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Abstract

In this paper, we introduce IMPACT (Integrated Multimodal Patent Analysis and
CreaTion Dataset for Design Patents), a large-scale multimodal patent dataset with
detailed captions for design patent figures. Our dataset includes half a million
design patents comprising 3.61 million figures along with captions from patents
granted by the United States Patent and Trademark Office (USPTO) over a 16-
year period from 2007 to 2022. We incorporate the metadata of each patent
application with elaborate captions that are coherent with multiple viewpoints
of designs. Even though patents themselves contain a variety of design figures,
titles, and descriptions of viewpoints, we find that they lack detailed descriptions
that are necessary to perform multimodal tasks such as classification and retrieval.
IMPACT closes this gap thereby providing researchers with necessary ingredients
to instantiate a variety of multimodal tasks. Our dataset has a huge potential for
novel design inspiration and can be used with advanced computer vision models
in tandem. We perform preliminary evaluations on the dataset on the popular
patent analysis tasks such as classification and retrieval. Our results indicate that
integrating images with generated captions significantly improves the performance
of different models on the corresponding tasks. Given that design patents offer
various benefits for modeling novel tasks, we propose two standard computer
vision tasks that have not been investigated in analyzing patents as future directions
using IMPACT as a benchmark viz., 3D Image Construction and Visual Question
Answering (VQA). To facilitate research in these directions, we make our IMPACT
dataset and the code/models used in this work publicly available here.

1 Introduction

Design patents are important for intellectual property protection in industries where aesthetics and
user experience are predominant, such as consumer electronics, fashion, and automotive design [27, 1].
Unlike utility patents, which protect the functional aspects of an invention, design patents safeguard
the ornamental or aesthetic features of a product. This includes elements such as shape, surface
ornamentation, and overall visual appearance. Design patents provide inventors with exclusive rights
to their creations and prevent others from producing, selling, or using designs that are substantially
similar. In the past few years, the number of design patents granted in the US is increasing. Though
these are publicly available by law, the data is not well-organized for patent analyses which could
help patent offices as well as can serve as a benchmark for the machine learning community.

Existing works on patent datasets. A variety of patent data formats, including XML, TSV, TIFF,
and PDF, are publicly accessible for bulk download from multiple sources. One notable dataset,
USPTO2M [33], comprises approximately 2 million utility patents specifically curated for classi-
fication tasks. Another dataset, BIGPATENT [48], contains a corpus of 1.3 million utility patents,
exclusively in textual format. Additionally, the Harvard University Patent Dataset (HUPD) [55]
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Figure 1: The main components of IMPACT dataset. We collect and pre-process the raw data
to construct a comprehensive well-structure and accessible design patent dataset. We integrate
multimodal information and design various training and application scenarios.

consists of a broader range of data fields, compiling 4.5 million patents intended for multipurpose
patent analysis. These datasets focus only on utility patents. Despite the presence of figures in
utility patents, these datasets omit the visual data, concentrating solely on text to support research
in natural language processing (NLP). Among few works on design patents, DeepPatent [27] has
curated a dataset focused on patent drawings, which is designed to enhance the retrieval of technical
illustrations. This dataset includes 45,000 unique design patents, covering the year 2018 and the
first six months of 2019. DeepPatent2 [1] has introduced a dataset with over 2.7 million technical
drawings extracted from 14 years of U.S. design patent documentation spanning 2007 to 2020. This
dataset includes brief uninformative captions that mention only the viewpoints of the figures. In
contrast, our dataset is larger and has richer information with 11 fields and elaborated captions.

Limitations of existing datasets. The limitations of the existing works are as follows.

• Single modality: Existing datasets primarily focus on either text-based or image-based data and
thus, neglects the integration of both modalities. This singular approach restricts their applicability
in a comprehensive patent analysis and other multimodal tasks.

• Lack of large & organized design patent datasets: Most datasets consist of utility patents. The
only existing two design datasets are either small or do not include data from recent years. They
also lack other meta information.

• Lack of important information: Since design patents do not include detailed descriptions of the
figures, the absence of descriptive captions makes patent analysis difficult. This is particularly
impactful for tasks such as searching for prior art or work, which are essential for preventing patent
infringement. Current datasets do not include such descriptive information.

Our contributions, IMPACT: To address these limitations, we develop a new large dataset IMPACT
that integrates both textual and visual information from the design patents within a unified framework.
Our major contributions are as follows.

• Multimodality: We introduce a multimodal patent dataset that includes patent images, metadata,
and detailed captions to support a variety of NLP, vision, and multimodal tasks. This dataset is
also valuable for patent analysis tasks such as classification, retrieval, prior art searches, and design
trend analysis.

• Comprehensive dataset: We have compiled a collection of 435,101 patents spanning 16 years
from U.S. design patent documents. This extensive collection includes a total of 3,609,805 drawing
figures. Additionally, our dataset consists of eleven fields such as the title, patent ID, claims, date
of publication, classification code, and extensive image-related information, including the number
of images per patent and descriptions of the viewpoints.
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• Descriptive captions: To address the absence of descriptions about the designs, such as features
and shapes, we generate elaborated captions by employing a vision-language model. It generates
descriptive captions for the design figures, capturing details from the sketch. These captions,
coupled with the images, enrich our dataset and becomes a valuable resource for advanced patent
analysis and multimodal research applications.
Code and data. The codebase and data are available at the following link: https://github.com/
AI4Patents/IMPACT.

2 Background and Related Work

2.1 Background on Design Patents

A patent is a legal document granting exclusive rights to an inventor for a specific period and it allows
the inventor to exclude others from making, using, or selling their invention1. Specifically, we focus
on design patents and it has limited information compared to utility patents. While a utility patent
is composed of a title, an abstract, multiple detailed claims, a thorough description, and drawings,
along with some metadata; the design patents are more limited in textual content consisting of only a
title, a single claim, and small descriptions of the figures, alongside drawings of the invention. The
claim in a design patent typically starts with "The ornamental design for..." and does not include the
extensive, detailed claims that are rich in textual data found in utility patents. The descriptions of the
figures cover different viewpoints such as perspective, top, front, rear, bottom, and enlarged details,
as depicted in the drawings (please see examples in Figure 7 in the Appendix). These drawings are
presented on drawing sheets, where sometimes one sheet may display multiple figures, thus showing
different viewpoints in a composite figure. Beyond this, there is no additional text data to describe
the images, their shapes, or functionality, since these figures lack any sort of captions.

