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Abstract

The rapid development of artificial intelligence (AI) has unearthed the potential
to assist humans in controlling advanced technologies. Shared autonomy (SA)
facilitates control by combining inputs from a human pilot and an AI copilot. In
prior SA studies, the copilot is constantly active in determining the action played
at each time step. This limits human autonomy and may have deleterious effects
on performance. In general, the amount of helpful copilot assistance can vary
greatly depending on the task dynamics. We therefore hypothesize that human
autonomy and SA performance improve through dynamic and selective copilot
intervention. To address this, we develop a goal-agnostic intervention assistance
(IA) that dynamically shares control by having the copilot intervene only when the
expected value of the copilot’s action exceeds that of the human’s action across all
possible goals. We implement IA with a diffusion copilot (termed IDA) trained
on expert demonstrations with goal masking. We prove a lower bound on the
performance of IA that depends on pilot and copilot performance. Experiments
with simulated human pilots show that IDA achieves higher performance than
pilot-only and traditional SA control in variants of the Reacher environment and
Lunar Lander. We then demonstrate that IDA achieves better control in Lunar
Lander with human-in-the-loop experiments. Human participants report greater
autonomy with IDA and prefer IDA over pilot-only and traditional SA control. We
attribute the success of IDA to preserving human autonomy while simultaneously
offering assistance to prevent the human pilot from entering universally bad states.

1 Introduction

As technology advances, humans continuously seek to operate more sophisticated and complex
devices (Cascio and Montealegre, 2016). However, more sophisticated technologies typically involve
complicated operational dynamics and high-dimensional control systems that restrict their use to
narrowly defined environments and highly specialized operators (Schulman et al., 2018). While fully
autonomous AI agents can be trained to perform these tasks, this approach has three key limitations.
First, the user’s goal is internalized and not easily deducible in most real-world environments.
Second, removing the user from the control loop reduces their autonomy, potentially leading to poor
performance and decreased engagement (Wilson and Daugherty, 2018a,b). Third, as the capabilities
of AI advance, it is important to consider how to create technologies that assist and empower humans
instead of replacing them (Wilson and Daugherty, 2018a,b).

Shared autonomy (SA) addresses these limitations by blending human (pilot) actions with assistive
agent (copilot) actions in a closed-loop setting. Prior studies demonstrate SA can increase human
task performance in robotic arm control (Laghi et al., 2018), drone control (Reddy et al., 2018), and
navigation (Peng et al., 2023). A critical component of prior work is an empirically tuned control-
sharing hyperparameter that trades off copilot assistance with human user autonomy (Reddy et al.,
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Figure 1: Overview of Interventional Assist Framework for control sharing. (a) Prior works perform
shared autonomy by passing human actions to a copilot (Javdani et al., 2015; Yoneda et al., 2023;
Reddy et al., 2018; Jeon et al., 2020). The copilot then plays an action, e.g., by selecting a feasible
action closest to the user suggestion (Reddy et al., 2018) or through diffusion (Yoneda et al., 2023).
(b) In this work, we design an intervention function that plays either the human pilot’s action, ap, or
the copilot’s action, ac, based on their goal-agnostic advantages.

2018; Jeon et al., 2020; Yoneda et al., 2023). Excessive assistance can hinder goal achievement, while
insufficient assistance can lead to poor control and performance. Prior work has established multiple
methods of control sharing, but limitations remain, such as requiring control sharing hyperparameters
be tuned empirically or limiting the copilot to general, non-goal-specific assistance (Schaff and
Walter, 2020; Du et al., 2021; Tan et al., 2022). We will discuss them further in Section 2.

