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Abstract

Al-driven design problems, such as DNA/protein sequence design, are commonly
tackled from two angles: generative modeling, which efficiently captures the
feasible design space (e.g., natural images or biological sequences), and model-
based optimization, which utilizes reward models for extrapolation. To combine the
strengths of both approaches, we adopt a hybrid method that fine-tunes cutting-edge
diffusion models by optimizing reward models through RL. Although prior work
has explored similar avenues, they primarily focus on scenarios where accurate
reward models are accessible. In contrast, we concentrate on an offline setting
where a reward model is unknown, and we must learn from static offline datasets, a
common scenario in scientific domains. In offline scenarios, existing approaches
tend to suffer from overoptimization, as they may be misled by the reward model
in out-of-distribution regions. To address this, we introduce a conservative fine-
tuning approach, BRAID, by optimizing a conservative reward model, which
includes additional penalization outside of offline data distributions. Through
empirical and theoretical analysis, we demonstrate the capability of our approach to
outperform the best designs in offline data, leveraging the extrapolation capabilities
of reward models while avoiding the generation of invalid designs through pre-
trained diffusion models. The main code is available at https://github.
com/masa—-ue/RLfinetuning Diffusion_Bioseq.

1 Introduction

Computational design involves synthesizing designs that optimize a particular reward function.
This approach finds applications in various scientific domains, including DNA/RNA/protein design
(Sample et al.,|2019; Gosai et al.,2023;|Wu et al., 2024). While physical simulations are often used in
design problems, lacking extensive knowledge of underlying physical processes necessitates solutions
that solely rely on experimental data. In these scenarios, we need an algorithm that synthesizes
an improved design by utilizing a dataset of past experiments (i.e., static offline dataset). Existing
research has addressed computational design from two primary angles. The first angle is generative
modeling such as diffusion models (Ho et al.| 2020), which aim to directly model the distribution of
valid designs by emulating the offline data. This approach allows us to model the space of “valid”
designs (e.g., natural images, natural DNA sequences, foldable protein sequences (Avdeyev et al.,
2023)). The second angle is offline model-based optimization (MBO), which entails learning the
reward model from static offline data and optimizing it with respect to design inputs (Brookes et al.,
2019; Trabucco et al) 2021; |Angermueller et al [2019; [Linder and Seeligl [2021}; [Fannjiang and
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Figure 1: The left figure illustrates our setup with a pre-trained generative model and offline data.

On the right, the motivation of the algorithm is depicted. The region surrounded by the green line

is the original entire design space, with the colored region indicating the valid design space (e.g.,

natural images, human-like DNA sequences). The red region denotes areas with more offline data

available, while the region indicates areas with less data available. We aim to add penalties to

the regions using conservative reward modeling to prevent overoptimization while imposing a
on the non-colored regions to prevent the generation of invalid designs.

Listgarten, |2020; (Chen et al.| [2022). This class of methods potentially enables us to surpass the best
design observed in the offline data by harnessing the extrapolative capabilities of reward models.

In our work, we explore how the generative modeling and MBO perspectives could be reconciled,
inspired by recent work on RL-based fine-tuning of diffusion models (e.g., Black et al.|(2023); [Fan
et al.| (2023)), which aims to finetune diffusion models by optimizing down-stream reward functions.
Although these studies do not originally address computational design, we can potentially leverage
the strengths of both perspectives. However, these existing studies often focus on scenarios where
online reward feedback can be queried or accurate reward functions are available. Such approaches
are not well-suited for the typical offline setting, where we lack access to true reward functions and
need to rely solely on static offline data (Levine et al.,|2020; Kidambi et al.| 2020; |Yu et al,[2020). In
scientific fields, this offline scenario is common due to the high cost of acquiring feedback data. In
such contexts, existing works for fine-tuning diffusion models may easily lead to overoptimization,
where optimized designs are misled by the trained reward model from the offline data, resulting in
out-of-distribution adversarial designs instead of genuinely high-quality designs.

To mitigate overoptimization, we develop a conservative fine-tuning approach for generate models
aimed at computational design. Specifically, we consider a critical scenario where we have offline
data (with feedback) and a pre-trained diffusion model capable of capturing the space of “valid”
designs, and propose a two-stage method (Figure [I). In the initial stage, we train a conservative
reward model using offline data, incorporating an uncertainty quantification term that assigns higher
penalties to out-of-distribution regions. Subsequently, we finetune pre-trained diffusion models by
optimizing the conservative reward model to obtain high-quality designs and prevent the generation
of out-of-distribution designs. In the fine-tuning process, we also introduce a KL penalization term to
ensure that the generated designs remain within the valid design space.

Our primary contribution lies in the introduction of a novel framework, BRAID (douBly conseRVA-
tive fine-tuning diffuslon moDels). The term “doubly conservative” reflects the incorporation of two
types of conservative terms, both in reward modeling and KL penalization. By properly penalizing
the fine-tuned diffusion model when it deviates significantly from the offline data distribution, we
effectively address overoptimization. Additionally, by framing our fine-tuning procedure within the
context of soft-entropy regularized Markov Decision Processes, we offer theoretical justification for
the inclusion of these conservative terms in terms of regret. This theoretical result shows that fine-
tuned generative models outperform the best designs in the offline data, leveraging the extrapolation
capabilities of reward models while avoiding the generation of invalid designs. Furthermore, through
empirical evaluations, we showcase the efficacy of our approach across diverse domains, such as
DNA/RNA sequences and images.
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2 Related Works

We summarize related works. For additional works such as fine-tuning on LLMs, refer to Section @

Fine-tuning diffusion models via reward functions. Several previous studies have aimed to
improve diffusion models by optimizing reward functions using various methods, including supervised
learning (Lee et al., 2023} Wu et al., 2023), RL (Black et al.| 2023} [Fan et al.,2023) and control-based
techniques (Clark et al., 2023 [Xu et al., [2023]; [Prabhudesai et al., 2023)). In contrast to our work,
their emphasis is not on an offline setting, i.e., their setting assumes online reward feedback is
available or accurate reward functions are known. Additionally, while |[Fan et al.[| (2023)) include
the KL term in their algorithms, our innovation lies in integrating conservative reward modeling to
mitigate overoptimization and formal statistical guarantees in terms of regret (Theorem ] 2).

