Pedestrian Trajectory Prediction with Missing Data:
Datasets, Imputation, and Benchmarking

Pranav Singh Chib! Pravendra Singh'
! Department of Computer Science and Engineering
Indian Institute of Technology
Roorkee, India
{pranavs_chib,pravendra.singh}@cs.iitr.ac.in

Abstract

Pedestrian trajectory prediction is crucial for several applications such as robotics
and self-driving vehicles. Significant progress has been made in the past decade
thanks to the availability of pedestrian trajectory datasets, which enable trajec-
tory prediction methods to learn from pedestrians’ past movements and predict
future trajectories. However, these datasets and methods typically assume that
the observed trajectory sequence is complete, ignoring real-world issues such as
sensor failure, occlusion, and limited fields of view that can result in missing
values in observed trajectories. To address this challenge, we present TrajImpute,
a pedestrian trajectory prediction dataset that simulates missing coordinates in
the observed trajectory, enhancing real-world applicability. TrajImpute maintains
a uniform distribution of missing data within the observed trajectories. In this
work, we comprehensively examine several imputation methods to reconstruct
the missing coordinates and benchmark them for imputing pedestrian trajecto-
ries. Furthermore, we provide a thorough analysis of recent trajectory prediction
methods and evaluate the performance of these models on the imputed trajec-
tories. Our experimental evaluation of the imputation and trajectory prediction
methods offers several valuable insights. Our dataset provides a foundational
resource for future research on imputation-aware pedestrian trajectory prediction,
potentially accelerating the deployment of these methods in real-world applica-
tions. Publicly accessible links to the datasets and code files are available at
https://github.com/Pranav-chib/TrajImpute.

1 Introduction

Pedestrian trajectory prediction [l 12, 3L 4} |5} 16} [7]] has various essential applications, such as self-
driving automobiles, robot navigation, human behavior understanding, and more. These systems
forecast the future trajectory of pedestrians based on their previously observed paths. Research in
pedestrian trajectory prediction has significantly advanced in recent times due to the development
of data-driven solutions and datasets. However, a predominant assumption in most current research
is that the past observed coordinates of pedestrians are complete. This assumption does not hold
in real-world scenarios [8]] where sensor failures, limited field of view, and occlusion can lead to
missing observations at any specific time instances, resulting in incomplete trajectories. This creates
challenges for trajectory prediction tasks in real-world scenarios. To improve the effectiveness
of trajectory prediction methods in real-world scenarios, they must anticipate and handle missing
observed coordinates.

In multivariate time series, several imputation methods [9} [10} [11} [12]] have emerged that address
the issue of missing features by imputing them (filling of missing values). These methods [[13} 14}

38th Conference on Neural Information Processing Systems (NeurIPS 2024) Track on Datasets and Benchmarks.

124530 https://doi.org/10.52202/079017-3956

https://github.com/Pranav-chib/TrajImpute

151 [16]] utilize statistical and deep learning approaches and have achieved state-of-the-art results for
imputation time series data. However, there has been limited exploration of imputation techniques in
trajectory prediction [} 17, (18], and there is a gap in the availability of imputation-centric pedestrian
datasets, evaluation protocols, and benchmarks. We introduce Trajlmpute, an imputation-centric
trajectory prediction dataset, to address this. We have compiled commonly used pedestrian trajectory
prediction datasets [19} 20], including ETH, HOTEL, UNIV, ZARA1, and ZARA2, (which are
licensed for research purposes B) and introduced trajectories with missing observed coordinates. We
follow two data generation strategies to simulate the missing coordinates: easy and hard modes. In the
easy mode, we simulate scenarios where observed coordinates are missed for a shorter duration (could
be continuous or discontinuous time frame). In contrast, the hard mode simulates scenarios where
observed coordinates are missing for a longer duration. In addition to data generation, we benchmark
several existing imputation methods [[16} [14, 21} 19, 22| 23] on Trajimpute. We use these imputation
methods to reconstruct the missing coordinates and evaluate their performance in both easy and hard
modes. After extensive evaluation, we selected the best-performing imputation model and used its
imputed data for the trajectory prediction task. The motivation of our work is to provide insights
into how trajectory prediction models perform when missing coordinates are imputed. Additionally,
we aim to understand how imputation methods perform on the pedestrian trajectory imputation task.
Thus, TrajImpute provides a dataset in which missing coordinates are present in observed trajectories
to simulate real-world scenarios and offers a unified framework for evaluating both imputation and
trajectory prediction methods.

Contributions. We introduce TrajImpute, a trajectory prediction dataset designed to simulate missing
coordinates in observed trajectories of pedestrians. Trajimpute bridges the gap between real-world
scenarios and the rigid assumption that all coordinates are present in observed trajectories. We
conduct extensive analyses and empirical studies to evaluate several existing imputation methods for
the task of trajectory imputation on our Trajimpute dataset. Furthermore, we evaluate the performance
of recent trajectory prediction methods on imputed data and provide insights for future development
in this area. The dataset is provided under a Creative Commons CC BY-SA 4.0 license, allowing
both academics and industry to use it.

2 Related Work

2.1 Imputation

RNN-based methods have initially been used for handling missing data in time series classification.
Methods such as M-RNN [9]] use the bidirectional RNN’s hidden states for imputing missing
values. BRITS [22] treats missing values as variables and considers feature correlations. Generative
adversarial network approaches have also been applied. For instance, Luo et al. [24] propose GRU
for imputation to capture temporal information in incomplete time series, serving as the basis for both
the discriminator and generator in their GAN model. Additionally, Luo et al. [10] introduce E2GAN,
utilizing an auto-encoder to enhance imputation performance. Liu et al. propose NAOMI [10], a
non-autoregressive model featuring a multiresolution decoder and bidirectional encoder, which was
adversarially trained. Fortuin et al. [21] introduce GP-VAE, a variational auto-encoder method for
time series imputation. It uses the Gaussian process (GP) prior in the latent space to represent the data.
Furthermore, L-VAE [11] employs an additive multi-output GP-prior to accommodate additional
covariate information alongside time for the imputation task. SGP-VAE [25] uses GP approximations
to impute the missing values in spatiotemporal data. CNN-based methods such as TimesNet [[16]]
use the fast Fourier transform to transform 1D time series into a 2D representation, making it easier
to interpret data using CNNs. Recently, methods have started using the self-attention mechanism
for data imputation. For instance, CDSA [13]] uses cross-dimension attention for the imputation of
missing data. DeepMVI [15]] employs the transformer with convolutional window features and kernel
regression. SAITS [[14] uses joint training for both the imputation and reconstruction tasks to impute
the missing values. SAITE employs two diagonally-masked self-attention mechanisms to capture
the temporal dependency. However, self-attention-based studies for time-series imputation are still
limited.

