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Abstract

The lack of object-level labels presents a significant challenge for 3D object re-
trieval in the open-set environment. However, part-level shapes of objects often
share commonalities across categories but remain underexploited in existing re-
trieval methods. In this paper, we introduce the Hypergraph-Based Assembly Fuzzy
Representation (HAFR) framework, which navigates the intricacies of open-set 3D
object retrieval through a bottom-up lens of Part Assembly. To tackle the challenge
of assembly isomorphism and unification, we propose the Hypergraph Isomorphism
Convolution (HIConv) for smoothing and adopt the Isomorphic Assembly Embed-
ding (IAE) module to generate assembly embeddings with geometric-semantic
consistency. To address the challenge of open-set category generalization, our
method employs high-order correlations and fuzzy representation to mitigate dis-
tribution skew through the Structure Fuzzy Reconstruction (SFR) module, by
constructing a leveraged hypergraph based on local certainty and global uncertainty
correlations. We construct three open-set retrieval datasets for 3D objects with part-
level annotations: OP-SHNP, OP-INTRA, and OP-COSEG. Extensive experiments
and ablation studies on these three benchmarks show our method outperforms
current state-of-the-art methods.

1 Introduction

With the growing accessibility of 3D data, 3D object retrieval (3DOR) has emerged as an important
area of interest in computer vision [19, 12]. The key objective of 3DOR is to establish connections
between query and target samples via model training. Despite significant progress in recent years
enhancing the development of 3DOR, most existing methods are still based on the closed-set as-
sumption, where all categories encountered in the testing phase have been seen during training [6].
However, training sets can not cover all potential categories in real-world applications [32], which
hinders accurate retrieval for unseen categories. Although object-level categories are difficult to
cover, the part-level shapes of objects across object-level categories often share commonalities [17]
among objects, which may provide sufficient semantic information of the object [29, 33]. However,
this part-level method still remains underexploited on assembly-based representation for open-set
retrieval.

3D parts, as essential components in shape representation and analysis, have the capability to represent
potential information for both semantic [30] and geometric [25] level tasks. Recently, there has
been an increasing application of assembly-based methods in the realm of 3D vision [24, 37]. From
a geometric perspective, current methods for 3D part assembly impose strict constraints on the
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Figure 1: Illustration of the assembly-based open-set 3DOR task and proposed HAFR framework.
Given 3D objects of unseen categories, our method takes several part features and generates the as-
sembly embedding isomorphically for each object. Then fuzzy embeddings are generated via leverage
propagation and fuzzy reconstruction for open-set retrieval with unseen categories generalization.

categories or quantities of parts [45], presenting a substantial challenge for implementation in an
open-set environment. These methods often overlook the isomorphism and correlations between parts
of the same object [20] during semantic embedding. This oversight diminishes the generalization
capabilities of the representation model and exacerbates the distribution skew of unseen categories
during open-set learning [47, 27]. In this paper, we explore the part-assembly representation method
from both semantic and geometric perspectives to mitigate the distribution skew of unseen categories,
aiming to enhance the generalization performance for open-set 3D object retrieval.

Distinct from existing 3D shape assembly or open-set learning methods, the assembly-based open-set
retrieval task emphasizes global-level semantics in object representation and requires enhanced
generalization of geometric assembly. This leads to several challenges for assembly-based open-set
retrieval, including: First, the difficulty of achieving assembly isomorphism for part features.
While part features can effectively capture the categorical information of objects, direct fusion for
multiple parts may lead to inconsistencies arising from geometric factors, including the order of
input and the presence of repeated parts. Consequently, there is a strong motivation to achieve
assembly isomorphism for part features with geometric-semantic consistency. Second, the difficulty
in achieving assembly unification across different parts entails mapping and integrating part
embeddings from the local-part space to the global-object space. Third, the difficulty in open-
set category generalization against distribution skew, which requires spatial propagation and
generalization for object embeddings from the seen certainty to unseen uncertainty space.

Addressing the aforementioned challenges, we explore a method for open-set retrieval tasks through
a bottom-up lens of Part Assembly. As shown in Figure 1, we introduce the Hypergraph-based As-
sembly Fuzzy Representation (HAFR) framework for assembly-based open-set 3DOR. On one hand,
to tackle the challenge of assembly isomorphism and unification, we first propose the Hypergraph
Isomorphism Convolution (HIConv) layer for feature smoothing, and then we adopt the Isomorphic
Assembly Embedding (IAE) module for embedding integration with geometric-semantic consistency.
On the other hand, to overcome the difficulty in category generalization, we construct a leverage
hypergraph based on the local-certainty and global-uncertainty correlations. This structure captures
potential leveraged correlations between seen and unseen categories for propagation. Besides, we
adopt the Structure Fuzzy Reconstruction (SFR) module to exploit the fuzzy representation approach
for open-set category generalization. Our contributions are summarized as follows:

• We explore a method to navigate the intricacies of open-set 3D object retrieval through
a bottom-up lens of Part Assembly, and we construct three 3D point cloud datasets with
multiple part annotations for benchmarking.

• We propose the HAFR framework for assembly-based open-set 3D object retrieval tasks,
including the Isomorphic Assembly Embedding (IAE) and the Structured Fuzzy Reconstruc-
tion (SFR) modules, which are designed to generate assembly embeddings with geometric-
semantic consistency and overcome the distribution skew of unseen categories.

