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Abstract

Safe reinforcement learning (RL) requires the agent to finish a given task while
obeying specific constraints. Giving constraints in natural language form has
great potential for practical scenarios due to its flexible transfer capability and
accessibility. Previous safe RL methods with natural language constraints typically
need to design cost functions manually for each constraint, which requires domain
expertise and lacks flexibility. In this paper, we harness the dual role of text in
this task, using it not only to provide constraint but also as a training signal. We
introduce the Trajectory-level Textual Constraints Translator (TTCT) to replace
the manually designed cost function. Our empirical results demonstrate that TTCT
effectively comprehends textual constraint and trajectory, and the policies trained
by TTCT can achieve a lower violation rate than the standard cost function. Extra
studies are conducted to demonstrate that the TTCT has zero-shot transfer capability
to adapt to constraint-shift environments.

1 Introduction

In recent years, reinforcement learning (RL) has achieved remarkable success in multiple domains,
such as go game [37, 38] and robotic control [21, 45]. However, deploying RL in real-world scenarios
still remains challenging. Many real-world decision-making applications, such as autonomous driving
[13, 9] require agents to obey certain constraints while achieving the desired goals. To learn a safe
constrained policy, some safe RL works [2, 33, 44, 49, 39, 48, 6] have proposed methods to maximize
the reward while minimizing the constraint violations after training or during training.

However, several limitations prevent the existing safe RL methods’ widespread use in real-world
applications. Firstly, these methods often require mathematical or logical definitions of cost functions,
which require domain expertise (Limitation 1). Secondly, their cost function definitions are frequently
specific to a particular context and cannot be easily generalized to new tasks with similar constraints
(Limitation 2). Lastly, most current safe RL methods focus on constraints that are logically simple,
typically involving only one single entity or one single state [28], which can’t represent the real-world
safety requirements and lack universality (Limitation 3).

Using natural language to provide constraints [46, 29, 20] is a promising approach to overcome
Limitation 1 and 2 because natural language allows for flexible, high-level expression of constraints
that can easily adapt to different scenarios. Regarding Limitation 3, previous approaches primarily
employ what we call the single state/entity textual constraint. The single-state/entity textual con-
straint focuses solely on constraints related to one specific state or entity, limiting the ability to model
complex safety requirements in real-world scenarios. Many safety requirements involve interactions
and dependencies among multiple states or entities over time. By only addressing a single state or
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Table 1: Comparison of trajectory-level constraints and previous single state/entity constraints.
Universal Trajectory-level constraints can model any constraint requirements in real-world scenarios.
But single state/entity constraint can only model the constraint requirements on individual state/entity.

Single state/entity constraint (previous) Trajectory-level constraint (ours)
Don’t drive car. (single entity) Don’t drive car after you drink wine. (multi

entities)
Don’t touch lava. (single state) Don’t touch lava more that three times. (multi

states)
Don’t step in the gassed area. (single state) Don’t stay in the gas area for more than 5 min-

utes, your gas mask will fail. (multi states)

entity, these constraints fail to capture the dynamic relationships and temporal aspects that are crucial
for ensuring safety in complex environments. So we suggest using a more generalizable constraint
type trajectory-level textual constraint. The trajectory-level textual constraint is a more universal
constraint with complex logic semantics involving multiple states/entities. It is a nonlinear combina-
tion of multiple entities or multiple environment states and can model any constraint requirements in
real-world scenarios. The trajectory-level constraints in natural language form are the highly abstract
expression of the agent’s behavior guidelines, serving as a more natural and straightforward way to
introduce constraints. Notably, the set of trajectory-level constraints encompasses single-state con-
straints, as any single-state constraint can be reformulated as an equivalent trajectory-level constraint.
Examples of trajectory-level textual constraint and single state/entity textual constraint are presented
in Table 1.

Employing trajectory-level textual constraints across the entire trajectory poses two significant
challenges. Firstly, determining whether an RL agent violates textual constraint over a trajectory
is non-trivial, it needs to have the perception of the historical states and actions observed along the
trajectory (Challenge 1). Secondly, the trajectory-level safety problem is susceptible to sparse cost
[34], where cost is only imposed when the agent violates textual constraints at the final time step,
making it challenging for the agent to learn which actions contribute to a gradual escalation of risk
(Challenge 2). For instance, the agent needs to learn constraints like, "Don’t touch lava after you
touch grass." Without intermediate feedback, however, it struggles to understand how early actions,
such as stepping on grass, contribute to eventual violations.

To address Challenge 1, we propose a general approach to align the trajectory’s factual logic with the
text’s semantic logic, eliminating the need for manual encoding or separate models for each type of
constraint. Our method employs a sequence model [41, 15] for modeling agent historical interactions
with the environment, and a pre-trained language model (LM) [7] to comprehend natural language
constraints. We then maximize the embedding similarities between matching pairs (trajectory, text)
and minimize the embedding similarities between non-matching pairs using a contrastive learning
approach [25] similar to CLIP [30]. By calculating the similarity between the textual embeddings of
the constraint and the trajectory, we can predict whether a constraint is violated in this trajectory. Our
method uniquely leverages text as both a source of constraints and a unified supervisory signal for
trajectory encoding. In this dual role, text not only provides constraints but also guides the training
process, enabling the model to naturally handle diverse semantic constraints without requiring specific
model adjustments for each type. This design allows for a more flexible and generalizable system,
significantly simplifying the handling of complex, multi-dimensional constraints.

In addition, to address the issue of cost sparsity (Challenge 2), we introduce a method for temporal
credit assignment [40]. The proposed approach involves decomposing the one episodic cost of the
textual constraint into multiple parts and allocating them to each state-action pair within the trajectory.
This method offers denser cost signals regarding the relationship between the textual constraint and
the agent’s every action. It informs the agent which behaviors are risky and which are safer, thereby
enhancing safety and aiding model performance.

Our experiments demonstrate that the proposed method can effectively address Challenge 1 and
Challenge 2. In both 3D navigation [19] and 2D grid exploration [46] tasks, agents trained using
our method achieve significantly lower violation rates (up to 4.0x) compared to agents trained with
ground-truth cost functions while maintaining comparable rewards and more importantly, our method
obtains the Pareto frontier [10]. In addition to this, our method has zero-shot adaptation capability to
adapt to constraint-shift environments without fine-tuning.
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2 Related Work

Safe RL. Safe RL aims to train policies that maximize reward while minimizing constraint violations
[11, 13]. In prior work, there are usually two ways to learn safe policies: (1) consider cost as one
of the optimization objectives to achieve safety [48, 6, 49, 39, 44, 33], and (2) achieve safety by
leveraging external knowledge (e.g. expert demonstration) [35, 32, 1, 47]. These typical safe RL
algorithms require either human-defined cost functions or human-specified cost constraints which are
unavailable in the tasks that constraints are given by natural language.

RL with Natural Language. Prior works have integrated natural language into RL to improve
generalization or learning efficiency in various ways. For example, Hermann et al. [14] studied how
to train an agent that can follow natural language instructions to reach a specific goal. Additionally,
natural language has been used to constrain agents to behave safely. For instance, Prakash et al. [29]
trained a constraint checker to predict whether natural language constraints are violated. Yang et
al. [46] trained a constraint interpreter to predict which entities in the environment may be relevant
to the constraint and used the interpreter to predict costs. Lou et al. [28] used pre-trained language
models to predict the cost of specific states, avoiding the need for artificially designed cost functions.
However, previous methods cannot uniformly handle textual constraints with one framework, which
limits their applicability.