Conditional diffusion models. Conditional diffusion models, which learn conditional distributions
of designs given the rewards, have been extensively studied (Ho and Salimans| 2022} |Dhariwal
and Nichol, 2021} Song et al.l 2020; Bansal et al., 2023). However, for the purpose of MBO,
these approaches require that the offline data has good coverage on values we want to condition on
(Brandfonbrener et al.|[2022). Compared to conditional diffusion models, our approach aims to obtain
designs that can surpass the best design in offline data by leveraging the extrapolation capabilities of
reward models. We compare these approaches with our work in Section

Offline model-based optimization (MBQO). Offline MBO is also known as offline black-box
optimization and is closely related to offline contextual bandits and offline RL (Levine et al., [2020).
While conservative approaches have been studied there (e.g., Kidambi et al.| (2020); |Yu et al.| (2020)
and more in[Section Al); most of the works are not designed to incorporate a diffusion model, unlike
our approach. Hence, it remains unclear how these methods can generate designs that remain within
intricate valid design spaces (e.g., generating natural images).

It is worth noting a few exceptions (Yuan et al., 2023 Krishnamoorthy et al., [2023) that attempt
to integrate diffusion models into MBO. However, the crucial distinctions lie in the fact that we
directly optimize rewards with diffusion models, whereas these prior works focus on using conditional
diffusion models. Additionally, we delve into the incorporation of conservative terms, an aspect not
explored in their works. We compare these methods with ours empirically in Section

3 Preliminaries

We outline our framework for offline model-based optimization with a pre-trained generative model.
Subsequently, we highlight the challenges arising from distributional shift. Additionally, we provide
an overview of diffusion models, as we will employ them as pre-trained generative models.

3.1 Offline Model-Based Optimization with Pre-Trained Generative Model

Our objective is to find a high-quality design within a design space, X'. Each design x € X is
associated with a reward, r(z), where r : X — [0, 1] is an unknown reward function. Then, our aim
is to find a high-quality generative model p € A(X), that yields a high r(z). It is formulated as

argmax,ea (x) Epp[r(z)]. )

Avoiding invalid designs. In MBO, the design space X’ is typically huge. However, in practice, the
valid design space denoted by A}, is effectively contained within this extensive X" as a potentially
lower-dimensional manifold. For instance, in biology, our focus often centers around discovering
highly bioactive protein sequences. While the raw search space might encompass |20|Z possibilities
(where B is the length), the actual design space corresponding to valid proteins is significantly more
constrained. Consequently, our problem can be formulated as:

argmax E,.,[r(z)], (eqivaletnly, argmax E . ,[r(x)] — Exp[I(z & Xpre)])- 2)
peA(Xpre) PEA(X)

Note supposing that a reward 7(-) is 0 outside of X),.., this is actually still equivalent to (I).
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Offline data with a pre-trained generative model. Based on the above motivation, we consider
scenarios where we have an offline dataset Dg, used for learning the reward function. More
specifically, the dataset, Dog = {x(7), y(j)}?ji contains pairs of designs x ~ pog(-) and their
associated noisy reward feedbacks y = r(z) + €, where € is noise.

Compared to settings in many existing papers on MBO, we also assume access to a pre-trained
generative model (diffusion model) trained on a large dataset comprising valid designs, in addition to
the offline data D,g. For example, in biology, this is expected to capture the valid design space X},.c
such as human DNA sequences or physically feasible proteins (Avdeyev et al.| [2023} |L1 et al., 2024;
Sarkar et al.,2024; Stark et al.| |2024; |Campbell et al.,[2024). These pre-trained generative models are
anticipated to be beneficial for narrowing down the raw search space X to the design space X;. In
our work, denoting the distribution induced by the pre-trained model by py,., we regard the support
of ppre as Xpre.

3.2 Challenge: Distributional Shift

To understand our challenges, let’s first examine a simple approach for MBO with a pre-trained
generative model. For instance, we can adapt methods from |Clark et al.|(2023)); [Prabhudesai et al.
(2023)) to our scenario. This approach involves two steps. In the first step, we perform reward
learning: # = argmingc z > o7 {7(z(?) — y(?}2, where F represents a function class that includes
mappings from X’ to [0, 1], aiming to capture the true reward function r(-). Then, in the second step,
we fine-tune a pre-trained diffusion model to optimize 7.

Despite its simplicity, this approach faces two types of distributional shifts. Firstly, the fine-tuned
generative model might produce invalid designs outside of A},.c. As discussed in Section[3.T} we aim
to prevent this situation. Secondly, the fine-tuned generative model may over-optimize 7, exploiting
uncertain regions of the learned model #. Indeed, in regions not covered by offline data distribution
Dott, the learned reward 7 can easily have higher values, while the actual reward values in terms of r
might be lower due to the higher uncertainty. We aim to avoid situations where we are misled by
out-to-distribution adversarial designs.

3.3 Diffusion Models

We present an overview of denoising diffusion probabilistic models (DDPM) (Song et al., [2020;
Ho et al., [2020; |Sohl-Dickstein et al., [2015). Note while the original diffusion model was initially
introduced in Euclidean spaces, it has since been extended to simplex spaces for biological sequences
(Avdeyev et al.| [2023), which we will use in[Section 7} In diffusion models, the goal is to develop a
generative model that accurately emulates the data distribution from the dataset. Specifically, denoting
the data distribution by ppe € A(X), a DDPM aims to approximate using a parametric model
structured as p(zo;60) = [ p(zo.1; 0)dz1.7, where p(xo.7;0) = pri1(zr;0) HLT pe(Ti—1|xe;0).
Here, each p; is considered as a policy, which is a mapping from a design space X to a distribution
over X. By optimizing the variational bound on the negative log-likelihood, we can obtain a set
of policies {p; }{_1, such that p(zo; #) ~ ppre(ao). For simplicity, in this work, assuming that
pre-trained diffusion models are accurate, we denote the pre-trained policy as {p{"*(-|-) }{_7 . and
the generated distribution by the pre-trained diffusion model at zy by ppre. With slight abuse of

notation, we often denote pi-7, (-) by p7y, (+|)

4 Doubly Conservative Generative Models

We’ve discussed how naive approaches for computational design may yield invalid designs or over-
optimize reward functions, with both challenges stemming from distributional shift. Our goal in this
section is to develop doubly conservative generative models to mitigate this distributional shift.

4.1 Avoiding Invalid Designs

To avoid invalid designs, we begin by considering the following generative model:

T eiﬁi’éif //z))ﬁs((x))dx (1= argmax B, [F(2)] = aKL(pppre)), 3)
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where KL(p||ppre) = Ezmp[log(p(x)/ppre(x))]. In this formulation, the generative model is designed
as an optimizer of a loss function composed of two parts: the first component encourages designs
with high rewards, while the second component acts as a regularizer penalizing the generative model
for generating invalid designs. This formulation is inspired by our initial objective in (2)), where we
substitute an indicator function with log(p/ppre). This regularizer takes co when p is not covered by
Dpre> and o governs the strength of the regularizer.