'See the statement at the top of https://icu.ee.ethz.ch/research/datsets.html and in the “Crowds Data" card of
https://graphics.cs.ucy.ac.cy/portfolio.

https://doi.org/10.52202/079017-3956 124531

Table 1: Comparison of different datasets for pedestrian trajectory prediction. The trajectory coordi-
nates can be extracted from images (image-2D/3D) or directly from data containing only coordinates
(world-2D/3D). Here, 2D/3D refers to the dimensionality of the coordinate output. The most widely
used pedestrian trajectory prediction datasets are ETH, HOTEL, UNIV, ZARA1, and ZARA2. These
reported datasets only contain complete coordinates and do not simulate missing coordinates.

Datasets | Reference | Link | Availability | Citations | Coordinates | Pedestrian Data | Imputed Data

ETH | [20] | Link|| v | 1304 | world-2D | v | X
HOTEL | [20] |Linkl| « | | world-2D | v | x
UNIV | [|Linkl| v | | world-2D | v | x
ZARAL | 19 |Link]| v | % | word2D | v | x
ZARA2 | (19 |Linkl| v | | world-2D | v | x
SDD | 311 | Link | v | 872 | image-2D | v | X
Trajnet | 521 | Link | v | 244 | - | v | X
GC | (531 | Link | v | 279 | image-2D | v | X
PETS | [54] | Link | v | 711 | image-2D | v | X
inD | (55 |Link| v | 375 | world2D | v | x
Argoverse2 | [36] | Link | v | 345 | world-3D | v | X
KITTI | [57) |Link|| v | 144 | image3D | v | x
Ko-PER | [58] | |Link|| v | 99 | world-2D | v | X
TRAF | [59) |Link|| « | 280 | image2D | v | x
Trajlmpute | (Our) | - | v | - | world-2D | v | v

2.2 Trajectory Prediction

Predicting an agent’s future path based on their past observations is the objective of pedestrian
trajectory prediction methods. Prior work on trajectory prediction [26l 26] involved using deter-
ministic approaches, which use parameters such as acceleration and velocity to model pedestrian
trajectories. With the advent of deep learning, researchers began sequence-to-sequence modeling of
trajectories using Recurrent Neural Networks (RNNs) [27, 28] and Long Short-Term Memory net-
works (LSTM) [29] for sequence prediction of future trajectories. Some research generates multiple
trajectory predictions using generative models like Variational Autoencoders (VAEs) [2, 130} 31} [32]]
and Generative Adversarial Networks (GANs) [33] 34} 35| 36]], which consider the uncertainty of
human trajectories. Diffusion models [37] are also being used to sample future trajectories but have
high inference time due to costly denoising steps. Transformers [38 39,40, 411 42| |43] can capture
long-term temporal dependencies in pedestrian trajectories because of the self-attention mechanism.
Additionally, to model social interactions between pedestrians and their surroundings, researchers
have started using graph neural networks [44, 45 46]. Various perspectives [47, 48] in trajectory
prediction, such as knowledge distillation [49] and end-point prediction [6l 32], have also improved
prediction performance. Trajectory imputation has not received much attention, with only a few stud-
ies addressing this task. NAOMI [10] is a non-autoregressive decoding process for deep generative
models capable of imputing missing values for long-term spatiotemporal sequences. Furthermore, it
uses a generative adversarial imitation learning objective. GMAT [50] is a hierarchical framework for
sequential generative modeling that uses weak macro-intent labels. Both NAOMI and GMAT can
handle the trajectory imputation task. In contrast, INAM [[17] can handle both trajectory imputation
and prediction tasks. It employs two models: one to predict future trajectories and supervise the other
model, which learns to impute missing values in a non-autoregressive way. Both models are trained
in an end-to-end fashion. Recently, GC-VRNN [8] proposed a unified framework that simultaneously
imputes missing values and predicts future trajectories. It uses a Multi-Space Graph Neural Network
with Temporal Decay to learn the temporal missing patterns. The datasets used by GC-VRNN and
INAM for imputation are not publicly available.

124532 https://doi.org/10.52202/079017-3956

http://www.vision.ee.ethz.ch/en/datasets/
http://www.vision.ee.ethz.ch/en/datasets/
https://graphics.cs.ucy.ac.cy/research/downloads/crowd-data
https://graphics.cs.ucy.ac.cy/research/downloads/crowd-data
https://graphics.cs.ucy.ac.cy/research/downloads/crowd-data
http://cvgl.stanford.edu/projects/uav_data
https://www.aicrowd.com/challenges/trajnet-a-trajectory-forecasting-challenge
https://www.dropbox.com/s/7y90xsxq0l0yv8d/cvpr2015_pedestrianWalkingPathDataset.rar
https://github.com/crowdbotp/OpenTraj/tree/master/datasets/PETS-2009
https://levelxdata.com/ind-dataset/
https://www.argoverse.org/av2.html
https://www.cvlibs.net/datasets/kitti/
https://www.uni-ulm.de/in/mrm/forschung/datensaetze.html
https://gamma.umd.edu/traphic

2.3 Datasets for Pedestrian Trajectory Prediction.

With the advancement of pedestrian trajectory prediction research, various datasets have emerged
(ref. Table[I)). The most popular pedestrian datasets are ETH [20] and UCY [[19], encompassing
diverse behaviors such as social interaction, walking, and grouping. These datasets model pedestrian
interactions across various scenarios. ETH and HOTEL datasets collectively contain 750 pedestrian
trajectories, while UNIV, ZARAI1, and ZARA?2 datasets encompass 786 pedestrian trajectories, all
in 2D coordinates. Another widely-used dataset is SDD [51]], which includes pedestrians, bikers,
skaters, carts, cars, and buses, totaling 10,300 trajectories. TrajNet [52] is a synthetic dataset that
combines elements from the above datasets to create an interaction-centric trajectory-based dataset.
The PETS [54]] dataset consists of multi-sensor sequences depicting complex crowd scenarios, with
coordinates extracted from 7 fps video images. The Grand Central Station [53]] dataset captures crowd
trajectories from scenes lasting 33.20 minutes at 25 frames per second, with coordinate trajectory
data derived from scene images. Waymo [60], KITTI [S7], and Argoverse [56]] are primarily utilized
in autonomous driving research, as they involve interactions between heterogeneous agents (e.g.,
vehicles and pedestrians) in urban environments. The inD [55]] dataset, captured by drones, includes
8,200 vehicles and 5,300 vulnerable road users from four locations, featuring classes such as cars,
trucks, bicyclists, and pedestrians. The Ko-PER [58]] dataset, recorded using laser scanners and
videos, features trajectories of people and vehicles at urban intersections. TRAF [59] is a dense and
heterogeneous traffic video dataset with cars, bikes, pedestrians, rickshaws, and other road agents.
There are several datasets for pedestrian trajectory prediction, as discussed above, but all of them
assume that all coordinates are present in the observed trajectories. Our Trajimpute dataset, however,
includes missing coordinates in observed trajectories to simulate real-world scenarios and offers a
unified framework for evaluating both imputation and trajectory prediction methods.

