
Gorilla: Large Language Model Connected with
Massive APIs

Shishir G. Patil1∗ Tianjun Zhang1∗ Xin Wang2 Joseph E. Gonzalez1

1UC Berkeley 2Microsoft Research

shishirpatil@berkeley.edu

Abstract

Large Language Models (LLMs) have seen an impressive wave of advances, with
models now excelling in a variety of tasks, such as mathematical reasoning and
program synthesis. However, their potential to effectively use tools via API calls
remains unfulfilled. This is a challenging task even for today’s state-of-the-art
LLMs such as GPT-4 largely due to their unawareness of what APIs are available
and how to use them in a frequently updated tool set. We develop Gorilla, a
finetuned LLaMA model that surpasses the performance of GPT-4 on writing API
calls. Trained with the novel Retriever Aware Training (RAT), when combined
with a document retriever, Gorilla demonstrates a strong capability to adapt to
test-time document changes, allowing flexible user updates or version changes.
It also substantially mitigates the issue of hallucination, commonly encountered
when prompting LLMs directly. To evaluate the model’s ability, we introduce
APIBench, a comprehensive dataset consisting of HuggingFace, TorchHub, and
TensorHub APIs. The successful integration of the retrieval system with Gorilla
demonstrates the potential for LLMs to use tools more accurately, keep up with
frequently updated documentation, and consequently increase the reliability and
applicability of their outputs. Gorilla’s code, model, data, and demo are available
at: https://gorilla.cs.berkeley.edu

1 Introduction

The use of APIs and Large Language Models [10, 5, 31, 6, 27, 28] has changed what it means to
program. Previously, building complex machine learning software and systems required extensive
time and specialized skills. Now with tools like the HuggingFace API, an engineer can set up a
deep learning pipeline with a few lines of code. Instead of searching through StackOverflow and
documentation, developers can ask models like GPT for solutions and receive immediate, actionable
code with docstrings. However, using off-the-shelf LLMs to generate API calls remains unsolved
because there are millions of available APIs which are frequently updated.

We connect LLM’s and massive API’s with Gorilla, a system which takes an instruction, for example
“build me a classifier for medical images”, and provides the corresponding API call and relevant
packages, along with a step-by-step explanation of the pipeline. Gorilla uses self-instruct, fine-tuning,
and retrieval to enable LLMs to accurately select from a large, overlapping, and changing set tools
expressed using their APIs and API documentation. Further, our novel retriever-aware training (RAT)
enables the model to adapt to test-time changes of APIs such as evolution in versions and arguments.

With the development of API generation methods comes a question of how to evaluate, as many APIs
will have overlapping functionality with nuanced limitations and constraints. Thus, we construct

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

126544 https://doi.org/10.52202/079017-4020

https://gorilla.cs.berkeley.edu

“Help me find an API to convert the spoken language in a recorded audio to text using Torch Hub.“

<domain>: Speech-to-Text
<api_provider>: TorchHub
<code>:
asr_model = torch.hub.load('snakers4/silero-models', 'silero_sst’)
result = asr_model.transcribe(audio_path)

Correct
(Gorilla)

<domain>: Speech-to-Text
<api_provider>: TorchHub
<code>:
asr_model = torch.hub.load('snakers4/silero-models’, 'asr', source='local')
result = asr_model.transcribe(audio_path)

API Argument
Hallucination

(GPT-4)

<domain>: Audio-Translation
<api_provider>: Pytorch
<code>:
import torchaudio
translation = torchaudio.pipelines.WAV2VEC2_ASR_PIPELINE("audio.wav")

Incorrect
API Call
(Claude)

Figure 1: Examples of API calls. Example API calls generated by GPT-4 [27], Claude [2], and Gorilla for the
given prompt. In this example, GPT-4 presents a model that doesn’t exist, and Claude picks an incorrect library.
In contrast, our Gorilla model can identify the task correctly and suggest a fully-qualified API call.

Better

Figure 2: Accuracy (vs) hallucination in four settings, that is, zero-shot (i.e., without any retriever), and with
retrievers. Commonly used BM25 and GPT retrievers, and the oracle – returns relevant documents with perfect
recall, indicating an upper bound. Higher in the graph (higher accuracy) and to the left (lower hallucination) is
better. Across settings, our model, Gorilla, improves accuracy while reducing hallucination.

APIBench (∼ 1600 APIs) by scraping a large corpus of ML APIs and developing an evaluation
framework that uses AST sub-tree matching to check functional correctness. Further, we draw a
distinction between accuracy and hallucination, and propose an Abstract Syntax Tree (AST) based
technique to measure hallucination.

Using APIBench, we finetune Gorilla, a LLaMA-7B-based model with document retrieval and show
that it significantly outperforms both open-source and closed-source models like Claude and GPT-4
in terms of API functionality accuracy as well as a reduction in API argument hallucination errors.
We show an example output in Fig. 1. Lastly, we highlight Gorilla’s capability to comprehend and
reason about user-defined constraints when choosing between APIs, an essential requirement for
LLMs trained to accomplish tasks.

To summarize, this paper makes the following contributions:

1. We introduce Gorilla, the first system to enable large-scale API integration with LLMs,
demonstrating state-of-the-art performance in generating accurate API calls across thousands
of functions and libraries.

2. We develop Retriever-Aware Training (RAT), a novel technique that enables LLMs to
effectively utilize retrieved API documentation at inference time, improving both accuracy
and adaptation to API changes.

3. We present APIBench, a comprehensive benchmark of ∼ 1600 machine learning APIs, along
with new AST-based evaluation metrics that precisely measure both functional correctness
and API hallucination.

2

126545https://doi.org/10.52202/079017-4020

2 Related Work

By empowering LLMs to use tools [33], we can grant LLMs access to vastly larger and changing
knowledge bases and accomplish complex computational tasks. By providing access to search
technologies and databases, [24, 39, 35] demonstrated that we can augment LLMs to address a signif-
icantly larger and more dynamic knowledge space. Similarly, by providing access to computational
tools, [39, 1, 49, 36, 37] demonstrated that LLMs can accomplish complex computational tasks.
Consequently, leading LLM providers [27], have started to integrate plugins to allow LLMs to invoke
external tools through APIs.

Large Language Models Recent strides in the field of LLMs have renovated many downstream
domains [10, 40, 48, 47], not only in traditional natural language processing tasks but also in
program synthesis. Many of these advances are achieved by augmenting pre-trained LLMs by
prompting [44, 14] and instruction fine-tuning [11, 30, 43, 15]. Recent open-sourced models like
LLaMa [40], Alpaca [38], and Vicuna [9] have furthered the understanding of LLMs and facilitated
their experimentation. While our approach, Gorilla, incorporates techniques akin to those mentioned,
its primary emphasis is on enhancing the LLMs’ ability to utilize millions of tools, as opposed to
refining their conversational skills. Additionally, we pioneer the study of fine-tuning a base model by
supplementing it with information retrieval - a first, to the best of our knowledge.

Tool Usage The discussion of tool usage within LLMs has seen an upsurge, with models like
Toolformer taking the lead [33, 19, 20, 24]. Tools often incorporated include web-browsing [32],
calculators [12, 39], translation systems [39], and Python interpreters [14]. While these efforts can be
seen as preliminary explorations of marrying LLMs with tool usage, they generally focus on specific
tools. Our paper, in contrast, aims to explore a vast array of tools (i.e., API calls) in an open-ended
fashion, potentially covering a wide range of applications.

With the recent launch of Toolformer [33] highlights the exciting potential of using large language
models (LLMs) for purposes beyond traditional chatbot applications. Moreover, the application of
API calls in robotics has been explored to some extent [41, 4]. However, these works primarily
aim at showcasing the potential of “prompting” LLMs rather than establishing a systematic method
for evaluation and training (including fine-tuning). Our work, on the other hand, concentrates on
systematic evaluation and building a pipeline for future use.

LLMs for Program Synthesis Harnessing LLMs for program synthesis has historically been
a challenging task [22, 7, 45, 16, 13, 29]. Researchers have proposed an array of strategies to
prompt LLMs to perform better in coding tasks, including in-context learning [44, 18, 7], task
decomposition [17, 46], and self-debugging [8, 34]. Besides prompting, there have also been efforts
to pretrain language models specifically for code generation [25, 21, 26].

DocPrompting [49] looked at choosing the right subset of code including API along with a retriever.
Gorilla presents distinct advancements over DocPrompting. First, the way the data-sets are constructed
are different, leading to intersting downstream artifacts. Gorilla focuses on model usages where we
also collect detailed information about parameters, performance, efficiency, etc. This helps our trained
model understand and respond to finer constraints for each API. Docprompting focuses on generic API
calls but not on the details within an API call. Second, Gorilla introduces and uses the AST subtree-
matching evaluation metric that helps measure hallucination which we find are more representative
of code structure and API accuracy compared to traiditional NLP metrics. Finally, Gorilla focuses on
instruction-tuning method and has "agency" to interact with users while DocPrompting focuses on
building an NLP-to-Code generative model. On equal footing, we demonstrate that Gorilla performs
better than DocPrompting in Appendix A.3.