Challenges. While the utility patents have already elaborated set of information, working with design
patents are challenging due to several reasons. First, design patents protect the ornamental aspects
of a product and they are inherently subjective. Determining whether a new design infringes on an
existing design patent often involves interpreting visual as well as aesthetic elements and this process
is more difficult than with the utility patents. Second, the scope of a design patent is determined
by the drawings and these drawings must be meticulously accurate. However, the quality of these
drawings are often not suitable for the existing machine learning models to use. Third, design patents
only protect the appearance of an object, not its functional aspects. This is limited as these patents
do not have any other information. We overcome this by incorporating elaborated captions in this
dataset (see Section 3). To combat these challenges, we believe curating a unified dataset for patent
analyses and other machine learning tasks (e.g., VQA) will be extremely useful.

2.2 Related Work on Patent Analysis

Patent classification. One of the major patent analysis tasks is assigning CPC or IPC codes2 (utility
patents) or design codes3 (design patents) to the submitted patents, which is time-consuming due
to the numerous classification codes and their hierarchical structure. Various models have been
proposed in the literature to automate this process and they can be categorized into three major types
[50]. First, the traditional methods share a two-step approach: generating initial features followed
by using a classifier. For instance, [14] use a single-layer LSTM with Word2Vec features for IPC
subgroup classification. Similarly, [46] employ LSTM with fixed hierarchy vectors for IPC subclass
classification. [42] and [43] train fastText embeddings on 5 million patents and used Bi-GRU for
classification. [53] extracts key patent sections, trained Word2Vec, and used parallel LSTMs. Second,
the ensemble models use different word embeddings and deep learning techniques. [6] uses SVM
as a baseline, experimenting with various datasets, features, and semi-supervised learning. [21]
and [22] explore ensemble models with Bi-LSTM, Bi-GRU, LSTM, and GRU, focusing on word
embeddings and partitioning techniques, respectively. In contrast, patent images are classified into
visualization types using the CLIP model with MLP and various CNN models in [13]. Third, among
the LLM-based approaches, as the first study, [30] fine-tunes the BERT model on the USPTO-2M

1https://www.wipo.int/patents/en/
2https://www.cooperativepatentclassification.org/cpcSchemeAndDefinitions
3https://learn.library.wisc.edu/patents/lesson-3/
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dataset. Similarly, [44] fine-tunes BERT, XLNet, and RoBERTa on USPTO-2M, establishing XLNet
as the new state-of-the-art with the highest precision, recall, and F1 measure. [2] use domain-adaptive
pre-training with Linguistically Informed Masking, showing that SciBERT, pre-trained on scientific
literature, outperforms BERT in patent classification.

Patent retrieval. The patent retrieval task [26, 23, 7, 45] aims to efficiently retrieve relevant patent
documents and images based on search queries. This is important for identifying new patents,
evaluating novelty, and avoiding infringement. Patent image retrieval can also inspire design. First,
traditional machine learning methods for patent retrieval, [45] outlines five technical requirements
for AI feasibility, including query expansion and identifying semantically similar documents. [54]
uses random forest, Support Vector Regression, and Decision Trees to merge search results effectively.
Second, neural network-based methods have recently gained popularity for patent retrieval. [26],
[20], and [27] use CNN, DUAL-VGG, and ResNet, respectively, for retrieving patent images based
on query images. Third, among LLM-based methods, [40] utilizes CLIP for image embedding and
RoBERTa for textual features, enhancing searches with visual and textual data. [23] uses BERT with
combinations of title, abstract, and claim. [51] employs SBERT for text embeddings and TransE
for citation and inventor knowledge graph embeddings and finds that mean cosine similarity among
patent vectors effectively links multiple existing patents to a target patent.

Patent quality analysis. Businesses usually evaluate patent value due to its impact on revenue
and investment [4] and investors aim to predict the future value of technological innovations when
making decisions. Consequently, companies hire professional analysts for quality analysis as it
requires substantial effort and domain expertise [34]. MLP-based approaches utilizing several indices
have been employed in the past [12, 56]. These indices usually include claim counts, forward
citations, backward citations etc. [32] classifies patents based on their maintenance period into four
categories using a Bi-LSTM with attention mechanism and Conditional Random Field (CRF) to
assess patent quality in its initial stages. [18] predict forward citations and investor reactions to
patent announcements using CNN-LSTM neural networks and various ML models. [8], [34], and [4]
apply neural networks such as CNN, Bi-LSTM, Attention-based CNN (ACNN), and deep and wide
Artificial Neural Networks (ANN), respectively. Additionally, large models such as a variation of
BERT (MSABERT) has been also employed to assess patent value based on the textual data [25].

Patent generation. Recently, as generative models are gaining popularity, they have been used to
reduce the need for human effort in writing long patent documents. [29] uses GPT-2 to generate
independent patent claims, fine-tuning on patent claims from USPTO. This method generates the first
claim given a few words but lacks quantitative metrics for evaluating claim quality. [28] focuses on
personalized claim generation by fine-tuning GPT-2 with inventor-centric data, using BERT to assess
the relevance of generated claims to the inventor.

Most of the above approaches are applied to utility patents where the patents have detailed information.
One of the major reasons that the design patents are not well-studied is because of the lack of suitable
datasets. Our work aims to address this gap by building a comprehensive dataset.

3 Our IMPACT Dataset

Our dataset, IMPACT includes 435,101 design patents issued by the USPTO between January 2007
and December 2022 with a total of 3,609,805 images. We provide a discussion of the data collection
methodology, data format, structure, and key statistical attributes of the dataset. Additionally, we
discuss the limitations associated with the dataset. Please see more details on the dataset and its
analyses in the Appendix.