2
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• We propose the Hypergraph Isomorphism Convolution (HIConv) and a leverage hypergraph
structure to capture the high-order correlations within and among objects, utilizing them for
assembly isomorphism and open-set category generalization.

• Extensive experiments are conducted on the three benchmarks for evaluation, demonstrating
the superiority of HAFR over current state-of-the-art 3D object retrieval methods.

2 Related Work

2.1 3D Object Retrieval

Most current 3D object retrieval methods operate under the closed-set assumption, meaning that the
training and testing sets exhibit the same distribution of categories. These methods are divided into
single-modal and multi-modal types. Single-modal 3D object retrieval focuses on identifying similar
objects within a single modality of 3D data. For example, [31] and [35] use a view-based graph
model to generate aggregated embeddings from multi-view data. [13] introduces a triplet-center
loss to cluster objects of the same category and separate those of different categories. HGNN [9]
employs a hypergraph-based structure to capture high-order correlations among objects for improved
embeddings. Multi-modal retrieval methods [26, 22, 43, 44, 7, 2] use weighted fusion or feature
fusion networks to aggregate embeddings from different modality-specific features. Additionally,
CMCL [15] proposes a cross-modal center loss to minimize differences across various 3D modalities
using common center embeddings.

2.2 Open-Set Learning

Open-set learning focuses on conducting machine learning research in scenarios where key factors
are variable [47]. [32] introduces the Semantic Shift Benchmark (SSB) for open-set recognition.
[46] proposes a "none-of-above" classifier to determine if a sample belongs to known categories. [5]
presents an adversarial method to minimize the overlap between known and unknown distributions.
Additionally, several open-set recognition methods for 3D object learning have been proposed [3,
16, 1, 48]. However, retrieval tasks in open-set scenarios are more practical than recognition due
to the fundamentals of representation. Only a few methods [8, 23, 40, 39, 38] tackle the open-set
3DOR task, focusing on structure learning networks while neglecting the intricacies of the open-set
environment.

2.3 3D Shape Assembly

Much research in computer graphics has concentrated on assembly representation for the reconstruc-
tion [37], analysis [34], and generation [17] of 3D shapes. As for the assembly-related method for
retrieval, most existing methods primarily focus on establishing relationships between parts of one
object and parts of other objects [10], then utilize these connections for shape analysis [21] or part
retrieval [4]. Although these methods have achieved satisfactory results, they rarely concentrate on
the higher-order semantic connections from parts to objects, which makes them challenging to apply
in 3D object retrieval. Additionally, their geometric constraints also limit their application in open-set
environments.

3 Problem Setup

3.1 Open-Set 3D Object Retrieval

Given 3D objects from the query set Dq , the 3D object retrieval (3DOR) task is to find similar samples
from the target set Dt. The core approach for the 3DOR task is to learn the relationship between
query samples and target samples from the training set Dtrn. Each 3D object can be denoted as
(si, yi), the yi ∈ Y = {cj}Yj=1 is the category label associated with the 3D object sample si.

In the open-set environment for 3DOR, all categories of samples in the testing set have not been
learned in the training set, each retrieval sample is from unseen categories for the model, termed as
Open-Set Retrieval. Specifically, the open-set settings means that the testing set Dtes = {Dq,Dt}
and the training set Dtrn are drawn from the different distributions. For the testing set Dtes =
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Figure 2: An overview of the Hypergraph-Based Assembly Fuzzy Representation (HAFR) framework
for assembly-based open-set 3D object retrieval. Our framework is composed of the Assembled
Isomorphism Embedding (IAE) and Structured Fuzzy Reconstruction (SFR) modules, which are
designed for geometric-semantic consistent integration and fuzzy-aware generalization, respectively.

{(si, ŷi)}Ti=1 = {Dq,Dt} and the training set Dtrn = {(si, yi)}Li=1, the category space of them are
not the same indicating ŷi ∈ Ŷ = {ĉj}Ŷj=1, yi ∈ Y = {cj}Yj=1, and Ŷ ∩ Y = ∅.

3.2 Assembly Representation for Retrieval

Typically, each 3D object can be decomposed into multiple parts based on its shape and semantic
information, and it can be regarded as a model assembled from these parts, i.e., the doors, roofs,
hoods, and wheels of cars, the seats, backs, arms, and legs of the chairs. Face the emergence of the
open-set environment with incomplete or missing class labels, the assembly representation based
on multiple local parts may provide enough semantic information than global object features for
retrieval. We termed this presentation for open-set 3DOR as Assembly Representation:

si ∈ S = {{pri }Pr=1}Ni=1, (1)
where S denote the set of 3D objects, si = {pri }Pr=1 denotes a 3D object represented by P semantic
parts, N denotes the number of samples in S.