3 Methodology

We first describe APIBench, a comprehensive benchmark constructed from TorchHub, TensorHub,
and HuggingFace API Model Cards. We begin by outlining the process of collecting the API dataset
and how we generated instruction-answer pairs. We then introduce Gorilla, a novel training paradigm
with an information–retriever incorporated into the training and inference pipelines. Finally, we
present our AST tree matching evaluation metric.

3

126546 https://doi.org/10.52202/079017-4020

Dataset curation: 1,645 API calls. 94 from Torch
Hub (exhaustive), 626 from TensorFlow Hub v2

(exhaustive) and 925 from HuggingFace (Top 20
in each domain).

Self-instruct with in-context
examples to generate

16,450 {instruction,API} pairs

This is then used to
train Gorilla-7B

Cat
CatCatAPI: torch.hub.load(…)

API Database

“I want to see
some cats dancing

in celebration!”

Information
Retriever

Input:
###Task: Generate image
from text
###Reference API:
StableDiffusionPipeline.from_
pretrained (…)

API:StableDiffusionPipelin
e.from_pretrained(stabilit
yai/stable-diffusion-2-1)

Zero-shot

Execution
Results!

GORILLA

GORILLA

Figure 3: Gorilla: A system for enabling LLMs to interact with APIs. The upper half represents the training
procedure as described in Sec 3. This is the most exhaustive API data-set for ML to the best of our knowledge.
During inference (lower half), Gorilla supports two modes - with retrieval, and zero-shot. In this example, it is
able to suggest the right API call for generating the image from the user’s natural language query.

3.1 Dataset Curation

To curate the dataset, we aggregate all model cards from HuggingFace’s “The Model Hub”, PyTorch
Hub, and TensorFlow Hub. Throughout the rest of the paper, we call these HuggingFace, Torch Hub,
and TensorFlow Hub respectively for brevity.

API Documentation The HuggingFace platform hosts and servers about 203,681 models. However,
many of them have poor documentation, lack dependencies, have no information in their model
card, etc. To filter these out, we pick the top 20 models from each domain. We consider 7 domains
in multimodal data, 8 in CV, 12 in NLP, 5 in Audio, 2 in tabular data, and 2 in reinforcement
learning. Post filtering, we arrive at a total of 925 models from HuggingFace. TensorFlow Hub
is versioned into v1 and v2. The latest version (v2) has 801 models in total, and we process all
of them. After filtering out model cards with little to no information, we are left with 626 models.
Similar to TensorFlow Hub, we extract 95 models (exhaustive) from Torch Hub. We then convert
the model cards for each of these 1,645 API calls into a JSON object with the following fields:
{domain, framework, functionality, api_name, api_call, api_arguments, environment_requirements,
example_code, performance, description}. We provide more information in Appendix A.1. These
fields were chosen to generalize beyond API calls within the ML domain, to other domains, including
RESTful, SQL, and other potential API calls.

Instruction Generation Guided by the self-instruct paradigm [42], we employ GPT-4 to generate
synthetic instruction data. We provide three in-context examples, along with reference API documen-
tation, and task the model with generating real-world use cases that call upon the API. We specifically
instruct the model to refrain from using any API names or hints when creating instructions. We
constructed 6 examples (Instruction-API pairs) for each of the 3 model hubs. These 18 examples
were the only hand-generated or modified data. For each of our 1,645 API datapoints, we generate 10
instruction-API pairs by sampling 3 of 6 corresponding instruction examples in each pair (Fig. 3).

API Call with Constraints API calls often come with inherent constraints. These constraints
necessitate that the LLM not only comprehend the functionality of the API call but also categorize the
calls according to different constraint parameters. Specifically, for machine learning API calls, two
common sets of constraints are parameter size and a lower bound on accuracy. Consider, for instance,
the following prompt: “Invoke an image classification model that uses less than 10M parameters, but
maintains an ImageNet accuracy of at least 70%.” Such a prompt presents a substantial challenge
for the LLM to accurately interpret and respond to. Not only must the LLM understand the user’s
functional description, but it also needs to reason about the various constraints embedded within the
request. This challenge underlines the intricate demands placed on LLMs in real-world API calls. It
is not sufficient for the model to merely comprehend the basic functionality of an API call; it must

4

126547https://doi.org/10.52202/079017-4020

also be capable of navigating the complex landscape of constraints that accompany such calls. We
also incorporate these instructions in our training dataset.

3.2 Gorilla

Our model, called Gorilla, is a retriever-aware finetuned LLaMA-7B model, specifically for API calls.
As shown in Fig. 3, we employ self-instruct to generate {instruction, API} pairs. To fine-tune LLaMA,
we convert this to a user-agent chat-style conversation, where each datapoint is a conversation with
one round each for the user and the agent. We then perform standard instruction finetuning on the base
LLaMA-7B model. For our experiments, we train Gorilla with and without the retriever. We would
like to highlight that though we used the LLaMA model, our fine-tuning is robust to the underlying
pre-trained model (see Appendinx A.3.5).

Retriever-Aware training (RAT) In retriever-aware training, the instruction-tuned dataset
also appends to the user prompt, the relevant retrieved documentation with “Use this API
documentation for reference: <retrieved_API_doc_JSON>”. This is critical, because
the retrieved documentation is not necessarily accurate – retrievers have imperfect re-call. By aug-
menting the prompt with potentially incorrect documentation, but the accurate ground-truth in the
LLM response, we are in-effect teaching the LLM to ‘judge’ the retriever at inference time. During
inference, if the LLM reasons that the retriever presented a relevant API document, it can use the API
documentation to respond to the user’s question, filling in additional details from the user’s prompt.
However, if after looking at the prompt, the LLM reasons that the retrieved API document is not
relevant to the user’s prompt, RAT trains the model to not get distracted by irrelevant context. The
LLM then relies on the domain-specific knowledge baked-in during RAT training, to provide the
user with the relevant API. Through RAT, we aim to teach the LLM to parse the second half of the
question (API documentation) to answer the first half (user’s query). We demonstrate that this (1)
makes the LLM adapt to test-time changes in API documentation, (2) improves performance from
in-context learning, and (3) reduces hallucination error.

Surprisingly, we find that augmenting a LLM with retrieval, does not always lead to improved
performance, and can at-times hurt performance. We share more insights along with details in Sec 4.

Gorilla Inference During inference, the user provides the prompt in natural language (Fig. 3).
This can be for a simple task (e.g., “I would like to identify the objects in an image”), or they can
specify a vague goal, (e.g., “I am going to the zoo, and would like to track animals”). Gorilla, similar
to training, can be used for inference in two modes: zero-shot and with retrieval. In the zero-shot
setting, this prompt (with no additional prompt tuning) is fed to the Gorilla LLM model, which then
returns the API call needed to accomplish the task or goal. In retrieval mode, the retriever (either
of BM25 or GPT-Index) first retrieves the most up-to-date API documentation stored in the API
Database. Before being sent to Gorilla, the API documentation is concatenated to the user prompt
along with the message “Use this API documentation for reference.” The output of Gorilla is an API
to be invoked. Besides the concatenation as described, we do no further prompt tuning in our system.
While we also implemented a system to execute these APIs, to help the user accomplish the goal, that
is not a focus of this paper.

3.3 Verifying APIs

Inductive program synthesis, where a program is synthesized to satisfy test cases, has found success
in several avenues [3, 23]. However, test cases fall short when evaluating API calls, as it is often
hard to verify the semantic correctness of the code. For example, consider the task of classifying an
image. There are over 40 different models that can be used for the task. Even if we were to narrow
down to a single family of densenet, there are four different configurations possible. Hence, there
exist multiple correct answers and it is hard to tell if the API being used is functionally equivalent to
the reference API by unit tests. Thus, to evaluate the performance of our model, we compare their
functional equivalence using the dataset we collected. To trace which API in the dataset is the LLM
calling, we adopt the AST tree-matching strategy. Since we only consider one API call in this paper,
checking if the AST of the candidate API call is a sub-tree of the reference API call reveals which
API is being used in the dataset.

5

126548 https://doi.org/10.52202/079017-4020

hub

model_zoo

torch.hub.load(’pytorch/vision:v0.10.0’,
 ‘densenet121’, pretrained=True)

torch

hub

load

pytorch/vision

densenet121

pretrained = True

utils Tensor

repo: huggingface/
pytorch-transformers

model:
densenet201

load

pretrained: Falsepretrained: True

model:
densenet161

repo:
pytorch/vision

model:
densenet121

torch

optional →

Figure 4: AST Sub-Tree Matching to evaluate API calls. On the left is an API call returned by Gorilla. We
first build the associated API tree. We then compare this to our dataset, to see if the API dataset has a subtree
match. In the above example, the matching subtree is highlighted in green, signifying that the API call is indeed
correct. Pretrained=True is an optional argument.