Data Collection & Processing. US patent data is publicly available, but it is stored in a complex
format and not suitable for usual machine learning tasks. Thus, we collect and organize the data into
an unified and accessible format for NLP and Computer Vision (CV) tasks. We have obtained the data
from the USPTO Bulk Data Storage System (BDSS)4. The patent grant full-text data with embedded
TIFF Images is published weekly as tar files, containing data for all three types of patents—utility,
design, and plant patents. Each design patent includes one XML file accompanied by multiple
TIFF images, with each image describing different angels of the design. More specifically, we have
collected the data for design patents to process and construct our dataset.

4https://bulkdata.uspto.gov/
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Each design patent is accompanied by an XML file that contains all the metadata for that particular
patent. Our text processing pipeline involves parsing plain text from the XML documents to extract
the essential metadata. This process includes identifying and isolating key elements such as titles,
claims, and figure descriptions.

Data Format & Fields. From the XML files, we have collected and created 11 necessary fields and
stored them in year-wise CSV files. All the images are kept in their original form, i.e., TIF format,
as provided by the USPTO. For each design patent, the dataset has a separate folder named using
the format USDID-date. For example, USD0534331-20070102, where D0534331 is the document
number/ID and 20070102 is the date. We have included 11 fields in the dataset. These are as follows:
title, ID, claim, date, classification, US field of classification search5, applicant or inventor country,
number of figures for the design, number of drawing sheets, names of image files, and descriptions of
figures. Detailed descriptions with examples of all fields are provided in Table 5 ( App. A.1).

(a) Patents and Figures (b) Figures and Drawing Sheets (c) Avg. Words in Claim

Figure 2: Patent statistics (2007-2022): (a) Number of patents and average number of figures per
patent, (b) Number of figures and drawing sheets. (c) Average number of words in a claim. These
show a general increase in both the number of patents and figures.

Quantitative Analyses. Figure 2 illustrates the patent statistics in terms of the number of design
patents published annually and the corresponding figures in them. Figure 2a shows line charts
depicting the trend in the number of patents over time and average number of figures per patent. The
data shows a general trend of increase which suggests that not only are more patents being granted
each year, but the complexity or detail of these patents, as indicated by the number of figures, is also
rising. The data also reveals that the average number of figures per patent ranges between 7 and 9
indicating that patents are incorporating more viewpoints and detailed illustrations to enhance the
clarity and understanding of a design. Figure 2b details the growth in the total number of figures
associated with all patents and the number of drawing sheets used. This increase is consistent with
the growing volume of patents. Figure 2c shows the number of words in each patent claim. Design
patent has only one single line claim and it does not provide detailed information about the drawing.
This necessitates generating richer information (e.g., an elaborated caption) for the design. Additional
quantitative analyses are provided in Appendix A.1.

Caption generation. Design patent images typically lack detailed captions, which can be highly
beneficial for various NLP and multimodal tasks [39, 19, 47, 57]. This dataset can contribute as
a benchmark for the existing multi-modal tools as well as it can also help in patent analyses (see
Sec. 4). To create such a dataset, we add descriptive captions of the images in our dataset. For the
caption generation task, we use LLaVA (Language-Image Assisted Visual Analysis) [35], GPT-4o6,
and Qwen-VL [5] to generate captions for 1000 samples from the data of 2022. We consider three
factors for choosing caption models including runtime, cost, and quality of the captions. In terms
of runtime, GPT4-o, LLaVA, and Qwen-VL required an average of 4.7, 3.98, and 3.25 seconds to
generate each caption, respectively. For costs, GPT-4o is not free, whereas LLaVA and Qwen-VL are
free of charge. Regarding caption quality, qualitative examples (See Fig. 8 in Appendix A.2) reveal
that Qwen-VL often fails to provide functional descriptions and sometimes includes Chinese words
in English captions. We also conduct zero-shot multimodal retrieval tasks to evaluate the quality of
captions (See Table 1). GPT-4o performs best and LLaVA outperforms Qwen-VL. Considering all

5https://www.uspto.gov/patents/laws/examination-policy/seven-classification-design-patents
6https://openai.com/index/hello-gpt-4o/
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the above factors including cost, we use LLaVA as our captioning model. This model is a robust
multimodal system that combines a vision encoder with a large language model (LLM) to enable a
comprehensive understanding of both visual and textual information.

For each patent, we experiment with different prompts to generate suitable captions. We observe
that the patent title typically represents the name of the object, but lacks details about the shape or
functionality of the design. As the final caption generation prompt, we use the following: This is the
image of {patent_title}. What is the shape of the image? What is the functionality of {patent_title}?
Figure 3 illustrates examples of several design patents, along with their titles and our generated
captions. The examples show that the generated captions reflect the provided instructions. We also
utilize these captions and demonstrate that they are beneficial for patent related tasks (see Sec. 4).

Title: Oral care implement
Caption: The image is a drawing of a 
toothbrush, which is an oral care 
implement used for cleaning teeth. The 
toothbrush has a long handle and a head 
with bristles, designed to effectively 
remove plaque and food particles from 
teeth and gums. The toothbrush is an 
essential tool for maintaining good oral 
hygiene and preventing dental issues 
such as cavities and gum disease.

Title: Utility rack
Caption: The image is a rectangle, and it 
features a wooden utility rack with several 
hooks. The functionality of the utility rack is to 
provide a convenient and organized storage 
solution for various items, such as tools, 
utensils, or small equipment. The hooks allow 
users to hang items on the rack, keeping them 
off the countertops and keeping the workspace 
tidy and clutter-free.

Title: Portion of a socket
Caption: The image is a black and white 
drawing of a cylindrical object with a hexagonal 
pattern. The object is a portion of a socket, which 
is a type of electrical connector that allows for the 
safe and secure attachment of electrical devices, 
such as light fixtures or appliances, to an 
electrical supply. Sockets are designed to provide 
a stable and secure connection between the 
device and the electrical supply, ensuring that the 
device can operate safely and efficiently.