3 Trajlmpute Dataset

Problem Formulation. For the data generation, we consider the following trajectory predic-
tion formulation where we represent the past observed trajectory with time stamp Ty, as x, =
{(af,yt) | t € [1,...,Top]}, where (x,y?) is the coordinates of the p*" pedestrian. There could
be N number of pedestrians where p € N. So the original past observed trajectories data con-
tain X,y = [x1,X2,X3...Xy] trajectories where each x,, € Xorg. We follow the standard eight
observed time frame of 3.2 seconds time length and twelve prediction time frame of 4.8 seconds.

Data Generation. To simulate real-time scenarios with missing coordinates in past trajectories, we
introduce missing coordinates into the original observed trajectories of the ETH, HOTEL, UNIV,
ZARAI1, and ZARA?2 datasets. Due to uncertainty, the missing values can be randomly generated
from any given timeframe. To incorporate this uncertainty, we randomly induce missing values in
past trajectories. Moreover, the temporal missing pattern contains several variations; for instance,
there could be scenarios where consecutive coordinates are missing from the observations, alternate
coordinates could be missing, or other possibilities. We ensure that our data generation covers these
kinds of patterns. We follow two protocols for generating missing coordinates: an ‘easy’ protocol,
where we induce missing coordinates in at most half of the total observed time frames, and a ‘hard’
protocol, where we induce missing coordinates in more than half of the time frames.

Easy Protocol. In the easy protocol, from the total observations spanning 8 time frames, at most half
of the frames may contain missing observations; i.e., there are missing values in at most 4 of the time
frames. Thus, the number of missing coordinates could range from O to 4. The pedestrian’s observed
trajectory may contain 0, 1, 2, 3, or 4 missing coordinates. For each trajectory x, we introduce
missing values as follows: (1) First, we uniformly randomly select the number of missing values,
m € {0,1,2,3,4}. (2) We then randomly choose m unique indices from the set of past observed
time frames {1, 2, ..., Ty, } with uniform probability. Lets denote these indices as {i1, iz, . .., im }.
(3) We set the coordinates of x at the selected indices to NaN as shown in Equation [T}

zi; =NaN, Vj=1,2,...,m)

We also create a mask that indicates the location of the missing values, with the mask value set to 1 if
the coordinate is missing (NaN), and 0 otherwise.

https://doi.org/10.52202/079017-3956 124533

Data Distribution by Trajectories

121670
120000 4 EEE Training

m Test
Validation

90000 -

60000 -

Number of Trajectory Samples

30000 4

5265 5136 5118 2173

ETH-M HOTEL-M UNIV-M ZARAL-M ZARA2-M
Genres

Figure 1: Number of trajectory samples in training, testing, and validation splits of the Trajlmpute
dataset.

300000
200000

100000

150000

100000

50000

(d) Hard Train Missing Values (e) Hard Test Missing Values (f) Hard Val Missing Values

Figure 2: Illustration of the total missing coordinates in the easy and hard protocols for the ETH-M,
HOTEL-M, UNIV-M, ZARA1-M, and ZARA2-M subsets of Trajlmpute. ‘M’ refers to missing,
indicating that the subset contains missing observed coordinates. The hard protocol creates more
missing values compared to the easy protocol.

Hard Protocol. There could be scenarios where the trajectory prediction model is unable to acquire
most of the observations. In such cases, the question of how the prediction is influenced becomes of
interest to many. To simulate these scenarios, we choose to miss the majority of observed coordinates
in the observed trajectories. Out of the total 8 observed coordinates, we generate trajectories with a
minimum of 4 and a maximum of 7 missing coordinates. We induce 4, 5, 6, or 7 missing coordinates,
thus m € {4, 5,6, 7}. For simulating the hard protocol, we follow the same strategy as shown in the
easy protocol but increase the number of missing coordinates (1m).

4 Data Analysis

Training and Test Data. Our aim is to simulate real-world scenarios while generating the Trajlmpute
dataset. In the training data, we maintain the original total number of trajectories as in the predefined
training split of the ETH, HOTEL, UNIV, ZARA1, and ZARA?2 datasets for both the easy and hard
protocols. For instance, in the easy protocol, we generate training data by randomly dropping 0, 1, 2,

124534 https://doi.org/10.52202/079017-3956

Position 1 Position 8

data_<train,test,val>
| I

obs_traj pred_traj
3 |—Obsﬁtrajectory 1 I—Preditrajectory 1 Fostion2 oot
§ I—Obsftrajectory 2 Pred_trajectory 2 12.7% 12.6%
z; |—Obs_trajectory 3 I—Pred_trajectory 3
I il
= |—Obs_trajectory N |—Pred_trajectory N

loss_mask non_linear_ped position 3 Position 6

obs_traj_rel pred_traj_rel

seq_start_end. missing mask

Position 4 Position 5

data_<train,test,val>

Figure 3: Illustration of an example (right) showing the missing pattern in the trajectory sequence of
the ETH-M subset under the easy protocol. Trajimpute ensures that coordinates are equally likely
to be dropped from the trajectory sequence, ensuring that any time frame can result in missing
observations in the past trajectory. Furthermore, the structure of the Trajlmpute dataset contains a
dictionary structure with eight keys (left). Here, N is the number of trajectory sequences.

3, or 4 coordinates from each trajectory to create missing values. However, we increase the testing
data to ensure fairness and consistency in testing. For instance, in the easy protocol, we generate test
data as follows: first, we create |m| = 5 copies of each trajectory. The first copy contains no missing
coordinates. In the second copy, we randomly drop 1 coordinate. In the third copy, we randomly drop
2 coordinates. In the same way, in the fifth copy, we randomly drop 4 coordinates. We repeat this
process for all trajectories in the test data. Finally, we merge all these trajectories to obtain a test split
for the imputation and trajectory prediction tasks.

Data Statistics. The total number of trajectories in the training, test, and validation splits in each
subset of the TrajImpute dataset is shown in Fig. [I] Fig. 2]displays the total number of missing values
in each subset of TrajImpute for both the easy and hard protocols. The hard protocol results in more
missing values, whereas the easy protocol contains relatively fewer missing values. In TrajImpute,
we ensure that the trajectory sequences capture the majority of the possible patterns/permutations
of missing coordinates that could occur in the observed sequence. By sampling the missing indices
from a random uniform distribution, each coordinate is equally likely to be missing, as shown in Fig.

B (right).