4.2 Avoiding Overoptimization

Next, we address the issue of overoptimization. This occurs when we are fooled by the learned
reward model in uncertain regions. Therefore, a natural approach is to penalize generative models
when they produce designs in uncertain regions.

As a first step, let’s consider having an uncertainty oracle § : X — [0, 1], which is a random variable
of Dog. This oracle is expected to quantify the uncertainty of the learned reward function 7.
Assumption 1 (Uncertanity oracle). With probability 1 — §, we have

Y € Xpre; [F(2) — r(z)] < g(x) O]

These calibrated oracles are well-established when using a variety of models such as linear models,
Gaussian processes, and neural networks. We will provide detailed examples of such calibrated
oracles in Section Essentially, as long as the reward model is well-specified (i.e., there exists
7 € F such that Vo € Xy : 7(x) = r(x)), we can create such a calibrated oracle.

Doubly Conservative Generative Models. Utilizing the uncertainty oracle defined in Assump-
tion |1} we present our proposal:

e )
ﬂ-Oé( ) - fexp ((7; _ g)(x)/a) ppre(x)dx (* pegA(X) EINP[( g)( )] KL(p”pprc)) (5)

Penalized reward KL Penalty

Here, to combat overoptimization, we introduce an additional penalty term §(z). This penalty term is
expected to prevent 7, from venturing into regions with high uncertainty because it would take a
higher value in such regions. We refer to 7, as a doubly conservative generative model due to the
incorporation of two conservative terms.

An attentive reader might question the necessity of simultaneously introducing two conservative terms.
Specifically, the first natural question is whether KL penalties, intended to prevent invalid designs, can
replace uncertainty-oracle-based penalties. However, this may not hold true because even if we can
entirely avoid venturing outside of &}, (support of p..), we may still output designs on uncertain
regions not covered by pog. The second question is whether uncertainty-oracle-based penalties can
substitute KL penalties. While it is partly true in situations where the support of p.g is contained
within that of py,,., uncertainty-oracle-based penalties, lacking leverage on pre-trained generative
models, are ineffective in preventing invalid designs. In contrast, KL penalties are considered a more
direct approach to stringently avoid invalid designs by leveraging pre-trained generative models.

4.3 Examples of Uncertainty Oracles

Example 1 (Gaussian processes.). When we use an RKHS as F (a.k.a. GPs) associated with a kernel
k(- +) : X x X = R (Srinivas et al.l[2009), a typical construction of ¥ and § is

() = Y(K+A)7'k(), () = (@) k()
where c¢(8) € Rug, A € R, k(z) = [k(zM, z), -, k(zMor) 2)]T,
Y = [y, y o) (K = k@, 2@), k(e o) = k(z,2) - k(z) {K + M} k().

Note that when using deep neural networks, by considering the last layer as a feature map, we can
still create a kernel (Zhang et al.| 2022, |Qiu et al.||2022)).

Example 2 (Bootstrap). When we use neural networks as F, it is common to use a statistical
bootstrap method. Note many variants have been proposed (Chua et al.| 2018)), and its theory
has been analyzed (Kveton et al.| |2019). Generally, in our context, we generate multiple models
71, ,Tar by resampling datasets, and then consider argmin, 7; as 7 — .
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Algorithm 1 BRAID (douBly conseRvAtive fIne-tuning Diffusion models)

1: Require: Parameter o € R, a set of policy classes {II;} where IT; C [X — A(X)], pre-trained
diffusion model {p}™*}}_7., ;.

2: Train a conservative reward model # — § using an offline data D, .

3: Update a diffusion model as {p; }+ by solving the planning problem:

{Beye = argmax  Egy[i(zo) — §(x0)] —a Xi_r 1B [KL(pe (|20 197 (122))] - (6)

{ptent}tlzTJrl

Penalized reward KL penalty

where the expectation E,,, [ is taken with respect to H;T 41 Pe(Ti—1]we).
4: Output: A policy {p: }+

5 Conservative Fine-tuning of Diffusion Models

In this section, we consider how to sample from a doubly conservative generative model 7, using
diffusion models as pre-trained generative models. Our algorithm is outlined in Algorithm [I] Initially,
we learn a penalized reward 7 — g from the offline data and set it as a target to prevent overoptimization
in (6). Additionally, we integrate a KL regularization term to prevent invalid designs. The parameter
« governs the intensity of this regularization term.

Formally, this phase can be conceptualized as a planning problem in soft-entropy-regularized MDPs
(Neu et al.,[2017; |Geist et al.,[2019). In this MDP formulation:

« The state space S and action space A correspond to the design space X'.

* The reward at time ¢ € [0,--- ,T] (¢ S x A — R) is provided only at T" as #* — g.
* The transition dynamics at time ¢ (€ [S x A — A(S)]) is an identity 0(st+1 = at).
* The policy at time ¢ (¢ S — A(A)) corresponds to ppi1_¢ : X — A(X).

* The reference policy at ¢ is a policy in the pre-trained model pf.7, _,

In these entropy-regularized MDPs, the soft optimal policy corresponds to {p; }. Importantly, we can
analytically derive the fine-tuned distribution in and show that it simplifies to a doubly
conservative generative model 7, from which we aim to sample.

Theorem 1. Let () be an induced distribution from optimal policies {p;}i_r,, in @), ie.,

p(zo) = f{Hi:TH P(xi—1|xt) yday.r when {11, } is a global policy class (II; = {X — A(X)}).
Then,

We have deferred to the proof in Section [5.1] While similar results are known in the context of
standard entropy regularized RL (Levine} 2018)), our theorem is novel because previous studies did
not consider pre-trained diffusion models.

Training algorithms. Based on Theorem (1| to sample from 7,, what we need to is to solve
Equation (6). We can employ any off-the-shelf RL algorithms to solve this planning problem.
Given that the transition dynamics are known, and differentiable reward models are constructed in
our scenario, a straightforward approach to optimize (6) is to directly optimize differentiable loss
functions with respect to parameters of neural networks in policies, as detailed in Appendix [B] Indeed,
this approach has recently been used in fine-tuning diffusion models (Clark et al., | 2023}, |Prabhudesai
et al.| 2023), demonstrating its stability and computational efficiency.