Consequently, the assembly-based open-set 3DOR aims to design a method to retrieve similar samples
of query in the testing set Dtes = {({pri }Pr=1, ŷi)}Ti=1 = {Dq,Dt}, based on the data and knowledge
in the training set Dtrn = {({pri }Pr=1, yi)}Li=1. The assembly-based open-set 3DOR by multiple
parts aims to minimize the expected risk:

f∗ = argmin
f∈H

E(Di,Dj)∼(Dq,Dt)

[
χ{ŷi ̸=ŷj}e

−∥f({pr
i }

P
r=1)−f({pr

j}
P
r=1)∥2

+χ{ŷi=ŷj}(1− e−∥f({pr
i }

P
r=1)−f({pr

j}
P
r=1)∥2)

], (2)

where Di = ({pri }Pr=1, ni, ŷi) and Dj = ({prj}Pr=1, nj , ŷj) are the object samples selected from
the query set Dq and target set Dt. χ{·} denotes the indicator function, which evaluates to 1 when
the specified condition holds true and 0 otherwise. The embedding function f := {pri }Pr=1 → vi
maps multiple parts {prj}Pr=1 of an object to an assembly representation vector vi ∈ Rd, facilitating
similarity-based retrieval. H denotes the hypothesis space of the embedding function. The L2 norm
function

∥∥ ·
∥∥
2

is used as a distance metric to measure the Euclidean distance between two vectors.

4 Methodology

4.1 Overall Framework

As shown in Figure 2, the proposed Hypergraph-Based Assembly Fuzzy Representation (HAFR)
framework is composed of two modules: Isomorphic Assembly Embedding (IAE) and Structured
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Fuzzy Reconstruction (SFR). The framework takes the basic features of different parts as input. In
the IAE stage, the multiple features are assembled isomorphically by the Hypergraph Isomorphism
Convolution (HIConv), and the assembly embeddings are generated from multiple parts. Next, in the
SFR stage, the leverage hypergraph structure is constructed based on the local-certainty and global-
uncertainty correlations. Guided by this structured open-set distribution, hypergraph convolution is
adopted for propagation implicitly from seen categories to unseen categories. Finally, the memory
bank is adopted for fuzzy-aware reconstruction and fuzzy embedding generation to further overcome
openness during open-set retrieval.

4.2 Isomorphic Assembly Embedding

Query Object
(Point Cloud)

Foundation Models

Pre-Trained

Part Segmentation Labels

Point-Wise 
Features

Point-Wise Average

Points from 
Top-n Labels

Other Points

HARF

Basic Part
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Figure 3: Illustration of input basic part features for HAFR.

The IAE module is designed here
to obtain assembly embeddings with
geometric-semantic consistency from
multiple parts. Specifically, the IAE
comprises a hypergraph-based iso-
morphism layer and assembly auto-
encoders as shown in the left side
of Figure 2. We proposed the
Hypergraph Isomorphism Convolu-
tion (HIConv) in the layer to im-
part geometric-semantic consistency
to part features, overcoming the bias
introduced by the order of parts during
assembly representation. The assem-
bly auto-encoders are utilized to get
the assembly embedding from multi-
ple part features.

The IAE module takes the basic part features {{fr
i }Pr=1}Ni=1 (fr

i ∈ RN×df ) of N objects with P
parts. In this paper, we use the average point feature of each region extracted by 3D point cloud part
segmentation network [28] as shown in Figure 4.1. The hypergraph isomorphism layer constructs an
assembly hypergraph structure Ga and generates isomorphism embeddings cri under the guidance of
this structure. The assembly auto-encoders Aa encode the multi-part features of 3D objects and get
the assembly embeddings ui by integration function.

4.2.1 Isomorphism Smoothing

Although part features have the potential to adequately represent the category information of every
object, direct fusion for multiple parts may lead to inconsistencies arising from geometric factors,
including the order of input and the presence of repeated parts. The HIConv are utilized to impart
geometric-semantic consistency during part assembly, aiming to generate isomorphism embeddings
from independent-part to correlated-object distribution, by the correlation-based smoothing under the
guidance of the assembly hypergraph structure.

A hypergraph can be represented as G = {V, E}, where V and E are the vertex set and the hyperedge
set, respectively. In the hypergraph of HIConv, the basic part features fp

i are treated as the vertices
Xf =

⋃D
d=1{fd

i }Ni=1. Then the isomorphism hyperedges Eo are constructed as the subset of vertices
that are from the same object:

Eo = {Ov(i) | i ∈ {1, · · · , N}} (3)

where Ov(i) denotes all vertices of the i-th object. In this way, we obtain N hyperedges and N is the
number of objects. The assembly hypergraph is constructed as Ga = {Xf , Eo} after getting vertices
and hyperedges.

After the construction of the assembly hypergraph, the HIConv is designed to bridge the geometry
and semantic correlations for isomorphic smoothing. For the convenience of convolution, we use
the incidence matrix H ∈ {0, 1}|V|×|E| to represent the hypergraph, where the hyperedges are the
columns of H, and H(v, e) = 1 if vertex v are contained in hyperedge e. Inspired by [18] and
[11], the HIConv is designed to leverage the geometric-semantic collaborative information under the
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guidance of assembly hypergraph:

X̃f = MLP
(
(1 + ϵ)Xf + σ(D

− 1
2

v HD−1
e H⊤D

− 1
2

v XfΘHIConv)
)
, (4)

where H denotes the incidence matrix of the hypergraph Ga, respectively. Dv and De are the
diagonal degree matrices for vertices and hyperedges, respectively. ϵ denotes a learnable parameter
and ΘHIConv is the learnable matrix for HIConv. After the HIConv, the isomorphism embeddings
X̃f = {{cri }Pr=1}Ni=1 are generated from independent-part to correlated-object space.

4.2.2 Assembly Embedding

The IAE module first utilizes assembly auto-encoders Aa to encode the isomorphism embeddings
into a latent code space for each part, then employs the isomorphism loss to pull the different part
codes together to ensure encoded embeddings from the same object together. Besides, the intra-part
and inter-part reconstruction loss are proposed to reduce information loss during compression.

