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Abstract

Data-driven deep learning models are transforming global weather forecasting.
It is an open question if this success can extend to climate modeling, where the
complexity of the data and long inference rollouts pose significant challenges.
Here, we present the first conditional generative model that produces accurate and
physically consistent global climate ensemble simulations by emulating a coarse
version of the United States’ primary operational global forecast model, FV3GFS.
Our model integrates the dynamics-informed diffusion framework (DYffusion)
with the Spherical Fourier Neural Operator (SFNO) architecture, enabling stable
100-year simulations at 6-hourly timesteps while maintaining low computational
overhead compared to single-step deterministic baselines. The model achieves near
gold-standard performance for climate model emulation, outperforming existing
approaches and demonstrating promising ensemble skill. This work represents
a significant advance towards efficient, data-driven climate simulations that can
enhance our understanding of the climate system and inform adaptation strategies.1

1 Introduction

Climate models are foundational tools used to understand how the Earth system evolves over long time
periods and how it may change as a response to possible greenhouse gas emission scenarios. Such
climate simulations are currently very expensive to generate due to the computational complexity of
the underlying physics-based climate models, which must be run on supercomputers. As a result,
scientists and policymakers are limited to exploring only a small subset of possibilities for different
mitigation and adaptation strategies [48].

Figure 1: Weather performance (x-
axis) is not a strong indicator of cli-
mate performance (y-axis). Each dot
corresponds to a distinct sample or
checkpoint epoch.

Training relatively cheap-to-run data-driven surrogates to
emulate global climate models could provide a compelling
alternative [15]. Although recent deep learning models are
on the verge of transforming the conceptually similar field
of medium-range weather forecasting [5, 38, 11, 51], these
advances do not directly transfer to long-term climate projec-
tions [37]. Indeed, most such models only report forecasts
up to two weeks into the future and may diverge or become
physically inconsistent over longer simulations. In contrast,
climate projections demand accurate and stable simulations
of the global Earth system spanning decades or centuries,
requiring reliable reproduction of long-term statistics.

1Code is available at https://github.com/Rose-STL-Lab/spherical-dyffusion

38th Conference on Neural Information Processing Systems (NeurIPS 2024).
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In Figure 1 we quantitatively show this divergence between the medium-range weather forecasting
skill of ML models (measured as the average RMSE on 5-day forecasts) and their performance on
longer climate time scales (measured as the RMSE of the 10-year time-mean). We have verified that
this finding holds regardless of the analyzed variable and the proxy used for weather performance,
which we discuss in more detail in Appendix E.3. Heuristically, optimizing weather skill ensures that
a climate model takes a locally accurate path around the climate ’attractor’, but it does not guarantee
that small but systematic errors may not build up to distort that simulated attractor to have biased
long-term climate statistics. While this is a little-discussed observation in the ML community, the
climate modeling community has documented it for physics-based models [17, 54].

A recent breakthrough is a deterministic surrogate called ACE (Ai2 Climate Emulator) [67], which
remains remarkably stable and physically consistent over 10-year simulations at 6-hourly time steps,
forced by time-varying specified sea-surface temperature and sea-ice. Its success can be attributed
to careful data processing, problem design, and the Spherical Fourier Neural Operator (SFNO) [8]
architecture. ACE is trained to emulate the United States’ primary operational global forecast model,
the physics-based FV3GFS [73], which is operationally used at the US National Weather Service
and US National Centers for Environmental Prediction. ACE produces encouragingly small ten-year
mean climate biases (i.e. biased long-term averages), but they are still significantly larger than the
theoretical minimum imposed by internal variability of the reference physics-based model.

ACE’s deterministic nature restricts its ability to model the full distribution of climate states or
to facilitate ensemble simulations, which involve drawing multiple samples from the same model.
These capabilities are crucial for climate modeling, as they enable better uncertainty quantification,
more robust and physically consistent predictions, and a deeper understanding of potential future
climate scenarios and associated risks [32]. While it is possible to ensemble a deterministic model by
perturbing its inputs, this approach often leads to under-dispersed (i.e. overly confident) ensembles
compared to generative or physics-based approaches [57]. Even then, the problem remains that due
to optimizing them on MSE-based loss functions, the deterministic predictions may degrade to a
mean prediction for longer forecast time scales and underestimate unlikely events [9].

A generative modeling approach, particularly the use of diffusion models [59, 25], appears to be a
promising solution to these challenges. However, standard diffusion models are computationally
intensive to train and sample from. This complexity poses significant problems for climate modeling
because: 1) atmospheric data is extremely high-dimensional, making the use of video diffusion
models [63, 27, 69, 58, 26, 23] prohibitive, even more so as this class of models still struggle
with videos longer than a few seconds; and 2) the sampling speed of standard diffusion models is
particularly problematic for long, sequential inference rollouts. For instance, generating a single 10-
year-long simulation, as in our experiments, with a standard autoregressive diffusion model [35, 51]
that uses N diffusion steps would require 14600×N neural network forward passes. If a second-order
solver for sampling is used [31, 51], this number doubles. Even with N as small as 30, this results in
half a million forward passes to generate a single sample trajectory, severely limiting the potential of
data-driven models to serve as fast surrogates for expensive physics-based models.

As a solution to this computational problem, we build upon the dynamics-informed diffusion model
framework, DYffusion, from Rühling Cachay et al. [57], which caps the computational overhead at
inference time (as measured by the number of neural net forward passes) to less than 3× as much as
for a deterministic next-step forecasting model such as SFNO or ACE. Unfortunately, the original
DYffusion method relies on an UNet-based architecture designed for Euclidean data rather than
physical fields on a sphere. As we show in Figure 1, this mismatch of inductive biases becomes more
problematic at the long climate time scales that we focus on in this paper.

We address these limitations by carefully integrating the DYffusion framework with the SFNO
architecture from Bonev et al. [8], and the data and evaluation procedure from Watt-Meyer et al.
[67]. To achieve this integration, we extend SFNO with time conditioning and inference stochasticity
modules. Our proposed framework, Spherical DYffusion, achieves strong results: On average, across
all 34 predicted fields, our model reduces climate biases to within 50% of the reference model, which
is more than 2× and 4× lower than the best baselines. For critical fields, such as the derived total
water path quantity, our method achieves results within 20% of the reference model, representing a
5× improvement over the next best baseline (see Fig. 2). Additionally, our method proves effective
for ensemble climate simulations, reproducing climate variability consistent with the reference model
and further reducing climate biases towards the theoretical minimum through ensemble-averaging.
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Figure 2: RMSE of 10-year time-means for a subset of important fields. The leftmost bar in the
first two subplots shows the reference noise floor, determined by comparing ten independent 10-year
reference FV3GFS simulations with the validation simulation. The scores computed using the mean
over these ten simulations (a proxy for an ”ensemble prediction”) are shown in light shade. The
subsequent bars show the corresponding scores for our method and the deep-learning baselines, using
a 25-member ensemble for the probabilistic methods (all except ACE, which only reports scores
for its single deterministic prediction). Scores computed using the ensemble-mean prediction are
shown in light shade. The dark shaded bar on top indicates the performance drop when using a single
member’s prediction only, with error bars representing the standard deviation over the 25 different
member choices. The rightmost subplot displays the average time-mean RMSE of the ML-based
emulators relative to the reference across all 34 variables. On average, our method’s time-mean
RMSEs are 50% higher than the noise floor, which is less than half the average RMSE of the next
best method, ACE. When using the 25-member ensemble mean prediction, this reduces to 29.28%.

Our generative model is a leap forward toward purely ML-based large ensemble climate projections
that are both efficient and accurate. Our main contributions are:

1. We present the first conditional generative model for probabilistic emulation of a realistic
climate model, with minimal computational overhead over deterministic baselines.

2. We carefully integrate two distinct frameworks, ACE and DYffusion, including additional
modifications to the SFNO architecture such as time-conditioning modules.

3. We show that our integrated method performs considerably better than relevant baselines in
terms of reduced climate biases, ensemble-based climate modeling, and consistent variability
of the climate predictions.

4. We show that short-term weather performance does not necessarily translate to accurate
reproduction of long-term climate statistics.

2 Related Work

ML for weather and climate modeling. There are fundamental differences in weather and climate
modeling. Climate refers to the average weather over long periods of time2. While weather forecasting
focuses on short time scales in the order of days or weeks, climate modeling simulates longer periods
of decades to centuries. Weather forecasting is primarily an initial-value problem, for which it is
important to analyze short-term time-specific predictions. Climate modeling is primarily a boundary-
condition (or forcing-driven) problem [65], characterized by long-term averages and distributions.