Figure 3: It shows examples of three different design objects, titles and the generated captions from
our dataset. The generated captions contain shapes and functionalities of the objects.

Table 1: Zero-shot multimodal retrieval results on captions generated using different models. GPT-4o
performs the best and LLaVA outperforms Qwen-VL.

Model Image-Text Text-Image
R@5 R@10 R@5 R@10

Qwen-VL 6.6 10.8 9.4 13.3

GPT-4o 10.5 15.3 12.4 17.5

LLaVA 8.4 12.2 9.5 13.8

Potential bias and limitations of our IMPACT dataset. First, IMPACT covers design patents filed
between 2007 and 2022 within the US and documented in English. These temporal and geographical
limitations exclude earlier design trends and patents from other regions. It might potentially impact
the applicability of our findings across different temporal and global contexts. Second, the number of
figures have a high variance across patents. On average, each patent consists of 7 to 9 figures, while
some contain as few as 2-3 and others more than 20. This might become an issue if the downstream
tasks depend on all figures (e.g., 3D image construction task) and it may not fully represent the
variability in terms of the figures.
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4 Patent Analysis with IMPACT

Our IMPACT dataset—on design patents—facilitates multimodal analysis tasks such as classification,
retrieval, and similarity assessment. We perform classification and retrieval on our IMPACT dataset and
demonstrate the usefulness of elaborated captions. Additional results are provided in the Appendix.

4.1 Classification

Patent reviewers usually are responsible to classify the patent applications, i.e., they assign the design
codes. This is time-consuming due to the numerous classification codes. For instance, the U.S. design
patent system has 33 classes which are further divided into subclasses. Given that design patents
include both titles and visual content, the goal of the experiment is patent classification by integrating
titles, captions, and images. Although a single design patent can be associated with multiple design
codes, we focus on the primary classification—solving the task as a multi-class classification problem.

Setup. For this patent classification task, we use the recent patents from 2021 and obtain a total
of 32,536 patents. We exclude the sparsely populated subclasses that appear only twice or less.
Consequently, the final dataset has 25,500 patents with a total of 228084 images and they are
categorized into 835 classification codes (subclasses).

We test five different combinations of input features: only title, only caption, title and image,
caption and image, and a combination, i.e, concatenation of all three. All text-based features are
extracted using RoBERTa [36], while image features are obtained via the image encoder of CLIP [41].
Afterwards, we employ a range of classification algorithms which include Support Vector Machines
(SVM), Multinomial Naive Bayes (MultiNB), Logistic Regression (LR), and Multilayer Perceptrons
(MLP). The primary objective here is to assess the power of images and texts (e.g., elaborated caption
and title) for patent classification. We also applied BERT[10] on only text data (title and caption).

Results. Table 2 presents the classification average accuracy over all labels and F1 scores for all the
combinations. BERT can be only applied on text-based features. It produces similar results with title
and the generated caption. The best results for other individual classifiers are in bold. The results
demonstrate that the best results—both accuracy and F1 scores— are produced by the combined
features with title, caption, and image. The combine features outperform the features only with
caption and image quite significantly in many cases and up to 36% in terms of accuracy. This also
shows the importance of the generated captions in patent classification.

Table 2: Patent classification using various machine learning models. Combined denotes the combi-
nation of the features from the title, caption, and image. The best accuracy and F1-scores are shown
in bold for individual methods. The combined features produce the best results consistently.

Metrics BERT SVM MultiNB LR MLP
Acc. (Title) 0.55 0.55 0.38 0.54 0.52
Acc. (Caption) 0.52 0.46 0.38 0.45 0.41
Acc. (Title+Image) - 0.58 0.44 0.57 0.51
Acc. (Caption+Image) - 0.44 0.44 0.52 0.46
Acc. (Combined) - 0.60 0.51 0.59 0.52
F1 Score (Title) 0.53 0.53 0.33 0.52 0.49
F1 Score (Caption) 0.50 0.37 0.33 0.44 0.39
F1 Score (Title+Image) - 0.57 0.41 0.56 0.50
F1 Score (Caption+Image) - 0.51 0.41 0.50 0.45
F1 Score (Combined) - 0.58 0.49 0.57 0.50

4.2 Multimodal Retrieval

The patent retrieval task is to identify relevant patent documents and images in response to search
queries. This process is often used for discovering new patents and assessing their novelty. However,
recent patent retrieval systems mainly work on retrieving images only from query images. Here, we
focus on multimodal retrieval, which incorporates both text and images. This integration enhances
the ability to cross-reference and verify information, thus improving the overall effectiveness and
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efficiency of patent searches. Additionally, multimodal retrieval can enable creativity and innovation
in design by providing richer, more diverse sources of inspiration. We conduct experiments on
text-image (T2I) and image-text (I2T) retrieval tasks.

Setup. In this task, we use the patents from recent five years. We randomly shuffle patents in different
years and split into train/val set. The training set has 113,887 patents, and the validation set has 5,000
patents. For each patent, we construct an image-title pair and an image-caption pair for ablation
studies. We also utilize our entire dataset in some experiments. Note that, we describe the caption
generation process in Section 3. We conduct T2I and I2T retrieval tasks on both zero-shot and
finetuned setups. We use CLIP [41] to train and inference from patent images (captions) and their
corresponding captions (images) in this task. Specifically, in T2I retrieval, given a title or a caption,
we measure whether the ground truth image is within the top K retrieved results. We evaluate on
validation sets to compare the performance of using image-title and image-caption pairs.

PatentCLIP: We also provide PatentCLIP models, which are finetuned for 30 epochs from pre-trained
CLIP. PatentCLIP is finetuned on over 113k patent image-caption pairs on ITM7 for all backbones.
The backbone models are ResNet [15] and ViT [11] families. More details on training and hyper-
parameters are in Appendix A.4. All experiments are conducted on a node of 4 NVIDIA V100 GPUs.
Additionally, we provide image retrieval results using PatentCLIP and comparison with other state of
the art patent models in Table 4b.