Specifically for the Aa, we have ur
i = Ψr(cri ) and ĉri = Φr(ur

i ), where cri ∈ Rdf denote isomorphism
embeddings of parts, ur

i ∈ Rdu denote the unified embeddings compressed from isomorphism
embeddings of different parts. The encoder and decoder are defined as Ψr := Sp → Sa and
Φr := Sa → Sp, which map the representation between local-part space Sp to global-assembly space
Sa.

After the generation of unified embeddings ur
i for each part, the IAE module employs an integration

function B(·) to obtain the assembly embeddings integrated from all parts of the same object:

ui = B({ur
i }Pr=1) (5)

4.2.3 Loss Function for the IAE

For better isomorphism smoothing and assembly embedding, we adopt the Assembly Loss Las and
the Cross-Part Loss Lxp for the IAE module, which is designed to pull the distance and prompt the
generalization performance across parts, respectively:

Las =
2

R(R− 1)

∑R

k=1

∑R

l=k+1
∥uk

i − ul
i∥2, (6)

Lxp =
2

R(R− 1)

∑D

k=1,l ̸=k

(
∥cki − ĉki ∥2 + ∥cki − Φl

(
Ψk

(
cli
))
∥2
)
, (7)

where ∥·∥2 is the L2 norm, uk
i and ul

i are both the unified embeddings but from different parts of the
same object, Ψk is the encoder of k-th part and Φl is the decoder of l-th part.

The loss function for IAE is constructed by the balanced combination of the two losses: LIAE =
αLas + (1− α)Lxp, where α is the hyper-parameter to trade-off between them.

4.3 Structured Fuzzy Reconstruction

Although the IAE module generated the assembly embeddings from multiple parts, the distribution
skew across seen and unseen categories still affects the performance of open-set retrieval. As shown
in Figure 2, we proposed the SFR module for generalization. The SFR module first constructs a
leverage hypergraph to model the local-certainty and global-uncertainty correlations. Then SFR
employs hypergraph convolution for propagation from seen categories to unseen categories based on
the implicit leveraged structure. After that, the memory bank is adopted to reconstruct the propagation
embeddings into fuzzy space to further overcome openness during open-set retrieval.

4.3.1 Leverage Propagation

To get the most out of potential correlations from seen categories, the leverage hypergraph is designed
here. As shown in Figure 2, the assembly embeddings ui are treated as the vertices Xu = {ui}Ni=1 in
the leverage hypergraph, and the hyperedges are constructed from two perspectives: local-certainty
and global-uncertainty correlations.

The local-certainty hyperedges Ec are constructed based on the category observability, which is
defined as Ec = {Cv(y) | y ∈ Y}, where Cv(y) denotes the subset of vertices that belong to the

6
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seen categories Y . For the global-uncertainty hyperedges Eu, we construct them by linking each
vertex and its K − 1 neighbor vertices: Eu = {KKNNk

(v) | v ∈ V}, where KKNNk
(v) denotes the

top-k nearest neighbor set of vertex v. In this way, we obtain one local-certainty hyperedge and N
global-uncertainty hyperedge. The leverage hypergraph is constructed by Glev = {Xu, Ec ∪ Eu}.

After the construction of the leverage hypergraph, we utilize the modified hypergraph convolution
from [11] for embedding propagation.

X̃u = σ
(
D

− 1
2

v HD−1
e H⊤D

− 1
2

v XuΘlev

)
, (8)

where H denotes the incidence matrix of the leverage hypergraph Glev . Dv and De are the diagonal
degree matrices for vertices and hyperedges, respectively. Θlev denotes the learnable matrix for the
HGNNConv, X̃u are the propagation embeddings and X̃u = {pi}Ni=1.

4.3.2 Fuzzy Reconstruction

To overcome the distribution skew caused by the open-set environment, the memory bank is adopted
here to reconstruct the propagation embeddings to fuzzy space. The memory bank is designed to
store a large amount of fuzzy representations with uniform distribution. Specifically, the memory
bank M is composed of Z invariant memory anchors mj for 3D objects.

M = {mj ∈ Ru | j = 1, · · · , Z} (9)

Given the propagation embedding ũi of the each 3D object, the activation score si,j are calculated
for every memory anchor mj in M by si,j = ∥ũi −mj∥2, where ∥·∥2 is the L2 norm for distance
metric, si,j denotes the activation score of each anchor. Then we use the normalization of activation
scores s′i,j to rebuild the propagation embedding into fuzzy space and get fuzzy embeddings zi by:

zi =
∑Z

j=1
s′i,jmj (10)

4.3.3 Loss Function for the SFR

In the SFR stage, we adopt the Cross-Entropy Loss Lce and Fuzzy Reconstruction Loss Lfz:
Lfz =

∥∥ũi − zi
∥∥
2
, (11)

Lce = −
∑Y

k=1

(
ni,klog(pi,k) + ni,klog(qi,k)

)
, (12)

where pi,k = ev̂i,k∑Y
k=1 eũi,k

and qi,k = ezi,k∑Y
k=1 ezi,k

denote the prediction scores of fuzzy embeddings

that the image belongs to the k-th category. ni,k is the k-th value of one-hot encoded seen category
labels, Y is the number of seen categories.

The loss function for SFR is constructed by the balanced combination of the two losses: LSFR =
βLfz + (1− β)Lce, where β is the hyper-parameter to trade-off between them.