Deep learning-based models have emerged as a much more computationally efficient alternative to
traditional physics-based numerical weather prediction (NWP) models, showing impressive skill
for deterministic medium-range weather forecasting [49, 33, 5, 8, 10, 47, 38]. This success has
been more recently extended to ensemble-based probabilistic weather forecasting [34, 51]. An
alternative approach is hybrid modeling, where a physics-based component is complemented by
ML-based parameterizations or corrections [52, 71, 56, 1, 36, 70, 34]. At longer lead times, when
weather becomes chaotic and less predictable, the ensemble mean prediction of a physics-based or
probabilistic ML-based ensemble improves deterministic metrics such as root mean squared error
(RMSE) over non-ensembled methods [51, 34, 53].

However, advances in weather forecasting hardly transfer to long-term climate projections. Fully data-
driven models fail to maintain stability beyond two-week-ahead forecasts, as errors accumulate over
their autoregressive rollouts. Weyn et al. [68] and Bonev et al. [8] showed stable forecasts for horizons
of up to six weeks and one year, respectively. Only recently, Watt-Meyer et al. [67] notably achieved
stable and accurate 10-year simulations, followed by another deterministic SFNO-based climate
emulator showing promising results using four prognostic variables [22]. Easier, but less flexible and

2For example, see https://oceanservice.noaa.gov/facts/weather climate
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informative, alternatives to full-scale temporal modeling of atmospheric dynamics, include emulation
of annual means given an emission scenario [66, 30, 46, 42], temporal super-resolution of monthly
means [4], or debiasing climate model output [3, 7, 45].

Diffusion models. Diffusion models [25, 59–61] have demonstrated significant success in generat-
ing data such as natural images and videos. While traditionally formulated for finite-dimensional
spaces, these models have been extended to function spaces [40]. Their direct applications to autore-
gressive forecasting [35, 51] and downscaling [64, 43, 20] of physical data have shown promising
results. However, these approaches inherit the computational complexity associated with training
and sampling from standard diffusion models. This is particularly prohibitive for autoregressive
predictions on climate time scales, as the total number of neural network forward passes increases
proportionally with the number of sampling steps, typically ranging from 20 to 1000. Consequently,
recent research that leverages insights from diffusion models to balance predictive performance and
sampling speed appears more promising for assessing their viability in climate simulations [57, 41].
While diffusion models traditionally rely on U-Net architectures [55, 13], vision transformers have
shown promising results in image synthesis [50, 29, 24]. Our work explores a different, neural
operator-based, architecture for Earth data.

3 Background

We first define the problem and then introduce the key components in our framework, namely
DYffusion and SFNO. We abbreviate a time series of tensors y0, . . . ,yt with y0:t.

3.1 Problem Setting
Our goal is to learn the probability distribution P (x1:H |x0,f0:H) over a horizon of H time steps,
conditional on initial conditions x0 and a scenario of forcing variables f0:H (i.e. time-varying
boundary conditions). In our paper, these forcings correspond to prescribed sea surface temperatures
and incoming solar radiation (see Section 5.1), leaving it to future work to force based on greenhouse
gas emission scenarios explicitly. Each xt ∈ RD represents the state of the atmosphere at a given
timestep, t, consisting of two- and three-dimensional surface and atmospheric variables across a
latitude-longitude grid. These variables, which serve as both input and output, are referred to as
prognostic variables. We assume a constant time interval between successive time steps t and
t+ 1. To make training feasible, it is necessary to train on a much shorter horizon h, i.e. learn the
distribution P (xt+1:t+h |xt,f t:t+h), and apply the model autoregressively. This process begins with
P (x1:h |x0,f0:h) and continues until reaching time step H at inference time.

3.2 Diffusion Models and DYffusion
Diffusion models can be seen as a general paradigm to learn the target distribution p(s(0)), by iterating
over N diffusion steps of a forward or reverse process. We denote the states of each diffusion step
with s(n), using a superscript n to clearly distinguish them from the physical time steps of the data
xt. Standard diffusion models [59, 25, 31], initialize the reverse process from a simple isotropic
Gaussian distribution s(N) ∼ N (0, I) so that as n → 0 the intermediate states s(n) are gradually
denoised towards a real data sample s(0).

In Cold Diffusion [2], this paradigm is extended to more general data corruption processes such
as blurring. Rühling Cachay et al. [57] propose DYffusion, by adapting cold diffusion models to
forecasting problems. The key idea is to make the forward and reverse processes dynamics-informed
by directly coupling them to the physical time steps of the data. That is, the reverse process is
initialized with s(N) = x0 and iteratively evolves jointly with the dynamics of the data x1, . . . ,xh−1

to reach the data at some target time step, s(0) = xh.

In DYffusion, the forward and reverse processes are informed by temporal dynamics in the data and
do not rely on data corruption. Their only source of stochasticity comes from using a stochastic
neural network as an operator for the forward process and is implemented by using Monte Carlo
(MC) dropout [19]. This forward process essentially corresponds to a temporal interpolator network,
while the reverse process is represented by a multi-step forecasting network. Thus, compared to
standard diffusion models, DYffusion requires training one more neural network, which they propose
doing in separate stages, beginning with the interpolator model. Due to its dynamics-informed
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Figure 3: The diagram shows how our proposed
approach functions at inference time. Given an ini-
tial condition xt and forcings f t:t+h, our method
uses the DYffusion framework, integrated with two
SFNO backbone networks, to generate predictions
for the next h time steps based on an alternation
of direct multi-step forecasts and temporal interpo-
lations. To simplify the visualization, we exclude
the facts that the interpolator network, SFNOϕ, is
conditioned on xt and f t in addition to an estimate
of xt+h. We also exclude the time-conditioning of
both networks. To forecast more time steps beyond
t+ h, our method is applied autoregressively.

Figure 4: Diagram of one of the blocks
of the modified SFNO architecture for our
proposed method. The full architecture con-
sists of a sequence of 8 such blocks. Our
newly introduced time-conditioning mod-
ules correspond to the Time Embedding,
followed by the MLP on the right, and the
scale-shift operation. Our method relies
on dropout, which is part of the two-layer
MLP on the top. SFNO-based baselines use
the same architecture and hyperparameters
without the time embedding module.

nature, DYffusion was shown to be faster at sampling time and more memory-efficient than standard
diffusion models, while matching or outperforming their accuracy.

3.3 Spherical Fourier Neural Operator (SFNO)

The SFNO architecture [8] extends the FNO framework from Li et al. [39] to spherical data and
symmetries such as the Earth. FNOs efficiently model long-range interactions in the Fourier space,
but because the underlying Fast Fourier Transform is defined on a Euclidean domain, this can
lead to modeling artifacts. SFNOs overcome this issue by using the spherical harmonic transform
(SHT) [14], a generalization of the Fourier transform, instead. The SFNO model achieves higher
long-term stability of autoregressive rollouts than the FNO model, showing stable forecasts of
Earth’s atmospheric dynamics for up to 1-year-long rollouts at six-hourly time steps. The ACE
model from Watt-Meyer et al. [67] is based on the SFNO architecture, modifying some of the
hyperparameters and the grid used for the first and last SHT of the SFNO. We use the SFNO
configuration from ACE in our experiments.

4 Spherical DYffusion

SFNO and ACE are deterministic models that cannot be readily used for uncertainty quantification
or ensemble-based climate modeling. DYffusion introduces an efficient diffusion-based approach
specifically for forecasting problems but only for Euclidean data. Thus, we propose Spherical
DYffusion, a deep generative model for data-driven probabilistic climate simulations that carefully
integrates SFNO and DYffusion into an unified framework.

DYffusion requires two neural networks that are used for temporal interpolation and direct multi-step
forecasts. In the original framework, these are UNet-like networks. For our approach, we propose
to replace them with modified versions of the SFNO architecture, which we denote by SFNOϕ and
SFNOθ, respectively.

Training. We follow the original training procedure from DYffusion, complementing it with the
use of the input-only forcing variables. That is, for a specified training horizon h, these networks are
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trained in two stages such that for sequences of prognostic data xt:t+h and forcings f t:t+h

SFNOϕ (xt,xt+h,f t, i |ξ) ≈ xt+i

SFNOθ(SFNOϕ (xt,xt+h,f t, j |ξ) ,f t+j , j) ≈ xt+h,

where i ∈ {1, . . . , h− 1} and we use j ∈ {0, 1, . . . , h− 1}, defining SFNOϕ (xt, ·, ·, 0 |ξ) = xt. In
our experiments, we use h = 6. Here, ξ refers to the random variable representing the interpolator
network’s inference stochasticity. We discuss its implementation further below. The forecaster
network, SFNOθ, is deterministic. The full training scheme is defined in Algorithm 1.