Credit Assignment in RL. Credit assignment studies the problem of inferring the true reward from
the designed reward. Prior works have studied improving sample efficiency of RL algorithms through
credit assignment, for example by using information gain [17], as an intrinsic bonus reward to aid
exploration. Goyal et al. [12] proposed the use of natural language instructions to perform reward
shaping to improve the sample efficiency of RL algorithms. Liu et al. [26] learned to decompose the
episodic return as the reward for policy optimization. However, to the best of our knowledge, our
work is the first to apply credit assignment to safe RL.

3 Preliminaries

Problem formulation. Trajectory-level constraint problem can be formed as the Con-
strained Non-Markov Decision Process (CNMDP) [3, 43], and it can be defined by the tuple
<S,A,T,R, γ,C,Y, τ∗>. Here S represents the set of states, A represents the set of actions, T
represents the state transition function, R represents the reward function, and γ ∈ (0,1) represents
the discount factor. In addition, Y represents the set of trajectory-level textual constraints (e.g., “You
have 10 HP, you will lose 3 HP every time you touch the lava, don’t die.”), which describes the
constraint that the agent needs to obey across the entire trajectory. C represents the cost function
determined by y ∈ Y . τ∗ represents the set of historical trajectories.

RL with constraints. The objective for the agent is to maximize reward while obeying the specified
textual constraint as much as possible [27]. Thus, in our task setting, the agent needs to learn a policy
π: S × Y × τ∗ → P (A) which maps from the state space S, textual constraints Y and historical
trajectories τ∗ to the distributions over actions A. Given a y, we learn a policy π that maximizes the
cumulative discounted reward JR while keeping the cumulative discounted cost (average violation
rate) JC below a constraint violation budget BC(y):

max
π

JR(π) = Eπ[
∞
∑
t=0

γR(st)] s.t. JC(π) = Eπ[
∞
∑
t=0

γC(st, at, y, τt)] ≤ BC(y). (1)

Here BC(y) and C(st, at, y, τt) are two functions both depending on textual constraint y. τt
represents the historical trajectory at time step t.

Episodic RL. Similar to the task with episodic rewards [4], in our task setting, a cost is only given at
the end of each trajectory τ when the agent violates the textual constraint y. In other words, before
violating y, the cost C(st, at, y, τt) = 0 for all t < T . For simplicity, we omit the discount factor
and assume that the trajectory length is at most T so that we can denote aT as the final action that
causes the agent to violate y without further confusion. Therefore, the constraint qualification of
the objective in RL with constraints becomes JC(π) = Eπ[C(sT , aT , y, τT )] ≤ BC(y). Due to the
sparsity of cost, a large amount of rollout trajectories are needed to help the agent distinguish the
subtle effects of actions on textual constraint [24]. This situation will become more serious when
trajectory-level constraints are complex and difficult to understand.

3
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Figure 1: TTCT overview. TTCT consists of two training components: (1) the text-trajectory
alignment component connects trajectory to text with multimodal architecture, and (2) the cost
assignment component assigns a cost value to each state-action based on its impact on satisfying
the constraint. When training RL policy, the text-trajectory alignment component is used to predict
whether a trajectory violates a given constraint and the cost assignment component is used to assign
non-violation cost.

4 TTCT: Trajectory-level Textual Constraints Translator

In this section, we introduce our proposed framework TTCT ( Trajectory-level Textual Constraints
Translator) as shown in Figure 1. TTCT has two key components: the text-trajectory alignment
component and the cost assignment component. The text-trajectory alignment component is used to
address the violations prediction problem. The cost assignment component is used to address the
sparse cost problem.

4.1 Text-Trajectory Alignment Component

We propose a component to learn from offline data to predict whether a given trajectory violates
textual constraints. The core idea of this component is to learn trajectory representations under textual
supervision and connect trajectory representation to text representation. If the distance between
the two representations in the embedding space is sufficiently close, we can consider that the given
trajectory violates the constraint. Our approach does not require modeling entities of the environment
like previous work, such as [46], which involves labeling hazardous items artificially in every
observation. Instead, we model this task as a trajectory-text multimodal learning problem. Hence,
our method can learn trajectory representations and text representations from the pairs (trajectory,
trajectory-level textual constraint). We believe that learning from the supervision of natural language
could not only enhance the representation power but also enable flexible zero-shot transfer [30].

Formally, given a batch of N (trajectory τ , trajectory-level textual constraint y) pairs. For each
pair, the trajectory corresponds to the text, indicating that the given trajectory violates the given
textual constraint. The trajectory can be defined as τ = (s1, a1, s2, a2, ..., sT−1, aT−1, sT , aT ), where
T is the step at which the textual constraint y is first violated by the trajectory. Here st is a ds-
dimensional observation vector. Each state in the trajectory is processed by a state encoder to obtain
a representation vst , also action is processed by an action encoder to obtain a representation vat . Then,
we concatenate vst and vat to obtain a vector representation vt for each state-action pair. After that,
we learn separate unimodal encoders gT and gC for the trajectory and textual constraint, respectively.
The trajectory encoder gT utilizes a causal transformer to extract the trajectory representation from
the input state-action representation sequence {vt}Tt=1:

H1,H2,H3, ...,HT−1,HT = gT ({vt}Tt=1), (2)

where Ht is a dH -dimensional vector. The final embedding HT is used as the representation for
the entire trajectory. Specifically, the causal Transformer processes the trajectory sequence by
maintaining a left-to-right context while generating embeddings. This allows the model to capture
temporal dependencies within the trajectory and obtain the embeddings for time steps before T . The
textual constraint encoder gC is used to extract features that are related to the constraints and it could
be one of a wide variety of language models:

L = gC(y), (3)

4
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where L is a dL-dimensional vector representation. Then we define symmetric similarities between
the two modalities with cosine distance:

simT (τ, y) = exp(α) ∗
HT ⋅L⊺

∣∣HT ∣∣ ∣∣L∣∣
, simT (y, τ) = exp(α) ∗

L⊺ ⋅HT

∣∣L∣∣ ∣∣HT ∣∣
, (4)

where α is a learnable parameter and T means that use last embedding of trajectory to calculate
similarity. And we use softmax to calculate trajectory → text and text→ trajectory similarities
scores:

pτ→y
i (τ) = exp(simT (τ, yi))

∑N
j=1 exp(simT (τ, yj))

, py→τ
i (y) = exp(simT (y, τi))

∑N
j=1 exp(simT (y, τj))

. (5)

Let qτ→y(τ), qy→τ(y) indicate the ground-truth similarity scores, where the negative pair (trajectory
doesn’t violate textual constraint) has a probability of 0 and the positive pair (trajectory violate
textual constraint) has a probability of 1. In our task setting, a trajectory can correspond to multiple
textual constraints, and vice versa. For example, two textual constraints such as “Do not touch lava”
and “After stepping on water, do not touch lava” might both be violated by a single given trajectory.
This many-to-many relationship between trajectories and textual constraints implies that the same
textual constraints (or different textual constraints with the same semantics) can apply to multiple
trajectories, while a single trajectory may comply with several textual constraints. So there may be
more than one positive pair in qτ→y

i (τ) and qy→τ
i (y). Therefore, we use Kullback–Leibler (KL)

divergence [23] as the multimodal contrastive (MC) loss to optimize our encoder similar to [42]:

LMC =
1

2
E(τ,y)∼D[KL(pτ→y(τ), softmax(qτ→y(τ))) +KL(py→τ(y), softmax(qy→τ(y)))], (6)

where D is the training set.