5 Experiments

5.1 Experimental Settings

Table 1: The statistics of the three OpenPart datasets.
Dataset OP-SHNP OP-INTRA OP-COSEG

Average Parts/Sample 3.2 3.1 2.3

Category
All 16 3 9

Seen 6 1 3
Unseen 10 2 6

Number

Train 5804 116 240
Retrieval 6142 2318 802

Query 945 302 85
Target 5197 2016 717

OpenPart Datasets. We construct three
datasets for assembly-based open-set 3D ob-
ject retrieval (OpenPart datasets), including
OP-SHNP, OP-INTRA, OP-COSEG based
on the public dataset ShapeNetPart [42], In-
trA [41], and COSEG [34]. We sampled the
point cloud from the triangular surface for
each dataset. As shown in Table 1, the classes
of these datasets are split into seen and un-
seen classes for training and testing, respec-
tively. Each class contains three to five parts.
Specifically, the detailed descriptions of the
datasets and parts segmentation are shown in
Appendix B.
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Table 2: Quantitative results of retrieval on the OP-SHNP, OP-INTRA, and OP-COSEG datasets.

Method OP-SHNP OP-INTRA OP-COSEG

mAP↑ NDCG↑ ANMRR↓ mAP↑ NDCG↑ ANMRR↓ mAP↑ NDCG↑ ANMRR↓
MMJN 0.5685 0.5856 0.2599 0.5465 0.5898 0.5053 0.6394 0.7623 0.4314
TCL 0.5683 0.5861 0.2608 0.5467 0.5970 0.5059 0.6285 0.7543 0.4401
SDML 0.5699 0.5870 0.2593 0.5456 0.5944 0.5064 0.6328 0.7638 0.4422
MMSAE 0.5637 0.5824 0.2659 0.5452 0.5919 0.5056 0.6350 0.7555 0.4334

PROSER 0.5687 0.5861 0.2607 0.5462 0.5943 0.5059 0.6343 0.7605 0.4348
HGM2R 0.5736 0.5886 0.2549 0.5545 0.6019 0.4928 0.6452 0.7627 0.4355

Ours 0.5947 0.5916 0.2239 0.5750 0.6382 0.4797 0.7015 0.7629 0.3604

(a) PR Curve on OP-SHNP. (b) PR Curve on OP-INTRA. (c) PR Curve on OP-COSEG.

Figure 4: The Precision-Recall Curves for comparison on the three datasets, respectively.

Implemental Details. The random seeds are fixed to 2024 in this paper for a fair comparison. The
basic features are extracted by PointNet [28] and each part feature is obtained by the average point
feature of each region, we use the top four parts for each object in this paper. We set α = 0.5 in
LIAE and β = 0.9 in LSFR. The IAE is trained for 40 epochs on learning rate lr = 0.1, and the
SFR is trained for 30 epochs on lr = 0.001. The detailed implements of the HAFR framework are
provided in Appendix C.

5.2 Retrieval Performance

Compared Methods. Since no methods are specifically designed for assembly-based open-set
3DOR, we refine the current state-of-the-art close-set 3DOR methods (MMJN [26], TCL [13],
SDML [14], MMSAE [36]), and open-set 3D learning methods (PROSER [46], HGM2R [8]), then
we refine the multi-modal fusion module with multi-part fusion for each method. We provide detailed
implements of compared methods in Appendix D

Evaluation Metrics. For a fair comparison, we use standard retrieval metrics, including Mean
Average Precision (mAP), Normalized Discounted Cumulative Gain (NDCG), Average Normalized
Modified Retrieval Rank (ANMRR), and the Precision-Recall Curve (PR-Curve). For the mAP and
NDCG metrics, higher scores are better. For the ANMRR metric, a lower score is better.

Comparsion Analysis. As shown in Table 2, we evaluate the assembly-based open-set retrieval
results from HAFR framework and other state-of-the-art compared methods. Quantitative results
demonstrate the superiority of our method over the other methods on all three datasets. In particular,
on the OP-COSEG dataset, our method achieves 0.7015 mAP with about 8.7% improvements
compared with the second-best method (HGM2R). We also compare the Precision-Recall Curves
(PR-Curve) which evaluate the trade-off between precision and recall at different thresholds. A
larger area between the curve and the axes indicates better performance for retrieval, our method
outperforms all other retrieval methods as shown in Figure 4.

The superior performance in the comparison indicates that by the proposed IAE and SFR modules,
the proposed HAFR framework can better utilize the potential semantic information among part

8
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Table 3: Ablation studies of retrieval on the OP-SHNP, OP-INTRA, and OP-COSEG datasets.

Ablation OP-SHNP OP-INTRA OP-COSEG

mAP↑ NDCG↑ ANMRR↓ mAP↑ NDCG↑ ANMRR↓ mAP↑ NDCG↑ ANMRR↓
HIConv→GIN 0.5761 0.5826 0.2465 0.5567 0.6050 0.4947 0.6782 0.7625 0.4001
HIConv→MLP 0.5837 0.5854 0.2357 0.5523 0.6035 0.4948 0.6505 0.7664 0.4334
IAE w/o Las 0.5767 0.5838 0.2464 0.5560 0.6077 0.4946 0.6829 0.7542 0.3823
IAE w/o Lxp 0.5767 0.5840 0.2464 0.5561 0.6078 0.4944 0.6828 0.7542 0.3824

SFR w/o Glev 0.5755 0.5825 0.2474 0.5545 0.6019 0.4928 0.6887 0.7540 0.3768
MLP-based SFR 0.5636 0.5851 0.2665 0.5429 0.5814 0.4997 0.6662 0.7610 0.4062
GCN-based SFR 0.5679 0.5845 0.2603 0.5430 0.5854 0.4982 0.6674 0.7618 0.4072

IAE+SFR 0.5947 0.5916 0.2239 0.5750 0.6382 0.4797 0.7015 0.7629 0.3604

(a) PR Curve on OP-SHNP. (b) PR Curve on OP-INTRA. (c) PR Curve on OP-COSEG.