Inference. At inference time, we follow the DYffusion sampling scheme based on cold sampling [2].
Essentially, we start with the initial conditions x0 to generate a first forecast of time step h through a
forward pass of the forecaster network, i.e. x̂h = SFNOθ(x0,f0, 0). Given this prediction, we can
now use the interpolator network to interpolate x̂1 = SFNOϕ (x0, x̂h,f0, 1 |ξ). In practice, cold
sampling applies a correction term to this estimate. The prior forecast of xh can now be refined
with x̂h = SFNOθ(x̂1,f1, 1). The alternation between forecasting and interpolation continues until
SFNOϕ predicts x̂h−1 and the forecaster network performs a last refinement forecast of time step
h, conditioned on the time j = h− 1 and interpolated sample x̂h−1. After this final forecast of xh,
the process is repeated autoregressively, starting with xh as the new initial condition. This slightly
simplified sampling process is illustrated in Figure 3 and fully described in Algorithm 2. Repeating
this sampling process multiple times using the same initial conditions will lead to an ensemble of
samples, thanks to the interpolator network being stochastic.

SFNO time-conditioning. To use SFNO as described above, it is necessary to implement time-
conditioning modules that allow the interpolator and forecaster networks to be conditioned on the
time i and j, respectively, given that the original SFNO architecture does not support this. We follow
the same approach taken by standard diffusion models [13], which consists of transforming the time
condition into a vector of sine/cosine Fourier features at 32 frequencies with base period 16, then pass
them through a 2-layer MLP to obtain 128-dimensional time encodings that are mapped by a linear
layer into the learnable scale and offset parameters. We scale and shift the neural representations of
every SFNO block directly following the normalization layer and preceding the application of the
SFNO spectral filter, as shown in Figure 4.

SFNO inference stochasticity. A stochastic interpolator network, made explicitly through the
random variable ξ above, was shown to be a key design choice in the original DYffusion framework.
However, to the best of our knowledge, the SFNO model has been only used for deterministic
modeling. We overcome this issue through MC dropout [19], i.e. enabling dropout modules [62]
at inference time. Following the original SFNO implementation (of training-time-only dropout),
we propose to use a dropout module inside the MLP of each SFNO block. In addition, we enable
stochastic depth [28]–also known as drop path–at inference time at a rate of 0.1. Stochastic depth
randomly skips a whole SFNO block. When this happens the whole block reduces to the identity
function, since only the residual connection is enabled. To the best of our knowledge, this has not
been explored before as a source of inference stochasticity.

5 Experiments

5.1 Dataset and Experimental Setup

To compare our proposed method against ACE [67], we use the same dataset, training and evaluation
setup. The dataset consists of 11 distinct 10-year-long simulations from the state-of-the-art global
atmospheric model FV3GFS [73], saved every 6 hours. The forcings consist of annually repeating
climatological sea surface temperature (1982-2012 average) and incoming solar radiation. Greenhouse
gas and aerosol concentrations are kept fixed. The data was regridded conservatively from the cubed-
sphere geometry of FV3GFS to a 1◦ Gaussian grid, and filtered with a spherical harmonic transform
round-trip to remove artifacts in the high latitudes. We train on 100 years of simulated data from
FV3GFS, and evaluate the models on how well they can emulate a distinct 10-year-long validation
simulation (i.e. H = 14600 = 10× 365× 4). The 11 simulations form an initial-condition ensemble,
where each simulation is independent of the other–after some discarded spinup time–due to the
chaoticity of the atmosphere [32]. For more details, see Appendix B.
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5.2 Baselines

We compare with the following baselines for climate projection.

• ACE [67] applied the SFNO architecture to the FV3GFS dataset described above.

• ACE-STO: We re-train ACE but use MC dropout, in the same way how it is applied in
SFNOϕ for our method, to generate stochastic predictions.

• DYffusion [57]: We train DYffusion using the original UNet-based architecture as its
interpolator and forecaster neural networks.

• Reference [73]: physics-based FV3GFS climate model simulations. We use the ten training
simulations to create a 10-member reference ensemble that we use to more robustly estimate
the ‘noise floor’ introduced in [67] and to compare the variability of the reference ensemble
with sample simulations from our method. Note that this reference is not appropriate for
weather forecasts given that it is initialized from different initial conditions.

It is worth noting that ACE also compared their results against a physics-based baseline called C48,
which corresponds to running FV3GFS at half the original spatial resolution. This makes C48 around
8× less computationally costly to run compared to the reference simulations but was shown to
underperform ACE, which our method is shown to outperform in the experiments below.

For ACE, we directly use the pre-trained model from the original paper. ACE was trained on a
next-step forecasting objective based on a MSE loss. For ACE-STO, we re-train ACE from scratch
with the only difference being that we use a dropout rate of 10% for the MLP in the SFNO architecture.
We use the same dropout rate for the interpolator model, SFNOϕ, in our method. For both DYffusion
and our approach, we choose h = 6. That is, these models are trained to forecast up to 36 hours into
the future. We use the same training and sampling procedures for both, the only difference being the
underlying neural architectures.

Table 1: Computational complexity of the different
deep learning methods in terms of: 1) the number
of neural function evaluations (NFEs) needed to
predict h time steps. and 2) Total inference runtime
(simulating 10 years), including the time needed
to compute metrics (in hours:minutes). N refers to
the number of diffusion steps which usually ranges
between 20 to 1000.

Method NFE Runtime

ACE / SFNO h 01:08
Standard diffusion Nh N/A
Ours 3(h− 1) 02:56

Physics-based FV3GFS N/A 78:04
FV3GFS (2× coarser) N/A 45:38

Runtime analysis. In Table 1, we report
the computational complexity in terms of the
number of neural function evaluations (NFEs)
needed to predict h time steps, and the wall
clock runtime for simulating one complete val-
idation trajectory of 10 years. For our method,
NFEs is not 3h because in the first and last iter-
ation we do not need to actually run line 8 and
lines 7 & 8 in Algorithm 2, respectively. Our
runtime analysis confirms that the computational
overhead at inference time for using our method,
is less than 3× as much as for a deterministic
next-step forecasting model such as SFNO or
ACE. This enables our method to provide sig-
nificant 25× speed-ups and associated energy
savings over using the emulated physics-based
model, FV3GFS.

All models were trained on A6000 GPUs using distributed training on 2 up to 8 GPUs, ensuring that
the effective batch size remains the same (see Figure 8). For a fair inference runtime comparison
measuring the wall clock time needed to simulate 10 years (i.e. one full validation rollout), we run
all deep-learning baselines on one A100 GPU. We also include the runtime for the physics-based
FV3GFS climate model which was run on 96 cores (24 cores for the 2× coarser version) of AMD
EPYC 7H12 processors. The deep learning methods are not only much faster, but also much more
energy-efficient than FV3GFS.

For illustrative purposes, we also report the complexity of a standard autoregressive diffusion
model [25, 35, 51] approach in terms of the number of neural function evaluations (NFEs) needed to
predict h time steps, totaling to Nh where N is the number of sampling steps required to reverse
the diffusion process. N usually ranges from between 20 to 1000. This makes the use of such an
approach less attractive for climate emulation since the resulting inference runtime would not offer as
significant speed-ups over the physics-based reference model.
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Figure 5: Global maps of the 10-year time-mean biases of a single sample from the reference noise
floor simulation, our model, and the ACE baseline for the total water path field. Each subplot reports
the global mean RMSE and bias of the respective bias map. Our model reproduces biases of similar
location and magnitude to the reference noise floor, suggesting they are mainly due to internal climate
variability rather than model bias, while the baseline exhibits larger climate biases.