Imagine driving a car with an assistive copilot. The majority of the time, the human driver should
remain in control. However, the copilot should intervene in certain scenarios to prevent collisions
and ensure safe driving. By dynamically adjusting the level of assistance based on the situation and
needs of the driver, the copilot simultaneously preserves driver autonomy and engagement while
ensuring safety. This example reflects an important open problem: how do we construct an optimal
behavior policy from the human and copilot’s individual policies? This problem is conceptually
similar to the one posed by the Teacher-Student Framework (TSF) (Zimmer et al., 2014), where a
teacher agent helps the student learn a good policy by intervening to prevent the student from visiting
deleterious states and providing online guidance (Kelly et al., 2019; Li et al., 2022; Peng et al., 2021).
A recent work (Xue et al., 2023) has developed methods that improve the TSF framework by using a
trajectory-based value estimate to decide when the teacher intervenes in student learning. We propose
that a similar value estimate could be used to determine when the copilot should ‘intervene’ in the
user’s control, providing the user with assistance. Therefore, we develop an intervention function that
estimates the expected value of the copilot and human action in a goal-agnostic fashion. Because our
formulation is goal-agnostic, it can generalize to goals not seen during the training process, endowing
the human pilot with improved flexibility and generalization.

Our main contribution is a shared control system that leverages a value-based intervention func-
tion that can interface with many different copilot architectures while simultaneously improving
performance and preserving pilot autonomy. In this work, we build on an existing diffusion-based
copilot architecture (Yoneda et al., 2023). These copilots are desirable because they can be trained
using supervised methods which helps mitigate the sample complexity required to train effective
copilots. While we proceed with the diffusion copilot of (Yoneda et al., 2023) we emphasize that
our intervention function can be applied to any copilot capable of generating assistive, alternative, or
corrective actions to aid the human in complex tasks.

2 Related Work

We have a brief discussion on three related works (Du et al., 2021; Yoneda et al., 2023; Tan et al.,
2022).

Assistance via Empowerment (Du et al., 2021): It proposes a method that increases a human’s
ability to control the environment and mitigate the need to infer any goals. It defines an information

2

128331https://doi.org/10.52202/079017-4075



theoretic quantity that captures the number of future states accessible to a human from the current
state. An assistive agent is then trained to maximize this quantity while the human performs the task.
While this allows agents to assist in a goal-agnostic fashion, it typically leads to lower performance
than methods that infer the goal, since the assistive agent does not directly help the human achieve
a goal. In contrast, other methods, including this work, leverage a copilot that implicitly infers the
goal from human actions. While goal inference can lead to lower performance when the goal is
incorrectly inferred, we mitigate this by restricting the copilot to only intervene when the human
action is deleterious, i.e., worse than the copilot action across all possible goals.

To the Noise and Back: Diffusion for Shared Autonomy (Yoneda et al., 2023): It develops a
copilot that uses diffusion to map a human action closer to an expert’s action. They train a diffusion
process to generate actions from a distribution of expert actions conditioned on goal-agnostic state
observations. At inference, the human action is first pushed towards a Gaussian distribution by adding
noise in the forward diffusion process. The reverse diffusion process is then run on this noised human
action to transform it into a sample from the expert action distribution. This action is played in the
environment, as illustrated in Figure 1a. The fraction of the forward diffusion process applied to the
human action is the diffusion ratio γ ∈ [0, 1] and trades off action conformity (how similar the action
is to expert actions) and human autonomy. This copilot therefore requires an experimentally tuned
hyperparameter to influence how much control the human has on the eventual action. Because the
amount of assistance needed may vary greatly depending on task dynamics, using a fixed amount
of assistance throughout the task may limit performance and autonomy. Our intervention function
presented in Section 3 addresses this limitation by allowing the copilot to dynamically intervene
based on the human’s actions.

On Optimizing Interventions in Shared Autonomy (Tan et al., 2022): It proposes a method where
a copilot is trained with a penalty for intervention. This encourages the copilot to limit its intervention
and preserve human autonomy. However, intervention is not inherently bad and need not be sparse.
Instead of uniformly penalizing all intervention, only unnecessary intervention should be penalized.
Additionally, this method is not inherently hyperparameter free as it does require setting a penalty
hyperparameter to determine how the copilot should trade off assistance and autonomy, although
they demonstrate this hyperparameter can be solved via optimization. Another limitation is this
method assumes access to the human policy during training so that the copilot can learn when best to
intervene for a particular human (e.g., an expert at the task would likely have less copilot intervention
than a novice). In contrast, we define a general-purpose intervention function based on how good
actions are in the environment (irrespective of the specific human pilot playing the actions), enabling
one-time training of the intervention function. In our intervention function, an expert would still
experience less intervention than a novice because the expert generally plays better actions in the
environment. Empirically we find that with our approach the same intervention function can boost
the performance of eight different human participants in the Lunar lander environment.