In addition to the multimodal contrastive (MC) loss, we also introduce a within-trajectory (WT) loss.
Specifically, suppose we have a trajectory’s representation sequence (H1,H2,H3, ...,H(T−1),HT )
and its corresponding textual constraint embedding L, we can calculate cosine similarity simt(τ, y)
between embedding Ht and L using Equation 4. Then we can calculate similarity scores within the
trajectory:

pτt (y) =
exp(simt(τ, y))

∑T
k=1 exp(simk(τ, y))

. (7)

Different from py→τ
i (y) in Equation 5, which measures similarity scores across N trajectories,

Equation 7 is used to measure the similarity scores of different time steps within a trajectory. The
reason for doing this is that the textual constraint is violated at time step T , while in the previous time
steps the constraint is not violated. Therefore, the instinct is to maximize the similarity score between
the final trajectory embedding HT and the textual constraint embedding L, while minimizing the
similarity score between all previous time step embeddings (H1,H2,H3, ...,H(T−1)) and the textual
constraint embedding L. Based on this instinct, we introduce within-trajectory (WT) loss:

LWT = E(τ,y)∼D[−
1

T
(
T−1
∑
t=1

log(1 − pτt (y)) + log(pτT (y)))], (8)

where the first term is responsible for minimizing the similarity score for the embedding of time
steps before T in the trajectory sequence, while the second term is responsible for maximizing the
similarity score for the embedding of time step T .

By combining these two losses LWT ,LMC , we can train a text encoder to minimize the distance
between embeddings of semantically similar texts, while simultaneously training a trajectory encoder
to minimize the distance between embeddings of semantically similar trajectories. Crucially, this
approach enables us to align the text and trajectory embeddings that correspond to the same semantic
constraint, fostering a cohesive representation of their shared meaning, and further determining
whether the trajectory violates the constraint by calculating embedding similarity.

4.2 Cost Assignment Component

After solving the problem of predicting whether a given trajectory violates a textual constraint, there is
still the issue of cost sparsity. Motivated by the works of temporal credit assignment [26], we propose

5
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a component to capture the relationship between the state-action pair and the textual constraint and
assign a cost value to each state-action based on its impact on satisfying the constraint.

Specifically, suppose we have a (trajectory τ , textual constraint y) pair and its representation ({Ht}Tt=1,
L) obtained from text-trajectory alignment component. The textual constraint representation L

is processed by an episodic-cost prediction layer F e to obtain a predicted episodic cost Ĉ(y) =
sigmoid(F e(L)) for the entire trajectory. We expect the episodic cost can be considered as the sum of
cost on all non-violation state-action pairs: Ĉ(y) = ∑T−1

t=1 ĉ(st, at, y, τt). To evaluate the significance
of each timestep’s action relative to textual constraints, we employ an attention mechanism:

et = sigmoid(simt(τ, y)). (9)

Here we regard the text representation as the query, each time step’s representation in the trajectory
as the key, and compute the attention score et based on the cosine similarity metric. After that, we
use the sigmoid function to make sure the score falls within the range of 0 to 1. Each attention score
et quantifies the degree of influence of the state-action pair (st, at) on violating the textual constraint.
Then we obtain an influence-based representation H∗t = etHt. To predict the cost ĉ(st, at, y, τt),
we incorporate a feed-forward layer called the cost assignment layer F c and output the predicted
non-violation single step cost as:

ĉ(st, at, y, τt) = sigmoid(F c(Concat(H∗t , L))). (10)

The loss function for measuring inconsistency of the episodic cost Ĉ(y) and the sum of non-violation
single step costs ĉ(st, at, y, ht) can be formed as:

LCA = E(τ,y)∼D[(
T−1
∑
t=1

ĉ(st, at, y, τt) − Ĉ(y))2]. (11)

This mutual prediction loss function LCA is only used to update the episodic-cost prediction layer
and cost assignment layer, and not to update the parameters of the trajectory encoder or text encoder
during backpropagation. This helps ensure the validity of the predictions by preventing overfitting or
interference from other parts of the model.

The effectiveness of this component comes from two main sources. First, the text-trajectory alignment
component projects semantically similar text representations to nearby points in the embedding space,
allowing the episodic-cost prediction layer to assign similar values to embeddings with close distances.
This aligns with the intuition that textual constraints with comparable violation difficulty should yield
similar episodic costs. Second, the cost assignment layer leverages the representational power of the
text-trajectory alignment component to capture complex relationships between state-action pairs and
constraints, enabling accurate single-step cost predictions.

In our experiment, we simultaneously train the text-trajectory alignment component and cost assign-
ment component end-to-end with a uniform loss function LTTCT :

LTTCT = LMC + LWT + LCA. (12)

By doing this, we can avoid the need for separate pre-training or fine-tuning steps, which can be time-
consuming and require additional hyperparameter tuning. Also, this can enable the cost assignment
component to gradually learn from the text-trajectory alignment component and make more accurate
predictions over time.

In the test phase, at time step t we encode trajectory τt and textual constraint y with Equation 3 and
Equation 2 to obtain the entire trajectory embedding Ht and text embedding L. Then we calculate
distance score sim(τt, y) using Equation 4. The predicted cost function ĉ is given by:

ĉ = {1, if sim(τt, y) ≥ β,
sigmoid(F c(Concat(H∗t , L))), otherwise

, (13)

where β is a hyperparameter that defines the threshold of the cost prediction. ĉ = 1 indicates that the
TTCT model predicts that the textual constraint is violated. Otherwise, if the textual constraint is not
violated by the given trajectory, we assign a predicted cost using Equation 10.

6
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5 Policy Training
Our Trajectory-level textual constraints Translator framework is a general method for integrating
free-form natural language into safe RL algorithms. In this section, we introduce how to integrate
our TTCT into safe RL algorithms so that the agents can maximize rewards while avoiding early
termination of the environment due to violation of textual constraints. To enable perception of
historical trajectory, the trajectory encoder and text encoder are not only used as frozen plugins gT
and gC for cost prediction but also as trainable sequence models g∗T and g∗C for modeling historical
trajectory. This allows the agent to take into account historical context when making decisions. To
further improve the ability to capture relevant information from the environment, we use LoRA [18]
to fine-tune both the g∗T and g∗C during policy training. The usage of gT , gC and g∗T , g∗C is illustrated
in Appendix A.4 Figure 8.

Formally, let’s assume we have a policy π with parameter ϕ to gather transitions from environments.
We maintain a vector to record the history state-action pairs sequence, and at time step t we use g∗T
and g∗C to encode τt−1 and textual constraint y so that we can get historical context representation
Ht−1 and textual constraint representation L. The policy selects an action at = πθ(ot,Ht−1, L) to
interact with environment to get a new observation ot+1. And we update τt with the new state-action
pair (ot, at) to get τt. With τt and L, ĉt can be predicted according to Equation 13. Then we store
the transition into the buffer and keep interacting until the buffer is full. In the policy updating phase,
after calculating the specific loss function for different safe RL algorithms, we update the policy π
with gradient descent and update g∗T , g∗C with LoRA. It is worth noting that gT and gC are not updated
during the whole policy training phase, as they are only used for cost prediction. The pseudo-code
and more details of the policy training can be found in Appendix A.4.

6 Experiments

Our experiments aim to answer the following questions: (1) Can our TTCT accurately recognize
whether an agent violates the trajectory-level textual constraints? (2) Does the policy network, trained
with predicted cost from TTCT, achieve fewer constraint violations than trained with the ground-truth
cost function? (3) How much performance improvement can the cost assignment (CA) component
achieve? (4) Does our TTCT have zero-shot capability to be directly applicable to constraint-shift
environments without any fine-tuning? We adopt the following experiment setting to address these
questions.

(a) Hazard-World-Grid (b) SafetyGoal (c) LavaWall

Figure 2: (a) One layout in Hazard-World-Grid [46], where orange tiles are lava, blue tiles are water
and green tiles are grass. Agents need to collect reward objects in the grid while avoiding violating our
designed textual constraint for the entire episode. (b) Robot navigation task SafetyGoal that is built
in Safety-Gymnasium [19], where there are multiple types of objects in the environment. Agents need
to reach the goal while avoiding violating our designed textual constraint for the entire episode. (c)
LavaWall [5], a task has the same goal but different hazard objects compared to Hazard-World-Grid.