5.3 Climate Biases

Metrics. The most crucial quality of an ML-based climate model is its ability to reproduce the
climatology of the emulated reference system, i.e. the long-term average (“time-mean”) of weather
states. The time-mean of the validation simulation is defined as 1

H

∑H
t=1 xt. The time-mean for

each model is defined as 1
H

∑H
t=1 x̂t, where x̂t is the model’s prediction for time step t. These two

quantities are then compared against each other using the bias, i.e. prediction - target, and root mean
squared error (RMSE) as key metrics of interest for analyzing climate biases. For the probabilistic
methods, i.e. ours, DYffusion, and ACE-STO, we generate simulation ensembles by sampling from
the model multiple times using the same initial conditions. Unless specified otherwise, all ensemble
results are based on E = 25 ensemble members. We evaluate the ensemble performance using
two metrics: the RMSE of the ensemble-mean prediction ( 1

EH

∑E
e=1

∑H
t=1 x̂t,e) and the RMSE of

member-wise time-means ( 1
H

∑H
t=1 x̂t,e), where e indexes individual ensemble members. For the

latter, standard deviations are computed over the member-wise errors. The corresponding “optimal
noise floor” for the ML-based emulators is estimated by comparing the validation simulation with the
10-member reference ensemble. All metrics, which are fully defined in Appendix D, are weighted by
grid cell area. It is important to acknowledge the potential for improving the estimate of the “noise
floor” based on statistical significance testing and improved metrics [21].

Quantitative analysis. Our method and all baselines consistently produce stable long-term climate
simulations without diverging. In Figure 2, we compare the RMSE of the time-means of the reference,
our method, and all baselines.

Our method significantly reduces climate biases compared to baseline methods across most fields,
with errors often closer to the reference simulation’s noise floor than to the next best baseline. The
performance of ACE is notably degraded when made stochastic through MC dropout. Similarly, a
direct application of DYffusion fails to accurately reproduce long-term climate statistics. Both these
baselines are unable to outperform or even match the scores of the deterministic ACE baseline. Only
our proposed careful integration of these two paradigms leads to a skillful climate model emulator:
On average, our method’s time-mean RMSEs are only 49.36% higher than the noise floor, which is
less than half the average RMSE (110.47%) of the next best method, ACE.

Ensemble averaging significantly enhances our method’s performance, reducing climate biases by
29.28% on average across all variables. As shown by the light shading in Fig. 2, the ensemble-mean
predictions consistently achieve lower time-mean RMSEs compared to single-member predictions
(dark shading). This ensemble-based improvement distinguishes our approach from ACE-STO and
DYffusion, where ensemble averaging proves less effective, and from ACE, where initial-condition
perturbations would be required for ensembling. Additional results for more fields are available in
Figure 9 of the Appendix. Our comprehensive evaluation in Table 4 includes ensemble metrics such
as the Continuous Ranked Probability Score (CRPS) and spread-skill ratio. The results demonstrate
that our method outperforms alternatives in emulating the 10-year time-mean climatology of the
reference model for most variables and metrics. However, some challenges remain, particularly in
matching the reference ensemble’s performance for stratospheric (level 0) variables and in achieving
better ensemble scores.
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Qualitative analysis. In Figure 5 we show the corresponding global maps of the time-mean biases
for the total water path (TWP) field. Our model reproduces small biases of remarkably similar
location and magnitude to the ”perfect-model” reference simulation, with spatial pattern RMSEs of
approximately 1% of the global-time-mean TWP. The perfect-model bias is due to unforced random
decadal variability in the mean climate of the reference model - each 10-year period has randomly
different weather, leading to a slight difference in 10-year time-mean averages across this weather.
The reference bias is due to comparing one such decade simulated with the reference model with other
simulated decades; its spatial pattern depends strongly on which decade is used for computing the
reference model climatology. That our model (trained on 100 years of output) reproduces this pattern
suggests that it emulates the long-term (e.g. century-long) time-mean statistics of the reference
model even more accurately than a 10-year-mean RMSE can reliably resolve. On the other hand, the
baseline ACE model exhibits somewhat larger climate biases, indicative of an actual, albeit small
model deficiency that is already evident with a single 10-year estimate of climatology.

In Appendix E.4, we visualize two sample 10-year trajectories simulated by Spherical DYffusion as
well as the corresponding validation simulation from FV3GFS. Supplementary videos demonstrate the
full temporal evolution of key derived variables: near-surface wind speed3 and total water path4. The
emulated fields demonstrate high realism, closely mimicking the patterns and variability observed in
actual climate model outputs. This showcases Spherical DYffusion’s capability to generate plausible
and physically consistent climate scenarios over decadal timescales.

Table 2: Global area-weighted mean of the spread of an en-
semble of 10-yr time-mean’s for surface pressure, total water
path, air temperature, zonal wind, and meridional wind (the
last three at the near-surface level). The climate variability
of our method is consistent with the reference model.

Model ps TWP T7 u7 v7

Reference 19.96 0.199 0.090 0.142 0.110
Ours 23.52 0.214 0.094 0.167 0.121

DYffusion 24.75 0.223 0.082 0.169 0.127
ACE-STO 30.32 0.256 0.135 0.192 0.131

Climate variability. Above, we
have verified that sampling 10-year-
long trajectories from our model pro-
duces encouragingly low ensemble
mean and member-wise time-mean
biases. An important feature of cli-
mate is its natural variability on time
scales of years, decades, or even cen-
turies even when external forcings
(e.g. sunlight or greenhouse gas con-
centrations) remain unchanged. For
instance, multi-decadal periods of rel-
ative drought have stressed many past human civilizations. The present simulations are more
constrained than natural climate variability because they employ a repeating cycle of sea-surface
temperature and thus do not allow for feedbacks between the atmosphere, ocean, vegetation, and
cryosphere. Nevertheless, an important quality of an ML emulator of the global atmosphere suitable
for climate studies is that it simulates a similar level of low-frequency climate variability as the
reference model.

Here, we verify that our time-mean ensemble passes this challenging test, measured using the
intra-ensemble variability of time-mean averages of a few important climate statistics simulated
by 25-member ensembles of the emulators vs. the ten reference simulations. We measure this
variability by computing the area-weighted average of the standard deviation of time-means across
the ensemble dimension. In Table 2 we show that the resulting global mean variability of the ensemble
of time-means of our method is within 10-20% of those of the reference simulations for all tabulated
variables (and other predicted fields). DYffusion achieves similarly accurate ensemble variability,
while ACE-STO In Appendix E.1.2 we show that the corresponding global maps of the time-mean
variability reveal similar spatial patterns. That is, our method generates ensemble climate simulations
with decadal variability consistent with the underlying climate model.

100-year-long simulation. We evaluate the long-term stability of Spherical DYffusion through a
100-year simulation, a critical timescale for many climate modeling applications. Figure 6 demon-
strates the model’s robustness through time series of key global mean variables from a single (random)
simulation, which completed in approximately 26 hours of wall-clock time. The model generates
physically consistent temporal patterns in response to annually repeating forcings. Notably, Spherical

3https://youtu.be/7lHra7gBiBo
4https://youtu.be/Hac xGsJ1qY

9

127618 https://doi.org/10.52202/079017-4052

https://youtu.be/7lHra7gBiBo
https://youtu.be/Hac_xGsJ1qY


Figure 6: Comparison of 100-year global mean simulations between Spherical DYffusion and
ACE. From top to bottom: near-surface air temperature (T7), total water path (TWP), and surface
pressure (ps). Both models are driven by identical annually repeating forcings. Spherical DYffusion
demonstrates more stable trajectories, particularly evident in the surface pressure predictions, while
maintaining physically realistic variability patterns. The consistent behavior across all variables
indicates the model’s robustness for long-term climate simulations.

DYffusion exhibits improved variability patterns compared to the baseline ACE model, which suffers
from unrealistic annual fluctuations (e.g. see surface pressure).

6 Conclusion

We introduce Spherical DYffusion, a novel approach that combines efficient diffusion modeling with
a spherical-aware neural architecture to probabilistically emulate complex global climate dynamics
across decadal to centennial timescales. Our model achieves lower climate biases than relevant
deterministic and probabilistic baselines, getting significantly closer to the optimal performance
provided by the emulated climate model. For climate model emulation problems, our approach
presents a unique solution for balancing generative modeling, computational efficiency, and low
climate biases. This opens up the ability to perform fully data-driven ensemble climate simulations.