Figure 5: The Precision-Recall Curves of the ablation studies on the three datasets, respectively.

features to fully represent 3D objects and generalize them to unseen categories. Notably, for the
OP-INTRA dataset with only one category and the least parts in the training set, our method still
achieves performance improvements in the retrieval of unseen categories as shown in Table 2 and
Figure 4. This indicates that our method has minimal dependence on the performance of classifiers
during basic feature extraction. In open-set environments, where training on all potential categories
is infeasible, our HAFR method through Part Assembly demonstrates superior open-set adaptability.
We provide more visualizations and results in Appendix D.

5.3 Ablation Studies

We conduct ablation studies to verify the effectiveness of modules in the proposed framework. For the
IAE stage, we first remove the Hypergraph Isomorphism Convolution (HIConv) layer for comparison.
Specifically, we replace it with the Graph Isomorphism Convolution (HIConv→GIN) and MLP
(HIConv→MLP). Then we compared it with the method without the Assembly Loss (IAE w/o Las)
or the Cross-Part Loss(IAE w/o Lxp). As shown in Table 3 and Figure 5, replacing HIConv or
removing parts of the LIAE loss significantly degrades the performance of IAE. For the HIConv, this
indicates that naive part assembly is dependent on geometric or semantic factors such as order and
quantity. Removing isomorphism smoothing results in geometric or semantic inconsistencies, thereby
degrading the retrieval performance by the worse assembly embeddings. As for the SFR module, we
compare the hypergraph structure without the leveraged structure (SFR w/o Glev) and we also replace
the hypergraph-based structure learning with MLP (MLP-based SFR) and GCN (GCN-based SFR).
Besides, we remove the memory bank to verify the effectiveness of fuzzy reconstruction.

Table 3 and Figure 5 show that the proposed full SFR module outperforms all the other ablative struc-
tures, these results show that the proposed leverage propagation and fuzzy reconstruction approach
can effectively utilize the high-order correlations between seen and unseen categories for open-set
generalization. Besides, we can observe that the complete combination of IAE and SFR yields
the best performance. These quantitative and qualitative results indicate that the proposed HAFR
framework effectively achieves part-level assembly isomorphism and unification while mitigating
distribution skew from seen certainty to unseen uncertainty at the object level.
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6 Conclusion

In this paper, we introduce the Hypergraph-Based Assembly Fuzzy Representation (HAFR) frame-
work, which navigates the intricacies of open-set 3D object retrieval through a bottom-up lens of
Part Assembly. Specifically, we propose the Hypergraph Isomorphism Convolusion (HIConv) and
adopt the Isomorphic Assembly Embedding (IAE) module for assembly isomorphism and unification,
generating the integration embeddings with geometric-semantic consistency. Besides, we employ the
Structure Fuzzy Reconstruction (SFR) approach to exploit high-order correlations among objects
and fuzzify representations for open-set category generalization. This module constructs a lever-
aged hypergraph based on local-certainty and global-uncertainty correlations to mitigate distribution
skew. We construct three open-set retrieval datasets for 3D objects with part-level annotations, i,e.,
OP-SHNP, OP-INTRA, and OP-COSEG. Extensive experiments and ablation studies on these three
benchmarks show our method outperforms current state-of-the-art methods. However, due to data
limitations, this paper does not currently consider the assembly fuzzy representation for varying
numbers of parts, which will be a focus of our future research. We believe this paper provides a novel
perspective for open-set retrieval by exploring from local to global levels.
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A Assembly-Based Open-Set 3DOR

In practical scenarios, the categories of 3D objects can be labeled from various perspectives such as geometric
and semantic, or from different levels of granularity. From a geometric perspective, a 3D object is naturally
composed of multiple part-level shapes. For instance, a 3D model of a car can be deconstructed into several
part-level shapes, such as wheels, chassis, doors, and windows. Each of these parts represents a distinct geometric
part that contributes to the formation of the complete 3D object. This modular decomposition facilitates more
efficient manipulation, analysis, and reconstruction, as each part can be independently modified or replaced
while preserving the overall structural integrity of the automobile. These parts not only enhance the hierarchical
structure and diversity of labels but also play a crucial role in the representation of 3D models. Consequently, they
find applications in various fields, such as computer-aided design (CAD), where precise modeling of individual
components is essential; virtual reality (VR), which relies on detailed and interactive 3D environments; and
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Table 4: The category splitting on seen and unseen categories for the three datasets.

Dataset Seen Categories (Training Set) Unseen Categories (Testing Set)
OP-SHNP airplane, guitar, lamp, laptop, mug,

skateboard
bag, cap, car, chair, earphone, knife, mo-
torbike, pistol, rocket, table

OP-INTRA candelabra, goblets, telealiens chairs, fourleg, guitars, irons, lamps, vases
OP-COSEG mixed aneurysm, vessel

Table 5: Detailed statistic of OP-SHNP.