Table 3: Multimodal retrieval tasks in zero-shot and finetuned settings. Dataset denotes the image-text
pairs used in the experiments. The best Recall@K (%) are shown in bold. Image-caption pairs
produce the best results consistently.

Dataset Backbone Text-Image Image-Text
R@1 R@5 R@10 R@1 R@5 R@10

Zero-shot

Image-Title

ResNet50 0.52 2.10 3.32 0.20 0.72 1.64
ResNet101 1.02 3.20 4.72 0.30 0.82 1.28
ViT-B-32 1.06 3.54 5.56 0.38 1.62 2.60
ViT-L-14 2.78 7.38 10.40 1.16 4.30 7.32

Image-Caption

ResNet50 0.82 2.52 4.08 0.78 2.32 3.48
ResNet101 1.44 4.52 6.48 0.98 2.98 4.96
ViT-B-32 1.98 5.24 7.42 1.06 4.26 6.32
ViT-L-14 4.46 10.74 15.16 3.42 8.90 12.88

Finetuned Image-Caption

ResNet50 5.38 15.52 22.7 5.9 16.6 23.86
ResNet101 7.44 20.6 28.48 7.02 19.70 27.58
ViT-B-32 10.24 25.56 35.06 9.88 25.90 35.08
ViT-L-14 20.58 43.14 53.00 20.44 42.34 52.56

Table 4: Results on Image to Text, Text to Image, and Image Retrieval Tasks.

Model Image-Text Text-Image
R@5 R@10 R@5 R@10

ResNet50 23.92 32.84 25.00 34.37
ResNet101 25.82 35.25 26.60 36.06
ViT-B-32 28.41 38.32 29.28 39.87
ViT-L-14 39.59 50.44 41.72 52.55

(a) Multimodal retrieval tasks in finetuned settings on entire dataset.

Model mAP
ViT-B + ArcFace [17] 0.614
CLIP-ViT-B + ArcFace 0.645
PatentCLIP-ViT-B +
ArcFace

0.657

(b) Image retrieval performance com-
parison with other models.

Results. We measure multimodal retrieval performance (Recall@K8) in zero-shot and finetuned
setups. Table 3 shows that performance in retrieval with image-caption pairs outperforms the same
with image-title pairs in all settings. We also provide finetuned results on image-title dataset in
Appendix A.5. As the results shown, finetuned models gain significant improvements, by up to 550%

7Contrastive Image-text matching training objective
8The metric R@K evaluates whether the ground truth appears within the top K results of the validation set.
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and 830% respectively at R@1 on T2I and I2T retrievals. Note that, ViT-L obtains the best recall
in all settings, which demonstrates that the larger advanced models boost the performance. We also
measure the multimodal retrieval performance on the entire dataset. Since Image-Caption pair give
us the highest recall (See Table 3), we use this pair for the task shown in Table 4a. Table 4b shows
that CLIP, when fine-tuned on our dataset, outperforms other models on image retrieval tasks and
achieves the highest mAP. These results indicate that more descriptive training data, such as detailed
captions versus simpler titles, can effectively improve the models’ performance. Moreover, finetuning
allows the model to adjust its parameters better aligned with the patent domain. Thus, we believe that
a scaled patent multimodal foundation model is beneficial for analyses of design patents.

4.3 Human Evaluation on Generated captions

We conduct human evaluation to assess the generated captions from LLaVA. In the study, we have a
total of 12 participants. All participants are graduate students in STEM with prior research experience.
Each participant reviews three sets of titles, captions, and images. We ask the user to read these
carefully and determine if the captions can add value to the image as a descriptive caption in their
opinion with the following questions: Did the caption describe the image correctly? Did the caption
can describe the shape and functionality of the image logically? As a result, in more than 60% of
their responses, they agree with the quality of the generated captions. However, one of the examples
shows the limitations of general multimodal captioning models and we would consider this as a
future direction. Figure 4 shows three examples of design patents, generated captions, and human
evaluation results.

Figure 4: Examples of three different design objects, titles, generated captions, and human evaluation
results on the generated captions. Positive means the caption describes the image, shape and
functionality correctly and logically. Negatives means the opposite.

4.4 Other Applications of IMPACT in Computer Vision

4.4.1 3D image reconstruction

3D image reconstruction is the process of creating a three-dimensional model from one or more
two-dimensional images. The ability to produce rapid and precise 3D image reconstructions has
applications in numerous CV fields, including medical, robotics, entertainment, reverse engineering,
augmented reality, human-computer interaction, and animation [24]. Recent studies have focused
on the reconstruction of three-dimensional images from two-dimensional images [49, 52, 38]. Most
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existing research in the field of 3D image reconstruction from 2D images use the standard ImageNet
dataset as a benchmark [9].

Our IMPACT dataset. The generic approach involves using an image generator to produce a tri-plane
representation with image depths. Multiple viewpoints helps the process as it provides the information
about different angles and accurate depth estimation. The advantage of IMPACT is that is consists
of design sketches from many viewpoints for the same design and that can be used to generate
3D models. Thus, IMPACT can serve as a benchmark for 3D image construction and as a valuable
source of design inspiration for future inventors. It can also help the reviewers to search the prior
art to mitigate infringement as 3D constructions are more informative than a 2D model. We provide
examples in Appendix A.6.

4.4.2 Visual Question Answering

Visual Question Answering (VQA) asks to predict answer classes or generate a short phrase for the
given images and textual questions [3]. VQA enhances machine understanding of visual content and
enables various practical applications across different industries, such as Medical VQA [16].

Our IMPACT dataset. We propose a new task PatentVQA, which offers significant advantages in
understanding design patents. It can enhance interpretation by simplifying complex visual data and
automates the analysis of visual patent information, thus it can help in speeding up the review process.
First, we propose to construct and annotate an IMPACT-VQA dataset. Then, one can develop a VQA
systems using Vision-Language models [35, 31], which makes patent databases more accessible to a
broader audience and reduces the need for specialized training and helping users engage more deeply
with patent content. We illustrate an example in Fig. 1 and additional examples are in Appendix A.7.
Therefore, we believe that PatentVQA is a valuable tool in patent analysis and design innovation.