3 Method

Our goal is to introduce a general-purpose intervention function that increases the performance and
human autonomy of an SA system. The inputs to the intervention function are: (1) the goal-agnostic
environment state, s̃, (2) a pilot action, ap, and (3) a copilot action, ac, illustrated in Figure 1b. The
intervention function then plays either the pilot action (aI = ap) or copilot action (aI = ac) in the
environment. We define this intervention function and describe its implementation. We also prove
a lower bound on the expected return associated with the policy using the intervention function
proportional to the pilot and copilot performance.

We develop an intervention assistance called Interventional Diffusion Assistance (IDA). First, an
expert policy is trained to maximize returns in the environment (Section 3.2). Second, the expert
is used to perform policy rollouts and generate demonstrations. Goal information is removed from
the demonstration data. We then train a diffusion copilot from these demonstrations (Section 3.3).
Third, we define a trajectory-based intervention function that decides whether to play the human or
copilot action (Section 3.4). All training was performed on a workstation with a single 3080Ti and
took approximately 48 hours to complete all three steps for our tasks.
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3.1 Notation and Problem Formulation.

We assume the environment can be modeled as an infinite-horizon Markov Decision Process (MDP)
defined by the tuple M = ⟨S,A,R, γ, P, d0⟩. S is the space of all possible environment states, and A
is the space of all possible actions. R : S×A → [Rmin, Rmax] is a scalar reward received for playing an
action a ∈ A in state s ∈ S. P : S ×A×S → [0, 1] are the transition dynamics for the environment,
γ is the discount factor, and d0 is the distribution of initial states. We define the state-action value func-
tion induced by policy π to be Qπ(s, a) = Es0=s,a0=a,at∼π(·|st),st+1∼p(·|st,at) [

∑∞
t=0 γ

tr (st, at)],
where π : S ×A → [0, 1] is the action distribution conditioned on the state.

We additionally introduce the notion of a goal that encodes the task objective or intention of the
human. We can decompose any state s = ⟨s̃|ĝ⟩ into a partial goal-agnostic state observation s̃, which
does not contain any goal specific information, and a goal ĝ ∈ G∗, where G∗ is the space of all
possible goals. Then Qπ(s, a) = Qπ(⟨s̃ | ĝ⟩, a) = Qπ(s̃, a|ĝ) is the state-action value function
under the goal-agnostic state s̃ and goal ĝ.

We model the human behavior by a human pilot policy, πp, which generates human action ap ∼
πp(·|s) according to the full state observation. The human observes and therefore has access to
the goal, ĝ ∈ G∗. However, the goal is not assumed to be accessible to the copilot. In this paper,
we assume the availability of an expert policy πe(ae|s), that observes the full state and solves the
environment. We also assume that we can query the state-action value of the expert policy Qπe(s, a),
with which we use to evaluate the quality of an action a. We will train a copilot policy πc that generates
actions based on the pilot action and the goal-agnostic state ac ∼ πc(·|ap, s̃). The ultimate goal of
this paper is to derive a goal-agnostic intervention function T(s̃, ac, ap) ∈ {0, 1} from the expert
policy so that the SA system can achieve better performance than the pilot alone. The behavior policy
that shares autonomy between the pilot and the copilot can be represented as πI = Tπc + (1−T)πp.