Identifying and even defining hallucinations can be challenging. We use the AST matching process
to directly identify the hallucinations. We define a hallucination as an API call that is not a sub-tree
of any API in the database – invoking an entirely imagined tool. This form of hallucination is distinct
from invoking an API incorrectly which we instead define as an error. So, in our evaluations, error,
hallucination, and accuracy add up to one.

AST Sub-Tree Matching We perform AST sub-tree matching to identify which API in our dataset
is the LLM calling. Since each API call can have many arguments, we need to match on each of
these arguments. Further, since, Python allows for default arguments, for each API, we define which
arguments to match in our database. For example, we check repo_or_dir and model arguments
in our function call. In this way, we can easily check if the argument matches the reference API
or not. Fig. 4 illustrates an example subtree check for a torch API call. We first build the tree, and
verify that it matches a subtree in our dataset along nodes torch.hub.load, pytorch/vision,
and densenet121. We do not check for match along leaf node pretrained=True since that is an
optional argument.

4 Evaluation

When evaluating Gorilla, finetuned on APIBench (train set), we aim to answer the following questions:
How does Gorilla compare to other LLMs on API Bench (test set)? (4.1). How well does Gorilla
adapt to test-time changes in API documentation? (4.2). How well can Gorilla handle questions with
constraints? (4.3)

We demonstrate that Gorilla outperforms both open-source and close-source models for in-domain
function calling. Further, trained with our novel retriever-aware training (RAT) technique, the Gorilla
model generalizes to APIs that are outside of its training data (out-of-domain). In addition, we assess
Gorilla’s ability to reason about API calls under constraints. Lastly, we examined how integrating
different retrieval methods during training influences the model’s final performance.

Baselines We primarily compare Gorilla with state-of-the-art language models in a zero-shot setting
and with 3-shot in-context learning. The models under consideration include: GPT-4 by OpenAI with
the gpt-4-0314 checkpoint; GPT-3.5-turbo with the gpt-3.5-turbo-0301 checkpoint, both of
which are RLHF-tuned models specifically designed for conversation; Claude with the claude-v1
checkpoint, a language model by Anthropic, renowned for its lengthy context capabilities; and
LLaMA-7B, a state-of-the-art open-source large language model by Meta.

Retrievers The term zero-shot (abbreviated as 0-shot in tables) refers to scenarios where no retriever
is used. The sole input to the model is the user’s natural language prompt. For BM25, we consider

6

126549https://doi.org/10.52202/079017-4020

GPT-3.5 GPT-4 Claude LLAMA Gorilla0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

60.21 59.13 60.21

14.51

61.82

Torch Hub with GPT-Retriever

GPT-3.5 GPT-4 Claude LLAMA Gorilla

47.34 44.57 41.37

10.17

47.45

HuggingFace with GPT-Retriever

GPT-3.5 GPT-4 Claude LLAMA Gorilla

65.59

43.94
55.62

15.62

64.96

Tensorflow Hub with GPT-Retriever

Figure 5: Accuracy with GPT-retriever. Methods to the left of the dotted line are closed source. Gorilla
outperforms on Torch Hub and Hugging-Face while matching performance on Tensorflow Hub for all existing
state-of-the-art LLMs - closed source, and open source.

each API as a separate document. During retrieval, we use the user’s query to fetch the most relevant
(top-1) API. This API is concatenated with the user’s prompt to query the LLMs. Similarly, GPT-
Index refers to the state-of-the-art embedding model, text-embedding-ada-002-v2 from OpenAI,
where each embedding is 1,536 dimensional. Like BM25, each API call is indexed as an individual
document, and the most relevant document, given a user query, is retrieved and appended to the
user prompt. Lastly, we include an Oracle retriever, which serves two purposes: first, to identify the
potential for performance improvement through more efficient retrievers, and second, to assist users
who know which API to use but may need to help invoking it. In all cases, when a retriever is used,
it is appended to the user’s prompt as follows: <user_prompt> Use this API documentation
for reference: <retrieved_API_doc_JSON>. The dataset for these evaluations is detailed in
Section 3. We emphasize that we have maintained a holdout test set on which we report our findings.
The holdout test set was created by dividing the self-instruct dataset’s instruction, API pairs into
training and testing sets.

4.1 AST Accuracy on API call

We test each model for different retriever settings defined above (Table 1). We report the overall
accuracy, the error by hallucination and the error by selecting wrong API call. Note that for TorchHub
and TensorHub, we evaluate all the models using AST tree accuracy score. However, for HuggingFace,
since the dataset cannot be exhaustive given the sheer number of models hosted, for all the models
except Gorilla, we only check if they can provide the correct domain names. So this problem
reduces to picking one of multiple choices. Across 0-shot and few-shot prompting strategies, Gorilla
outperforms close-sourced and open-sourced models (Table 5).

Finetuning without Retrieval In Table 1 we show that lightly fine-tuned Gorilla is able to match,
and often surpass performance in the zero-shot setting compared to closed-source, and open-source
models – 20.43% better than GPT-4 and 10.75% better than GPT-3.5 (ChatGPT). When compared to
other open-source models LLAMA, the improvement is as big as 83%. This suggests quantitatively,
that as a technique to augment information and enforce adherence to syntax, fine-tuning is better than
naive retrieval, at-least within the scope of invoking APIs.

Finetuning with Retrieval We now discuss how incorporating retrieval (RAT) during LLM fine-
tuning enhances model performance. In this experiment, the base LLAMA model is finetuned with
a prompt (instruction-generated), a reference API document (from a golden-truth oracle), and an
example output generated by an LLM (GPT-4 in this case). As shown in Table 2, incorporating a
ground-truth retriever in the finetuning pipeline yields notably improved results – 12.37% higher
accuracy than training without retrieval in Torch Hub and 23.46% better in HuggingFace. However, at
evaluation time, current retrievers show a significant performance gap compared to the ground-truth
retriever: using GPT-Index at evaluation results in 29.20% accuracy degradation and using BM25
results in a 52.27% accuracy degradation. Despite this, considering the trends across models and re-
trievers, our findings indicate that finetuning an LLM with effective retrieval integration is preferable
to zero-shot finetuning.

Hallucination with LLM One phenomenon we observe is that zero-shot prompting with
LLMs (GPT-4/GPT-3.5) to call APIs results in dire hallucination errors. These errors,

7

126550 https://doi.org/10.52202/079017-4020

Table 1: Evaluating LLMs on Torch Hub, HuggingFace, and Tensorflow Hub APIs

LLM (retriever) TorchHub HuggingFace TensorFlow Hub
overall ↑ hallu ↓ err ↓ overall ↑ hallu ↓ err ↓ overall ↑ hallu ↓ err ↓

LLAMA (0-shot) 0 100 0 0.00 97.57 2.43 0 100 0
GPT-3.5 (0-shot) 48.38 18.81 32.79 16.81 35.73 47.46 41.75 47.88 10.36
GPT-4 (0-shot) 38.70 36.55 24.7 19.80 37.16 43.03 18.20 78.65 3.13
Claude (0-shot) 18.81 65.59 15.59 6.19 77.65 16.15 9.19 88.46 2.33
Gorilla (0-shot) 59.13 6.98 33.87 71.68 10.95 17.36 83.79 5.40 10.80

LLAMA (BM-25) 8.60 76.88 14.51 3.00 77.99 19.02 8.90 77.37 13.72
GPT-3.5 (BM-25) 38.17 6.98 54.83 17.26 8.30 74.44 54.16 3.64 42.18
GPT-4 (BM-25) 35.48 11.29 53.22 16.48 15.93 67.59 34.01 37.08 28.90
Claude (BM-25) 39.78 5.37 54.83 14.60 15.82 69.58 35.18 21.16 43.64
Gorilla (BM-25) 40.32 4.30 55.37 17.03 6.42 76.55 41.89 2.77 55.32

LLAMA (GPT-Index) 14.51 75.8 9.67 10.18 75.66 14.20 15.62 77.66 6.71
GPT-3.5 (GPT-Index) 60.21 1.61 38.17 29.08 7.85 44.80 65.59 3.79 30.50
GPT-4 (GPT-Index) 59.13 1.07 39.78 44.58 11.18 44.25 43.94 31.53 24.52
Claude (GPT-Index) 60.21 3.76 36.02 41.37 18.81 39.82 55.62 16.20 28.17
Gorilla (GPT-Index) 61.82 0 38.17 47.46 8.19 44.36 64.96 2.33 32.70

LLAMA (Oracle) 16.12 79.03 4.83 17.70 77.10 5.20 12.55 87.00 0.43
GPT-3.5 (Oracle) 66.31 1.60 32.08 89.71 6.64 3.65 95.03 0.29 4.67
GPT-4 (Oracle) 66.12 0.53 33.33 85.07 10.62 4.31 55.91 37.95 6.13
Claude (Oracle) 63.44 3.76 32.79 77.21 19.58 3.21 74.74 21.60 3.64
Gorilla (Oracle) 67.20 0 32.79 91.26 7.08 1.66 94.16 1.89 3.94