Remark 1 (Novelty of Theorem 1. A theorem similar to has been proven for continuous-

time diffusion models in Euclidean space (Uehara et al.| 2024, Theorem 1). However, the primary
distinction lies in the fact that while their findings are restricted to Euclidean space, where diffusion
policies take Gaussian polices, our results are not constrained to any specific domain. Hence, for
example, our can handle scenarios where the domain is discrete or lies on the simplex
space (Avdeyev et al.,|2023) in order to model biological sequences as we do in[Section 7]
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5.1 Sketch of the Proof of Theorem[I]
We explain the sketch of the proof of Theorem [} The detail is deferred to

By induction from ¢ = 0 to ¢ = T" + 1, we can first show

exp(vi—1(z1-1)/)p;" (wi—1]24)
exp (v (1) /)

(N

ﬁt(xt—1|$t) =

Here, v () is a soft optimal value function:
1
Ep[#(20) — §(w0) — @ > KL(px(-Jae) [IpF (|2n)) |4,
k=t

which satisfies an equation analogous to the soft Bellman equation: vy(z) = 7#(z) — §(z) and for
t=1tot=T+1,

exp(vt(xt)) = /eXp (Ut_l(xt_l)) PP (i1 | y)di—q. 8

« (0%

Now, we aim to calculate a marginal distribution at ¢ defined by pi(z;) =
I{HZ:H—I Pr(Tk—1|xk) }dzii1.7. Then, by induction, we can show that

Pi(we) = exp(ve(zy)/a)py™ (1) /C )

where C'is a normalizing constant. Indeed, supposing that the above (9) hold at ¢, the equation (9
also holds for ¢ — 1 as follows:

pre

/ﬁt-l(xt-llmt)ﬁt(mt)dxt = exp(ve—1(e—1)/)pi_ (26-1)/C = Pr_1(wt—1).
Finally, by setting ¢ = 0, the statement in[Theorem T|is concluded.

6 Regret Guarantee

In this section, our objective is to demonstrate that a policy p, from [Algorithm 1| can provably
outperform designs in offline data by establishing the regret guarantee.

To assess the performance of our fine-tuned generative model, we introduce the soft-value metric:

Ja(p) = Epnp[r(z)] — aKL(p||ppre)-

This metric comprises two components: the expected reward and a penalty term applied when p
produces invalid outputs, as we see in Now, in terms of soft-value .J,, (p), our proposal p,, offers
the following guarantee.

Theorem 2 (Per-step regret). Suppose Assumption[I} Then, with probability 1 — 6, we have

()

TEXott | Poff (CC) ’

V1 € A(X); Jo (1) = Ja(Pa) < 2V Cr X Bpmpoge [9(2)?]/2,  Cp := max
N——— N———

Per step regret Stat

where Xog = {x € X : pogg(z) > 0}. As an immediate corollary,
Egrlr(z)] — Eznpe [r(z)] < O‘KL(W”ppre) + 2V Cr X Egropyy [g(x)2]1/2.

In the theorem above, we establish that the per-step regret against a generative model m we aim to
compete with is small as long as the generative model 7 falls within X,g and the learned model 7 is
calibrated as in Assumption |1} First, the term (Stat) corresponds to the statistical error associated
with 7 over the offline data distribution p,g. When the model is well-specified, it is upper-bounded

by /d/n, where d represents the effective dimension of F, as we will discuss shortly. Secondly, the
term C; corresponds to the coverage between a comparator generative model 7 and our generative
model p,. Hence, it indicates that the performance of our learned p,, is at least as good as that of a
comparator generative model 7 covered by pog. While this original coverage term C. diverges when
7 goes outside of X,g, we can refine it using the extrapolation capabilities of a function class F, as
we will discuss shortly. This refined version ensures that we can achieve high-quality designs that
outperform designs in the offline data (i.e., best designs in Xog).
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Example 3. We consider a scenario where an RKHS is used for F. Let F be a model represented by
an infinite-dimensional feature ¢(-). Let d denote the effective dimension of F (Valko et al., 2013).

Corollary 1 (Informal: Formal characterization is in ). Assuming that the model is
well-specified, with probability 1 — §, we have:

_ ~ 2 2 @ ~ . KT]Ez~7r[¢(x)¢T iC)]Ii
Jo () = Jo(Pa) < \/CTr x O ( n) , Crp:= n:”snl\lgzl SR, 00T @)

The refinement of the coverage term in C is characterized as the relative condition number between
covariance matrices on a generative model m and an offline data distribution p.g, which is smaller
than Cy. This Cy. could still be finite even if Cy. is infinite. In this regard, Corollary illustrates that
the trained generative model can outperform the best design in the offline data by harnessing the
extrapolation capabilities of reward models.

7 Experiments

We perform experiments to evaluate (a) the effectiveness of conservative methods for fine-tuning
diffusion models and (b) the comparison of our approach between existing methods for MBO with
diffusion models (Krishnamoorthy et al., 2023} [Yuan et al., |2023). We will start by outlining the
baselines and explaining the experimental setups. Regarding more detailed setups, hyperparameters,
architecture of neural networks, and ablation studies, refer to Appendix

Methods to compare. We compare the following methods in our evaluation. For a fair comparison,
we always use the same o in BRAID and STRL.%

* BRAID (proposed method): We consider two approaches: (1) Bonus, as in Example [1| by
setting a last layer as a feature map and constructing a kernel, (2) Bootstrap, as in Example 2]

» Standard RL (STRL): RL-fine-tuning that optimizes the standard 7 without any conservative
term, following existing works on fine-tuning (Clark et al., 2023; |Prabhudesai et al., 2023).

* DDOM (Krishnamoorthy et al., 2023): We train with weighted classifier-free guidance (Ho and
Salimans, 2022) using offline data, conditioning on a class with high y values (top 5%) during
inference. Note that this method is training from scratch rather than fine-tuning.

* Offline Guidance (Yuan et al., 2023): After training a classifier using offline data, we use
guidance (conditional diffusion models) (Dhariwal and Nichol, 2021)) on top of pre-trained
diffusion models and condition on classes with high y values (top 5%) at inference time.

Evaluation. We assess the performance of each generative model primarily by visualizing the
histogram of true rewards r(x) obtained from the generated samples. For completeness, we include
similar histograms for both the pre-trained model (Pretrained) and the offline dataset (Offline).
As for hyperparameter selection, such as determining the strengths of conservative terms/epochs,
we adhere to conventional practice in offline RL (e.g., Rigter et al.|(2022); |Kidambi et al.| (2020);
Matsushima et al.|(2020)) and choose the best one through a limited number of online interactions.