6.1 Setup

Task. We evaluate TTCT on two tasks (Figure 2 (a,b)): 2D grid exploration task Hazard-World-
Grid (Grid) [46] and 3D robot navigation task SafetyGoal (Goal) [19]. And we designed over 200
trajectory-level textual constraints which can be grouped into 4 categories, to constrain the agents.
A detailed description of the categories of constraints will be given in Appendix A.1. Different
from the default setting, in our task setting, when a trajectory-level textual constraint is violated, the

7
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environment is immediately terminated. This is a more difficult setup than the default. In this setup,
the agents must collect as many rewards as possible while staying alive.

Baselines. We consider the following baselines: PPO [36], PPO_Lagrangian(PPO_Lag) [33],
CPPO_PID [39], FOCOPS [49]. PPO does not consider constraints and simply aims to maximize
the average reward. We use PPO to compare the ability of our methods to obtain rewards. As for
the last three algorithms, we design two training modes for them. One is trained with standard
ground-truth cost, where the cost is given by the human-designed violation checking functions, and
we call it ground-truth (GC) mode. The other is trained with the predicted cost by our proposed
TTCT, which we refer to as cost prediction (CP) mode. More information about the baselines and
training modes can be found in Appendix A.1 A.2.

Metrics. We take average episodic reward (Avg. R) and average episodic cost (Avg. C) as the main
comparison metrics. Average episodic cost can also be considered as the average probability of
violating the constraints. The higher Avg. R, the better performance, and the lower Avg. C, the better
performance.
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Figure 3: Evaluation results of our proposed method TTCT. The blue bars are our proposed
cost prediction (CP) mode performance and the orange bars are the ground-truth cost (GC) mode
performance. The black dashed lines are PPO performance. (a) Results on Hazard-World-Grid task.
(b) Results on SafetyGoal task.

6.2 Main Results and Analysis

The evaluation results are shown in Figure 3 and the learning curves are shown in Figure 4. We can
observe that in the Hazard-World-Grid task, compared with PPO, the policies trained with GC can
reduce the probability of violating textual constraints to some extent, but not significantly. This is
because the sparsity of the cost makes it difficult for an agent to learn the relevance of the behavior
to the textual constraints, further making it difficult to find risk-avoiding paths of action. In the
more difficult SafetyGoal task, it is even more challenging for GC-trained agents to learn how to
avoid violations. In the CPPO_PID and FOCOPS algorithms trained with GC mode, the probability
of violations even rises gradually as the training progresses. In contrast, the agents trained with
predicted cost can achieve lower violation probabilities than GC-trained agents across all algorithms
and tasks and get rewards close to GC-trained agents.

These results show that TTCT can give an accurate predicted episodic cost at the time step when
the constraint is violated, it can also give timely cost feedback to non-violation actions through
the cost assignment component so that the agents can find more risk-averse action paths. And
these results answer questions (1) and (2). The discussion about the violation prediction capability of
the text-trajectory component can be found in Appendix B.1. The interpretability and case study of
the cost assignment component can be found in Appendix B.2.

6.3 Ablation Study

To study the influence of the cost assignment component. We conduct an ablation study by removing
the cost assignment component from the full TTCT. The results of the ablation study experiment are
shown in Figure 4. We can observe that even TTCT without cost assignment can achieve similar
performance as GC mode. And in most of the results if we remove the cost assignment component,
the performance drops. This shows that our text trajectory alignment component can accurately
predict the ground truth cost, and the use of the cost assignment component can further help
us learn a safer agent. These results answer questions (3).
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Figure 4: Learning curve of our proposed method TTCT. Each column is an algorithm. The six
figures on the left show the results of experiments on the Hazard-World-Grid task and the six figures
on the right show the results of experiments on the SafetyGoal task. The solid line is the mean value,
and the light shade represents the area within one standard deviation.
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Figure 5: Ablation study of removing the cost assignment (CA) component. The blue bars are
cost prediction (CP) mode performance with full TTCT and the orange bars is the cost prediction
(CP) mode performance without CA component. The black dashed lines are PPO performance. (a)
Ablation results on Hazard-World-Grid task. (b) Ablation results in SafetyGoal task.

6.4 Further Results

Pareto frontier. Multi-objective optimization typically involves finding the best trade-offs between
multiple objectives. In this context, it is important to evaluate the performance of different methods
based on their Pareto frontier [10], which represents the set of optimal trade-offs between the reward
and cost objectives. We plot the Pareto frontier of policies trained with GC and policies trained with
CP on a two-dimensional graph, with the vertical axis representing the reward objective and the
horizontal axis representing the cost objective as presented in Figure 6. The solution that has the
Pareto frontier closer to the origin is generally considered more effective than those that have the
Pareto frontier farther from the origin. We can observe from the figure that the policies trained with
predicted cost by our TTCT have a Pareto frontier closer to the origin. This proves the effectiveness
of our method and further answers Questions (1) and (2).

(a) PPO_Lag (b) CPPO_PID (c) FOCOPS

Figure 6: Results of Pareto frontiers. We compare the performance of 200 policies trained using
cost prediction (CP) and 200 policies trained with ground-truth cost (GC). The☀ symbol represents
the policy on the Pareto frontier. And we connect the Pareto-optimal policies with a curve.
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Zero-shot transfer capability. To explore whether our method has zero-shot transfer capability,
we use the TTCT trained under the Hazard-World-Grid environment to apply directly to a new
environment called LavaWall (Figure 2 (c)) [5], without fine-tuning. The results are shown in Figure
7. We can observe that the policy trained with cost prediction (CP) from TTCT trained under the
Hazard-World-Grid environment can still achieve a low violation rate comparable to the GC-trained
policy. This answers Question (4).
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(a) Zero-shot reward
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(b) Zero-shot cost

Figure 7: Zero-shot adaptation capability of TTCT on LavaWall task. The left figure shows the
average reward and the right figure shows the average cost.

7 Conclusion and Future Work

In this paper, we study the problem of safe RL with trajectory-level natural language constraints and
propose a method of trajectory-level textual constraints translator (TTCT) to translate constraints into
a cost function. By combining the text-trajectory alignment (CA) component and the cost assignment
(CA) component, our method can elegantly solve the problems of predicting constraint violations
and cost sparsity. We demonstrated that our TTCT method achieves a lower violation probability
compared to the standard cost function. Thanks to its powerful multimodal representation capabilities,
our method also has zero-shot transfer capability to help the agent safely explore the constraint-shift
environment. This work opens up new possibilities for training agents in safe RL tasks with total
free-form and complex textual constraints.

Our work still has room for improvement. The violation rate of our method is not absolute zero.
In future work, we plan to investigate the application of TTCT in more complex environments
and explore the integration of other techniques such as meta-learning [16] to further improve the
performance and generalization capabilities of our method.

Acknowledgments

This work was supported by the grants from the Natural Science Foundation of China (62225202,
62202029), and Young Elite Scientists Sponsorship Program by CAST (No. 2023QNRC001). Thanks
for the computing infrastructure provided by Beijing Advanced Innovation Center for Big Data and
Brain Computing. This work was also sponsored by CAAI-Huawei MindSpore Open Fund. Jianxin
Li is the corresponding author.

10

125644https://doi.org/10.52202/079017-3992



References
[1] Pieter Abbeel, Adam Coates, and Andrew Y Ng. Autonomous helicopter aerobatics through

apprenticeship learning. The International Journal of Robotics Research, 29(13):1608–1639,
2010.