Table 2: Understanding the effect of different retrieval techniques used with Gorilla

Gorilla without Retriever Gorilla with Oracle retriever

zero-shot BM25 GPT-Index Oracle zero-shot BM25 GPT-Index Oracle

Torch Hub (overall) ↑ 59.13 37.63 60.21 54.83 0 40.32 61.82 67.20
HuggingFace (overall) ↑ 71.68 11.28 28.10 45.58 0 17.04 47.46 91.26
TensorHub (overall) ↑ 83.79 34.30 52.40 82.91 0 41.89 64.96 94.16

Torch Hub (Hallu) ↓ 6.98 11.29 4.30 15.59 100 4.30 0 0
HuggingFace (Hallu) ↓ 10.95 46.46 41.48 52.77 99.67 6.42 8.19 7.08
TensorHub (Hallu) ↓ 5.40 20.43 19.70 13.28 100 2.77 2.33 1.89

while diverse, commonly manifest in erroneous behavior such as the model invoking the
AutoModel.from_pretrained(dir_name) command with arbitrary GitHub repository names.
Surprisingly, we also found that in TorchHub, HuggingFace and TensorFlow Hub, GPT-3.5 has
less hallucination errors than GPT-4. This finding is also consistent for the settings when various
retrieving methods are provided: 0-shot, BM25, GPT-Index and the oracle. This might suggest that
RLHF plays a central role in turning the model to be truthful. Additional discussion in Appendix A.3.

AST as a Hallucination Metric We manually execute Gorilla’s API generations to evaluate
how well AST works as an evaluation metric. Executing every code generated is impractical
within academic setting—for example, executing the HuggingFace model needs the required library
dependencies (e.g., transformers, sentencepiece, accelerate), correct coupling of software kernels
(e.g., torch vision, torch, cuda, cudnn versions), and required hardware support (e.g., A100 40G gpus).
Hence, to make it tractable, we sampled 100 random Gorilla generations from our evalualtion set. The
accuracy from our AST subtree matching is 78%, consistent with human evaluation of 78% accuracy
in calling the right API. All the generations that AST flagged as incorrect, were the same ones that were
manually flagged as incorrect. Additionally, Gorilla also generates supporting code to call the API
which includes installing dependencies e.g., pip install transformers[sentencepiece]),
setting environment variables, etc. When we manually attempt to execute the code, 72% of all code
generated executed successfully. It’s worth noting that the 6% discrepancy are not semantic errors,
but errors that arose due to factors external to the API, and in the supporting code. We have included
the full example to illustrate this further in A.3.3. Considering the significant time and effort required
for manual validation of each generation, the strong correlation between human evaluation and the
AST evaluation further reinforces our belief in using the proposed AST as a robust offline metric.

8

126551https://doi.org/10.52202/079017-4020

USER: I want to automatically remove
the background from an input image
<Retrieval: ..fcn_resnet101..>

GORILLA:
 api_call:
 “torch.hub.load('pytorch/vision',
'fcn_resnet101', pretrained=True)”

USER: I want to automatically remove the
background from an input image. <Retrieval:
..NVIDIA/DeepLearningExamples:torchhub..>

GORILLA:
 api_call:
 “torch.hub.load(‘NVIDIA /
DeepLearningExamples:torchhub ', 'fcn_resnet50',
pretrained=True)”

USER: I want to automatically remove
the background from an input image.
<Retrieval: ..fcn_resnet50..>

GORILLA:
 api_call:
 “torch.hub.load('pytorch/vision',
'fcn_resnet50', pretrained=True)”

Default Response Update the model Update the model repository

Figure 6: Gorilla’s retriever–aware training enables it to react to changes in the APIs. The second column
demonstrates changes in model upgrading FCN’s ResNet–50 backbone to ResNet–101. The third column demon-
strate changes in model registry from pytorch/vision to NVIDIA/DeepLearningExamples:torchhub

Table 4: Evaluating LLMs on constraint-aware API invocations

GPT-3.5 GPT-4 Gorilla

0-shot BM25 GPT-Index Oracle 0-shot BM25 GPT-Index Oracle 0-shot BM25 GPT-Index Oracle

Torch Hub (overall) 73.94 62.67 81.69 80.98 62.67 56.33 71.11 69.01 71.83 57.04 71.83 78.16
Torch Hub (Hallu) 19.01 30.98 14.78 14.08 15.49 27.46 14.08 9.15 19.71 39.43 26.05 16.90
Torch Hub (err) 7.04 6.33 3.52 4.92 21.83 16.19 14.78 21.83 8.45 3.52 2.11 4.92

Accuracy const 43.66 33.80 33.09 69.01 43.66 29.57 29.57 59.15 47.88 30.28 26.76 67.60

LLAMA Claude

0-shot BM25 GPT-Index Oracle 0-shot BM25 GPT-Index Oracle

Torch Hub (overall) 0 8.45 11.97 19.71 29.92 81.69 82.39 81.69
Torch Hub (Hallu) 100 91.54 88.02 78.87 67.25 16.19 15.49 13.38
Torch Hub (err) 0 0 0 1.4 2.81 2.11 2.11 4.92

Accuracy const 0 6.33 3.52 17.60 17.25 29.57 31.69 69.71

Table 3: Proposed AST evaluation metric has strong correlation with human evaluation
Accuracy

Gorilla AST metric (proposed) 0.78
Eval by Human 0.78
Code Executable (Eval by Human) 0.72

4.2 Test-Time Documentation Change

The rapidly evolving nature of API documentation presents a significant challenge for the application
of LLMs in this field. These documents are often updated at a frequency that outpaces the re-
training or fine-tuning schedule of LLMs, making these models particularly brittle to changes in the
information they are designed to process. This mismatch in update frequency can lead to a decline in
the utility and reliability of LLMs over time.

With the introduction of Gorilla’s retriever-aware training, the RAT trained LLM readily adapts to
changes in API documentation. This novel approach allows the model to remain relevant, even as the
API documentation it relies on undergoes modifications. This is a pivotal advancement in the field,
as it ensures that the LLM maintains its efficacy and accuracy over time, providing reliable outputs
irrespective of changes in the underlying documentation.

For instance, consider the scenario illustrated in Fig. 6, where the training of Gorilla has allowed
it to react effectively to changes in APIs. This includes alterations such as upgrading the FCN’s
ResNet-50 backbone to ResNet-101, as demonstrated in the second column of the figure. Since the
model has encountered ResNet-101 as a backbone with other architectures, it interprets an FCN with
a ResNet-101 backbone (unseen during training) as a relevant document at test time. Conversely, if
the retriever suggests an FCN with a ResNet-60 backbone, the model—unfamiliar with ResNet-60
from RAT—assigns low confidence to this document and defaults back to FCN with ResNet-50. The
third column in Fig. 6 further illustrates Gorilla’s flexibility in adapting to shifts in model registries,
such as from pytorch/vision to NVIDIA/DeepLearningExamples:torchhub, highlighting its
ability to accommodate changes in preferred API sources as they evolve over time.

9

126552 https://doi.org/10.52202/079017-4020

Table 5: Evaluating Gorilla 0-shot with GPT 3-shot incontext examples

HF (Acc ↑) HF (Hall ↓) TH (Acc ↑) TH (Hall ↓) TF (Acc ↑) TF (Hall ↓)
GPT-3.5 (0-shot) 16.81 35.73 41.93 10.75 41.75 47.88
GPT-4 (0-shot) 19.80 37.16 54.30 34.40 18.20 78.65
GPT-3.5 (3 incont) 25.77 32.30 73.11 72.58 71.82 11.09
GPT-4 (3 incont) 26.32 35.84 75.80 13.44 77.37 11.97

Gorilla (0-shot) 58.05 28.32 75.80 16.12 83.79 5.40

In summary, Gorilla’s ability to adapt to test-time changes in API documentation offers numerous
benefits. It maintains its accuracy and relevance over time, adapts to the rapid pace of updates in
API documentation, and adjusts to modifications in underlying models and systems. This makes it a
robust and reliable tool for API calls, significantly enhancing its practical utility.

4.3 API Call with Constraints

We now focus on the language model’s capability of understanding constraints. For any given task,
which API call to invoke is typically a tradeoff between a multitude of factors. In the case of RESTFul
APIs, it could be the cost of each invocation ($) or the latency of response (ms), among many others.
Similarly, within the scope of ML APIs, it is desirable for Gorilla to respect constraints such as
accuracy, number of learnable parameters in the model, the size on disk, peak memory consumption,
FLOPS, etc. In this section, we present a study evaluating the ability of different models in zero-shot
and in the presence of retrievers to respect a given accuracy constraint. : if a user requests an image
classification model that achieves at least 80% top-1 accuracy on the ImageNet dataset, then among
the classification models hosted by Torch Hub, ResNeXt-101 32x16d, with a top-1 accuracy of
84.2%, would be the appropriate model to call, rather than MobileNetV2, which has a top-1 accuracy
of 71.88%.