Remark 2. We omit comparisons with pure MBO methods for two reasons: (i) DDOM, which we
compare against, already demonstrates a good performance across multiple datasets, and (ii) these
methods are unable to model complex valid spaces since they do not incorporate state-of-the-art
generative models (e.g., stable diffusion), thereby lacking the capability to generate valid designs

(e.g., natural images) as we show in|Section 7.2

7.1 Design of Regulatory DNA/RNA Sequences

We examine two publicly available large datasets consisting of enhancers (n ~ 700k) (Gosai et al.,
2023) and UTRs (n ~ 300k) (Sample et al.,2019) with activity levels collected by massively parallel
reporter assays (MPRA) (Inoue et al., 2019). These datasets have been extensively used in sequence

3Regarding the effectiveness of KL-regularization, it has been discussed in|Fan et al|(2023);|Uehara et al.
(2024). Hence, in our work, we focus on the effectiveness of conservatism in reward modeling.
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(a) 5’UTRs (b) Enhancers (c) Images

Figure 2: Barplots of the rewards r(x) for samples generated by each algorithm. It reveals that
proposals consistently outperform baselines.
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Figure 3: Results on Image Generation

optimization for DNA and RNA engineering, particularly for the advancement of cell and RNA
therapy (Castillo-Hair and Seelig, 2021}; |Ghari et al} 2023} [Lal et al., 2024} [Ferreira DaSilva et al.}
. In the Enhancers dataset, each z is a DNA sequence with a length of 200, while y € R is the
measured activity in cell lines. For the UTRs dataset, x is a 5’UTR RNA sequence with a length of
50 while y € R is the mean ribosomal load (MRL) measured by polysome profiling.

Setting of oracles and offline data. We aim to explore a scenario where we have a pre-trained
model and an offline dataset. Since the true reward function r(+) is typically unknown, we initially
divide the original dataset D = {z(¥), (Y} randomly into two subsets: Dy, and D’. Then, from D’,
we select datasets below 95% quantiles for enhancers and 60% quantiles for UTRs and define them as
offline datasets Dogr. Subsequently, we construct an oracle 7(-) by training a neural network on D,
and use it for testing purposes. Here, we use an Enformer-based model, which is a state-of-the-art
model for DNA sequences 2021). Regarding pre-trained diffusion models, we use ones
customized for sequences over simplex space (Avdeyev et al [2023). In the subsequent analysis, each
algorithm solely has access to the offline data Dy and a pre-trained diffusion model, but not r(-).

Results. The performance results in terms of r(-) are depicted in Fig [2h and b. It is seen that
fine-tuned generative models via RL outperform conditioning-based methods: DDOM and Guidance.
This is expected because conditional models themselves are not originally intended to surpass the
conditioned value (== best value in the offline data). Conversely, fine-tuned generative models via RL
are capable of exceeding the best value in offline data by harnessing the extrapolation capabilities
of reward modeling, as also theoretically supported in Corollary [T} Secondly, both BRAID-boot
and BRAID-bonus demonstrate superior performance compared to STRL.This suggests that con-
servatism aids in achieving fine-tuned generative models with enhanced rewards while mitigating
overoptimization.

7.2 Image Generation

We consider the task of generating aesthetically pleasing images, following prior works (Fan et al.}
[2023}; Black et al.| [2023). We use Stable Diffusion v1.5 as our pretrained diffusion model, which
can generate high-quality images conditioned on prompts such as “cat” and “dog”. We use the AVA
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dataset (Murray et al.,|2012)) as our offline data and employ a linear MLP on top of CLIP embeddings
to train reward models (7 and 7 — §) from offline data for fine-tuning.

Setting of oracles. To construct 7(z), following existing works, we use the LAION Aesthetic
Predictor V2 (Schuhmannl 2022), already pre-trained on a large-scale image dataset. However,
this LAION predictor gives high scores even if generated images are almost identical regardless of
prompts, as in Figure[3b] These situations are undesirable because it means fine-tuned models are
too far away from pre-trained models. Hence, for our evaluation, we define r(x) as follows: (1)
asking vision language models (e.g., LLaVA (Liu et al.,[2024)) whether images contain objects in
the original prompts (e.g., dog, cat), (2) if Yes, outputting the LAION predictor, and (3) if No,
assigning 0. This evaluation ensures that high (z) still indicates capturing the space of the original
stable diffusion.

Results. We show that our proposed approach outperforms the baselines in terms of r(z), as in
Fig El We also show the generated images in Figure . Additionally, we plot the training curve
during the fine-tuning process in terms of the mean of ©(x) of generated samples in Fig . The
results indicate that in STRL, while the learning curve based on the learned reward quickly grows,
fine-tuned models no longer necessarily remain within the space of pre-trained models (STRL in
Fig[2k). In contrast, in our proposal, by carefully regularizing on regions outside of the offline data,
we can generate more aesthetically pleasing images than STRL, which remain within the space of
pre-trained models. For more images/ ablation studies, refer to Appendix [E]

8 Summary

For the purpose of fine-tuning from offline data, we introduced a conservative fine-tuning approach
by optimizing a conservative reward model, which includes additional penalization outside of offline
data distributions. Through empirical and theoretical analysis, we demonstrate the capability of our
approach to outperform the best designs in offline data, leveraging the extrapolation capabilities of
reward models while avoiding the generation of invalid designs through pre-trained diffusion models.
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1.

Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: In abstract and intro, we explained our algorithm in details.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
Justification: We summarize it in

. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We provide theoretical results in[Section 3| and . Due to the page limit, we add
more detailed results in the Appendix as well.

. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have added details as much as possible.

. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes] .
Justification: We have added codes.

. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We have added the details in the main text and sup material.

. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We have added details as much as possible. In Figure 2, we show the distribu-
tion. In Table 1, we show the confidence interval. In Figure 3(b), we also plot the std of 7
for generated samples.

. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We have added details as much as possible.
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Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discussed potential positive societal impact in the introduction. Regarding
negative impact, we have regonized unintended uses is possible.

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer:

Justification: Due to the page limit, we haven’t included it. However, we recognize diffusion
models could be misused to make fake images. We aim to address this problem in the future.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer:
Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
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Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
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approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA] .
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A Additional Related Works

In this section, we summarize additional related works.

Conservative approaches in offline RL/offline contextual bandits. = Conservative approaches
have been explored in offline RL and contextual bandits. Firstly, in both model-free and model-based
RL, one prevalent method involves incorporating an additional penalty on top of the reward functions
(Yu et al.} 2020; |Chang et al., 2021). Secondly, in model-based RL, a common strategy is to train
transition dynamics in a conservative manner (Kidambi et all 2020; [Rigter et al., [2022; [Uehara
and Sun, 2021). Thirdly, in model-free RL, typical approaches include conservative learning of
g-functions (Kumar et al., [2020; [Xie et al.|[2021) or the inclusion of KL penalties against behavioral
policies (Wu et al.||2019; |Fakoor et al., [2021}).