Structure of Data. The Trajimpute dataset is built on top of the popular ETH, HOTEL, UNIV,
ZARAL1, and ZARA? datasets, which collectively contain 1,536 human trajectories exhibiting diverse
behaviors such as walking, crossing, grouping, and following. ETH and HOTEL include 750
pedestrians, while UNIV, ZARA1, and ZARA?2 include 786 pedestrians. Following prior pedestrian
trajectory prediction works [33} [32] [34]], we use the same settings. The dataset structure follows the
same format as previous works to ensure compatibility with existing pedestrian trajectory prediction
methods. The observed trajectory length is 3.2 seconds, divided into 8 frames, and the predicted
trajectory length is 4.8 seconds, corresponding to 12 frames. Missing observations can occur in the
observed trajectory, so our missing values (NaNs) are only in the past observed trajectory with 8 time
frames.

The structure of the Trajlmpute dataset follows a dictionary format (Fig. [3] (left)) with specific
keys, maintaining consistency across the training, testing, and validation splits. For instance, in
data_train, there are 8 keys, each serving different purposes for the trajectory prediction task. The
obs_traj key contains (values) the observed trajectories of the pedestrians, where each trajectory is
a sequence of (z,y) coordinates representing the pedestrian’s position. We simulate missing/NaN
values in the observed trajectories. The pred_traj key contains the predicted trajectories or ground
truth trajectories, which do not contain missing values. The obs_traj_rel and pred_traj_rel
keys represent the relative trajectories calculated by the finite difference/displacement from the
previous to the current position in observed trajectory and predicted trajectories. The missing_mask
key indicates where the missing values (NaNs) are present in the observed trajectory sequence.

https://doi.org/10.52202/079017-3956 124535

Table 2: Results obtained for various imputation methods on the ETH-M, HOTEL-M, UNIV-M,
ZARA1-M, and ZARA2-M subsets of Trajimpute with the easy protocol (0 < missing < 4) and the
hard protocol (4 < missing < 7). The reported results show that SITES performs relatively better
when imputing missing values. ‘M’ refers to missing, indicating that the subset contains missing
observed coordinates.

| DATASETS | Methods | Metrics | Transformer [0] US-GAN [62] BRITS [22] M-RNN[0] TimesNet [I6] SAITS [14]

\
| | | MAE | 3.1318 | 06467 | 14287 | 52558 | 11353 | 05031 |
\ | Easy-impute | MSE | 194576 | 1.8055 | 47339 | 353738 | 49441 | 09909 |
| ETH.M | | RMSE | 44111 | 13437 | 21758 | 59476 | 22235 | 09954 |
\ \ | MRE | 0.5236 | 01081 | 02389 | 08787 | 01898 | 0.0841 |
\ \ | MAE | 3.2249 | 30451 | 3.0371 | 53309 | 13656 | 09965 |
\ | Hard-impute | MSE | 19.5948 | 18.0716 | 17.9457 | 355047 | 49937 | 25934 |
\ \ | RMSE | 4.7926 | 42511 | 42362 | 59965 | 25054 | 16104 |
\ \ | MRE | 0.5734 | 05100 | 05087 | 08962 | 02287 | 0.1669 |
| | | MAE | 8.8847 | 26327 | 39033 | 32133 | 74037 | 21930 |
\ | Easy-impute | MSE | 915550 | 135993 | 23.1058 | 20.0857 | 1245438 | 8.7460 |
woreLm		RMSE	9.5684	36877	48068	44817	111599	29574
		MRE	2.9468	08732	12946	1.0658	24556	07274
		MAE	8.9096	78833	7.6057	3.2443	7.9484	2.6050
\	Hard-impute	MSE	922607	759804	720169	202543	1067010	16.0168
\ \	RMSE	9.6478	87167	84863	45005	113296	4.0021	
\ \	MRE	2.8866	26127	25207	11686	26343	0.8634	
		MAE	3.0410	09158	1.0171	6.8380	06713	01939
\	Easy-impute	MSE	140163	26297	29769	569715	07631	0.0697
untvm		RMSE	3.7438	L6216	17254	75479	08736	02639
		MRE	0.3905	01176	01306	08780	0.0862	0.0249
		MAE	3.9795	19430	1.8028	69148	09421	0.6158
\	Hard-impute	MSE	154244	6.1815	54057	57.6533	15827	0.6003
		RMSE	3.9639	24863	23250	77268	12581	0.7748
		MRE	1.0326	02495	02315	09751	01210	0.0791
		MAE	2.6288	04832	07307	51152	03125	02054
	Easy-impute	MSE	100109	08599	12306	349869	0.1768	0.0775
zararm		RMSE	3.1640	09273	1.1093	59150	04204	02784
		MRE	0.4326	00795	01202	08417	00514	0.0338
		MAE	27532	22846	23140	51921	05699	0.6277
\	Hard-impute	MSE	10.1228	7.8216	8.0351	357821	0.6327	0.8287
		RMSE	3.1816	27967	28346	59976	07955	09103
		MRE	0.4463	03756	03805	08673	0.0937	01032
\ \	MAE	2.1301	03861	05556	50905	02409	01314	
\	Easy-impute	MSE	7.3276	06212	08292	315674	01329	0.0385
ZARA2-M		RMSE	2.7070	07882	09106	56185	03645	0.1963
\ \	MRE	0.3524	00639	00919	08422	00399	0.0217	
		MAE	2.2840	18605	1.8051	51698	05031	03632
	Hard-impute	MSE	7.6342	58511	55953	323531	06525	04313
\ \	RMSE	2.8630	24180	23654	58994	08078	0.6567	
		MRE	0.3612	03077	02986	0878	00832	0.0601

loss_mask, non_linear_ped, and seq_start_end keys follow the format obtained from prior tra-
jectory prediction data processing scripts [35,132,134,61]]. More details are given in the supplementary
material.

5 Experiments and Benchmarking

In this section, we provide benchmarking of trajectory imputation and trajectory prediction methods.
Trajlmpute contains missing values in the observed trajectory sequences, and we experiment with
several imputation models to fill in these missing values. We adopt various imputation methods (Sec.
for the task of trajectory imputation, i.e., filling in the missing coordinates. We then use the

124536 https://doi.org/10.52202/079017-3956

Table 3: Results obtained for various trajectory prediction methods on the imputed subsets of
Trajlmpute. We report the ADE/FDE for the trajectory prediction task on the clean, soft imputed,
and hard imputed protocols. ‘Clean’ refers to a subset with no missing coordinates. Performance
degradation occurs when trajectory prediction is performed on the hard imputed subsets.