Category airplane guitar lamp laptop mug skateboard bag cap

Samples 2690 787 1546 445 184 152 76 55
Parts 4 3 4 2 2 3 2 2

Category car chair earphone knife motorbike pistol rocket table

Samples 898 3746 69 392 202 275 66 363
Parts 4 4 3 2 6 3 3 3

Table 6: Detailed statistic of OP-COSEG.

Category candelabra goblets telealiens chairs fourleg guitar irons lamps vase

Samples 28 12 200 400 20 44 18 20 300
Parts 4 3 4 3 5 3 3 3 4

medical imaging, where accurate representations of anatomical structures are critical for diagnosis and treatment
planning.

As for the 3D object retrieval (3DOR) task, individual parts and combinations of multiple parts can serve as
crucial clues for the representation and analysis of a complete 3D shape. The greater the number of parts, the
higher the accuracy and uniqueness of the object representation. This characteristic is particularly advantageous
for open-set 3DOR through a bottom-up lens of Part Assembly. Given the incomplete object-level labels in
open-set settings, employing a multi-layered representation and analysis of individual and associated parts can
significantly enhance the accuracy of open-set 3D object retrieval (3DOR). Furthermore, it may reduce the
dependency on extensive training data, addressing a common limitation in open-set environments.

B OpenPart Dataset Generation

Table 7: Detailed statistic of OP-INTRA.

Category mixed aneurysm vessel

Samples 116 1290 1028
Parts 3 2 2

We generate three part-assembly driven open-set
3D object retrieval (OpenPart) datasets, including
OP-SHNP, OP-INTRA, OP-COSEG based on the
public dataset ShapeNetPart [42], IntrA [41], and
COSEG [34]. We sampled the point cloud from
the triangular surface for each dataset. Specifically,
the point number for point clouds in OP-SHNP, OP-
INTRA, and OP-COSEG are 2048, 2048, and 1024,
respectively. In the OpenPart datasets, we use the part
segmentation annotations of the original dataset, the classes are split into seen and unseen classes for training
and testing as shown in Tab. 4. Besides, we provide more detailed statistics of the three datasets in Table 5,
Table 6, and Table 7.

C Implemental Details

The proposed Hypergraph-Based Assembly Fuzzy Representation (HAFR) framework is composed of two
modules: Isomorphic Assembly Embedding (IAE) and Structured Fuzzy Reconstruction (SFR). The basic features
for input are extracted by PointNet [28] and each part feature is obtained by the average point feature of each
region, we use the top four parts for each object in this paper. The IAE utilizes Hypergraph Isomorphism
Convolution (HIConv) and assembly auto-encoders Aa to generate assembly embeddings from the basic part
features. The implemented details of the IAE and SFR modules are provided in Algorithm 1 and Algorithm 2,
respectively.
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Algorithm 1 Training the IAE module
Input: Basic part features {fr}Pk=1.
Parameter: α = 0.5.
Output: Assembly embeddings {ci}Ni=1.

1: Let epoch = 0;
2: Initialize assembly hypergraph Ga = {Xh, Eo};
3: Construct vertices Xf =

⋃D
d=1{fd

i }Ni=1;
4: Construct isomorphism hyperedge Eo = {Ov | i ∈ {1, · · · , N}};
5: Calculate diagonal degree matrices Dv and De;
6: Calculate incidence matrix H of Ga;
7: Initialize learnable HIConv parameters ΘHIConv of Ga;
8: Initialize assembly auto-encoder Aa = {Ψ,Φ};;
9: Initialize aggregation function B;

10: while epoch ≤ 40 do
11: Isomorphism embeddings X̃f = MLP((1 + ϵ)Xf + σ(D

− 1
2

v HD−1
e H⊤D

− 1
2

v XfΘHIConv));
12: Reshape isomorphism embeddings {{cri }Pr=1}Ni=1 = X̃f ;
13: Get unified embeddings of each part {{ur

i }Pr=1}Ni=1 = Ψr({{cri }Pr=1}Ni=1).
14: Get assembly embeddings of each object {ui}Ni=1 = {B({ur

i }Pr=1)}Ni=1

15: Get mixed embeddings if each part {{r̂ri }Pr=1}Ni=1 = Ψr({{cri }Pr=1}Ni=1).
16: Calculate the Assembly Loss Las =

2
R(R−1)

∑R
k=1

∑R
l=k+1∥uk

i − ul
i∥2.

17: Calculate the Cross-Part Loss Lxp = 2
R(R−1)

∑D
k=1,l ̸=k

(
∥cki − ĉki ∥2 + ∥cki − Φl

(
Ψk

(
cli
))
∥2
)
.

18: Calculate loss for the IAE module LIAE = αLas + (1− α)Lxp.
19: if LIAE does not converges then
20: Update parameters of ΘHIConv and Aa by LIAE .
21: epoch+ = 1
22: else
23: Break.
24: end if
25: end while
26: return Assembly embeddings {ui}Ni=1

Our experiments were conducted on a Tesla V100-32G GPU and an Intel(R) Xeon(R) Silver 4210 CPU @
2.20GHz. The hyper-parameters “k” in the SFR module are set to 20, 6, and 40 for OP-SHNP, OP-INTRA, and
OP-COSEG, respectively.