However, these works are not designed to incorporate a diffusion model, unlike our approach. Hence,
it remains unclear how their works can generate designs that remain within intricate valid design
space, such as high-quality images using stable diffusion.

Design with generative models. Many works are focusing on design problems with generative
models. However, these works are typically limited to the usage of VAEs. (Notin et al.l 2021;|Gémez-
Bombarelli et al., 2018) Our work is still significantly different because we focus on generative
models.

Fine-tuning in LLMs from human feedbacks. A closely related area of research involves fine-
tuning LL.Ms through the optimization of reward functions using human feedback (Touvron et al.,
2023} Ouyang et al.,[2022). Especially, following works such as|Zhan et al.|(2023)), from a theoretical
viewpoint, | Xiong et al.|(2023)) explores the effectiveness of pessimism in offline scenarios and its
theoretical aspect. However, our theoretical findings are more specifically tailored to diffusion models.
Indeed, our main result in Theorem [I]is novel, and our algorithm differs significantly, as fine-tuning
methods in offline settings in the literature on LLMs typically rely on policy gradient or PPO, whereas
we use more direct backpropagation approaches. Furthermore, the meaning of step size is different as
well. Hence, in (Xiong et al., 2023), they do not use soft entropy regularized MDPs.

Typically, in the above works, human feedback is considered to be given in the form of preferences.
Similarly, in the context of diffusion models, [Yang et al.| (2023)); Wallace et al.| (2023) discusses
fine-tuning of diffusion models using preference-based feedback. However, these works focus on
online settings but not offline settings.

Sampling from unnormalized distributions. In our approach, we use an RL method to sample
from our target distribution that is proportional to exp((* — §())ppre(x). While MCMC has
traditionally been prevalent in sampling from unnormalized Boltzmann distributions exp(r(x)),
recent discussions (Zhang and Chenl 2021} |Vargas et al., 2023), have explored RL approaches similar
to our approach. However, their focus differs from ours, as they do not address the fine-tuning of
diffusion models (i.e., no pyr.) or sample efficiency in offline settings.

Another relevant literature discusses sampling from unnormalized Boltzmann distributions when
pre-trained diffusion models are available (Kong et al.l [2024). However, their algorithm closely
resembles classifier-based guidance (Dhariwal and Nichol, [2021]), rather than a fine-tuning algorithm.
Additionally, they do not examine conservatism in an offline setting.

B Direct Back Propagation
Our planning algorithm has been summarized in|Algorithm 2| Here, we parametrize each policy by

neural networks.

For the sake of explanation, we also add typical cases where the domain is Euclidean in
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Algorithm 2 Direct Back Propagation (General case)

1: Require: Set a diffusion-model p(-|x;—1; ), pre-trained model {ppre(:|2¢—1)}/_7 1. batch size
m, a parameter o € R,

2: Initialize: 6; = 0y

3: forse[l,---,S]do

4:  Setf =40,.

5:  Collect m samples {xff’ (0)}9_r, from a current diffusion model (i.e., generating by sequen-

tially running polices {p;(-|z4;0)}}_py, fromt =T +1tot = 1)
6:  Update 6, to 6,41 by adding the gradient of the following loss L(#) with respect to 0 at d,:

L(e>:%2 (257 (0)) — 9= (0) — a3 KL(pi (s 0) Ippre(l2)) | . (10)
i=1 t=T+1

7: end for
8: Output: Policy {p;(-|;05)}_r1

Algorithm 3 Direct Back Propagation (in Euclidean space)

1: Require: Set a diffusion-model {N(p(t,2:;0),07);0 € ©O};_; ., pre-trained model
{N(p(t, x¢; 0pre), 07 ) }_p 1 Datch size m, a parameter a € R,

2: Initialize: 6; = 0p,c

3: forse[l,---,S5]do

4:  Setf =0,. 4

5:  Collect m samples {xgb) (0)}¢_1.,, from a current diffusion model (i.e., generating by sequen-

tially running polices {N (p(t, z4;0),07)}_p, fromt =T + 1tot = 1)
6:  Update 6, to 6,41 by adding the gradient of the following loss L(#) with respect to 6 at d,:

. , L 1@ D(0). £:0) — p(2(0). £ 6,0)]2
L) = L3 il ) - ot 0) —a 3 10 <9>v’f’9>205(<t)t (6),t: Opro) |
=1 t=T+1
(1D

7: end for
8: Output: Policy {p:(|05)}l_r

C All Proofs

C.1 Proof of Theorem

Here, we actually prove a stronger statement.

Theorem 3 (Marginal and Posterior distributions). Let p;(x;) and pl(x¢|x;_1) be marginal distri-
butions at t or posterior distributions of x; given x;_1, respectively, induced by optimal policies

{Pt}i41- Then,

Pi(e) = exp((,) fa)p}" (w0) /O, py (welae—1) = Py (we|zi—1).
Proof. To simplify the notation, we let f(z) = 7#(x) — g(x). As a first step, by using induction, we
aim to obtain an analytical form of the optimal policy {p:(-|z:—1)}

First, we define the soft-optimal value function as follows:
1

vt (2-1) = By [F(2) —a D KLk () 97 (lan) ey
k=t—1

Then, by induction, we have

pe(wi—1|re) = argmaxEyp g [ve—1 (1) — aKL(ps (o) |97 ()| 2] -
ptEA(X)
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With simple algebra, we obtain

. V1 (e .
Pe(wi_1|2¢) X exp (tl(atl)> PP (p—1|ze)- (12)
Here, noting

v () = S Egpoy[ve-1(we—1) — aKL(ps (-|xe) Ipy ™ (-] ))|¢],

we get the soft Bellman equation:

exp (%(;m)) - /exp <vt1(5t1)> P (@eafe)dzes. (13)

Therefore, by plugging (13) into (12)), we actually have

A exp (P2 ) P ()
Pe(wi1]ae) = .
exp (Lft))

(14)

Finally, with the above preparation, we calculate the marginal distribution:

ﬁt(xt) 12/{ H ﬁs($s1$s)}d$t+1:T+1~

s=T+1

Now, by using induction, we aim to prove

. vz r
pt(xt) = €xXp (t;t)) p? e(xt)~
Indeed, when ¢ = T+ 1, from (T4), this hold as follows:

~ 1 Vv \TT+1 re
pre1(Trin) = b <(a+)) P (TT41).

Now, suppose the above holds at t. Then, this also holds for ¢t — 1:
Pro1(x4-1) = /ﬁt(xt—ﬂft)ﬁt(ft)dxt
= /exp (W) {pY" (w1 |me) e (x4 ) dey (Use Equation [T4)
— oxp <vt1(:lct1)) PP (20 1).

o

By invoking the above when ¢ = 0, the statement is concluded.