[2] Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. Constrained policy optimization.
In International conference on machine learning, pages 22–31. PMLR, 2017.

[3] Eitan Altman. Constrained Markov decision processes. Routledge, 2021.

[4] Charles Blundell, Benigno Uria, Alexander Pritzel, Yazhe Li, Avraham Ruderman, Joel Z Leibo,
Jack Rae, Daan Wierstra, and Demis Hassabis. Model-free episodic control. arXiv preprint
arXiv:1606.04460, 2016.

[5] Maxime Chevalier-Boisvert, Bolun Dai, Mark Towers, Rodrigo Perez-Vicente, Lucas Willems,
Salem Lahlou, Suman Pal, Pablo Samuel Castro, and Jordan Terry. Minigrid & miniworld:
Modular & customizable reinforcement learning environments for goal-oriented tasks. Advances
in Neural Information Processing Systems, 36, 2024.

[6] Yinlam Chow, Ofir Nachum, Aleksandra Faust, Edgar Duenez-Guzman, and Mohammad
Ghavamzadeh. Lyapunov-based safe policy optimization for continuous control. arXiv preprint
arXiv:1901.10031, 2019.

[7] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805,
2018.

[8] Tom Fawcett. An introduction to roc analysis. Pattern recognition letters, 27(8):861–874, 2006.

[9] Shuo Feng, Haowei Sun, Xintao Yan, Haojie Zhu, Zhengxia Zou, Shengyin Shen, and Henry X
Liu. Dense reinforcement learning for safety validation of autonomous vehicles. Nature,
615(7953):620–627, 2023.

[10] Drew Fudenberg and Jean Tirole. Game theory. MIT press, 1991.

[11] Javier Garcıa and Fernando Fernández. A comprehensive survey on safe reinforcement learning.
Journal of Machine Learning Research, 16(1):1437–1480, 2015.

[12] Prasoon Goyal, Scott Niekum, and Raymond J Mooney. Using natural language for reward
shaping in reinforcement learning. arXiv preprint arXiv:1903.02020, 2019.

[13] Shangding Gu, Long Yang, Yali Du, Guang Chen, Florian Walter, Jun Wang, Yaodong Yang,
and Alois Knoll. A review of safe reinforcement learning: Methods, theory and applications.
arXiv preprint arXiv:2205.10330, 2022.

[14] Karl Moritz Hermann, Felix Hill, Simon Green, Fumin Wang, Ryan Faulkner, Hubert Soyer,
David Szepesvari, Wojciech Marian Czarnecki, Max Jaderberg, Denis Teplyashin, et al.
Grounded language learning in a simulated 3d world. arXiv preprint arXiv:1706.06551, 2017.

[15] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation,
9(8):1735–1780, 1997.

[16] Timothy Hospedales, Antreas Antoniou, Paul Micaelli, and Amos Storkey. Meta-learning in
neural networks: A survey. IEEE transactions on pattern analysis and machine intelligence,
44(9):5149–5169, 2021.

[17] Rein Houthooft, Xi Chen, Yan Duan, John Schulman, Filip De Turck, and Pieter Abbeel. Vime:
Variational information maximizing exploration. Advances in neural information processing
systems, 29, 2016.

[18] Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, and Weizhu Chen. Lora: Low-rank adaptation of large language models, 2021.

11

125645 https://doi.org/10.52202/079017-3992



[19] Jiaming Ji, Borong Zhang, Jiayi Zhou, Xuehai Pan, Weidong Huang, Ruiyang Sun, Yiran Geng,
Yifan Zhong, Josef Dai, and Yaodong Yang. Safety gymnasium: A unified safe reinforcement
learning benchmark. Advances in Neural Information Processing Systems, 36, 2023.

[20] Russell Kaplan, Christopher Sauer, and Alexander Sosa. Beating atari with natural language
guided reinforcement learning. arXiv preprint arXiv:1704.05539, 2017.

[21] Elia Kaufmann, Leonard Bauersfeld, Antonio Loquercio, Matthias Müller, Vladlen Koltun, and
Davide Scaramuzza. Champion-level drone racing using deep reinforcement learning. Nature,
620(7976):982–987, 2023.

[22] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[23] Solomon Kullback and Richard A Leibler. On information and sufficiency. The annals of
mathematical statistics, 22(1):79–86, 1951.

[24] Pawel Ladosz, Lilian Weng, Minwoo Kim, and Hyondong Oh. Exploration in deep reinforce-
ment learning: A survey. Information Fusion, 85:1–22, 2022.

[25] Phuc H Le-Khac, Graham Healy, and Alan F Smeaton. Contrastive representation learning: A
framework and review. Ieee Access, 8:193907–193934, 2020.

[26] Yang Liu, Yunan Luo, Yuanyi Zhong, Xi Chen, Qiang Liu, and Jian Peng. Sequence mod-
eling of temporal credit assignment for episodic reinforcement learning. arXiv preprint
arXiv:1905.13420, 2019.

[27] Yongshuai Liu, Avishai Halev, and Xin Liu. Policy learning with constraints in model-free
reinforcement learning: A survey. In The 30th international joint conference on artificial
intelligence (ijcai), 2021.

[28] Xingzhou Lou, Junge Zhang, Ziyan Wang, Kaiqi Huang, and Yali Du. Safe reinforcement
learning with free-form natural language constraints and pre-trained language models. arXiv
preprint arXiv:2401.07553, 2024.

[29] Bharat Prakash, Nicholas R Waytowich, Ashwinkumar Ganesan, Tim Oates, and Tinoosh
Mohsenin. Guiding safe reinforcement learning policies using structured language constraints.
In SafeAI@ AAAI, pages 153–161, 2020.

[30] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning,
pages 8748–8763. PMLR, 2021.

[31] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al.
Language models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

[32] Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta, Giulia Vezzani, John Schulman, Emanuel
Todorov, and Sergey Levine. Learning complex dexterous manipulation with deep reinforcement
learning and demonstrations. arXiv preprint arXiv:1709.10087, 2017.

[33] Alex Ray, Joshua Achiam, and Dario Amodei. Benchmarking safe exploration in deep rein-
forcement learning. arXiv preprint arXiv:1910.01708, 7(1):2, 2019.

[34] Martin Riedmiller, Roland Hafner, Thomas Lampe, Michael Neunert, Jonas Degrave, Tom
Wiele, Vlad Mnih, Nicolas Heess, and Jost Tobias Springenberg. Learning by playing solving
sparse reward tasks from scratch. In International conference on machine learning, pages
4344–4353. PMLR, 2018.

[35] Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning and
structured prediction to no-regret online learning. In Proceedings of the fourteenth interna-
tional conference on artificial intelligence and statistics, pages 627–635. JMLR Workshop and
Conference Proceedings, 2011.

12

125646https://doi.org/10.52202/079017-3992



[36] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[37] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driess-
che, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mas-
tering the game of go with deep neural networks and tree search. nature, 529(7587):484–489,
2016.

[38] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur
Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of
go without human knowledge. nature, 550(7676):354–359, 2017.

[39] Adam Stooke, Joshua Achiam, and Pieter Abbeel. Responsive safety in reinforcement learning
by pid lagrangian methods. In International Conference on Machine Learning, pages 9133–9143.
PMLR, 2020.

[40] Richard Stuart Sutton. Temporal credit assignment in reinforcement learning. University of
Massachusetts Amherst, 1984.

[41] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

[42] Mengmeng Wang, Jiazheng Xing, and Yong Liu. Actionclip: A new paradigm for video action
recognition. arXiv preprint arXiv:2109.08472, 2021.

[43] Steven D Whitehead and Long-Ji Lin. Reinforcement learning of non-markov decision processes.
Artificial intelligence, 73(1-2):271–306, 1995.