5 Conclusions

In this work, we have developed a large dataset on design patents, IMPACT that integrates visual and
textual information within a unified framework. We have compiled a collection of 435,101 design
patents spanning 16 years with 3.6 million drawing figures along with eleven fields. IMPACT is a
multimodal patent dataset with patent images and detailed captions to support various computer
vision and multimodal tasks. IMPACT is particularly valuable for advanced patent analysis tasks
such as classification, retrieval, prior art searches, and design trend analysis. We demonstrate the
usefulness of IMPACT in two specific tasks: classification and retrieval. The results demonstrate that
the integration of additional textual information along with the existing images help in improving
performance in several settings.

Broader Impact. Patent data—even for design patents—is publicly available, but there has been a
need to organize this large amount of data for the recent deep learning methods and applications. We
believe IMPACT will serve as an important benchmark to both patent and computer vision community.
This work is about creating an organized dataset from publicly available data and we do not foresee
any potential negative societal impact of it.

Future Directions. Besides the applications proposed earlier, another interesting future direction
could be to develop efficient foundation models specifically for patent data. These can significantly
enhance the accuracy and relevance of patent analyses, as generic vision-language models often
underperform in this type of specialized domain.
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A Appendix

A.1 Additional Details on Our Dataset

Number of words in a title. Design patents typically contain limited textual information. One
of the fields is the title, which describes the object the design patent protects. Figure 5 shows the
number of words in each title over the years. It is noteworthy that the titles average only about 3 to
3.5 words, indicating a trend towards concise and specific naming conventions in design patent filings.

Figure 5: The distribution of the number of words in the title of the design patents over the years.
This shows that the average number of words in the title of each patent is between 3 and 3.5.

Frequent objects. Figure 6 displays the top 10 objects that occur the most frequently in the data
set. Display screens are the most common, with a frequency of 13,810, followed by shoes and
bottles with frequencies of 4,327 and 3,718, respectively. Other frequently appearing objects include
containers, mobile phones, chairs, tires, shoe uppers, electric devices, and faucets.

Figure 6: Distribution of the top 10 objects in the dataset by frequency. Display screens, including
different types such as graphical user interfaces, animated graphical user interfaces, and transitional
graphical user interfaces, are the most common objects in the dataset.

Example of the fields. In the constructed CSV files, we have 11 fields for each design patent. Table 5
shows the descriptions of the 11 fields extracted from the XML files with an example. The description
defines the meaning of each column, and the examples of the fields are provided for the patent ID
D0908314.
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Table 5: Description of fields in the CSV file. There are 11 fields extracted from the XML files for
each design patent. The description defines the meaning of each column, and the examples of the
fields are provided for the patent ID D0908314.

Column Description Example
title The title of the design is the name

commonly recognized and used by the
public

Garment with a side pocket

id Document number of the patent starts with
a ‘D’ followed by a series of numbers,
which uniquely identifies the patent.

D0908314

claim A design patent application includes only a
single claim that defines the design the
applicant wishes to patent, specifying the
article in which the design is embodied or
to which it is applied.

The ornamental design for a garment with
a side pocket, as shown and described.

date Publication date of the patent 20210126

class U.S. design patent category under which
the patent is classified

D2728, D2840

class_searchU.S. classification codes aiding in
determining its scope and relevant prior art

[‘0202’, ‘D2728’, ‘D2839’, ‘D2829’,
‘D2750’, ‘D2839’, ‘D 2750’, ‘D2857’,
‘D2840’, ‘D2829’, ‘D 2840’, ‘D2840’,
‘D2840’, ‘D2829’, ‘D 2839’, ‘D2840’,
‘D21804’, ‘293’, ‘224153’, ‘D2712’,
‘D2720’, ‘D2750’, ‘D2831’, ‘D2853’,
‘D2865’, ‘D2873’, ‘D2874’, ‘D2878’,
‘D2840’, ‘D2839’, ‘D2857’, ‘D2728’,
‘D21801-805’]

inv_country Country of the inventors US

no_figs Number of figures for the design 7

sheets Number of design sheets provided for the
figures. Some of the sheets has multiple
figure views

4

file_names The filenames that contain the images of
the particular design.

[‘USD0908314-20210126-D00000.TIF’,
‘USD0908314-20210126-D00001.TIF’,
‘USD0908314-20210126-D00002.TIF’,
‘USD0908314-20210126-D00003.TIF’,
‘USD0908314-20210126-D00004.TIF’]

fig_desc The Figure Descriptions specify the
representation of each drawing view, such
as front view, top view, perspective, and
others

[‘FIG. 1 is a front left perspective view of
the garment with a side pocket, showing
my new design’, ‘FIG. 2 is a front view’,
‘FIG. 3 is a rear view’, ‘FIG. 4 is a left side
view’, ‘FIG. 5 is a right side view’, ‘FIG. 6
is a top view thereof’, ‘FIG. 7 is a bottom
view’]

caption Elaborated captions for the design which
includes shape and functionality

The image is a square-shaped illustration
of a garment with a side pocket. The
functionality of the image is to showcase
the design and features of the garment,
such as the pocket, which can be useful for
potential customers or designers to
visualize the product and its details.
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Frequent USPC class. Table 6 lists the top 10 most frequent class-subclass occurrences in the dataset.
The most common class-subclass is D14-486, "Recording, Communication, or Information Retrieval
Equipment," with 7,618 occurrences, specifically describing drop-down or full-screen menu types.
Other notable entries include D14-485, D26-28, and D12-209, covering generated images, vehicle
lamps or casings, and transportation apertures, respectively.