For Table 4, we filtered a subset of the Torch Hub component of APIBench, retaining those models
that had an accuracy metric defined for at least one-dataset the model was evaluated on, in its model
card. We were left with 65.26% of TorchHub dataset from Table 1. We notice that with constraints,
understandably, the accuracy drops across all models, with and without a retriever. Even in this
challenging scenario, Gorilla is able to match the performance of the best-performing model GPT-3.5
when using retrievals (BM25, GPT-Index), and has the highest accuracy in the zero-shot setting. This
highlights Gorilla’s ability to navigate APIs while considering the trade-offs between constraints.

4.4 Finetuning (vs) Prompting: Gorilla 0-shot (vs) GPT 3-shot

To assess whether finetuning is truly necessary for APIs or if prompting alone is sufficient, we
compare Gorilla in a zero-shot setting with three-shot in-context prompting for GPT-3.5 and GPT-4
models. In Table 5, "3-incont" denotes evaluation using three in-context examples, while "HF,"
"TH," and "TF" represent the HuggingFace, TorchHub, and TensorFlow Hub subsets of APIBench,
respectively. Higher accuracy (Acc) and lower hallucination (Hall) rates are preferred. From Table 5,
three-shot in-context learning improves the GPT models’ ability to generate syntactically correct
function calls, even matching accuracy on one subset (TorchHub). However, Gorilla 0-shot still
outperforms the 3-shot GPT models on average.

5 Conclusion

LLMs are swiftly gaining popularity across diverse domains. APIs, serving as a universal language,
are essential for enabling LLMs to communicate and operate effectively across diverse systems. In
this paper, we introduced Gorilla, a state-of-the-art model for API invocation. Our Retriever Aware
Training (RAT) approach empowers Gorilla with two essential capabilities: adapting dynamically
to API changes at test time and reasoning through user-defined constraints when selecting suitable
APIs. We also present APIBench, a comprehensive benchmark for assessing LLMs’ function-calling
abilities, and propose AST-based hallucination metrics for robust evaluation. Looking forward, we
believe this work represents a first step towards transitioning LLMs from knowledge-bound models
into flexible interfaces that interact with the digital world.

10

126553https://doi.org/10.52202/079017-4020

References
[1] Andor, D., He, L., Lee, K., and Pitler, E. Giving bert a calculator: Finding operations and

arguments with reading comprehension. arXiv preprint arXiv:1909.00109, 2019.

[2] Anthropic. Claude, 2022. URL https://www.anthropic.com/index/
introducing-claude.

[3] Bavishi, R., Lemieux, C., Fox, R., Sen, K., and Stoica, I. Autopandas: neural-backed generators
for program synthesis. Proceedings of the ACM on Programming Languages, (OOPSLA), 2019.

[4] Brohan, A., Chebotar, Y., Finn, C., Hausman, K., Herzog, A., Ho, D., Ibarz, J., Irpan, A., Jang,
E., Julian, R., et al. Do as i can, not as i say: Grounding language in robotic affordances. In
Conference on robot learning. PMLR, 2023.

[5] Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., Neelakantan, A.,
Shyam, P., Sastry, G., Askell, A., et al. Language models are few-shot learners. Advances in
neural information processing systems, 2020.

[6] Bubeck, S., Chandrasekaran, V., Eldan, R., Gehrke, J., Horvitz, E., Kamar, E., Lee, P., Lee,
Y. T., Li, Y., Lundberg, S., et al. Sparks of artificial general intelligence: Early experiments with
gpt-4. arXiv preprint arXiv:2303.12712, 2023.

[7] Chen, M., Tworek, J., Jun, H., Yuan, Q., Pinto, H. P. d. O., Kaplan, J., Edwards, H., Burda,
Y., Joseph, N., Brockman, G., et al. Evaluating large language models trained on code. arXiv
preprint arXiv:2107.03374, 2021.

[8] Chen, X., Lin, M., Schärli, N., and Zhou, D. Teaching large language models to self-debug.
arXiv preprint arXiv:2304.05128, 2023.

[9] Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y.,
Gonzalez, J. E., Stoica, I., and Xing, E. P. Vicuna: An open-source chatbot impressing gpt-4
with 90%* chatgpt quality, March 2023.

[10] Chowdhery, A., Narang, S., Devlin, J., Bosma, M., Mishra, G., Roberts, A., Barham, P., Chung,
H. W., Sutton, C., Gehrmann, S., et al. Palm: Scaling language modeling with pathways. arXiv
preprint arXiv:2204.02311, 2022.

[11] Chung, H. W., Hou, L., Longpre, S., Zoph, B., Tay, Y., Fedus, W., Li, Y., Wang, X., Dehghani,
M., Brahma, S., et al. Scaling instruction-finetuned language models. Journal of Machine
Learning Research, 2024.

[12] Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun, H., Kaiser, L., Plappert, M., Tworek, J.,
Hilton, J., Nakano, R., et al. Training verifiers to solve math word problems. arXiv preprint
arXiv:2110.14168, 2021.

[13] Devlin, J., Uesato, J., Bhupatiraju, S., Singh, R., Mohamed, A.-r., and Kohli, P. Robustfill:
Neural program learning under noisy i/o. In International conference on machine learning.
PMLR, 2017.

[14] Gao, L., Madaan, A., Zhou, S., Alon, U., Liu, P., Yang, Y., Callan, J., and Neubig, G. Pal:
Program-aided language models. In International Conference on Machine Learning. PMLR,
2023.

[15] Iyer, S., Lin, X. V., Pasunuru, R., Mihaylov, T., Simig, D., Yu, P., Shuster, K., Wang, T., Liu, Q.,
Koura, P. S., et al. Opt-iml: Scaling language model instruction meta learning through the lens
of generalization. arXiv preprint arXiv:2212.12017, 2022.

[16] Jain, N., Vaidyanath, S., Iyer, A., Natarajan, N., Parthasarathy, S., Rajamani, S., and Sharma,
R. Jigsaw: Large language models meet program synthesis. In Proceedings of the 44th
International Conference on Software Engineering, 2022.

[17] Kim, G., Baldi, P., and McAleer, S. Language models can solve computer tasks. arXiv preprint
arXiv:2303.17491, 2023.

11

126554 https://doi.org/10.52202/079017-4020

https://www.anthropic.com/index/introducing-claude
https://www.anthropic.com/index/introducing-claude

[18] Kojima, T., Gu, S. S., Reid, M., Matsuo, Y., and Iwasawa, Y. Large language models are
zero-shot reasoners. Advances in neural information processing systems, 2022.

[19] Komeili, M., Shuster, K., and Weston, J. Internet-augmented dialogue generation. arXiv preprint
arXiv:2107.07566, 2021.

[20] Lazaridou, A., Gribovskaya, E., Stokowiec, W., and Grigorev, N. Internet-augmented language
models through few-shot prompting for open-domain question answering. arXiv preprint
arXiv:2203.05115, 2022.

[21] Li, R., Allal, L. B., Zi, Y., Muennighoff, N., Kocetkov, D., Mou, C., Marone, M., Akiki, C., Li,
J., Chim, J., et al. Starcoder: may the source be with you! arXiv preprint arXiv:2305.06161,
2023.

[22] Li, Y., Choi, D., Chung, J., Kushman, N., Schrittwieser, J., Leblond, R., Eccles, T., Keeling, J.,
Gimeno, F., Dal Lago, A., et al. Competition-level code generation with alphacode. Science,
2022.

[23] Menon, A., Tamuz, O., Gulwani, S., Lampson, B., and Kalai, A. A machine learning framework
for programming by example. In International Conference on Machine Learning. PMLR, 2013.

[24] Nakano, R., Hilton, J., Balaji, S., Wu, J., Ouyang, L., Kim, C., Hesse, C., Jain, S., Kosaraju, V.,
Saunders, W., et al. Webgpt: Browser-assisted question-answering with human feedback. arXiv
preprint arXiv:2112.09332, 2021.

[25] Nijkamp, E., Pang, B., Hayashi, H., Tu, L., Wang, H., Zhou, Y., Savarese, S., and Xiong, C.
Codegen: An open large language model for code with multi-turn program synthesis. arXiv
preprint arXiv:2203.13474, 2022.

[26] Nijkamp, E., Hayashi, H., Xiong, C., Savarese, S., and Zhou, Y. Codegen2: Lessons for training
llms on programming and natural languages. arXiv preprint arXiv:2305.02309, 2023.

[27] OpenAI. Gpt-4 technical report, 2023.

[28] OpenAI and https://openai.com/blog/chatgpt. Chatgpt, 2022. URL https://openai.com/
blog/chatgpt.

[29] Roziere, B., Lachaux, M.-A., Chanussot, L., and Lample, G. Unsupervised translation of
programming languages. Advances in neural information processing systems, 2020.

[30] Sanh, V., Webson, A., Raffel, C., Bach, S. H., Sutawika, L., Alyafeai, Z., Chaffin, A., Stiegler,
A., Scao, T. L., Raja, A., et al. Multitask prompted training enables zero-shot task generalization.
arXiv preprint arXiv:2110.08207, 2021.