[44] Long Yang, Jiaming Ji, Juntao Dai, Linrui Zhang, Binbin Zhou, Pengfei Li, Yaodong Yang, and
Gang Pan. Constrained update projection approach to safe policy optimization. Advances in
Neural Information Processing Systems, 35:9111–9124, 2022.

[45] Tao Yang, Youhua Xiao, Zhen Zhang, Yiming Liang, Guorui Li, Mingqi Zhang, Shijian Li,
Tuck-Whye Wong, Yong Wang, Tiefeng Li, et al. A soft artificial muscle driven robot with
reinforcement learning. Scientific reports, 8(1):14518, 2018.

[46] Tsung-Yen Yang, Michael Y Hu, Yinlam Chow, Peter J Ramadge, and Karthik Narasimhan.
Safe reinforcement learning with natural language constraints. Advances in Neural Information
Processing Systems, 34:13794–13808, 2021.

[47] Tsung-Yen Yang, Justinian Rosca, Karthik Narasimhan, and Peter J Ramadge. Accelerating safe
reinforcement learning with constraint-mismatched policies. arXiv preprint arXiv:2006.11645,
2020.

[48] Tsung-Yen Yang, Justinian Rosca, Karthik Narasimhan, and Peter J Ramadge. Projection-based
constrained policy optimization. arXiv preprint arXiv:2010.03152, 2020.

[49] Yiming Zhang, Quan Vuong, and Keith Ross. First order constrained optimization in policy
space. Advances in Neural Information Processing Systems, 33:15338–15349, 2020.

13

125647 https://doi.org/10.52202/079017-3992



A Dataset and Training Details

A.1 Dataset

In our task setting, humans need to provide high-level textual instruction to the agent for the entire
trajectory, and then TTCT can predict the cost based on the real-time state of the agent’s exploration
so that the agent can learn a safe policy with the predicted cost. Thus our dataset is comprised of two
parts: the trajectory-level textual constraints and the environments.

Trajectory-level textual constraints: To generate textual constraints, we first explore the environ-
ment using a random policy, collecting a large amount of offline trajectory data. Then we design a
descriptor that automatically analyzes trajectories and gives natural language descriptions based on
predefined templates. To validate whether our method can understand different difficulty levels of
textual constraints, we design four types of trajectory-level textual constraints. The four types of
textual constraints are:

1. Quantitative textual constraint describes a quantitative relationship in which an entity in the
environment cannot be touched beyond a specific number of times, which can be interpreted
as the entity’s tolerance threshold, and when the threshold is exceeded, the entity may
experience irrecoverable damage.

2. Sequential textual constraint describes a sequence-based relationship, where the occurrence
of two or more distinct actions independently may not pose a risk, but when they occur in
sequence, it does. For instance, it’s safe to drink or drive when they happen independently,
but when they occur in sequence (i.e., drinking first and then driving), it becomes dangerous.

3. Relational textual constraint describes constraints on the relationships between an agent
and entities in its environment, such as maintaining a certain distance, always being in front
of that entity, or not staying too far from it.

4. Mathematical textual constraints often do not provide explicit instructions to the agent
regarding what actions to avoid, but rather present logical descriptions that demand the
model’s ability to reason mathematically. This type of constraint thereby presents a higher
cognitive burden for our TTCT to comprehend.

Examples of four types of trajectory-level textual constraints are included in Table 2. Then we
randomly split the (trajectory, textual constraint) pairs into 80% training and 20% test sets. And we
use the training set to train our TTCT end-to-end.

Environments: We use two environments Hazard-World-Grid and SafetyGoal as main benchmarks
and a environment LavaWall to evaluate the zero-shot transfer capability:

1. Hazard-World-Grid. The environment is a 12 × 12 grid, with the gray walls surrounding
the perimeter. The agent can only explore within the grid. Inside the grid, some items
provide rewards: blue keys, red balls, and yellow boxes. Collecting all of these items will
be considered as completing the task. Additionally, there are hazardous materials in the
grid, where orange tiles are lava, cyan tiles are water, and green tiles are grass. During
exploration, the agent can only see a range of 7 × 7 pixels ahead, resulting in an observation
space with size 7 × 7 × 3.

2. SafetyGoal. Robot navigation task, the environment has a navigation target, which is
completed when the robot reaches the target. The environment also contains vases (cyan
squares) and Hazards (Mediumslateblue circles). The vases can be moved by the robot and
hazards are fixed.

3. LavaWall. The LavaWall environment shares the same task goal as Hazard-World-Grid but
with different hazardous materials. Whenever the environment is initialized, a random lava
wall with only one entrance is generated in the grid, and the agent must learn to obtain the
reward on the other side while avoiding stepping on lava.

For each episode, we place the agent at a randomized start location, fill the environment with objects,
and randomly select a textual constraint from the constraint pool. We manually design the violation
checking function for every constraint to determine whether the environment violates the textual
constraint, and when the textual constraint is violated, the environment will provide a cost with a
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Table 2: Examples from the different trajectory-level textual constraint categories.

Constraint type Examples

Quantitative

Do not cross lava more than five times.
Never reach grass more than five times.
Please touch water less than three times.
The vase is very fragile, please don’t touch it!
If you touch the vase more than three times, the vase will break.
The lava is very dangerous. Please don’t touch it.

Sequential
After stepping through the water, your shoes can’t touch the lava.
Once you’ve walked past the grass, make sure you don’t set foot on
water.
After walking past lava, don’t go back to the water.

Mathematical
You only have 20 HP, grass and lava are very dangerous, you will lose
3 and 2 HP respectively if you step on them, please don’t die!
You only have 25 HP, stepping on grass and lava will lose 3 and 2 HP
respectively, but water will help you regain 1 HP, please don’t die!
You only have 10 HP, and stepping on dangerous water and lava will
cause you to lose 3 and 2 HP respectively, your fate hangs by a thread.
don’t let it snap!

Relational
Please keep a distance of 0.2 from dangerous chemicals or you will die!
Maintain a safe distance of 0.25 from the hazard.
It’s important to keep a distance of 0.3 from the hazard.

value of 1.0 to the agent and terminate the environment (the manually designed function will not be
used in the cost prediction (CP) mode, all the costs will be predicted by our TTCT in CP mode).

A.2 Baselines

(1) PPO [36]: This algorithm does not consider constraints, and simply considers maximizing the
average reward, which we use to compare the ability of our methods to obtain rewards.
(2) PPO_Lagrangian(PPO_Lag) [33]: This algorithm transforms a constrained optimization
problem into an unconstrained optimization problem via Lagrange multipliers
(3) CPPO_PID [39]: This algorithm PID to control Lagrange multiplier, which solves the cycle
fluctuation problem of PPO-Lagrange.
(4) FOCOPS [49]: This algorithm finds the optimal update policy by solving a constrained optimization
problem in the nonparameterized policy space, then projects the update policy back into the
parametric policy space.

A.3 Training Detail of TTCT

We provide training pseudocode of TTCT in Figure 9. The text encoder we use is Bert ((https:
//huggingface.co/google-bert/bert-base-uncased/tree/main) [7]. And the hyperpa-
rameters we use are shown in Table 3. We use the same hyperparameters across different tasks’
datasets. We conduct the training on the machine with A100 GPU for about 1 day.