Limitations. To achieve real-world impact, the dataset will need to be expanded so that ML
emulators can be evaluated (and trained) on climate change scenarios/simulations. This will require
using time-varying climate change forcings such as greenhouse gas and aerosol concentrations.
Although our use of the state-of-the-art FV3GFS atmospheric model enables generation of such
training data, any emulator will inherently reflect biases present in the base model. Additionally,
we only considered emulating the atmosphere, but to achieve a full Earth System Model (ESM) we
also need to emulate (or couple to a physics-based model of) other components such as ocean, land,
sea-ice, etc. It is important to stress that while our method is more than 25× faster than the reference
physics-based climate model, it is still slower than deterministic emulators such as ACE. Though our
method characterizes model uncertainty through its generative design, extending it to incorporate
initial condition uncertainty—a key component of traditional ensemble physics-based models—could
further enhance its capabilities. The method also needs extension to handle output-only variables like
precipitation, either through dedicated prediction heads or modifications to the DYffusion framework.
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Appendix

A Broader Impact

The goal of this work is to advance the application of machine learning to climate modeling, specifi-
cally for generating fast and cheap ML-based climate simulations. This could significantly democra-
tize climate modeling, improve scientific understanding of the earth system, and enhance decision-
and policy-making in a changing climate. However, to realize this goal, the reliability and limitations
of such ML models will need to be much better understood.

B Dataset

In the subsections below, we elaborate on the dataset and variables that we use, including background
information on FV3GFS and how it was configured in order to generate the training and validation
data. Any listed data preprocessing steps below are also described in appendix A from [67]. The final
training and validation data can be downloaded from Google Cloud Storage following the instructions
of the ACE paper at https://zenodo.org/records/10791087. The data are licensed under Creative
Commons Attribution 4.0 International.

B.1 Input, output and forcing variables

Table 3: Input and output variables used in this work. The table was adapted based on Table 1
of [67]. The k subscript refers to a vertical layer index and ranges from 0 to 7 starting at the top of
the atmosphere and increasing towards the surface. The two prognostic surface variables, Ts and ps,
do not have this additional vertical dimension. Each of their snapshots is a 2D latitude-longitude
matrix. The Time column indicates whether a variable represents the value at a particular time step
(“Snapshot”), the average across the 6-hour time step (“Mean”), or a quantity that does not depend
on time (“Invariant”). “TOA” denotes “Top Of Atmosphere”, the climate model’s upper boundary.

Prognostic variables (input and output)

Symbol Description Units Time Is 3D?

Tk Air temperature K Snapshot Yes
qTk Specific total water (vapor + condensates) kg/kg Snapshot Yes
uk Wind speed in eastward direction m/s Snapshot Yes
vk Wind speed in northward direction m/s Snapshot Yes
Ts Skin temperature of land or sea-ice K Snapshot No
ps Atmospheric pressure at surface Pa Snapshot No

Forcing variables (input-only)

Symbol Description Units Time

DSWRFTOA Downward shortwave radiative flux at TOA W/m2 Mean
Ts Skin temperature of open ocean K Snapshot

Additional input-only variables

Symbol Description Units Time

zs Surface height of topography m Invariant
fl Land grid cell fraction − Invariant
fo Ocean grid cell fraction − Snapshot
fsi Sea-ice grid cell fraction − Snapshot

Derived, evaluation-only, variables

Symbol Description Units Time Is 3D?

WSk Wind speed m/s Snapshot Yes
TWP Total water path mm Snapshot No
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The complete list of input, output, and forcing variables used in this work is given in Table 3. The only
difference to the work from [67] is that we do not consider diagnostic (output only) variables. The
forcings consist of annually repeating climatological sea surface temperature (1982-2012 average),
Ts, and incoming solar radiation, DSWRFTOA. Prescribed sea surface temperatures are simply
“overwritten” on the skin temperature predictions of the ML models over all open ocean locations
(when rolling out the ML-based simulation). The other forcing or input-only variables are added as
an additional channel dimension. Derived variables are computed from the (predicted) prognostic
variables as described below.

Derived variables. For evaluation, we also consider the derived variable called total water path
which is computed as TWP = 1

g

∑
k q

T
k dpk, i.e. as a function of surface pressure and the profile of

specific total water. Its units are mm (or kg/m2, assuming that water has a density of 1000 kg/m3).
The derived wind speed variable for level k is computed based on the simulated meridional and zonal
wind variables as WSk =

√
u2
k + v2k. Its units are m/s.

B.2 Background on FV3GFS

Our dataset and physics-based baselines (including our “noise-floor” reference baseline) are based
on simulations from a comprehensive global atmospheric model called Finite-Volume on a Cubed-
Sphere Global Forecasting System (FV3GFS) [73]. It was developed by the National Oceanic and
Atmospheric Administration (NOAA) Geophysical Fluid Dynamics Laboratory (GFDL)5. A very
similar model version is operationally used by the US National Centers for Environmental Prediction
(NCEP) and the US weather forecasting service6. Its scalability to horizontal grid spacings as fine as
3 km [12] makes it an excellent candidate for generating training data for future ML-based climate
model emulators, including out-of-distribution climate change simulations that may be necessary to
train ML emulators on so that they can generalize.

B.3 FV3GFS configuration for data generation

In the following we summarize the reference data for this study, as also discussed in Section 2.1
of [67]. The training and validation data is generated by running an ensemble of 11 10-year (after
discarding a 3-month spinup period) FV3GFS simulations on a C96 cubed-sphere grid (approximately
100 km horizontal grid spacing) with 63 vertical levels. The simulations are an initial-condition
ensemble. That is, they are identical except for using different initial atmospheric states. Initial-
condition ensembles are a popular tool in climate modeling [32]. Discarding a 3-month spinup period
ensures that each simulation is independent of each other due to the chaoticity of the atmosphere7.
Each simulation is forced by repeating annual cycles of sea-surface temperature and insolation. The
temperature, humidity, two wind components at each grid point, and selected vertical fluxes at the
surface and top of the atmosphere in each grid column are saved every six hours. For ML training,
the temperature, humidity, and two wind components are averaged along FV3GFS’s 63 levels to 8
vertical layers, and the data are interpolated to a latitude-longitude grid of 180× 360 dimensions.

C Implementation details

All methods and baselines are conditioned on the forcings, f t, by simple concatenation of the forcings
with the remaining input variables across the channel dimension. We use PyTorch Lightning [16] and
Weights & Biases [6] as part of our software stack.

C.1 Training and inference pseudocode

In Algorithms 1 and 2 we provide the procedures used to train and sample from our proposed method,
respectively.

5https://www.gfdl.noaa.gov/fv3/
6https://www.weather.gov/news/fv3
7E.g. see Kay et al. [32], who note that: “After initial condition memory is lost, which occurs within weeks

in the atmosphere, each ensemble member evolves chaotically, affected by atmospheric circulation fluctuations
characteristic of a random, stochastic process (e.g., Lorenz 1963; Deser et al. 2012b)”.

18

127627https://doi.org/10.52202/079017-4052

https://www.gfdl.noaa.gov/fv3/
https://www.weather.gov/news/fv3


Algorithm 1 Spherical DYffusion, Training

Input: networks SFNOϕ,SFNOθ, norm ∥·∥, horizon h = 6
Stage 1: Train interpolator network, SFNOϕ

1. Sample i ∼ Uniform ({1, . . . , h− 1})
2. Sample xt,xt+i,xt+h ∼ RD, and corresponding forcing f t
3. Sample network stochasticity (dropout), ξ
4. Optimize minϕ ∥SFNOϕ (xt,xt+h,f t, i |ξ)− xt+i∥2

Stage 2: Train forecaster network, SFNOθ

1. Freeze SFNOϕ and enable its inference stochasticity ξ
2. Sample j ∼ Uniform({0, . . . , h− 1}) and xt,xt+h ∼ RD

3. Retrieve corresponding forcings f t,f t+j

4. x̂t+j ← SFNOϕ (xt,xt+h,f t, j |ξ) # with x̂t+j := xt for j = 0

5. Optimize minθ
∥∥SFNOθ

(
x̂t+j ,f t+j , j

)
− xt+h

∥∥2
Algorithm 2 Spherical DYffusion, Inference

1: Input: Initial conditions x̂0 := x0, training and inference horizon h and H = 14600, forcings
f0:H

2: # Autoregressive loop:
3: for t = 0, h, 2 · h, . . . , (⌈H/h⌉ − 1) · h do
4: # Sampling loop for time steps t+ 1, . . . , t+ h:
5: for j = 0, 1, . . . , h− 1 do
6: x̂t+h ← SFNOθ

(
x̂t+j ,f t+j , j

)
# (Refine) forecast

7: x̃t+j+1 ← SFNOϕ (x̂t, x̂t+h,f t, j + 1 |ξ) # Interpolate
8: x̂t+j+1 = x̃t+j+1 + x̂t+j − SFNOϕ (x̂t, x̂t+h,f t, j |ξ′) # Cold sampling
9: end for

10: end for
11: Return: x̂1:H

C.2 Discussion on the training horizon

The training horizon, h, is a critical hyperparameter for both DYffusion and our proposed method.
Throughout this study, we use h = 6 (corresponding to 36 hours) for both approaches. While we
initially explored other horizons, we chose h = 6 as it strikes an optimal balance: A smaller horizon
(e.g., h = 3) reduces the number of sampling steps since the reverse sampling process directly
corresponds to physical time steps, potentially degrading performance. Conversely, a larger horizon
makes the forecasting task more challenging, as predicting xt+h from xt becomes increasingly
difficult for the forecasting model.