Table 6: Overview of the 10 Class-Subclass Occurrences. This lists the frequency of occurrences
for each class-subclass, along with descriptions that specify the general category and particular
functionalities or features characterized by each subclass. Note that some patents belong to multiple
classes. For simplicity, we have counted only the primary class and that results in a single classification
code for each patent.

Class-Subclass Occurrence Class Description Subclass Description
D14-486 7359 Recording, Communication, or In-

formation Retrieval Equipment
Drop down menu or full screen
menu type

D14-485 5363 Recording, Communication, or In-
formation Retrieval Equipment

Generated image

D26-28 4149 Lighting Vehicle lamp or casing

D12-209 2700 Transportation Aperture or simulated aperture

D2-972 2432 Apparel and Haberdashery Vamp, toe, heel, or side panel

D12-169 2399 Transportation Vehicle-attached front or rear type

D14-250 2320 Recording, Communication, or In-
formation Retrieval Equipment

Cover for base or handset

D13-147 2201 Equipment for Production, Distribu-
tion, or Transformation of Energy

Linear array of identical repeating
ports or contacts (i.e., in-line array)

D14-488 2022 Recording, Communication, or In-
formation Retrieval Equipment

Visible shutter

D14-126 1998 Recording, Communication, or In-
formation Retrieval Equipment

Receiver or monitor

Example viewpoints. We provide examples of the drawings that are available in the design patents.
Figure 7 shows four viewpoints of a design object titled as ceiling fan. 7a and 7b represent top and
bottom perspectives respectively, whereas 7c and 7d are top and bottom view, respectively.

A.2 Generated Captions Examples and Comparisons

For caption generation, we use LLaVA, GPT-4o, and Qwen-VL. Qwen-VL often lacks functional
descriptions and occasionally includes Chinese words within English captions. Although GPT-4o
provides high-quality captions, it comes with a higher cost. Figure 8 illustrates an example of a
design patent along with the captions generated by each model.

A.3 US Design Patent Classification

The subject matter of U.S. design patents is categorized into 33 distinct classes9. Unlike utility
patents, design patents are organized by classes and subclasses only. Table 7 lists all the categories of
the design patents.

A.4 PatentCLIP

We also provide a PatentCLIP which is finetuned from OpenAI’s CLIP pre-trained models with
IMPACT dataset. In this section, we illustrate the implementation details and qualitative analysis
using the learned feature embedding space from IMPACT.

9https://www.uspto.gov/patents/laws/examination-policy/seven-classification-design-patents
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(a) Top perspective (b) Bottom perspective

(c) Top view (d) Bottom view

Figure 7: An example of image perspectives and viewpoints in a design patent. The patent is about
the design of a ceiling fan.

A.4.1 Implementation details

We use an open source implementation of CLIP 10. The models are ResNet50, ResNet101, ViT-B-32
and ViT-L-14. The hyperparameters for funetining is listed as follows: learning rate is 5e − 6,
weight decay is 0.1, and optimizer is AdamW for all models. The batch size is 256 except 64 for
ViT-L-14. All settings are same to image-title and image-caption pairs. All finetuning and inference
are conducted on 4 NVIDIA V100 GPUs.

A.4.2 Qualitative analysis

To analysis the effective of finetuning CLIP on IMPACT dataset, we visualize the learned image
features and text features for sample patents using U-MAP projection [37]. The sample patents are
selected from the top 4 subclass in the recent five years data, including D12-209, D14-485, D14-486
and D26-28. In total, there are 5,699 patents. All the model backbone is ViT-B-32. For text features,
we visualize the embeddings for the captions.

Feature embedding spaces of multiple modalities on sample IMPACT dataset are shown in Fig 9.
Different colors representing the clusters of the corresponding classes. We observe that PatentCLIP
can identify clusters over the extracted image features better than CLIP, see 9a, 9c and 9e. Comparing
with PatentCLIP-title, PatentCLIP have the better clustering performance on the extracted text
features, it can identify D14 is far to D12. Note that, CLIP also can identify text feature clusters
because that the captions are generated with VLMs. However, CLIP is not able to classify the patent
images. Indeed, we can see that different classes cluster clearly, and similar subclasses are often close
in the embedding spaces, such as D14-485 and D14-486 (see class description in Tab 6). Therefore,

10https://github.com/mlfoundations/open_clip
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Figure 8: Captions generated by LLaVA, GPT-4o, and Qwen-VL of a power plug design. The shapes
are highlighted in yellow.

we believe that finetuning VLMs with IMPACT is beneficial in the specific patent domain for many
downstream tasks, such as classification and retrieval.

A.5 Multimodal Retrieval

A.5.1 Additional results

We provide additional results on the performance of finetuned PatentCLIP-title on Text-Image and
Image-Text retrievals. All the training hyper-parameters are same as the PatentCLIP model (see Sec
A.4). The dataset used here is the image and title pairs in IMPACT. As results shown in Table 8, the
performance pattern is similar to PatentCLIP, which is that the more advanced models and the models
with more parameters perform better. Comparing the results of PatentCLIP which is finetuned on
image and caption pairs in Table 3 is similar except for R@1 results of ResNet family. Others R@K
results of finetuning image-captions are significantly improved than PatentCLIP-title.

A.5.2 Qualitative analysis

To further analyze the multiomodal retrieval results, we demonstrate three Text-image retrieval
examples as follows.

• Example 1: Text Query: The image is a square-shaped drawing of a protective case for a game
controller. Ground truth image: D1006114.TIF

• Example 2: Text Query: The image is a black and white drawing of a computer mouse, which is a
device used for controlling and interacting with a computer. Ground truth image: D0943581.TIF

• Example 3: Text Query: The image is a white drawing of an FM transmitter, which is a device used
to transmit audio signals through the air using frequency modulation (FM) technology. Ground
truth image: D0985524.TIF

Figure 10 shows that PatentCLIP-title and PatentCLIP are able to retrieval game controller, but CLIP
only can recall the items with square-shaped. All top 5 retrieved images of PatentCLIP are related
with game controller, and the top 1 result is correct. As results shown in Fig 11, both CLIP and
PatentCLIP obtained the correct images in top 5 set, but PatentCLIP produce the top 1 image correctly.
Other four images and the images obtained from PatentCLIP-title are not relevant with the text query.
In Figure 12, only PatentCLIP retrieve the top 1 image correctly. We see that the retrieved images by
our PatentCLIP model are relevant to the text queries not only in the shape but also in terms of the
function. Thus, we conclude that captions provide more information for VLMs to learn the patents.
Our PatentCLIP model is also helpful for the prior art search and the design inspiration.