A.4 Policy Training Detail

We provide pseudocode of training policy with predicted from TTCT in Algorithm 1. To enable
the agent to comply with diverse types of constraints, we launch async vectorized environments
with different types of constrained environments during roll-out collection. The agent interacts with
these environments and collects transitions under different constraint restrictions to update its policy.
During policy updates, we fine-tune the trajectory encoder g∗H and text encoder g∗L using LoRA [18]
at every epoch’s first iteration, while not updating encoder parameters in other iterations, which saves
training time.
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Table 3: Hyperparameters used in TTCT

Hyperparameters
Batch size 194

Epochs 32
Learning rate 10−6

Embedding dimension of trajectory dH 512
Embedding dimension of text dT 512

Trajectory length 200
Transformer width 512

Transformer number of heads 8
Transformer number of layers 12

Optimizer Adam [22]

Algorithm 1 Safe RL algorithm with TTCT

1: Initialize value function network ϕ, cost value function network ϕc, policy network θ, trajectory
encoder g∗T , textual constraint encoder g∗C , frozen trajectory encoder gT for cost prediction,
frozen textual constraint encoder gC for cost prediction, cost alignment network F c

2: for each epoch do
3: for each episode do
4: Sample a textual constraint y for this episode
5: Get text representation L of y with g∗C
6: Reset environment to get observation o1
7: Initialize sequence τ0 = {opad, apad} and encoded sequence representation H0 = g∗T (τ1)
8: for t = 1, T do
9: Select a action at = πθ(ot,Ht−1, L)

10: Execute action at in emulator and observe reward rt and next observation ot+1
11: Append (ot, at) into τt−1 to get τt and update sequence representation Ht = g∗T (τt)
12: Predict cost ĉt according to Equation 13
13: Store transition (ot, at, rt, ĉt, τt−1, y) in buffer
14: end for
15: end for
16: Sample batch of N transitions from buffer.
17: Encode {τj}Ni=1 and {yi}Ni=1 with gT , gC
18: Calculate specific loss function
19: Update value function ϕ, cost value function ϕc, policy network θ
20: Update trajectory encoder g∗T and textual constraint encoder g∗C with LoRA
21: end for

TTCT training

dataset

pretrained

trajectory encoder 

pretrained

text encoder 

policy training

gT* 

gC* 

gT

gC

Actor

Environment
observation

cost predictor

action

cost

Frozen parameters

Trainable parameters

Figure 8: A diagram illustrating the usage of gT , gC and g∗T , g∗C when training policy.
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# state_encoder - CNN or DNN

# action_encoder - DNN

# trajectory_encoder - Causal Transformer

# text_encoder - Any Text Transformer

# episodic_cost_predictor - DNN

# single_step_cost_predictor - DNN

# labels_MC - [n , n] labels for multimodal

# W_tra[d_tra, d_e] - learned proj of trajectory to embed

# W_t[d_t, d_e] - learned proj of text to embed

# S[n, l, d_s] - minibatch of n state sequences

# A[n, l, d_a] - minibatch of n action sequences

# T[n, w] - minibatch of n text constrains

# extract feature representations of different inputs

S_f = state_encoder(S)

A_f = action_encoder(A)

Tra_f = trajectory_encoder(Concat([S_f, A_f], dim=-1)) # [n, l, d_tra]

T_f = text_encoder(T) # [n, 1, d_t]

# normalization

T_e = l2_normalize(np.dot(T_f, W_t), axis=-1) # [n, 1, d_e]

Tra_e = l2_normalize(np.dot(Tra_f, W_tra), axis=-1) # [n, l, d_e]

# cost assignment

EpCost = episodic_cost_predictor(T_e.detach()) # [n]

logits_WT = torch.matmul(Tra_e * np.exp(t), T_e) # [n, l, 1]

atten_score = sigmoid(logits_WT) # [n, l, 1]

Tra_atten = atten_score * Tra_e

cost = single_step_cost_predictor(Concat([Tra_atten[:, :l-1, :], T_e.repeat(1, l-1, 1).detach()],

dim=-1)) # [n, l]

sum_cost = sum(cost, dim=1) # [n]

loss_CA = (mse_loss(EpCost, sum_cost) + mse_loss(sum_cost, EpCost))/2

# within-trajectory (WT)

labels_WT = torch.tensor([l-1] * n) # only the last time step is positive

loss_WT = cross_entropy_loss(logits_WT, labels_WT)

# multimodal contrastive (MC)

logits_MC = np.dot(Tra_e[:, -1, :] * np.exp(t), T_e) # [n, n]

loss_tra = KL_divergence_loss(logits_MC, labels_MC, axis=0)

loss_t = KL_divergence_loss(logits_MC, labels_MC, axis=1)

loss_MC = (loss_tra + loss_t)/2

# total loss

loss = loss_MC + loss_WT + loss_CA

Figure 9: Pseudocode for the code of training our TTCT.

17

125651 https://doi.org/10.52202/079017-3992



B Additional Experiments

B.1 Violations Prediction Capability of Text-Trajectory Alignment Component
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Figure 10: Heatmap of cosine similarity between trajectory and text embeddings.

To further study the ability of our text-trajectory alignment component to predict violations, we
conduct an experiment given a batch of trajectory-text pairs and we use the text-trajectory alignment
component to encode the trajectory and textual constraint, and then calculate the cosine distance
with Equation 5 between every two embeddings across two modal. We plot a sample of heatmap
of calculated cosine similarity and ground-truth as presented in 10. Further, We plot the receiver
operating characteristic (ROC) [8] curve to evaluate the performance of the text-trajectory alignment
component as presented in Figure 11. AUC (Area Under the Curve) [8] values indicate the area under
the ROC curve. The AUC value of our violations prediction result is 0.98. Then We set threshold β
equal to the best cutoff value of the ROC curve. We determine whether the trajectory violates a given
textual constraint by:

{yes, if sim(τ, y) ≥ β,
no, otherwise

, (14)

The results are shown in Table 4. These results indicate that our text-trajectory alignment component
can accurately predict whether a given trajectory violates a textual constraint.

Table 4: Violations prediction results of text-trajectory alignment component.

Accuracy Recall Precision F1-score
0.98 0.9824 0.8079 0.8866

B.2 Case Study of Cost Assignment (CA) Component

We visualize the assigned cost for every state-action pair to demonstrate that the cost assignment
component could capture the subtle relation between the state-action pair and textual constraint.
Our intuition is that we should assign larger costs to state-action pairs that lead to violations of
trajectory-level textual constraints, and smaller or negative values to pairs that do not contribute to
constraint violations. Using the Hazard-World-Grid environment as an example, we choose three
different types of constraints to show our results in Figure 12. The first row shows the textual
constraint, the second row shows the trajectory of the agent in the environment, and to make it easier
to visualize, we simplify the observation st by representing it as a square, denoting the entity stepped
on by the agent at time step t. The square emphasized by the red line indicates the final entity that
makes the agent violate textual constraint at time step T . The third row shows the predicted cost of
the agent at every time step t and deeper colors indicate larger cost values.

The (a) constraint is mathematical textual constraint: “You only have 20 HP. Lava and grass
are dangerous, they will make you lose 3 and 2 HP, respectively. However, water can regenerate
1 HP. Please don’t die.”. This constraint describes the two dangerous entities lava and grass, and
the beneficial entity water. From the third-row heat map, we can observe that our cost assignment
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Figure 11: ROC curve of text-trajectory alignment component. The x-axis represents the false
positive rate, and the y-axis represents the true positive rate. The closer the AUC value is to 1, the
better the performance of the model; conversely, the closer the AUC value is to 0, the worse the
performance of the model.

Mathematical Text Constraint: “You only have 20 HP. Lava and grass are dangerous, they will make you
lose 3 and 2 HP, respectively. However, water can regenerate 1 HP. Please don’t die.”

Quantitative Text Constraint: “Lava is dangerous. Don’t touch them more than eight times!”

Sequential Text Constraint: “After you touch lava, don’t step on grass!”