[31] Scao, T. L., Fan, A., Akiki, C., Pavlick, E., Ilić, S., Hesslow, D., Castagné, R., Luccioni, A. S.,
Yvon, F., Gallé, M., et al. Bloom: A 176b-parameter open-access multilingual language model.
arXiv preprint arXiv:2211.05100, 2022.

[32] Schick, T. and Schütze, H. Exploiting cloze questions for few shot text classification and natural
language inference. arXiv preprint arXiv:2001.07676, 2020.

[33] Schick, T., Dwivedi-Yu, J., Dessi, R., Raileanu, R., Lomeli, M., Hambro, E., Zettlemoyer, L.,
Cancedda, N., and Scialom, T. Toolformer: Language models can teach themselves to use tools.
Advances in Neural Information Processing Systems, 2023.

[34] Shinn, N., Labash, B., and Gopinath, A. Reflexion: an autonomous agent with dynamic memory
and self-reflection. arXiv preprint arXiv:2303.11366, 2023.

[35] Shuster, K., Xu, J., Komeili, M., Ju, D., Smith, E. M., Roller, S., Ung, M., Chen, M., Arora,
K., Lane, J., et al. Blenderbot 3: a deployed conversational agent that continually learns to
responsibly engage. arXiv preprint arXiv:2208.03188, 2022.

[36] Subramanian, S., Narasimhan, M., Khangaonkar, K., Yang, K., Nagrani, A., Schmid, C., Zeng,
A., Darrell, T., and Klein, D. Modular visual question answering via code generation. arXiv
preprint arXiv:2306.05392, 2023.

12

126555https://doi.org/10.52202/079017-4020

https://openai.com/blog/chatgpt
https://openai.com/blog/chatgpt

[37] Surís, D., Menon, S., and Vondrick, C. Vipergpt: Visual inference via python execution for
reasoning. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
2023.

[38] Taori, R., Gulrajani, I., Zhang, T., Dubois, Y., Li, X., Guestrin, C., Liang, P., and Hashimoto,
T. B. Stanford alpaca: An instruction-following llama model, 2023.

[39] Thoppilan, R., De Freitas, D., Hall, J., Shazeer, N., Kulshreshtha, A., Cheng, H.-T., Jin, A., Bos,
T., Baker, L., Du, Y., et al. Lamda: Language models for dialog applications. arXiv preprint
arXiv:2201.08239, 2022.

[40] Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux, M.-A., Lacroix, T., Rozière, B.,
Goyal, N., Hambro, E., Azhar, F., et al. Llama: Open and efficient foundation language models.
arXiv preprint arXiv:2302.13971, 2023.

[41] Vemprala, S., Bonatti, R., Bucker, A., and Kapoor, A. Chatgpt for robotics: Design principles
and model abilities. 2023, 2023.

[42] Wang, Y., Kordi, Y., Mishra, S., Liu, A., Smith, N. A., Khashabi, D., and Hajishirzi, H.
Self-instruct: Aligning language model with self generated instructions. arXiv preprint
arXiv:2212.10560, 2022.

[43] Wang, Y., Mishra, S., Alipoormolabashi, P., Kordi, Y., Mirzaei, A., Naik, A., Ashok, A.,
Dhanasekaran, A. S., Arunkumar, A., Stap, D., et al. Super-naturalinstructions: Generalization
via declarative instructions on 1600+ nlp tasks. In Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing, 2022.

[44] Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E., Le, Q. V., Zhou, D., et al.
Chain-of-thought prompting elicits reasoning in large language models. Advances in neural
information processing systems, 2022.

[45] Xu, F. F., Alon, U., Neubig, G., and Hellendoorn, V. J. A systematic evaluation of large language
models of code. In Proceedings of the 6th ACM SIGPLAN International Symposium on Machine
Programming, 2022.

[46] Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., and Cao, Y. React: Synergizing
reasoning and acting in language models. arXiv preprint arXiv:2210.03629, 2022.

[47] Zeng, A., Liu, X., Du, Z., Wang, Z., Lai, H., Ding, M., Yang, Z., Xu, Y., Zheng, W., Xia, X.,
et al. Glm-130b: An open bilingual pre-trained model. arXiv preprint arXiv:2210.02414, 2022.

[48] Zhang, S., Roller, S., Goyal, N., Artetxe, M., Chen, M., Chen, S., Dewan, C., Diab, M., Li,
X., Lin, X. V., et al. Opt: Open pre-trained transformer language models. arXiv preprint
arXiv:2205.01068, 2022.

[49] Zhou, S., Alon, U., Xu, F. F., Jiang, Z., and Neubig, G. Docprompting: Generating code by
retrieving the docs. In The Eleventh International Conference on Learning Representations,
2022.

13

126556 https://doi.org/10.52202/079017-4020

A Appendix

A.1 Dataset Details

Our dataset is multi-faceted, comprising three distinct domains: Torch Hub, Tensor Hub, and
HuggingFace. Each entry within this dataset is rich in detail, carrying critical pieces of information
that further illuminate the nature of the data. Delving deeper into the specifics of each domain, Torch
Hub provides 95 APIs. The second domain, Tensor Hub, is more expansive with a total of 696 APIs.
Finally, the most extensive of them all, HuggingFace, comprises 925 APIs.

To enhance the value and utility of our dataset, we’ve undertaken an additional initiative. With
each API, we have generated a set of 10 unique instructions. These instructions, carefully crafted
and meticulously tailored, serve as a guide for both training and evaluation. This initiative ensures
that every API is not just represented in our dataset, but is also comprehensively understood and
effectively utilizable.

In essence, our dataset is more than just a collection of APIs across three domains. It is a compre-
hensive resource, carefully structured and enriched with added layers of guidance and evaluation
parameters.

Domain Classification The unique domain names encompassed within our dataset are illustrated
in Fig. 7. The dataset consists of three sources with a diverse range of domains: Torch Hub houses 6
domains, Tensor Hub accommodates a much broader selection with 57 domains, while HuggingFace
incorporates 37 domains. To exemplify the structure and nature of our dataset, we invite you to refer
to the domain names represented in Fig. 8.

API Call Task In this task, we test the model’s capability to generate a single line of code, either in
a zero-shot fashion or by leveraging an API reference. Primarily designed for evaluation purposes,
this task effectively gauges the model’s proficiency in identifying and utilizing the appropriate API
call.

API Provider Component This facet relates to the provision of the programming language. In this
context, the API provider plays a vital role as it serves as a foundation upon which APIs are built and
executed.

Explanation Element This component offers valuable insights into the rationale behind the usage of
a particular API, detailing how it aligns with the prescribed requirements. Furthermore, when certain
constraints are imposed, this segment also incorporates those limitations. Thus, the explanation
element serves a dual purpose, offering a deep understanding of API selection, as well as the
constraints that might influence such a selection. This balanced approach ensures a comprehensive
understanding of the API usage within the given context.

Code Example code for accomplishing the task. We de-prioritize this as we haven’t tested the
execution result of the code. We leave this for future works, but make this data available in-case
others want to build on it.

A.2 Gorilla Details

We provide all the training details for Gorilla in this section. This includes how we divide up the
training, evaluation dataset, training hyperparameters for Gorilla.

Data For HuggingFace, we devise the entire dataset into 90% training and 10% evaluation. For
Torch Hub and Tensor Hub, we devise the data in to 80% training and 20% testing.

Training We train Gorillafor 5 epochs with the 2e-5 learning rate with cosine decay. The details
are provide in Table 6. We finetune it on 8xA100 with 40G memory each.

14

126557https://doi.org/10.52202/079017-4020

Torch Hub domain names: Classification, Semantic Segmentation, Object Detection, Audio
Separation, Video Classification, Text-to-Speech

Tensor Hub domain names: text-sequence-alignment, text-embedding, text-language-
model, text-preprocessing, text-classification, text-generation, text-question-answering, text-
retrieval-question-answering, text-segmentation, text-to-mel, image-classification, image-
feature-vector, image-object-detection, image-segmentation, image-generator, image-pose-
detection, image-rnn-agent, image-augmentation, image-classifier, image-style-transfer,
image-aesthetic-quality, image-depth-estimation, image-super-resolution, image-deblurring,
image-extrapolation, image-text-recognition, image-dehazing, image-deraining, image-
enhancemenmt, image-classification-logits, image-frame-interpolation, image-text-detection,
image-denoising, image-others, video-classification, video-feature-extraction, video-
generation, video-audio-text, video-text, audio-embedding, audio-event-classification, audio-
command-detection, audio-paralinguists-classification, audio-speech-to-text, audio-speech-
synthesis, audio-synthesis, audio-pitch-extraction

HuggingFace domain names: Multimodal Feature Extraction, Multimodal Text-to-Image,
Multimodal Image-to-Text, Multimodal Text-to-Video, Multimodal Visual Question An-
swering, Multimodal Document Question Answer, Multimodal Graph Machine Learning,
Computer Vision Depth Estimation, Computer Vision Image Classification, Computer Vision
Object Detection, Computer Vision Image Segmentation, Computer Vision Image-to-Image,
Computer Vision Unconditional Image Generation, Computer Vision Video Classification,
Computer Vision Zero-Shor Image Classification, Natural Language Processing Text Classi-
fication, Natural Language Processing Token Classification, Natural Language Processing
Table Question Answering, Natural Language Processing Question Answering, Natural Lan-
guage Processing Zero-Shot Classification, Natural Language Processing Translation, Natural
Language Processing Summarization, Natural Language Processing Conversational, Natural
Language Processing Text Generation, Natural Language Processing Fill-Mask, Natural Lan-
guage Processing Text2Text Generation, Natural Language Processing Sentence Similarity,
Audio Text-to-Speech, Audio Automatic Speech Recognition, Audio Audio-to-Audio, Audio
Audio Classification, Audio Voice Activity Detection, Tabular Tabular Classification, Tabu-
lar Tabular Regression, Reinforcement Learning Reinforcement Learning, Reinforcement
Learning Robotics

Figure 7: Domain names: Domain names with the three dataset. Tensor Hub is the smallest dataset
while the other two hubs contain many more models.