Baselines	GraphTern	LBEBM-ET	SGCN-ET	EQmotion	TUTR	GPGraph	
	Clean	0.42/0.58	036/0.53	0.36/0.57	040/0.61	0.40/0.61	0.43/0.63
ETH	Basy-impute	0.77/0.74	037055	0420071	0.46/0.62	0.54/0.73	0.45/0.75
	Hard-impute	0.78/0.77	0.85/1.07	1.07/1.44	047/0.63	1.12/1.53	0.92/0.93
	Clean	0.14/023	0.12/0.19	0.13/021	0.12/0.18	0.11/0.18	0.18/0.30
Hotel	Easy-impute	0.15/025	013020	0.14/023	0.65/0.68	1.31/1.66	0.19/031
	Hard-impute	1.68/1.42	331/4.13	321/392	0.72/0.74	336/3.95	1.89/1.70
	Clean	026/045	024/043	024/043	0.23/043	0.23/0.42	0.24/0.42
UNV	Easy-impute	027047	030051	029051	0.37/0.61	0.31/0.49	025044
	Hard-impute	0.50/0.51	0.64/1.01	0.77/1.21	039/0.70	0.59/0.85	0.53/0.50
	Clean	021/0.37	0.19/033	0.20/0.35	0.18/0.32	0.18/0.34	0.17/0.31
ZARAL) Basy-impute	022038	0200035	022038	0.27/0.43	0.24/0.41	0.18/032	
	Hard-impute	0.96/1.25	037/0.60	0.61/0.97	028044	0.50/0.77	0.58/0.45
	Clean	0.17/029	0.14/024	0.15/0.26	0.13/023	0.13/0.25	0.15/0.29
ZARAZ	Easy-impute	0.18/030	0.16/027	0.17/029	0.36/0.54	0.25/0.37	0.29/0.30

| Hard-impute | 0.37/0.44 0.27/0.43 | 0.41/0.63 | 0.37/0.55 | 0.33/0.50 | 0.36/0.34 |

imputed trajectories from the best imputation model to benchmark pedestrian trajectory prediction

methods (Sec. [5.2)).

5.1 Trajectory Imputataion

The performance of imputation methods is evaluated using four metrics: Mean Absolute Error (MAE),
Root Mean Square Error (RMSE), Mean Square Error (MSE), and Mean Relative Error (MRE).
It is important to note that only the values indicated by mask in the inputs are used to calculate
the imputation errors. For instance, calc_mae(prediction, target, mask) calculates the imputation
error using the MAE metric. Here, prediction is the imputed trajectory, the target is the original
trajectory, and the mask is the indicating mask, which indicates the imputed indices {41, 2, . . ., i }-
More details on evaluation metrics are given in the appendix.

Performance of Imputation Models. We evaluate six imputation baselines for the task of trajectory
imputation on the Trajimpute dataset. These baselines include SAITS [14], US-GAN [62], Trans-
former [23]], TimesNet [16], BRITS [22], and M-RNN [9]. The results are reported in Table Q} We
evaluate the imputation methods on both easy and hard protocols separately. On the ETH-M subset
of the dataset, SAITS performs better than other methods. On HOTEL-M, SAITS achieves better
imputation results on both the easy and hard protocols. On UNIV-M, SAITS performs much better on
both protocols. On ZARA1-M, SAITS performs better on the easy protocol, while TimesNet performs
better on the hard protocol. On ZARA2-M, SAITS outperforms the other imputation methods. In
conclusion, SAITS performs relatively better than the other imputation methods, indicating that
SAITS is able to reconstruct the missing coordinates with minimum errors most of the time among
all compared methods for pedestrian trajectory.

5.2 Trajectory Prediction

We use the imputed data obtained from the best-performing imputation model on each subset of
TrajImpute to perform the trajectory prediction task. We evaluate the performance of the trajectory
prediction model using the Average Displacement Error (ADE) and Final Displacement Error (FDE)
metrics. The ADE calculates the average Euclidean distance between the predicted trajectory and the

https://doi.org/10.52202/079017-3956 124537

Table 4: Training Time (TT) and Test Inference Time (TIT) of various imputation methods on the
ETH-M dataset. The training time is reported per epoch in minutes, and the inference time is reported
in seconds.

Transformer | US-GAN | BRITS | M-RNN | TimesNet | SAITS
TT: 214 min | TT:5.72min | TT: 293 min | TT:2.61 min | TT: 1.15 min | TT: 0.22 min
TIT: 0.23 sec | TIT: 1.45 sec | TIT: 1.84 sec | TIT: 0.48 sec | TIT: 0.40 sec | TIT: 0.29 sec

Table 5: Training and test time for trajectory prediction methods on the ETH-M dataset.
Methods | Eqmotion | GraphTern | LBEBM-ET | SGCN-ET | TUTR

Test Time | 0.68 seconds | 4.10 seconds | 13.86 seconds | 5seconds | 0.43 seconds

Training Time | 44.11 seconds | 55seconds | 58seconds | 62seconds | 6.41 seconds

Predicted Trajectory

Predicted Trajectory

—8— Observed
—%— Ground Truth I
ted

—8— Observed
—*— Ground Truth I
icted

(a) Predictions from clean observations. (b) Predictions from missing observations.

Predicted Trajectory
¥ i —&— Observed

—#— Ground Truth
—#- Predicted

(c) Predictions from soft imputed observations. (d) Predictions from hard imputed observations.

Figure 4: Illustrations of predictions under different observation conditions: clean, missing, soft
imputed, and hard imputed observations.

ground truth trajectory for each time frame, while the FDE calculates the Euclidean distance at the
final time frame. More details are provided in the appendix.

Performance of Prediction Models. We evaluate recent trajectory prediction models on the imputed
trajectory data, including GraphTern [6], SGCN-ET [61]], EQMotion [63], TUTR [64], LBEBM-ET
[61], and GPGraph [65]. The results are reported in Table [3] It is evident from the results that
the trajectory prediction performance of all models tends to decrease with the Hard-impute setting.
EQMotion has shown a comparatively smaller decline in performance when predictions are made on
the hard imputed data. Training time and inference time of the imputation and trajectory prediction
models are reported in Tables @] and 3]

124538 https://doi.org/10.52202/079017-3956

5.3 Qualitative Results

We visualize the trajectory predictions using the GraphTern model under four different settings: clean
(no missing values), missing, Easy-Impute, and Hard-Impute (imputed using the SAITS method). Fig.
demonstrates that the poorest prediction results occur with missing observations. The prediction
results in Fig. d]improve compared to Fig. [#b] when using hard-imputed observations. Additionally,
the prediction results in Fig. [dc|show a significant improvement over Fig. bl when using soft-imputed
observations, although they remain below the prediction results in Fig. 4af(clean observations — no
missing values).

6 Discussion

From our comprehensive evaluation, we draw the following key insights: most of the imputation
methods do not perform well on the task of imputing missing coordinates for pedestrian trajectories,
except for SAITS. However, the performance of SAITS also starts degrading as the number of missing
values increases (Hard vs. Easy). This indicates a need for imputation methods specifically tailored
for pedestrian trajectory imputation. Furthermore, most of the trajectory prediction models do not
perform well even in the Easy-impute setting, and all perform very poorly in the Hard-impute setting.
Therefore, existing trajectory prediction models are unable to handle imputed data effectively. This
indicates a need for developing trajectory prediction models specifically tailored either to directly
handle missing coordinates present in observed trajectories or to perform better with imputed data.
Thus, our TrajImpute dataset will foster future research in the trajectory prediction area.

