to create synthetic graphs in a fairness-
agnostic way. While an existing work that considers fair link prediction for synthetic graphs is not
available to the best of our knowledge, we employ adversarial regularization (9) as an in-processing
bias mitigation strategy during the training of the MPNN described in Subsection 5.2. Furthermore,
we use FairAdj (19) as a post-processing bias mitigation strategy on the synthetic graphs generated
via GraphMaker, and the processed synthetic graphs are then evaluated for the link prediction and
node classification tasks.

H Sensitivity Analysis

In order to examine the impact of hyperparameter selection on fairness improvements, the sensitivity
analyses for the proposed tools are executed with respect to the hyperparameter λ.The results are
obtained for changing λ values for both the link prediction (see (4)) and graph generation (see (7))
experiments and reported in Tables 9, 10. Overall, the results signify that both LFairWire in the link
prediction and FairWire, lead to better fairness measures compared to the natural baselines within a
wide range of hyperparameter selection.

Table 9: Sensitivity Analyses for Different Tasks
Cora Citeseer

Link Prediction AUC (%) ∆SP (%) ∆EO (%) AUC (%) ∆SP (%) ∆EO(%)

GNN 94.43 ± 0.74 27.01 ± 1.38 9.11 ± 1.43 96.16 ± 0.28 27.40 ± 1.24 7.37 ± 1.33

λ = 0.01 93.85 ± 1.06 16.17 ± 4.50 5.58 ± 1.18 95.55 ± 0.66 17.38 ± 7.80 6.55 ± 2.33
λ = 0.05 92.18 ± 1.03 4.76 ± 0.24 2.05 ± 0.37 96.18 ± 0.46 12.43 ± 0.57 5.44 ± 0.86
λ = 0.1 91.98 ± 1.05 4.54 ± 0.24 1.95 ± 0.36 96.00 ± 0.23 8.62 ± 0.80 1.29 ± 0.68

Amazon Photo Amazon Computer

Link Prediction AUC (%) ∆SP (%) ∆EO (%) AUC (%) ∆SP (%) ∆EO(%)

GNN 97.01 ± 0.26 32.65 ± 0.95 8.01 ± 0.52 96.13 ± 0.06 23.70 ± 0.79 5.51 ± 0.79

λ = 0.01 97.25 ± 0.11 27.75 ± 0.52 7.11 ± 0.41 96.13 ± 0.08 23.58 ± 0.63 5.46 ± 0.56
λ = 0.05 94.85 ± 0.32 24.61 ± 0.96 6.24 ± 1.22 96.17 ± 0.13 22.74 ± 0.39 5.50 ± 0.51
λ = 0.1 88.43 ± 5.12 17.78 ± 7.27 1.48 ± 1.00 92.66 ± 0.21 14.45 ± 0.32 1.28 ± 0.45

Citeseer Amazon Photo

Graph Generation AUC (%) ∆SP (%) ∆EO (%) AUC (%) ∆SP (%) ∆EO(%)

G̃ 92.19 ± 1.06 37.56 ± 1.29 13.52 ± 0.92 94.45 ± 0.21 33.49 ± 0.28 10.01 ± 0.56

λ = 0.01 92.03 ± 0.80 36.43 ± 1.44 13.11 ± 0.71 93.41 ± 0.34 27.18 ± 5.45 5.45 ± 0.80
λ = 0.05 91.89 ± 1.37 29.40 ± 4.34 9.56 ± 1.29 93.88 ± 0.40 25.27 ± 0.76 3.13 ± 0.30
λ = 0.1 91.27 ± 2.78 18.35 ± 6.91 7.80 ± 2.66 88.43 ± 5.12 17.78 ± 7.27 1.48 ± 1.00

Table 10: Sensitivity Analysis for Graph Generation on Cora
Cora

AUC (%) ∆SP (%) ∆EO (%)

G̃ 87.29 ± 1.09 35.72 ± 1.74 13.27 ± 0.81

λ = 1.0 88.76 ± 1.23 27.86 ± 2.84 10.76 ± 1.50
λ = 10.0 86.49 ± 2.79 12.91 ± 6.35 4.31 ± 3.59
λ = 50.0 82.91 ± 8.06 9.86 ± 6.54 3.47 ± 2.58

20

124470https://doi.org/10.52202/079017-3953

I Additional Graph Generation Results

Due to limited space, we present the comparative results for graph generation on Amazon Photo in
Table 11 for link prediction.

Table 11: Graph generation results on Amazon-Photo

Amazon Photo

AUC (%) ∆SP (%) ∆EO (%)

G 96.91 32.58 8.24

G̃ 94.45 ± 0.21 33.49 ± 0.28 10.01 ± 0.56
Adversarial 94.24 ± 1.20 29.17 ± 2.83 7.06 ± 2.63
FairWire 93.88 ± 0.40 25.27 ± 0.76 3.13 ± 0.30

Similar to the link prediction experiments (Table 2), the results of FairAdj for the Amazon Photo
network could not be obtained due to computational limitations. Overall, the results reported in Table
11 conclude again that FairWire can provide the best utility/fairness trade-off compared to other
fairness-aware baselines.

J Computational Resources

Experiments are carried over on 4 NVIDIA RTX A4000 GPUs.

21

124471 https://doi.org/10.52202/079017-3953

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: For c1, please see Subsection 4.1. The contribution in c2 is presented in 4.2.
For c3 and c4, please check Subsections 5.1 and 5.2, respoectively. Finally, the experimental
results emphasized in c5 are presented in Section 6.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Please see Limitations in Section 7.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

22

124472https://doi.org/10.52202/079017-3953

Answer: [Yes]
Justification: Our assumptions are explicitly presented in Subsection 4.1. Furthermore, all
proofs are available in Appendices B and C.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The proposed regularizer is presented with its derivation in Subsections 4.1
and 4.2. Furthermore, for reproducibility of the empirical evaluation, our codes are provided
within the supplementary material of this submission. All experimental settings are also
described in Subsection 6.1, and Appendix G.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

23

124473 https://doi.org/10.52202/079017-3953

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Codes to reproduce all the results in Section 6 are provided in the supplemen-
tary material to this submission.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Please see Subsection 6.1 and Appendix G.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: All experimental results are obtained for multiple random seeds and their
average together with standard deviations are reported.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

24

124474https://doi.org/10.52202/079017-3953

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Computational resources used for the experiments are clarified in Appendix J.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: To the best of our knowledge, our research is completely compliant with the
NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: This work addresses possible bias propagated by ML algorithms. Hence, it in
fact helps mitigate a crucial negative impact of ML.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.

25

124475 https://doi.org/10.52202/079017-3953

https://neurips.cc/public/EthicsGuidelines

• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Citation and Amazon networks are provided by the DGL library (67), which
is explained and the corresponding license is explicitly provided in the README file in
our supplementary material. Furthermore, the Pokec dataset, used in this study, was created
and presented in (68), which is again mentioned in the README file in our supplementary
material.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.

26

124476https://doi.org/10.52202/079017-3953

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

27

124477 https://doi.org/10.52202/079017-3953

paperswithcode.com/datasets

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

28

124478https://doi.org/10.52202/079017-3953