Table 6: Hyperparameters for training Gorilla

Hyperparameter Name Value

learning rate 2e-5
batch size 64
epochs 5
warmup ratio 0.03
weight decay 0
max seq length 2048

A.3 Performance Comparison

We provide a full comparison of each model’s performance in this section. In Fig 10 and Fig. 11, the
full set of comparisons is provided. We see that especially in zero-shot case, Gorilla surpasses the
GPT-4 and GPT-3.5 by a large margin. The GPT-4 and GPT-3.5 gets around 40% accuracy in Torch
Hub and Tensor Hub, which are two structured API calls. Compared to that, HuggingFace is a more
flexible and diverse Hub, as a result, the performance on HuggingFace is not as competitive.

15

126558 https://doi.org/10.52202/079017-4020

User: Our customer is a zoo and we want to help them detect movement of different
animals. Write a python program in 1 to 2 lines to call API in TensorFlowHub.
Assistant:
<domain>: image-object-detection,
<api_call>: detector = hub.load(’https://tfhub.dev/google/openimages_v4/ssd_mobilenet_v2/1’),
<api_provider>: TensorFlow Hub,
<explanation>: This API call loads the pre-trained Single Shot Detector (SSD) MobileNet
V2 model from TensorFlow Hub, which has been trained on the Open Images v4 dataset.
This model is used for object detection in images. Once loaded, you can pass an image (and
an optional score threshold for detection confidence) to the detector to get back the detected
objects along with their bounding boxes, class labels, and associated confidence scores.
<code>: import tensorflow as tf; import tensorflow_hub as hub; # Load the SSD MobileNet V2
model; detector = hub.load(’https://tfhub.dev/google/openimages_v4/ssd_mobilenet_v2/1’);
Use the model to detect objects in an image (assuming ’image’ is a TensorFlow tensor
representing your image); result = detector(image, score_threshold=0.5)

User: I am an engineer at Uber and I need to find a API that can classify pedestrians,
cars, etc. from an image of the scene. Write a python program in 1 to 2 lines to call API in
TorchHub.
<Reference API>: {domain: Object Detection, framework: PyTorch, function-
ality: Traffic Object Detection, Drivable Area Segmentation, Lane Detection,
api_name: HybridNets, api_call: torch.hub.load(repo_or_dir=’datvuthanh/hybridnets’,
model=’hybridnets’, pretrained=True), api_arguments: repo_or_dir, model, pretrained,
python_environment_requirements: Python>=3.7, PyTorch>=1.10, example_code: ’import
torch; model = torch.hub.load(’datvuthanh/hybridnets’, ’hybridnets’, pretrained=True); img
= torch.randn(1,3,640,384); features, regression, classification, anchors, segmentation =
model(img), performance: dataset: [name: BDD100K, accuracy: Traffic Object Detection:
Recall (%): 92.8, mAP@0.5 (%): 77.3, Drivable Area Segmentation: Drivable mIoU (%):
90.5, Lane Line Detection: Accuracy (%): 85.4, Lane Line IoU (%): 31.6], description:
HybridNets is an end2end perception network for multi-tasks. Our work focused on traffic
object detection, drivable area segmentation and lane detection. HybridNets can run real-time
on embedded systems, and obtains SOTA Object Detection, Lane Detection on BDD100K
Dataset.}
Assistant:
<domain>: Object Detection, <api_call>: model = torch.hub.load(’datvuthanh/hybridnets’,
’hybridnets’, pretrained=True),
<api_provider>: PyTorch,
<explanation>: Load the pretrained HybridNets model for object detection from PyTorch
Hub to classify pedestrians, cars, etc. in an image of the scene,
<code>: import torch; model = torch.hub.load(’datvuthanh/hybridnets’, ’hybridnets’, pre-
trained=True)

Figure 8: Example of the Dataset: Two examples of the dataset, the above one is zero-shot (without
information retrievers) and the bottom one is with information retriever.

16

126559https://doi.org/10.52202/079017-4020

generate_video = pipeline("text-to-video", model="your_model_name")

vqa = pipeline("visual-question-answering", model="microsoft/clip-vqa-base",
tokenizer="microsoft/clip-vqa-base")

depth_estimator = pipeline("depth-estimation", model="intel-isl/MiDaS", tokenizer="intel-
isl/MiDaS")

Figure 9: Hallucination Examples: GPT-4 incurs serious hallucination errors in HuggingFace. We
show a couple of examples in the figure.

A.3.1 Evaluation

For ease of evaluation, we manually cleaned up the dataset to ensure each API domain only contains
the valid call of form:

API_name(API_arg1, API_arg2, ..., API_argk)

Our framework allows the user to define any combination of the arguments to check. For Torch
Hub, we check for the API name torch.hub.load with arguments repo_or_dir and model. For
Tensor Hub, we check API name hub.KerasLayer and hub.load with argument handle. For
HuggingFace, since there are many API function names, we don’t list all of them here. One specific
note is that we require the pretrained_model_name_or_path argument for all the calls except
for pipeline. For pipeline, we don’t require the pretrained_model_name_or_path argument
since it automatically select a model for you once task is specified.

A.3.2 Hallucination

We found especially in HuggingFace, the GPT-4 model incurs serious hallucination problems. It would
sometimes put a GitHub name that is not associated with the HuggingFace repository in to the domain
of pretrained_model_name_or_path. Fig. 9 demonstrates some examples and we also observe
that GPT-4 sometimes assumes the user have a local path to the model like your_model_name. This
is greatly reduced by Gorilla as we see the hallucination error comparison in Table 1.

A.3.3 AST as a Hallucination Metric

We evaluated the generated results on 100 LLM generations (randomly chosen from our eval set). The
accuracy using AST subtree matching is 78%, consistent with human evaluation with 78% accuracy in
calling the right API. All the generations that AST flagged as incorrect, were the same ones that were
manually also flagged as incorrect. Additionally, Gorilla generates supporting code to call the API
which includes installing dependencies (e.g., pip install transformers[sentencepiece]),
environment variables, etc. When we manually attempted to execute end-to-end code, 72% of all
codes generated were executed successfully. It’s worth noting that the 6% discrepancy were NOT
semantic errors, but errors that arose due to factors external to the API in the supporting code - we
have included an example to illustrate this further. Considering the significant time and effort required
for manual validation of each generation, our evaluation highlights the efficiency of using AST as a
robust offline metric.

Here is a representative example, where we are able to load the correct model API. However, in
the supporting code, after we have the output from the API, the zip() function tries to combine
sentiments and scores together. However, since scores is a float, it’s not iterable. zip() expects both
its arguments to be iterable, resulting in an ‘float’ object is not iterable error.