Our choice is further supported by the DYffusion paper, which successfully used h = 7 for sea surface
temperature forecasting. While we believe that values close to h = 6 would likely perform similarly
well, comprehensive ablation studies would require re-training two neural networks sequentially,
making such experiments computationally expensive to run.

C.3 Hyperparameters

Architectural hyperparameters. To fairly compare against the deterministic SFNO model
from [67], we use exactly the same hyperparameters for training the interpolator and forecast-
ing networks for our method, as described in Table 78. For the stochastic version of ACE, ACE-STO,
we re-train ACE from scratch with the only difference being that we use a dropout rate of 10%
for the MLP in the SFNO architecture. We train the stochastic interpolator model, SFNOϕ, in our
method using the same dropout rate. Both of these stochastic models are run using MC dropout

8Names correspond to the definition of the SphericalFourierNeuralOperatorNet class found at:
https://github.com/ai2cm/modulus/blob/94f62e1ce2083640829ec12d80b00619c40a47f8/
modulus/models/sfno/sfnonet.py#L292. Unless specified otherwise, defaults are used.
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Figure 7: Table is directly taken
from [67], and reports the SFNO hy-
perparameters used for ACE as well
as the interpolator and forecasting net-
works of our method.

Name Value

embed_dim 256
filter_type linear
num_layers 8
operator_type dhconv
scale_factor 1
spectral_layers 3

Figure 8: Optimization hyperparameters. The effective batch
size is calculated as data loader batch size× number of GPUs
× number of gradient accumulation steps, and is ensured
to be the same for all our trained models regardless of the
number of GPUs used.

Name Value

Optimizer AdamW
Initial learning rate 4× 10−4

Weight decay 5× 10−3

Learning rate schedule Cosine annealing
Number of epochs 60
Effective batch size 72
Exponential moving average decay rate 0.9999
Gradient clipping 0.5

(i.e. enabling the dropout layers at inference time). For our interpolator network, we also use a 10%
rate for stochastic depth [28], which is also enabled at inference time. This choice was informed
by preliminary experiments focused on training a good interpolator network. There, we found the
addition of stochastic depth to slightly improve the interpolator’s validation CRPS scores (for the
interpolated timesteps 1 to 5) and significantly improve the calibration of the interpolation ensemble
based on the spread-skill ratio (averaged across variables from around 0.26 to 0.35). We found worse
results when using stochastic depth for ACE-STO at inference time.

Optimization hyperparameters. We train the interpolator networks for DYffusion and our method
on the same relative L2 loss function used for the baseline from [67], and the corresponding forecaster
networks on the L1 loss. The models that we train on our own, i.e. the interpolation and forecasting
networks of DYffusion and our method are trained with mixed precision. Inference is always run
at full precision. For the non-interpolation networks, we perform early stopping based on the best
CRPS averaged over a 500-step (125 days) rollout. More optimization-related hyperparameters are
discussed in Table 8.

D Metrics

Unless specified otherwise, all ensemble results are based on E = 25 ensemble members. All metrics
are area-weighted according to the size of the grid cell, as described below.

D.1 Preliminaries

Let X ∈ RE×I×J denote an ensemble of predictions, and Y ∈ RI×J the corresponding targets,
where E is the number of ensemble members, I is the number of latitudes, and J the number of
longitudes in the grid. In the context of this paper, Y usually corresponds to the validation, reference
10-year time-mean and X corresponds to an ensemble of 10-year time-means simulated by the
reference climate model (excluding the validation time-mean), our proposed method, or any of the
baselines.

Let w(i) denote the normalized latitude-dependent area weights at latitude i, such that 1
I

∑I
i w(i) = 1,

which ensure that spatial means are not biased towards the polar regions (see e.g. Rasp et al. [53]).
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D.2 Member-wise Metrics

We report the average, member-wise area-weighted bias, Mean Absolute Error (MAE) and Root
Mean Square Error (RMSE), which are defined as follows

Bias =
1

EIJ

E∑
e=1

∑
i,j

w(i)(Xe,i,j −Yi,j) (1)

MAE =
1

EIJ

E∑
e=1

w(i)|Xe,i,j −Yi,j | (2)

RMSE =
1

E

E∑
e=1

√
1

IJ

∑
i,j

w(i)(Xe,i,j −Yi,j)2 (3)

For the bias, closer to zero is better, for the MAE and RMSE lower is better.

D.3 Ensemble Metrics

Ensemble-mean RMSE. For a skillful ensemble, the magnitude of the average, member-wise
RMSE (see above) can be reduced by computing the RMSE on the ensemble-mean prediction, defined
as X̄i,j =

1
E

∑E
e=1 xe,i,j , instead.

RMSEens =

√
1

IJ

∑
i,j

w(i)(X̄i,j −Yi,j)2 (4)

Spread-Skill Ratio (SSR). Following Fortin et al. [18], the spread-skill ratio is defined as the ratio
between the ensemble spread and the ensemble-mean RMSE. The ensemble spread is defined as the
the square root of the ensemble variance

Spread =

√
1

IJ

∑
i,j

w(i)vare(Xe,i,j), (5)

where vare computes the variance of the ensemble.Then, we can compute the spread-skill ratio simply
as

SSR =

√
E + 1

E

Spread
RMSEens

, (6)

where
√

E+1
E is a correction factor which is especially important to include for small ensemble sizes.

Note that this factor is omitted in e.g. WeatherBench-2 [53]. The SSR serves as a simple measure of
the reliability of the ensemble, where values smaller than 1 indicate underdispersion (i.e. the model
is overconfident in its predictions), and larger values overdispersion. That is, closer to 1 is better.

Continuous Ranked Probability Score (CRPS). Following Zamo and Naveau [72], we use the
unbiased version of the CRPS [44], which is a proper scoring rule:

CRPS =
1

IJ

∑
i,j

w(i)

 1

E

E∑
e=1

|Xe,i,j −Yi,j | −
1

2E(E − 1)

E∑
e=1

E∑
f=1

|Xe,i,j −Xf,i,j |

 (7)

where the first term represents the skill, and the second term represents the spread. The biased
CRPS averages over the spread with the factor 1

2E2 , which is biased–especially for small ensemble
sizes–compared to using the unbiased version with the factor 1

2E(E−1) . Note that common Python
packages such as xskillscore and properscoring use the biased version. Lower is better.

Note on deterministic models. For deterministic models like ACE without initial condition ensem-
bling, the ensemble size is trivially E = 1, causing X̄i,j to be identical to X. This results in RMSEens
reducing to standard RMSE, MAE equaling CRPS, and a zero spread-skill ratio. To accurately
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Figure 9: Same as Figure 2 but showing more fields for the RMSE of 10-year time-mean’s. Bars (left
to right) show 1) the noise floor calculated from the pairwise differences of ten independent 10-year
reference model simulations with respect to the validation simulation. In light shade we report the
score computed using the mean over the ten reference simulations as ”prediction”, 2) the member-
wise scores of an 25-member ensemble of our method in dark shade, and the corresponding ensemble
mean score in light shade, 3) the score of the deterministic ACE baseline, 4) the member-wise scores
of an 25-member ensemble of the DYffusion baseline in dark shade, and the corresponding ensemble
mean score in light shade. The standard deviation error bar is computed over the set of pairwise
(member-wise) time-mean RMSEs for the reference (Ours and DYffusion). ACE does not have a
standard deviation since it is a deterministic model. Turning ACE stochastic through MC dropout
(ACE-STO) degrades its performance. Our method significantly reduces climate biases over the
baseline methods and can be effectively ensembled to reduce its climate biases further, approaching
the theoretical lower limit imposed by the noise floor of the reference simulation.

reflect that ensemble metrics are not meaningful for single-member deterministic predictions, we
denote these metrics as − for ACE in Table 4. While incorporating initial condition ensembling
would enhance ACE’s performance on these metrics beyond the naive deterministic baseline, such
techniques are orthogonal to the model-based ensembling approaches explored in this work. We leave
this extension to future research, noting that initial condition ensembling could potentially improve
results for all models in our comparison, including the inherently stochastic ones.