A.6 3D construction Examples

We provide two more detailed 3D constructions examples in Fig. 13. We utilize ControlNet [58] to
generate 3D photos for patent images. Comparing the results of prompting with IMPACT captions
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(a) Image features with CLIP (b) Text features with CLIP

(c) Image features with PatentCLIP-title (d) Text features with PatentCLIP-title

(e) Image features with PatentCLIP (f) Text features with PatentCLIP

Figure 9: UMAP feature embeddings for sample patent images. (a) Visualization using CLIP models
(b) Visualization using PatentCLIP finetuned on title (c) Visualization using PatentCLIP finetuned on
caption. PatentCLIP shows well formed clusters in both image and text-based features.
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Table 7: The table shows the list of U.S. design patent classes.

Class Description
D1 Edible Products
D2 Apparel and Haberdashery
D3 Travel Goods, Personal Belongings, and Storage or Carrying Articles
D4 Brushware
D5 Textile or Paper Yard Goods; Sheet Material
D6 Furnishings
D7 Equipment for Preparing or Serving Food or Drink Not Elsewhere Specified
D8 Tools and Hardware
D9 Packages and Containers for Goods
D10 Measuring, Testing or Signaling Instruments
D11 Jewelry, Symbolic Insignia, and Ornaments
D12 Transportation
D13 Equipment for Production, Distribution, or Transformation of Energy
D14 Recording, Communication, or Information Retrieval Equipment
D15 Machines Not Elsewhere Specified
D16 Photography and Optical Equipment
D17 Musical Instruments
D18 Printing and Office Machinery
D19 Office Supplies; Artists’ and Teachers’ Materials
D20 Sales and Advertising Equipment
D21 Games, Toys and Sports Goods
D22 Arms, Pyrotechnics, Hunting and Fishing Equipment
D23 Environmental Heating and Cooling, Fluid Handling and Sanitary Equipment
D24 Medical and Laboratory Equipment
D25 Building Units and Construction Elements
D26 Lighting
D27 Tobacco and Smokers’ Supplies
D28 Cosmetic Products and Toilet Articles
D29 Equipment for Safety, Protection and Rescue
D30 Animal Husbandry
D32 Washing, Cleaning or Drying Machines
D34 Material or Article Handling Equipment
D99 Miscellaneous

Table 8: Multimodal retrieval tasks in finetuned settings for image-text pairs used in the experiments.
The best Recall@K (%) are shown in bold.

Dataset Backbone Text-Image Image-Text
R@1 R@5 R@10 R@1 R@5 R@10

Finetuned Image-Title

ResNet50 5.44 14.98 21.54 5.18 14.46 20.28
ResNet101 7.76 18.98 24.66 7.16 18.30 24.38
ViT-B-32 9.16 22.38 29.20 8.42 22.18 28.86
ViT-L-14 14.88 33.04 41.42 13.75 31.98 39.96

and prompting with patent title, we observe that our captions can provide more guidance for diffusion
models.

A.7 Visual Question Answering Examples

We provide two more detailed Visual question answering (VQA )examples. Based on IMPACT dataset,
we design a set of questions which are relevant to design patents. Figures 14 and 15 are two examples
with 3 questions and answers for each exampe patent images. We use LLaVa [35] to generate answers.
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(a) Text query and ground truth image

(b) Retrieval results of CLIP

(c) Retrieval results of PatentCLIP-title

(d) Retrieval results of PatentCLIP

Figure 10: Text-image Retrieval example 1. Text query is shown in (a). (b), (c), and (d) are top 5
retrieval results of CLIP, PatentCLIP-title and PatentCLIP respectfully. Top 1-5 is from left to right.
Green box denotes to the correct image. In this case, only PatentCLIP retrieves correctly, which
means PatentCLIP learned relevant multimodal features in the patent domain.

We can see that the answers are general text, but they are still helpful for further patent analyses.
Thus, we propose a IMPACT-VQA to be a patent specific domain, which can provide more patent
related information VQA systems and will be a good future direction to explore.
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(a) Text query and ground truth image

(b) Retrieval results of CLIP

(c) Retrieval results of PatentCLIP-title

(d) Retrieval results of PatentCLIP

Figure 11: Text-image Retrieval example 2. Text query is shown in (a). (b), (c), and (d) are top 5
retrieval results of CLIP, PatentCLIP-title and PatentCLIP respectfully. Top 1-5 is from left to right.
Green box denotes to the correct image. In this case, only CLIP and PatentCLIP retrieves correctly.
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(a) Text query and ground truth image

(b) Retrieval results of CLIP

(c) Retrieval results of PatentCLIP-title

(d) Retrieval results of PatentCLIP

Figure 12: Text-image Retrieval example 3. Text query is shown in (a). (b), (c), and (d) are top 5
retrieval results of CLIP, PatentCLIP-title and PatentCLIP respectfully. Top 1-5 is from left to right.
Green box denotes to the correct image. In this case, only PatentCLIP retrieves correctly.
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(a) Image (b) Title (c) Caption

(d) Image (e) Title (f) Caption

Figure 13: Examples of 3D reconstruction. (a) and (d) are patent images. (b) and (e) are generated
images with title as text prompt. (c) and (f) are generated images with IMPACT captions.

Figure 14: Detailed VQA example 1, given an patent image from IMPACT, we design a few questions
and use LLaVA to generate answers.

26

125545https://doi.org/10.52202/079017-3988



Figure 15: Detailed VQA example 1, given an patent image from IMPACT, we design a few questions
and use LLaVA to generate answers.
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