C.2 Proof of Theorem

In the following, we condition on the event where
Vo € Xpre; |1(x) — ()| < g(z).
holds.

First, we define
Ja (1) = Eqnrli(2) = ()] = aKL(x[lpun);  Ja(7) := Egnr[r(2)] — aKL(7|[pun)-
We note that, 7, maximizes .J,, (). Therefore, we have
Ja(m) = Ja(Fa) () — ( )+J (m )_j (ﬁa)"i‘ja(ﬁa)_‘]a(ﬁa)
(m) = Ja(m) + Ja(Fa) = Ja(Fa) (Definition of 7,)
Jo

(m) =

Ja
Ja
J

INS N

(7). (Pessimism)
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Here, in the step (i), we use
Vi € Xpre; |1(x) — ()] < g(z).
Then,
Jo (1) = Ja(fe) < Ja(m) = Jo(7) < 2Bqr[i(x)]

< 2y/Epnr[{9(2)}?] (Jensen’s inequality)

o

Hence, the statement is concluded.

™

Ezmp,.. [{9(2) }2]. (Importance sampling)

oo

DPpre

D Theoretical Guarantees with Gaussian Processes

We explain the theoretical guarantee when using Gaussian processes. In this section, we suppose the
model is well-specified.

Assumption 2. y = r(x) + € where € ~ N (0, I) where r belongs to an RKHS in Hy.

D.1 Preparation

We introduce the notation to state our guarantee. For details, see Srinivas et al.| (2009, Appendix B),
Uehara and Sun| (2021} Chapter 6.2), Chang et al. (2021, Chapter C.3).

For simplicity, we first suppose the following.
Assumption 3. The space X is compact, andVx € X; k(x,x) < 1.

We introduce the following definition. Regarding details, refer to Wainwright| (2019| Chapter 12).
Definition 1. Let H;, be the RKHS with the kernel k(-,-). We denote the associated norm and inner

product by || - ||k, (-, )k, respectively. We introduce analogous notations for
k(z,2') = k(z,2') —k(z) T {K + A} 'k(z').
and denote the norm and inner product by || - ||, (-, )

Note as explained in|Srinivas et al.| (2009, Appendix B) and|Chang et al.| (2021} Chapter C.3), actually,
we have Hy = H;.

In the following, We use the feature mapping associated with an RKHS 7. To define this, from
Mercer’s theorem, note we can ensure the existence of orthonormal eigenfunctions and eigenvalues
{®s, p; } such that

LN e (s (o), L @) (@)pep () d = 1
ko) =) L L~ o )
Then, we define the feature mapping:
Definition 2 (Feature mapping).

¢(z) = [V (@), Vi (x), 1"

Assuming eigenvalues are in non-increasing order, we can also define the effective dimension
following|Srinivas et al.[(2009, Appendix B),|Uehara and Sun| (2021} Chapter 6.2),(Chang et al. (2021}
Chapter C.3):

Definition 3 (Effective dimension).
oo
d' = min jEN:jZnZuk
J
k=j

The effective dimension is commonly used and calculated in many kernels (Valko et al.|2013)). In
finite-dimensional linear kernels {z — a' ¢(x) : @ € R4} such that k(z, 2) = ¢ (z)¢(z), letting
d" = rank(Ey~p,, [¢(x)p(x)]), we have

d<d<d
because there exists i = 0, Hiro = 0,---.
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D.2 Calibrated oracle

Using a result in|Srinivas et al.|(2009). we show

#x) — r(z) < C(O)\/ k(x, )

C(0) = c11/1 +1og*(n/8)T,, I, =log(det(I 4+ K)).

Then, with probability 1 — §, we have

where

#(2) = (@) = (#() = (). k() (Reproducing property)
<) = (g x &G, 2)1; (CS inequality)
< 7C) = r() g/ k@, @)
< C(9) lAc(x, x). (Use Theorem 6 in[Srinivas et al.| (2009))

D.3 Regret Guarantee (Proof of Corollary|[T)
Recall from the proof of
Jo(7) = Jo (7)) < 2Esr[g(x)] = 2C(0)Epmn[y/ k(x,a’)]

Now, first, to upper-bound E,. [/ k(z, )], we borrow Theorem 25 in|Chang et al.{(2021), which
shows

Epor [\ Kz, 2)] < cl\/éwd’{d/ +log(82/5)}.

n

where

B TE;ENW T
Gyom s L Braslole)d @
willmlla=1 K Eznp, [0(2)0 T (2)]K
Next, in order to upper-bound C(4), we borrow Theorem 24 in [Chang et al.| (2021), which shows
T, < ci{d +log(ca/d)}d log(1 + n).

The statement in Corollary [T]is immediately concluded.

E Additional Details of Experiments

E.1 DNA/RNA sequences
In this subsection, we add the details of experiments in

E.1.1 Architecture of Neural Networks

Diffusion models. Regarding diffusion models for sequences, we adopt the architecture and
algorithm tailored to biological sequences over the simple space (Avdeyev et al.,[2023)). Its architecture
is described in Table[l

Oracles. We use the architecture in|Avsec et al.|(2021)), which is a state-of-the-art model in sequence
modeling. We just change the last layer so that it is tailored to a regression problem as in|Lal et al.
(2024).

E.1.2 Hyperparameters

In all experiments, we use A100 GPUs. The important hyperparameters are summarized in the
following table (Table [2]on page [22).
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Table 1: Basic architecture of networks for diffusion models

Layer Inputdimension Output dimension Explanation
1 200 x 4 256 Linear + ReL.U
2 256 256 Conv1D + ReLU
10 256 256 Conv1D + ReLU
11 256 256 ReLU

Table 2: Important hyperparameters for fine-tuning. For all methods, we use Adam as an optimizer.

Method Type Value
Batch size 128
KL parameter « 0.001
LCB parameter (bonus) ¢ | 0.1 (UTRs), 0.1 (Enhancers)
Number of bootstrap heads 3
BRAID Sampling to neural SDE Euler Maruyama
Step size (fine-tuning) 50
Guidance qudance level 10
Guidance target Top 5%

Hyperparameter selection. The process of selecting hyperparameters in offline RL is known to be
a challenging task (Rigter et al., 2022; [Paine et al.l 2020) in general. A common practice in existing
literature is determining crucial hyperparameters with a limited number of online interactions. In
our case, the key hyperparameters include the strength of the LCB parameter (utilized online in
BRAID-Bonus) and the termination criteria during training (applied to all fine-tuning algorithms
such as STRL). To ensure a fair comparison, we operate within a framework where we can utilize
120 x 20 online samples. This implies that, for instance, in STRL and BRAID-Bonus, we conduct
an online evaluation using 120 samples for 20 pre-defined epochs. However, in BRAID-Bonus, given
the additional hyperparameters to be tested (strengths of the bonus term 0.01, 0.1, 1.0), we use 40
samples for each 20 pre-defined epoch.