Broader Impact. Our paper aims to bridge the gap between real-world scenarios and the rigid
assumption that all coordinates are present in observed trajectories. By focusing on the challenge
of anticipating and handling missing observed coordinates, we aim to enhance the effectiveness
of trajectory prediction methods in real-world applications such as self-driving automobiles, robot
navigation, human behaviour understanding, and more. A breakdown of the broader impact across
different domains is given below:

1. For autonomous vehicles, trajectory prediction is essential for anticipating the movements of
pedestrians and obstacles. Missing data due to sensor occlusions or failures can compromise the
vehicle’s ability to make safe decisions. Robust trajectory prediction under missing observations
enhances safety by ensuring the vehicle can operate safely.

2. In dynamic environments, robots must predict the movements of humans, other robots, and objects
to navigate safely. Missing data could lead to collisions or inefficient paths. Effective trajectory
prediction under these circumstances ensures that robots can avoid obstacles and navigate more
effectively.

3. In applications like crowd monitoring or event management, predicting the trajectory of people
is vital. Missing data due to occlusions, sensor limitations, or other factors can lead to inaccurate
predictions. Robust trajectory prediction can help manage large crowds more effectively, ensuring
safety and efficiency.

Limitation. Future work can expand our work by incorporating new datasets, as mentioned in Table
[l and simulating the missing coordinates in these datasets, too. Imputation and trajectory prediction
on these new datasets will provide additional insights to better access the performance of existing
trajectory prediction methods.

7 Conclusion and Future Work

This paper introduces a trajectory prediction dataset with missing values in the observed coordinates.
We conduct a comprehensive examination of several imputation methods to reconstruct these missing
coordinates and benchmark their effectiveness for imputing pedestrian trajectories. Additionally, we
analyze recent trajectory prediction methods and assess their performance on the imputed trajectories.
Our experimental evaluation of both imputation and trajectory prediction methods yields several
valuable insights. We empirically demonstrate the necessity of imputation methods specifically
designed for pedestrian trajectory imputation. Moreover, our findings reveal that most trajectory
prediction models perform poorly with imputed data, highlighting the need for developing models
specifically tailored to handle missing coordinates for real-world applications.

https://doi.org/10.52202/079017-3956 124539

References

[1] Liushuai Shi, Le Wang, Chengjiang Long, Sanping Zhou, Mo Zhou, Zhenxing Niu, and
Gang Hua. Sgen: Sparse graph convolution network for pedestrian trajectory prediction. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
8994-9003, 2021.

[2] Chenxin Xu, Maosen Li, Zhenyang Ni, Ya Zhang, and Siheng Chen. Groupnet: Multiscale
hypergraph neural networks for trajectory prediction with relational reasoning. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages
6498-6507, June 2022.

[3] Mingkun Wang, Xinge Zhu, Changqian Yu, Wei Li, Yuexin Ma, Ruochun Jin, Xiaoguang Ren,
Dongchun Ren, Mingxu Wang, and Wenjing Yang. Ganet: Goal area network for motion
forecasting. In 2023 IEEE International Conference on Robotics and Automation (ICRA), pages
1609-1615. IEEE, 2023.

[4] Karttikeya Mangalam, Yang An, Harshayu Girase, and Jitendra Malik. From goals, waypoints &
paths to long term human trajectory forecasting. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 15233-15242, 2021.

[5] Luigi Filippo Chiara, Pasquale Coscia, Sourav Das, Simone Calderara, Rita Cucchiara, and
Lamberto Ballan. Goal-driven self-attentive recurrent networks for trajectory prediction. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
2518-2527, 2022.

[6] Inhwan Bae and Hae-Gon Jeon. A set of control points conditioned pedestrian trajectory
prediction. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 37, pages
6155-6165, 2023.

[7] Pranav Singh Chib and Pravendra Singh. Recent advancements in end-to-end autonomous
driving using deep learning: A survey. I[EEE Transactions on Intelligent Vehicles, 9(1):103-118,
2024.

[8] Yi Xu, Armin Bazarjani, Hyung-gun Chi, Chiho Choi, and Yun Fu. Uncovering the missing
pattern: Unified framework towards trajectory imputation and prediction. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 9632-9643, 2023.

[9] Jinsung Yoon, William R. Zame, and Mihaela van der Schaar. Estimating missing data in
temporal data streams using multi-directional recurrent neural networks. IEEE Transactions on
Biomedical Engineering, 66(5):1477-1490, 2019.

[10] Yukai Liu, Rose Yu, Stephan Zheng, Eric Zhan, and Yisong Yue. NAOMI: Non-autoregressive
multiresolution sequence imputation. In Advances in Neural Information Processing Systems,
volume 32. Curran Associates, Inc., 2019.

[11] Siddharth Ramchandran, Gleb Tikhonov, Kalle Kujanpdd, Miika Koskinen, and Harri
Lihdesmaiki. Longitudinal variational autoencoder. In Arindam Banerjee and Kenji Fukumizu,
editors, Proceedings of The 24th International Conference on Artificial Intelligence and Statis-
tics, volume 130 of Proceedings of Machine Learning Research, pages 3898-3906. PMLR,
13-15 Apr 2021.

[12] Siyuan Shan and Junier B. Oliva. NRTSI: Non-recurrent time series imputation. ArXiv,
abs/2102.03340, 2021.

[13] Jiawei Ma, Zheng Shou, Alireza Zareian, Hassan Mansour, Anthony Vetro, and Shih-Fu Chang.
CDSA: cross-dimensional self-attention for multivariate, geo-tagged time series imputation.
CoRR, abs/1905.09904, 2019.

[14] Wenjie Du, David C6té, and Yan Liu. Saits: Self-attention-based imputation for time series.
Expert Systems with Applications, 219:119619, 2023.

[15] Parikshit Bansal, Prathamesh Deshpande, and Sunita Sarawagi. Missing value imputation on
multidimensional time series. ArXiv, abs/2103.01600, 2021.

124540 https://doi.org/10.52202/079017-3956

[16] Haixu Wu, Tengge Hu, Yong Liu, Hang Zhou, Jianmin Wang, and Mingsheng Long. Timesnet:
Temporal 2d-variation modeling for general time series analysis. In The eleventh international
conference on learning representations, 2022.

[17] Mengshi Qi, Jie Qin, Yu Wu, and Yi Yang. Imitative non-autoregressive modeling for trajectory
forecasting and imputation. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 12736—12745, 2020.

[18] Pranav Singh Chib, Achintya Nath, Paritosh Kabra, Ishu Gupta, and Pravendra Singh. Ms-tip:
Imputation aware pedestrian trajectory prediction. In International Conference on Machine
Learning, pages 8389-8402. PMLR, 2024.