(a)

(b)

(c)

= grass

= water

= lava

= floor

Figure 12: Case study of cost assignment component on three types of textual constraints. The
first row of every case shows the textual constraint, the second row shows the trajectory of the agent
in the environment and each square represents the object stepped on by the agent at that time step, the
third row shows the assigned cost of the agent at each time step, and the fourth row shows the time
steps. The red line indicates the final observation where the agent violates the textual constraint.

component assigns a high cost to the action that steps on lava or grass, with the cost increasing as the
agent approaches the constraint-violating situation. Not only that, the CA component also recognizes
the different levels of danger posed by lava and grass. Since stepping on lava will deduct 3 HP while
stepping on grass will deduct 2 HP, the CA component assigns a larger cost value at time step 13− 14
compared to the cost value at time step 3 − 5.

The (b) constraint is quantitative textual constraint: “Lava is dangerous. Don’t touch them more
than eight times!”. When stepping on the floor, the CA component considers these actions to be
safe and assigns a cost of nearly 0. However, when the agent steps onto lava, it assigns a higher
cost, especially when the agent steps on lava for the eighth time. At this point, our CA component
concludes that the situation has become extremely dangerous, and one more step on lava will violate
the constraint, thus giving the highest cost compared to the before time steps.

The (c) constraint is sequential textual constraint: “After you touch lava, don’t step on grass!”.
Our CA component captures two relevant entities: lava and grass, and understands the sequential
relationship between entities. When the agent first steps onto the grass, the text-trajectory alignment
component determines that this action does not violate the textual constraint. However, after the
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agent steps onto lava and then steps onto the grass for the second time, the text-trajectory alignment
component detects the cosine similarity sim(τ, y) greater than the threshold β, thereby violating the
textual constraint. And CA component captures that the key trigger condition for violating constraint
is stepping onto the lava, therefore assigning a relatively larger cost to such actions at time step
7 − 9. The cost assignment component also assigns relatively small costs to some safe actions that
are stepping on the floor, such as steps 13 − 15. This is because it detects that the agent, although
hasn’t stepped on grass yet, is trending towards approaching grass, which is a hazardous trend, thus
providing a series of gradually increasing and small costs. This demonstrates that our component not
only monitors key actions that lead to constraint violations but also monitors the hazardous trend and
nudging the agent to choose relatively safer paths.

B.3 Results for Different Types of Constraints

To evaluate the agent’s understanding of different types of trajectory-level textual constraints, we
conducted an additional experiment using the CPPO_PID algorithm. During training, we separately
tracked the average episodic reward and the average episodic cost for three types of textual constraints
as presented in Figure 13. From the learning curves, we can observe that for every type of constraint,
our CP mode can achieve the lowest violation rate compared to CP without the CA component mode
and ground-truth cost (GC) mode.
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(a) Quantitative constraints
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(b) Sequential constraints

0 20 40 60 80 100
epoch

1

2

3

Re
wa

rd

algo
CP(our)
CP w/o CA
GC

0 20 40 60 80 100
epoch

0.0

0.2

0.4

0.6

0.8

Co
st

algo
CP(our)
CP w/o CA
GC

(c) Mathematical constraints

Figure 13: Learning curves for different types of textual constraints. The left figure shows the average
reward and the right figure shows the average cost. The result shows for each type of textual constraint,
the policies trained by predicted cost from the TTCT can achieve lower constraint violations.
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B.4 Inference time

We perform the trajectory length sensitivity analysis on Hazard-World-Grid. Since our framework is
mainly used for reinforcement learning policy training where data is typically provided as input in
batches, we counted the inference time for different trajectory lengths with 64 as the batch size, using
the hardware device V100-32G. Figure 14 shows that the average inference time per trajectory is
10ms for trajectories of length 100.
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Figure 14: Inference time of different trajectory lengths for Hazard-World-Grid on the V100-32G
hardware device. Batch size is 64.

B.5 Different Text Encoder
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Figure 15: Empirical analyses on Hazard-World-Grid with varying text encoders. We choose three
different models, transformer-25M [41], gpt2-137M [31], and bert-base-uncased-110M [7].

B.6 Additional Results

We present the learning curve of our main experiment in Figure 4. We also present the main results
and ablation study in Table 5 and 6.

Table 5: Evaluation results of our proposed method TTCT. ↑ means the higher the reward, the
better the performance. ↓ means the lower the cost, the better the performance. Each value is reported
as mean ± standard deviation and we shade the safest agents with the lowest averaged cost violation
values for every algorithm.

Task Stats PPO_Lag CPPO_PID FOCOPS
PPOCP(our) GC CP(our) GC CP(our) GC

Grid Avg.R ↑ 2.70±0.11 2.71±0.11 2.01±0.14 2.00±0.26 1.52±0.12 1.53±0.28 2.55±0.23
Avg.C ↓ 0.28±0.08 0.61±0.07 0.28±0.03 0.40±0.07 0.48±0.20 0.58±0.12 0.88±0.05

Goal Avg.R ↑ 0.23±0.12 0.22±0.29 0.36±0.20 0.35±0.77 0.02±0.36 −0.63±0.68 0.23±0.55
Avg.C ↓ 0.19±0.02 0.26±0.03 0.11±0.03 0.35±0.20 0.10±0.03 0.41±0.07 0.32±0.19
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Table 6: Ablation study of removing the cost assignment (CA) component. ↑ means the higher the
reward, the better the performance. ↓means the lower the cost, the better the performance. Each value
is reported as mean ± standard deviation and we shade the safest agents with the lowest averaged
cost violation values for every algorithm.

Task Stats PPO_Lag CPPO_PID FOCOPS
PPOCP(Full) CP w/o CA CP(Full) CP w/o CA CP(Full) CP w/o CA

Grid Avg.R ↑ 2.70±0.11 2.57±0.11 2.01±0.14 2.00±0.16 1.52±0.12 0.79±0.06 2.55±0.23
Avg.C ↓ 0.28±0.08 0.56±0.08 0.28±0.03 0.52±0.14 0.48±0.20 0.43±0.04 0.88±0.05

Goal Avg.R ↑ 0.23±0.12 −0.62±0.10 0.36±0.20 −0.08±0.97 0.02±0.36 −0.63±0.21 0.23±0.55
Avg.C ↓ 0.19±0.02 0.35±0.10 0.11±0.03 0.29±0.04 0.10±0.03 0.23±0.09 0.32±0.19

C Broader Impacts and Limitation

Our method can help train agents in reinforcement learning tasks with total free-form natural language
constraints, which can be useful in various real-world applications such as autonomous driving,
robotics, and game playing. There are still limitations to our work. Our method may not be able to
completely eliminate constraint violations. Our method has the contextual bottleneck as the length of
the trajectory increases. We performed a trajectory length sensitivity analysis on Hazard-World-Grid.
As shown in Figure 16, initially increasing the trajectory length improves performance because longer
trajectories may provide more dependencies. However, beyond a certain point, further increases in
trajectory length result in a slight drop in AUC. This decline is because the trajectory encoder has
difficulty capturing global information. We consider this bottleneck to be related to the transformer’s
encoding capability.
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Figure 16: Evaluation results of different trajectory lengths for Hazard-World-Grid. Sets of trajectories
with varying lengths shared the same set of textual constraints.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We show our approach can predict cost with trajectory-level natural language.
The predicted cost by our approach can help train a safer policy than the ground-truth cost.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See Section 7
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: This paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We show the used parameters and the pseudocode of TTCT in Appendix A.3.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: Code to reproduce our results is available in the anonymous repository https:
//github.com/formember/TTCT.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: See Section 6 and Appendix A.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: See Section 6.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: See the Appendix A.3.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: All the links, data, code are provided in the anonymous form.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: See Appendix C.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: They are open-sourced.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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