D More Results

Table 8: The hyper-parameters of the HAFR framework.
IAE SFR

Optimizer SGD SGD
Learning Rate 0.1 0.001

Momentum 0.9 0.9
Weight Decay 0.0001 0
LR Scheduler Cosine Annealing Cosine Annealing

Tmax 40 60
etamin 0.00001 0.00001

Max Epoches 40 30

Since no methods are specifically de-
signed for part-assembly driven open-set
3DOR, we refine the current state-of-the-
art close-set 3DOR methods (MMJN [26],
TCL [13], SDML [14], MMSAE [36]),
and open-set 3D learning methods
(PROSER [46], HGM2R [8]), then we re-
fine the multi-modal fusion module with
multi-part fusion for each method. Specif-
ically, these compared methods are imple-
mented by:

MMJN [26]: MMJN is a multi-modal
joint network that employs weighted fu-
sion to integrate features across multiple
modalities for retrieval. Specifically, we
generate the assembly embeddings by auto-encoders and utilize them in the classification fusion part of the
MMJN network.
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Algorithm 2 Training the SFR module
Input: Assembly embeddings {ui}Ni=1.
Parameter: β = 0.9.
Output: Fuzzy embeddings {zi}Ni=1.

1: Let epoch = 0;
2: Initialize leverage hypergraph Glev = {Xu, Elev};
3: Construct vertices Xu = {ui}Ni=1;
4: Construct local-uncertainty hyperedge Ec = {Cv(y) | y ∈ Y};
5: Construct global-uncertainty hyperedge Eu = {KKNNk

(v) | v ∈ V};
6: Construct hyperedges Elev = Ec ∪ Eu;
7: Calculate diagonal degree matrices Dv and De;
8: Calculate incidence matrix H of Glev;
9: Initialize HGNNConv parameters Θlev of Glev;

10: Construct memory bank M;
11: while epoch ≤ 120 do
12: Get propagation embeddings X̃u = σ

(
D

− 1
2

v HD−1
e H⊤D

− 1
2

v XuΘlev

)
;

13: Reshape propagation embeddings {pi}Ni=1 = X̃u;
14: Get activation si,j = ∥ũi −mj∥2;
15: Get fuzzy embeddings {zi}Ni=1 = {

∑L
j=1 s

′
i,jmj}Ni=1 ;

16: Calculate the Cross-Entropy Loss Lce = −
∑L

k=1

(
ni,klog(pi,k) + ni,klog(qi,k)

)
;

17: Calculate the Fuzzy Reconstruction Loss Lfz =
∥∥ũi − zi

∥∥
2
;

18: Calculate loss for the SFR module LSFR = βLfz + (1− β)Lce.
19: if LSFR does not converges then
20: Update parameters of Θlev and M by LSFR.
21: epoch+ = 1
22: else
23: Break.
24: end if
25: end while
26: return Fuzzy embeddings {zi}Ni=1.
27: Retrieval by fuzzy embeddings {zi}Ni=1.

TCL [13]: TCL is a method based on metric learning, combining triplet and center loss to get unified fusion
embeddings from different modalities. We use the center-based method for object center embedding from
different parts

SDML [14]: SDML is a metric-learning-based method for cross-modal retrieval, which learns projection
functions for different modalities independently. We construct the assembly embeddings by auto-encoders and
use the joint supervision aligned with its triplet center loss.

MMSAE [36]: MMSAE is a multi-modal retrieval method using auto-encoders. It trains encoders with a
reconstruction loss function to align embeddings from various modalities into a unified latent space. We add
auto-encoders to generate assembly embeddings, and we use them for alignment with semantic code vectors for
3D object retrieval.

PROSER [46]: PROSER is an open-world recognition method that extends the closed-set classifier to determine
if a sample belongs to seen categories or not. We construct auto-encoders for assembly embedding, and we mix
up the assembly embeddings with the multiple dummy classifiers in the PROSER.

HGM2R [8]: HGM2R is an open-world 3D multi-modal retrieval method, which retrieves the objects from
unseen categories through structure-aware learning. We construct auto-encoders for assembly embedding of 3D
parts, and we use the KNN-based hyperedges in the SAIKL module.

We provide the visualized results of assembly embeddings and fuzzy embeddings in Fig. 6 and Fig. 7. The
visualizations indicate that the SFR module is capable of accurately representing open-set categories, which can
effectively enhance retrieval performance.
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(a) Assembly embeddings on OP-INTRA. (b) Fuzzy embeddings on OP-INTRA.

Figure 6: The t-SNE visualization of the embeddings from unseen categories in the OP-INTRA and
OP-SHNP datasets.

(a) Assembly embeddings on OP-SHNP. (b) Fuzzy embeddings on OP-SHNP.

Figure 7: The t-SNE visualization of the embeddings from unseen categories in the OP-SHNP dataset.
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data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or
scraped datasets)?

Answer: [NA]
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Justification: This paper poses no such risks.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper,
properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: We have obtained and adhered to the permissions for the datasets used and have cited
them in the paper.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation provided
alongside the assets?

Answer: [Yes]

Justification: We will release the dataset and provide the corresponding documentation immediately
upon the paper’s acceptance.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper include
the full text of instructions given to participants and screenshots, if applicable, as well as details about
compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human Subjects
Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an
equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: the paper does not involve crowdsourcing nor research with human subjects.
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