[19] Alon Lerner, Yiorgos Chrysanthou, and Dani Lischinski. Crowds by example. In Computer
graphics forum, volume 26, pages 655-664. Wiley Online Library, 2007.

[20] Stefano Pellegrini, Andreas Ess, Konrad Schindler, and Luc Van Gool. You’ll never walk alone:
Modeling social behavior for multi-target tracking. In 2009 IEEE 12th international conference
on computer vision, pages 261-268. IEEE, 2009.

[21] Vincent Fortuin, Dmitry Baranchuk, Gunnar Raetsch, and Stephan Mandt. GP-VAE: Deep
probabilistic time series imputation. In Proceedings of the Twenty Third International Confer-

ence on Artificial Intelligence and Statistics, volume 108 of Proceedings of Machine Learning
Research, pages 1651-1661. PMLR, 26-28 Aug 2020.

[22] Wei Cao, Dong Wang, Jian Li, Hao Zhou, Lei Li, and Yitan Li. Brits: Bidirectional recurrent
imputation for time series. Advances in neural information processing systems, 31, 2018.

[23] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

[24] Yonghong Luo, Xiangrui Cai, Ying ZHANG, Jun Xu, and Yuan xiaojie. Multivariate time
series imputation with generative adversarial networks. In S. Bengio, H. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural Information Pro-
cessing Systems, volume 31. Curran Associates, Inc., 2018.

[25] M. Ashman, Jonathan So, Will Tebbutt, Vincent Fortuin, Michael Pearce, and Richard E. Turner.
Sparse gaussian process variational autoencoders. ArXiv, abs/2010.10177, 2020.

[26] Dirk Helbing and Peter Molnar. Social force model for pedestrian dynamics. Physical review E,
51(5):4282, 1995.

[27] Alexandre Alahi, Kratarth Goel, Vignesh Ramanathan, Alexandre Robicquet, Li Fei-Fei, and
Silvio Savarese. Social Istm: Human trajectory prediction in crowded spaces. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pages 961-971, 2016.

[28] Yingfan Huang, Huikun Bi, Zhaoxin Li, Tianlu Mao, and Zhaoqi Wang. Stgat: Modeling
spatial-temporal interactions for human trajectory prediction. In Proceedings of the IEEE/CVF
international conference on computer vision, pages 6272—6281, 2019.

[29] Sepp Hochreiter and Jiirgen Schmidhuber. Long short-term memory. Neural computation,
9(8):1735-1780, 1997.

[30] Mihee Lee, Samuel S Sohn, Seonghyeon Moon, Sejong Yoon, Mubbasir Kapadia, and Vladimir
Pavlovic. Muse-vae: multi-scale vae for environment-aware long term trajectory prediction. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
2221-2230, 2022.

[31] Chenxin Xu, Yuxi Wei, Bohan Tang, Sheng Yin, Ya Zhang, and Siheng Chen. Dynamic-group-

aware networks for multi-agent trajectory prediction with relational reasoning. arXiv preprint
arXiv:2206.13114, 2022.

https://doi.org/10.52202/079017-3956 124541

[32] Karttikeya Mangalam, Harshayu Girase, Shreyas Agarwal, Kuan-Hui Lee, Ehsan Adeli, Jitendra
Malik, and Adrien Gaidon. It is not the journey but the destination: Endpoint conditioned
trajectory prediction. In Computer Vision—-ECCV 2020: 16th European Conference, Glasgow,
UK, August 23-28, 2020, Proceedings, Part Il 16, pages 759-776. Springer, 2020.

[33] Amir Sadeghian, Vineet Kosaraju, Ali Sadeghian, Noriaki Hirose, Hamid Rezatofighi, and
Silvio Savarese. Sophie: An attentive gan for predicting paths compliant to social and physical
constraints. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 1349-1358, 2019.

[34] Yue Hu, Siheng Chen, Ya Zhang, and Xiao Gu. Collaborative motion prediction via neural
motion message passing. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 6319-6328, 2020.

[35] Agrim Gupta, Justin Johnson, Li Fei-Fei, Silvio Savarese, and Alexandre Alahi. Social gan:
Socially acceptable trajectories with generative adversarial networks. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages 2255-2264, 2018.

[36] Vineet Kosaraju, Amir Sadeghian, Roberto Martin-Martin, Ian Reid, Hamid Rezatofighi, and
Silvio Savarese. Social-bigat: Multimodal trajectory forecasting using bicycle-gan and graph
attention networks. Advances in Neural Information Processing Systems, 32, 2019.

[37] Weibo Mao, Chenxin Xu, Qi Zhu, Siheng Chen, and Yanfeng Wang. Leapfrog diffusion model
for stochastic trajectory prediction. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 5517-5526, 2023.

[38] Roger Girgis, Florian Golemo, Felipe Codevilla, Martin Weiss, Jim Aldon D’Souza,
Samira Ebrahimi Kahou, Felix Heide, and Christopher Pal. Latent variable sequential set
transformers for joint multi-agent motion prediction. In International Conference on Learning
Representations, 2022.

[39] Ye Yuan, Xinshuo Weng, Yanglan Ou, and Kris M Kitani. Agentformer: Agent-aware transform-
ers for socio-temporal multi-agent forecasting. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 9813-9823, 2021.

[40] Zikang Zhou, Jianping Wang, Yung-Hui Li, and Yu-Kai Huang. Query-centric trajectory
prediction. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 17863—17873, 2023.

[41] Cunjun Yu, Xiao Ma, Jiawei Ren, Haiyu Zhao, and Shuai Yi. Spatio-temporal graph transformer
networks for pedestrian trajectory prediction. In Computer Vision—-ECCV 2020: 16th European
Conference, Glasgow, UK, August 23-28, 2020, Proceedings, Part XII 16, pages 507-523.
Springer, 2020.

[42] Pranav Singh Chib and Pravendra Singh. Lg-traj: LIm guided pedestrian trajectory prediction.
arXiv preprint arXiv:2403.08032, 2024.

[43] Pranav Singh Chib and Pravendra Singh. Ccf: Cross correcting framework for pedestrian
trajectory prediction. arXiv preprint arXiv:2406.00749, 2024.

[44] Pei Lv, Wentong Wang, Yunxin Wang, Yuzhen Zhang, Mingliang Xu, and Changsheng Xu.
Ssagen: social soft attention graph convolution network for pedestrian trajectory prediction.
IEEE transactions on neural networks and learning systems, 2023.

[45] Jasmine Sekhon and Cody Fleming. Scan: A spatial context attentive network for joint multi-
agent intent prediction. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 35, pages 6119-6127, 2021.

[46] Thomas Kipf, Ethan Fetaya, Kuan-Chieh Wang, Max Welling, and Richard Zemel. Neural
relational inference for interacting systems. In Jennifer Dy and Andreas Krause, editors, Pro-
ceedings of the 35th International Conference on Machine Learning, volume 80 of Proceedings
of Machine Learning Research, pages 2688-2697. PMLR, 10-15 Jul 2018.