E Additional results and figures

E.1 Climate Biases

We quantitatively analyze the 10-year time mean biases of our model and the baselines in terms of the
global mean RMSE in Figure 9. The time-mean prediction is the average over the 14,600 predicted
snapshots during the 10 years. Our method significantly reduces climate biases over the baseline
methods across most fields. Notably, the errors of our method are often closer to the noise floor of the
reference simulation than to the next best baseline. We also show that our method can be effectively
ensembled to further reduce climate biases, its ensemble-mean reliably improving time-mean scores
across all fields. Interestingly, the stochastic version of ACE, ACE-STO, significantly underperforms
the deterministic version. Similarly, the direct application DYffusion fails to match the deterministic
ACE baseline, even after ensemble averaging. This shows that MC dropout and DYffusion alone are
not the reason for the encouraging performance of our method, but rather the holistic integration of
all components, including MC dropout in our SFNO-based interpolator network.

In Table 4, we report a comprehensive evaluation of the (ensemble) of 10-year time-means of each
method for a subset of ten representative variables. We report the mean bias error, mean absolute error
(MAE), root mean square error (RMSE), ensemble-mean RMSE, spread-skill ratio, and Continuous
Ranked Probability Score (CRPS), which are rigorously defined in Appendix D.

22

127631https://doi.org/10.52202/079017-4052



Table 4: Comprehensive evaluation of simulated 10-year time-means. Bias, RMSE, and MAE
represent average member-wise scores. For Bias (Spread-skill ratio; SSR) closer to 0 (1) is better.
For the other metrics, lower is better, with relative changes from the reference shown in parentheses.
See Appendix D for mathematical formulations and Table 3 for variable descriptions and units.
Variable Metric Reference Ours ACE ACE-STO DYffusion

TWP

Bias 0.004 -0.043 0.021 0.017 0.686
RMSE 0.336 0.404 (+20%) 0.653 (+94%) 1.372 (+308%) 0.965 (+187%)
RMSEens 0.249 0.327 (+31%) - 1.206 (+385%) 0.934 (+276%)
SSR 1.017 0.760 - 0.574 0.273
MAE 0.245 0.303 (+24%) 0.459 (+88%) 0.957 (+291%) 0.768 (+214%)
CRPS 0.125 0.178 (+43%) - 0.639 (+413%) 0.644 (+417%)

ps

Bias 0.036 4.820 45.47 34.82 -126.4
RMSE 39.37 48.79 (+24%) 103.5 (+163%) 131.1 (+233%) 151.5 (+285%)
RMSEens 31.50 39.59 (+26%) - 120.1 (+281%) 149.0 (+373%)
SSR 0.847 0.766 - 0.470 0.190
MAE 26.26 35.60 (+36%) 71.69 (+173%) 93.14 (+255%) 134.8 (+413%)
CRPS 14.44 21.91 (+52%) - 66.48 (+360%) 121.6 (+742%)

T7

Bias 0.011 -0.049 0.121 0.369 0.311
RMSE 0.172 0.290 (+69%) 0.349 (+103%) 0.831 (+383%) 0.692 (+302%)
RMSEens 0.124 0.267 (+114%) - 0.734 (+490%) 0.684 (+450%)
SSR 1.065 0.474 - 0.634 0.158
MAE 0.108 0.187 (+73%) 0.224 (+108%) 0.510 (+373%) 0.408 (+278%)
CRPS 0.054 0.132 (+147%) - 0.343 (+540%) 0.360 (+573%)

T5

Bias 0.005 -0.068 0.079 0.173 0.377
RMSE 0.171 0.244 (+42%) 0.333 (+94%) 0.610 (+256%) 0.540 (+215%)
RMSEens 0.132 0.211 (+60%) - 0.525 (+299%) 0.527 (+301%)
SSR 0.933 0.619 - 0.657 0.228
MAE 0.117 0.171 (+46%) 0.243 (+108%) 0.451 (+286%) 0.388 (+232%)
CRPS 0.060 0.110 (+84%) - 0.299 (+402%) 0.330 (+455%)

T0

Bias 0.000 0.034 0.162 -0.127 0.517
RMSE 0.124 0.220 (+78%) 0.444 (+259%) 0.767 (+520%) 0.592 (+379%)
RMSEens 0.074 0.202 (+174%) - 0.674 (+815%) 0.585 (+695%)
SSR 1.533 0.517 - 0.599 0.161
MAE 0.084 0.150 (+78%) 0.316 (+277%) 0.550 (+555%) 0.526 (+527%)
CRPS 0.034 0.102 (+200%) - 0.348 (+921%) 0.481 (+1312%)

u7

Bias 0.012 0.038 -0.170 -0.023 0.077
RMSE 0.240 0.307 (+28%) 0.456 (+90%) 0.935 (+289%) 0.462 (+92%)
RMSEens 0.178 0.239 (+35%) - 0.874 (+391%) 0.427 (+140%)
SSR 1.012 0.846 - 0.412 0.438
MAE 0.173 0.226 (+31%) 0.343 (+98%) 0.693 (+300%) 0.339 (+96%)
CRPS 0.087 0.129 (+48%) - 0.519 (+494%) 0.249 (+185%)

v7

Bias 0.005 0.015 0.009 0.044 -0.067
RMSE 0.196 0.224 (+14.3%) 0.299 (+53%) 0.592 (+202%) 0.320 (+64%)
RMSEens 0.152 0.178 (+17.0%) - 0.548 (+260%) 0.292 (+92%)
SSR 0.910 0.802 - 0.439 0.471
MAE 0.138 0.164 (+18.6%) 0.224 (+62%) 0.440 (+218%) 0.247 (+79%)
CRPS 0.072 0.094 (+30%) - 0.325 (+351%) 0.179 (+148%)

WS7

Bias 0.003 -0.053 -0.017 -0.080 -0.001
RMSE 0.243 0.303 (+24%) 0.437 (+79%) 0.886 (+264%) 0.450 (+85%)
RMSEens 0.183 0.238 (+30%) - 0.823 (+349%) 0.415 (+126%)
SSR 0.976 0.830 - 0.430 0.445
MAE 0.175 0.224 (+28%) 0.331 (+89%) 0.659 (+277%) 0.334 (+91%)
CRPS 0.089 0.128 (+44%) - 0.488 (+449%) 0.244 (+175%)

WS5

Bias 0.022 0.058 -0.104 -0.036 -0.081
RMSE 0.324 0.398 (+23%) 0.626 (+93%) 1.128 (+248%) 0.591 (+82%)
RMSEens 0.240 0.311 (+30%) - 1.030 (+329%) 0.543 (+126%)
SSR 1.013 0.837 - 0.475 0.452
MAE 0.248 0.311 (+25%) 0.492 (+98%) 0.878 (+254%) 0.456 (+84%)
CRPS 0.124 0.176 (+42%) - 0.636 (+412%) 0.329 (+165%)

WS0

Bias 0.151 -0.022 -0.167 0.854 1.642
RMSE 0.450 0.944 (+110%) 2.163 (+381%) 2.661 (+491%) 3.158 (+602%)
RMSEens 0.307 0.887 (+189%) - 2.349 (+664%) 3.142 (+922%)
SSR 1.203 0.397 - 0.573 0.110
MAE 0.336 0.752 (+124%) 1.626 (+384%) 2.035 (+506%) 2.044 (+509%)
CRPS 0.152 0.589 (+287%) - 1.354 (+789%) 1.874 (+1131%)
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E.1.1 Zonal time-means

In this section, we analyze the absolute magnitudes of the simulated time-means by examining their
zonal averages (aggregated over the longitude dimension). We also visualize the standard deviation
of the respective ensembles of time- and zonal-means for the reference and stochastic methods.
We visualize these in Figures 10 and 11. For several fields, including surface pressure, total water
path (not shown), and near-surface temperature (top left subplot in Fig. 10), differences between
the simulations are not visually noticeable, except for polar biases in baseline methods. However,
discrepancies become pronounced in higher-altitude and wind fields, where our method generally
achieves the closest agreement with the reference model. Although near-surface fields are the most
relevant for society and decision-making, the clear biases of the baseline method at high-altitude
levels might contribute to long-term biases, especially in longer simulations, due to the interactions
of atmospheric dynamics across all levels. This observation may partly explain why our method
achieves the lowest time-mean biases and RMSEs, as discussed in Appendix E.1.