17

126560 https://doi.org/10.52202/079017-4020

LLAMA GPT-3.5 GPT-4 Claude Gorilla
Model

0

20

40

60

80

100

Ac
cu

ra
cy

0

48.38
38.7

18.81

59.13

Torch Hub 0-shot

LLAMA GPT-3.5 GPT-4 Claude Gorilla
Model

0

20

40

60

80

100

Ac
cu

ra
cy

8.6

38.17 35.48 39.78 40.32

Torch Hub with BM25-Retriever

LLAMA GPT-3.5 GPT-4 Claude Gorilla
Model

0

20

40

60

80

100

Ac
cu

ra
cy

14.51

60.21 59.13 60.21 61.82

Torch Hub with GPT-Retriever

LLAMA GPT-3.5 GPT-4 Claude Gorilla
Model

0

20

40

60

80

100

Ac
cu

ra
cy

16.12

66.31 66.12 63.44 67.2

Torch Hub with Oracle Retriever

LLAMA GPT-3.5 GPT-4 Claude Gorilla
Model

0

20

40

60

80

100

Ac
cu

ra
cy

0

16.81 19.8

6.1

71.68

HuggingFace 0-shot

LLAMA GPT-3.5 GPT-4 Claude Gorilla
Model

0

20

40

60

80

100

Ac
cu

ra
cy

2.98

17.25 16.48 14.6 17.03

HuggingFace with BM25-Retriever

LLAMA GPT-3.5 GPT-4 Claude Gorilla
Model

0

20

40

60

80

100

Ac
cu

ra
cy

10.17

47.34 44.57 41.37
47.45

HuggingFace with GPT-Retriever

LLAMA GPT-3.5 GPT-4 Claude Gorilla
Model

0

20

40

60

80

100

Ac
cu

ra
cy

17.69

89.71
85.06

77.21

91.26
HuggingFace with Oracle Retriever

LLAMA GPT-3.5 GPT-4 Claude Gorilla
Model

0

20

40

60

80

100

Ac
cu

ra
cy

0

41.75

18.2
9.19

83.79

Tensorflow Hub 0-shot

LLAMA GPT-3.5 GPT-4 Claude Gorilla
Model

0

20

40

60

80

100

Ac
cu

ra
cy

8.9

54.16

34.01 35.18
41.89

Tensorflow Hub with BM25-Retriever

LLAMA GPT-3.5 GPT-4 Claude Gorilla
Model

0

20

40

60

80

100

Ac
cu

ra
cy

15.62

65.59

43.94

55.62
64.96

Tensorflow Hub with GPT-Retriever

LLAMA GPT-3.5 GPT-4 Claude Gorilla
Model

0

20

40

60

80

100

Ac
cu

ra
cy

12.55

95.03

55.91

74.74

94.16
Tensorflow Hub with Oracle Retriever

Figure 10: Performance: We plot each model’s performance on different configurations. We see that Gorilla
performs extremely well in the zero-shot setting. While even when the oracle answer is given, Gorilla is still the
best.

Table 7: Evaluating Gorilla (vs) DocPrompting Gorilla improves accuracy, while lowering the hallucination.

Accuracy ↑ Hallucination ↓
DocPrompting Gorilla DocPrompting Gorilla

61.72 71.68 17.36 10.95

A.3.4 Gorilla (VS) DocPrompting

We evaluate Gorilla and DocPrompting [49] on the HuggingFace Dataset from Table 1. For a 7B
model, when trained on the same number of epochs, with and the same learning rate for both the
models, Gorilla improves accuracy while reducing hallucination.

A.3.5 Sensitivity to pre-training

Gorilla’s training recipe is robust to the pre-training strategies and recipes of the underlying model.
From Fig. 13 we demonstrate that all the three models can converge to within a few percentage points
in accuracy independent of the pre-trained base model.

18

126561https://doi.org/10.52202/079017-4020

0 10 20 30 40 50 60 70 80 90 100
Hallucination

0

10

20

30

40

50

60

70

80

90

100

Ac
cu

ra
cy

LLAMA

GPT-3.5
GPT-4

Claude

Gorilla

Torch Hub 0-shot

0 10 20 30 40 50 60 70 80 90 100
Hallucination

0

10

20

30

40

50

60

70

80

90

100

Ac
cu

ra
cy

LLAMA

GPT-3.5GPT-4ClaudeGorilla

Torch Hub with BM25-Retriever

0 10 20 30 40 50 60 70 80 90 100
Hallucination

0

10

20

30

40

50

60

70

80

90

100

Ac
cu

ra
cy

LLAMA

GPT-3.5GPT-4ClaudeGorilla

Torch Hub with GPT-Retriever

0 10 20 30 40 50 60 70 80 90 100
Hallucination

0

10

20

30

40

50

60

70

80

90

100

Ac
cu

ra
cy

LLAMA

GPT-3.5GPT-4ClaudeGorilla

Torch Hub with Oracle Retriever

0 10 20 30 40 50 60 70 80 90 100
Hallucination

0

10

20

30

40

50

60

70

80

90

100

Ac
cu

ra
cy

LLAMA

GPT-3.5GPT-4

Claude

Gorilla

HuggingFace 0-shot

0 10 20 30 40 50 60 70 80 90 100
Hallucination

0

10

20

30

40

50

60

70

80

90

100

Ac
cu

ra
cy

LLAMA

GPT-3.5GPT-4ClaudeGorilla

HuggingFace with BM25-Retriever

0 10 20 30 40 50 60 70 80 90 100
Hallucination

0

10

20

30

40

50

60

70

80

90

100

Ac
cu

ra
cy

LLAMA

GPT-3.5GPT-4Claude
Gorilla

HuggingFace with GPT-Retriever

0 10 20 30 40 50 60 70 80 90 100
Hallucination

0

10

20

30

40

50

60

70

80

90

100

Ac
cu

ra
cy

LLAMA

GPT-3.5GPT-4
Claude

Gorilla

HuggingFace with Oracle Retriever

0 10 20 30 40 50 60 70 80 90 100
Hallucination

0

10

20

30

40

50

60

70

80

90

100

Ac
cu

ra
cy

LLAMA

GPT-3.5

GPT-4
Claude

Gorilla

Tensorflow Hub 0-shot

0 10 20 30 40 50 60 70 80 90 100
Hallucination

0

10

20

30

40

50

60

70

80

90

100

Ac
cu

ra
cy

LLAMA

GPT-3.5

GPT-4Claude
Gorilla

Tensorflow Hub with BM25-Retriever

0 10 20 30 40 50 60 70 80 90 100
Hallucination

0

10

20

30

40

50

60

70

80

90

100

Ac
cu

ra
cy

LLAMA

GPT-3.5

GPT-4
Claude

Gorilla

Tensorflow Hub with GPT-Retriever

0 10 20 30 40 50 60 70 80 90 100
Hallucination

0

10

20

30

40

50

60

70

80

90

100

Ac
cu

ra
cy

LLAMA

GPT-3.5

GPT-4

Claude

Gorilla

Tensorflow Hub with Oracle Retriever

Figure 11: Accuracy vs Hallucination: We plot each model’s performance on different configurations. We
found that in the zero-shot setting, Gorilla has the most accuracy gain while maintaining good factual capability.
When prompting with different retrievers, Gorilla is still capable to avoid the hallucination errors.

from transformers import pipeline

def load_model ():
classifier = pipeline('sentiment -analysis ',

model='nlptown/bert -base -multilingual -uncased -sentiment ')
return classifier

def process_data(comments , classifier):
response = classifier(comments)
sentiments = response [0]['label'].split ()
scores = response [0]['score']
result = [{'sentiment ': sentiment , 'score': score}

for sentiment , score in zip(sentiments , scores)]
return result

comments = "These␣comments␣are␣about␣our␣news␣website."
Load the model
classifier = load_model ()
Process the data
response = process_data(comments , classifier)
print(response)

Figure 12: The API call by Gorilla model are accurate and bug-free, but the supporting zip() code
has a bug.

19

126562 https://doi.org/10.52202/079017-4020

Gori
lla-

LLa
MA

Gori
lla-

MPT

Gori
lla-

Fal
con

Pre-trained models

0

10

20

30

40

50

60

70

Ac
cu

ra
cy

Gorilla 0-shot on HF

Figure 13: For the same train-eval dataset, our fine-tuning recipe, RAT, is robust to the underlying base model.

20

126563https://doi.org/10.52202/079017-4020

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The paper provides a recipe to teach LLMs to use tools, and also presents a
data-set for evaluating API calling, and a metric for measuring hallucination. The paper
studies them with rigorous evaluations.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: All the hyperparameters are specified in the appendix, and the code and dataset
is open-sourced at github.com/ShishirPatil/gorilla.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: All code, data, and models are open-sourced under the Apache 2.0 license by
the authors.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: All the hyperparameters are specified in the appendix, and all code, data, and
models are open-sourced.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: All non-LLM experiments are deterministic so need no error bars, and given
the GPU costs involved, we perform LLM experiments once.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Provided in Appendix including the sample dataset.

21

126564 https://doi.org/10.52202/079017-4020

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Conform’s with NeurIPS Code of Ethics

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Integrating language models with API calls significantly extends their utility,
enabling a wide range of applications from automating customer service to generating real-
time content and facilitating data analysis. This integration can lead to more personalized
and efficient user experiences across various platforms, as language models can process
natural language inputs and interact with different APIs to fetch, interpret, and act on data
in real time. For instance, in customer service, this can mean providing instant, relevant
responses to queries, reducing wait times, and improving overall satisfaction. In content
generation, it can enable dynamic creation of articles, reports, or summaries based on the
latest data available from web services.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Unlike Images, etc where there are copyrights involved, APIs are meant to
distributed. Hence, the incentives are very well aligned. For example, if Gorilla presents a
particular service’s API, the service benefits from engagement.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All code, data, and models are open-sourced under the Apache 2.0 license by
the authors.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The open-source repository is actively maintained at
github.com/ShishirPatil/gorilla

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]

22

126565https://doi.org/10.52202/079017-4020

https://neurips.cc/public/EthicsGuidelines