124542 https://doi.org/10.52202/079017-3956

[47] Pranav Singh Chib and Pravendra Singh. Improving trajectory prediction in dynamic multi-agent
environment by dropping waypoints. Knowledge-Based Systems, 300:112240, 2024.

[48] Pranav Singh Chib and Pravendra Singh. Enhancing trajectory prediction through self-
supervised waypoint distortion prediction. In International Conference on Machine Learning,
pages 8403-8416. PMLR, 2024.

[49] Alessio Monti, Angelo Porrello, Simone Calderara, Pasquale Coscia, Lamberto Ballan, and
Rita Cucchiara. How many observations are enough? knowledge distillation for trajectory
forecasting. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pages 6543-6552, 2022.

[50] Eric Zhan, Stephan Zheng, Yisong Yue, Long Sha, and Patrick Lucey. Generating multi-agent
trajectories using programmatic weak supervision. arXiv preprint arXiv:1803.07612, 2018.

[51] Alexandre Robicquet, Amir Sadeghian, Alexandre Alahi, and Silvio Savarese. Learning social
etiquette: Human trajectory understanding in crowded scenes. In Computer Vision—-ECCV 2016:
14th European Conference, Amsterdam, The Netherlands, October 11-14, 2016, Proceedings,
Part VIII 14, pages 549-565. Springer, 2016.

[52] Parth Kothari, Sven Kreiss, and Alexandre Alahi. Human trajectory forecasting in crowds: A
deep learning perspective. IEEE Transactions on Intelligent Transportation Systems, pages
1-15, 2021.

[53] Shuai Yi, Hongsheng Li, and Xiaogang Wang. Understanding pedestrian behaviors from
stationary crowd groups. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 3488-3496, 2015.

[54] James Ferryman and Ali Shahrokni. Pets2009: Dataset and challenge. In 2009 Twelfth IEEE
international workshop on performance evaluation of tracking and surveillance, pages 1-6.
IEEE, 2009.

[55] Julian Bock, Robert Krajewski, Tobias Moers, Steffen Runde, Lennart Vater, and Lutz Eckstein.
The ind dataset: A drone dataset of naturalistic road user trajectories at german intersections. In
2020 IEEE Intelligent Vehicles Symposium (IV), pages 1929-1934. IEEE, 2020.

[56] Benjamin Wilson, William Qi, Tanmay Agarwal, John Lambert, Jagjeet Singh, Siddhesh
Khandelwal, Bowen Pan, Ratnesh Kumar, Andrew Hartnett, Jhony Kaesemodel Pontes, Deva
Ramanan, Peter Carr, and James Hays. Argoverse 2: Next generation datasets for self-driving
perception and forecasting. In Proceedings of the Neural Information Processing Systems Track
on Datasets and Benchmarks (NeurIPS Datasets and Benchmarks 2021), 2021.

[57] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for autonomous driving?

the kitti vision benchmark suite. In Conference on Computer Vision and Pattern Recognition
(CVPR), 2012.

[58] Elias Strigel, Daniel Meissner, Florian Seeliger, Benjamin Wilking, and Klaus Dietmayer. The
ko-per intersection laserscanner and video dataset. In /7¢h International IEEE Conference on
Intelligent Transportation Systems (ITSC), pages 1900-1901. IEEE, 2014.

[59] Rohan Chandra, Uttaran Bhattacharya, Aniket Bera, and Dinesh Manocha. Traphic: Trajectory
prediction in dense and heterogeneous traffic using weighted interactions. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 8483-8492, 2019.

[60] Nick Webb, Dan Smith, Christopher Ludwick, Trent Victor, Qi Hommes, Francesca Favaro,
George Ivanov, and Tom Daniel. Waymo’s safety methodologies and safety readiness determi-
nations. arXiv preprint arXiv:2011.00054, 2020.

[61] Inhwan Bae, Jean Oh, and Hae-Gon Jeon. Eigentrajectory: Low-rank descriptors for multi-

modal trajectory forecasting. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 10017-10029, 2023.

https://doi.org/10.52202/079017-3956 124543

[62] Xiaoye Miao, Yangyang Wu, Jun Wang, Yunjun Gao, Xudong Mao, and Jianwei Yin. Generative
semi-supervised learning for multivariate time series imputation. In Proceedings of the AAAI
conference on artificial intelligence, volume 35, pages 8983-8991, 2021.

[63] Chenxin Xu, Robby T Tan, Yuhong Tan, Siheng Chen, Yu Guang Wang, Xinchao Wang, and
Yanfeng Wang. Eqmotion: Equivariant multi-agent motion prediction with invariant interaction
reasoning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 1410-1420, 2023.

[64] Liushuai Shi, Le Wang, Sanping Zhou, and Gang Hua. Trajectory unified transformer for
pedestrian trajectory prediction. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 9675-9684, 2023.

[65] Inhwan Bae, Jin-Hwi Park, and Hae-Gon Jeon. Learning pedestrian group representations for
multi-modal trajectory prediction. In Proceedings of the European Conference on Computer
Vision, 2022.

124544 https://doi.org/10.52202/079017-3956

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [IN/A |

3. If you ran experiments (e.g. for benchmarks)...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes] The code and
data will be under MIT licence

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes]

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]

(b) Did you mention the license of the assets? [Yes]

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

(d) Did you discuss whether and how consent was obtained from people whose data you're
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [IN/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A |

https://doi.org/10.52202/079017-3956 124545

Appendix
A Evaluation Metrics

Mean Absolute Error

D Tob |7+ .. d
ted — 1 k
MAE (imputed, original, mask) — Y oieq 225 | (imputed — original) © mask|¢ @

Zle ZtT:i maskf

Root Mean Square Error

d

Z?:l ZtT;bl (((imputed — original) ® mask)2)t 4

D T,
Dty 242 mask]

RMSE (imputed, original, mask) =

Mean Relative Error

D Top 1 /e .. d
ted — 1 k
MRE (imputed, original, mask) = Zdzl 25:1 |(II;1Pu € original) @dmas | " @)
Y odet 2ol |original ® mask|;

Mean Square Error

d

th)=1 ZtT;”l (((imputed — original) ® mask)2>
: (5

D T, d
D=1 D=y masky

Average Displacement Error is calculated as the average of Euclidean distances between the
predicted trajectory 7; and the ground truth trajectory y; over all time steps (m).

MSE (imputed, original, mask) =

1 [~
ADE = — 3 |5 -y ©)
mi4
Final Displacement Error calculates the Euclidean distance at the final time frame (7}, +y)-
_— . Tn+m Tritm
FDE = 33"+ — yi oo ™

124546 https://doi.org/10.52202/079017-3956