Figure 10: Zonal means of the simulated 10-year time-mean climatologies for a representative subset
of four temperature fields. Level 7 represents near-surface conditions, while Level 0 corresponds to
the highest altitude. Our method generally provides the closest emulation to the reference data. The
most notable biases in the emulations occur at Levels 2 and 0, indicating greater discrepancies at
higher altitudes. Emulation challenges are also significant near the poles, including at near-surface
levels, particularly for DYffusion.

Figure 11: Zonal-means of the simulated 10-year time-mean climatologies for a representative subset
of four northward (meridional) wind fields. Our method generally provides the closest emulation to
the reference data, except for the level-0 polar latitudes.

24

127633https://doi.org/10.52202/079017-4052



E.1.2 Climate variability

In Fig. 12 we show the global maps corresponding to the global means of Table 2. Our method shows
a consistent ensemble variability in terms of the simulated climate that also largely reflects the spatial
patterns and magnitudes of the reference ensemble.

Figure 12: Global maps of the standard deviation of the 10-year time-mean of the reference ensemble
and a 25-member ensemble of our method. The climate variability of our method is consistent with
the reference model, and largely follows similar spatial patterns with adequate magnitudes. The
global mean standard deviation is reported in Table 2.

E.2 Weather forecasting

While we focus on climate time scales in this work, climate is formed by the statistics of weather, so
it is important to verify that our method also generates reasonable forecasts of the weather simulated
by the reference model. In Figure 13, we analyze the medium-range forecasting skill of our method
and the baselines for lead times up to two weeks. Interestingly, ACE and DYffusion show persistent
biases for the surface pressure field that are clearly visible from the first few days of forecasts already
but do not seem to reflect on the RMSEs at weather time scales. Such persistent biases, however, may
be magnified over longer simulations and could explain why the baselines have problems reproducing
accurate long-term climate statistics. In terms of RMSE, the deterministic model ACE generally has
a slight edge over our method and DYffusion, especially on lead times of less than a week. After that,
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Figure 13: Comparison of medium-range weather forecasting skill between Spherical DYffusion
(25-member ensemble and single forecast), DYffusion (25-member ensemble and single forecast),
and ACE (single, deterministic forecast). Our method generates competitive probabilistic ensemble
weather forecasts, a necessary but not sufficient prerequisite for achieving good climate simulations.

Figure 14: We visualize the performances of DYffusion and Spherical DYffusion (in different marker
colors) at multiple checkpoint epochs and for multiple generated samples. We plot the 10-year
time-mean RMSE (“climate skill”) of three example fields versus the time-step-wise near-surface
temperature RMSE averaged out over the first 20 forecasts (5 days; “weather skill”). The 5-day
weather forecast performance shows no correlation with the long-term climate biases (indeed, there
seems to exist an inverse correlation). This has important implications for practitioners, implying
that optimizing for short-term forecasts alone – as is current practice for most ML-based weather
forecasting models – may be suboptimal for attaining accurate climate simulations. We have verified
that the behavior shown above holds for fields other than near-surface temperature too (not shown).

the ensembles of our method and DYffusion perform best in terms of ensemble-mean RMSE. As
expected, the ensemble mean significantly reduces the RMSE compared to using a single sample
from our method or DYffusion, especially at longer lead times. The ensemble metrics, CRPS, and
spread / RMSE ratio show that our method’s and DYffusion’s ensemble perform quite similarly,
even though they are based on completely different ML architectures. Both ensembles tend to be
underdispersed (Spread / RMSE < 1) on short time scales but quickly converge to a well-dispersed
ensemble at longer lead times which persists for the whole 10-year climate simulations (not shown).

E.3 Weather vs. climate performance

In Figure 14, we illustrate that weather performance does not correlate with the climate biases of
the same model. We plot the average RMSE over the first 5 days of simulation (here, using the near-
surface temperature field) against the 10-year time-mean RMSE of various fields, and do not observe
any correlation between the two metrics. We have verified that this observation holds independently
of the analyzed field. This is a little-discussed observation that has important implications for ML
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practitioners since it implies that optimizing for short-term forecasts alone – as is current practice
for most ML-based weather forecasting models – may be suboptimal for attaining accurate climate
simulations. Heuristically, optimizing weather skill ensures that a climate model takes a locally
accurate path around the climate ’attractor’, but it does not guarantee that small but systematic
errors may not build up to distort that simulated attractor to have biased time-mean statistics. This
observation has been documented for the case of physics-based climate models [17, 54].

E.4 Qualitative samples

Figures 15, 16, and 17 compare near-surface air temperature, near-surface wind speed. and total
water path between the FV3GFS validation simulation, two randomly selected 10-year trajectories
generated by Spherical DYffusion, and the trajectory predicted by ACE. For both variables, we show
the final ten snapshots of each simulation. The complete temporal evolutions of these simulations
for near-surface wind speed and total water path can be viewed at https://youtu.be/7lHra7gBiBo and
https://youtu.be/Hac xGsJ1qY, respectively. The emulated fields demonstrate high realism, closely
mimicking the patterns and variability observed in actual climate model outputs. This showcases
Spherical DYffusion’s capability to generate plausible and physically consistent climate scenarios
over decadal timescales.

Figure 15: We visualize the final 10 predictions from two random 10-year trajectory samples (i.e. the
end of the ninth year) generated by Spherical DYffusion (middle rows) and ACE (bottom row). Here,
we show the near-surface air temperature variable, Tk for level k = 7. It is important to note that
at these extended time scales, simulated trajectories are expected to diverge significantly from one
another for any given time step.
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Figure 16: We visualize the final 10 predictions from two random 10-year trajectory samples generated
by Spherical DYffusion (middle rows) and ACE (bottom row). Here, we show the derived near-
surface wind speed variable, WSk for level k = 7. It is important to note that at these extended time
scales, simulated trajectories are expected to diverge significantly from one another for any given time
step. A video visualizing the full 10-year simulations is accessible at https://youtu.be/7lHra7gBiBo.

Figure 17: Same as Figure 16 but for the derived total water path variable, TWP. A video visualizing
the full 10-year simulations is accessible at https://youtu.be/Hac xGsJ1qY.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The paper’s main contributions are enumerated at the end of the introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See the limitations paragraph at the end of the main text (at the end of
Section 6).
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate ”Limitations” section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: This work does not include theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Data–for both training and evaluation–are publicly available (see Appendix B).
Open-source code will be made available at https://github.com/Rose-STL-Lab/spherical-
dyffusion. All important hyperparameters are discussed in Appendix C.3. The training
and sampling algorithms used by our method are fully described in Appendix C.1. In
Figure 4, we include a diagram of the modified SFNO architecture used by our proposed
method, which is discussed in the text at the end of Section 4 (see SFNO time-conditioning
paragraph).

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
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some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: Data (for both training and evaluation) are publicly available (see Appendix
B). Open-source code will be made available at https://github.com/Rose-STL-Lab/spherical-
dyffusion.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The experimental setup is discussed in Section 5.1. All important hyper-
parameters are further discussed in Appendix C.3, and data details are further discussed
in Appendix B. Our method’s training and sampling algorithms are fully described in
Appendix C.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Error bars are reported for the reference noise-floor baseline and all probabilis-
tic/stochastic methods, including our proposed method, by sampling multiple predictions
and computing the standard deviation of the metric (e.g. RMSE) over them.
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Guidelines:
• The answer NA means that the paper does not include experiments.
• The authors should answer ”Yes” if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: See Section 5.2 on information on compute resources used for our method and
baselines as well as a fair inference runtime benchmark across all methods, including the
emulated physics-based climate model.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The authors have reviewed the NeurIPS Code of Ethics and believe that the
conducted research in the paper conforms, in every respect, with the NeurIPS Code of
Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts
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Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: See Appendix A for a section discussing potential positive societal impacts
and negative societal impacts of our work.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper does not deal with data or models with a high risk of misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: In our paper, we always cite the works where models (e.g. SFNO [8]) or data
(e.g. ACE [67], including URL and license in Appendix B) originated from.
Guidelines:
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• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: Our method’s training and sampling algorithms are fully described in Ap-
pendix C.1 and fully reproducible in our source-code, including clear instructions.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
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Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

35

127644 https://doi.org/10.52202/079017-4052