E.1.3 Ablation Studies

We performed ablation studies by varying the strength of the bonus parameter C' in [Figure 5] We
chose the one with the best performance in the main text (See the previous section to see the validity
of this procedure).

15

aR+PrTTTT

Offline Pretrained DDOM Guidance STRL BRAID-Boot  BRAID-Bonus BRAID-Bonus2 BRAID-Bonus3
Method

Figure 4: UTRs

E.2 TImages

In this section, we describe the additional experiment regarding image generation in[Section 7.2}
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offline Pretrained DDOM Guidance STRL BRAID-Boot  BRAID-Bonus BRAID-Bonus2 BRAID-Bonus3
Method

HepG2

Figure 5: Enhancers

E.2.1 Description of Offline Data

We utilize images from the AVA dataset (Murray et al., 2012)) as samples x, containing over 250, 000
image aesthetic evaluations. Rather than using the raw scores directly from the dataset, we derive the
labels y by utilizing the pre-trained LAION Aesthetic Predictor V2 Schuhmann| (2022)) built on top
of CLIP embeddings. This choice is made because we employ the LAION Aesthetic Predictor as the
ground truth scorer to assess both our methods and baselines. In total, we have curated an offline

dataset comprising 255490 image-score pairs: {z(%), 3"},

E.2.2 Architecture of Neural Networks

We adopt the standard StableDiffusion v1.5 (Rombach et al.,|2022)) as the pre-trained model with the
DDIM scheduler (Song et al.}[2020). Note this pre-trained model is a conditional diffusion model.

Using the offline dataset {(2(*), y(V))}, we train the reward oracle * by an MLP on the top of CLIP
embeddings. The detailed MLP structure is listed in Table[3] Note that, compared to the true LAION
Aesthetic Score Predictor V2 (Schuhmannl [2022)), our reward oracle proxy has a simpler structure
with fewer hidden dimensions and fewer layers. We aim to impose the hardness of fitting the true
reward model, which is typically infeasible in many applications. In such scenarios, a pessimistic
reward oracle is especially beneficial to mitigate overoptimization.

Table 3: Architecture of reward oracle for aesthetic scores

Layer Inputdimension Output dimension Explanation

1 768 256 Linear + ReLU
2 256 64 Linear + ReLU
3 64 16 Linear + ReLU
4 16 1 Linear

E.2.3 LLM-aided evaluation

As stated in the main text, the original LAION Aesthetic Predictor V2 (Schuhmannl 2022) tends to
assign higher scores even to images that disregard the original prompts, which is undesirable. To
effectively identify such problematic scenarios, we employ a pre-trained multi-modal language model
to verify whether the original prompt is present in the image or not. For each generated image, we
provide the following prompt to LLaVA (Liu et al.,|2024) along with the image:

<image>
USER: Does this image include {prompt}? Answer with Yes or No

ASSISTANT:

We evaluated its accuracy and precision with human evaluators by generating images using Stable
Diffusion with animal prompts (such as dog or cat). The achieved F1 score was 1.0.
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E.2.4 Hyperparameters

In all image experiments, we use four A100 GPUs for fine-tuning StableDiffusion v1.5 (Rombach
et al.| [2022). The set of training hyperparameters is listed in Table 4]

Table 4: Important hyperparameters for fine-tuning Aesthetic Scores.

Method \ Parameters \ Values
Guidance weight 7.5
DDIM Steps 50
Batch size 128
BRAID KL parameter « 1
LCB bonus parameter C' 0.001
Number of bootstrap heads 4
Guidance weight 7.5
DDIM Steps 50
STRL Batch size 128
KL parameter o 1
. . Guidance level 100
Offline guidance Guidance target 10
Optimizer AdamW
Learning rate 0.001
N (e1,€2) (0.9,0.999)
Optimization Weight decay 0.1
Clip grad norm )
Truncated back-propagation step K | K ~ Uniform(0, 50)

E.2.5 Effectiveness of LLaVA-aided evaluation

In our evaluation, we utilize a large multi-modal model like LLaVA. As previously mentioned, relying
solely on the raw score fails to detect scenarios where generated images ignore the given prompts.

Table [5]illustrates the outcomes of LLaVA-assisted evaluations for the pre-trained model and four
checkpoints of the STRL baseline. It is evident that LLaVA successfully identifies all samples
generated by the pre-trained model and the first two checkpoints. However, despite seemingly
high-reward samples, many samples from checkpoints 3 and 4 do not align correctly with their
prompts, resulting in a reduced mean reward. Figure[6] showcases five failure examples from each of
checkpoints 3 and 4. Thus, we can validate our quantitative evaluation of reward overoptimization.

Table 5: Statistics of LLaVA-adjusted scores.

method mean  min max invalid/total samples
pre-trained model  5.789 4.666 6.990 0/400
STRL-ckpt-1 6.228 4.769 7.193 0/400
STRL-ckpt-2 6.870 5.892 7.602 0/400
STRL-ckpt-3 6.484 0.0 7944 50/400
STRL-ckpt-4 0.200 0.0 7.620 389/400

E.2.6 Ablation Studies

Ablation on BRAID-Bonus hyperparameter We provide the boxplots for different Bonus hyper-
parameters in Figure[7] indicating our method’s robustness to hyperparameter tuning.

Additional qualitative results More image visualizations for BRAID and baselines can be found
in Figure[§]
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Figure 6: Image-prompt alignment failures detected by LLaVA.
9
. q
s
4
3
Offline Pretrained Guidance STRL Bonus-5e-4  Bonus-le-3  Bonus-5e-3  Bonus-le-2  Bonus-5e-2
Method
Figure 7: Ablation study for BRAID-Bonus. By adjusting the pessimism strength C while keeping
A = 0.1, we show that BRAID-Bonus outperforms all baselines for a wide range of hyperparameter
selection.
cat
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Figure 8: More images generated by BRAID and baselines. All algorithms choose the best checkpoint
according to our LLaVA-aided evaluation. The visualization demonstrates the benefits of introducing

pessimistic terms that can help to achieve high scores while mitigating reward overoptimization.

127535 https://doi.org/10.52202/079017-4049