3.2 Training an Expert Policy

We train a soft actor-critic (SAC) expert to solve the environment (Haarnoja et al., 2018) because
it allows us to (1) later query Qπe(s, a) for intervention and (2) generate demonstrations in the
environment that can be used to train the copilot. In general, other methods of obtaining a Q-value
estimator and for training a copilot are compatible with IA. We choose SAC for computational
convenience. We parameterize our SAC model with a four-layer MLP with 256 units in each layer
and the ReLU non-linearity. We use a learning rate of 3× 10−4 and a replay buffer size of 106. The
expert fully observes the environment including the goal, and is trained for 3 million time steps or
until the environment is solved. We found that training with exploring starts (randomized initial state)
produced a more robust Q function with better generalization abilities. Without exploring starts, the
Q function performed poorly on unseen states, limiting the effectiveness of IDA.

3.3 Training a Diffusion Copilot

Following Yoneda et al. (2023), we trained a diffusion copilot πc(ac|ap, s̃) using a denoising diffusion
probabilistic model (DDPM) (Ho et al., 2020). For each environment, we collected 10 million state-
action pairs from episodes using the SAC expert. All goal information was removed from this
demonstration data. The copilot learned to denoise expert actions perturbed with Gaussian noise,
conditioned on the goal-agnostic state s̃ and the pilot’s action ap.

Formally, the forward diffusion process is a Markov chain that iteratively adds noise ϵ ∼ N (0, I)
according to a noise schedule {α0, α1, ..., αT } to an expert action a0, via

at =
√
atat−1 +

√
1− αt−1ϵ. (1)

Following the forward diffusion process, the diffusion copilot is then trained to predict the noise
added by the forward process by minimizing the following loss (Ho et al., 2020):

LDDPM = Et,s̃∼τ,ϵ∼N (0,I)

[
∥ϵ− ϵθ(at, s̃, t)∥2

]
, (2)

where ϵθ is a neural network parameterized by θ that approximates the noise ϵ conditioned on the
noisy action at, the goal-agnostic state s̃, and the diffusion timestep t. τ is the distribution of states in
the demonstration data. The reverse diffusion process is modeled by a four-layer MLP to iteratively
refine at toward a0.
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Algorithm 1 SA with IDA

1: Initialize environment
2: for each timestep in episode do
3: Sample state s and goal-masked state s̃ from environment.
4: Sample human action ap ∼ πp(· | s).
5: Sample diffusion copilot action ac ∼ πc(·|ap, s̃).
6: Compute the copilot advantage score A(s̃, ac, ap)
7: if A(s̃, ac, ap) = 1 then
8: Play copilot action in environment, aI = ac.
9: else

10: Play pilot action in environment aI = ap.
11: end if
12: end for
13: environment reset

3.4 Trajectory-based Goal-agnostic Value Intervention

IDA allows the copilot to intervene in pilot control when they take actions that are consistently bad
for all possible goals. We therefore play the copilot’s action ac instead of the pilot’s action ap when
the copilot’s action has a higher expected return under the expert Q-value, that is,

Qπe(s, ac) ≥ Qπe(s, ap). (3)

However, we can not directly assess Equation 3, since in a SA system the goal is internal to the pilot.
Instead, we only have access to the goal agnostic state s̃, such that, Equation 3 becomes,

Qπe(s̃, ac) ≥ Qπe(s̃, ap). (4)

We can define an intervention score I(s̃t, ãt|ĝ) which considers the value of (s̃t, ãt) under the
assumption that ĝ ∈ G∗ is the goal, where G∗ is the space of all possible goals,

I(s̃t, ãt|ĝ) = Qπe(s̃t, ãt|ĝ). (5)

By marginalizing the difference in the intervention scores between the copilot and pilot over the
entire goal space we can define a copilot advantage A(s̃, ac, ap)

A(s̃, ac, ap) =
1

G

∫
ĝ∈G∗

F

(
I(s̃, ac|ĝ)− I(s̃, ap|ĝ)

)
dĝ, (6)

where F is a function that maps the difference in intervention scores to {−1,+1} to ensure all
possible goals are weighted equally. Here we choose F (·) = sign(·). G is a normalization constant
for the integral,

G =

∫
ĝ∈G∗

max
s̃,ac,ap

F

(
I(s̃, ac|ĝ)− I(s̃, ap|ĝ)

)
dĝ. (7)

When F (·) = sign(·), then A(s̃, ac, ap) ∈ [−1,+1] is proportional to the fraction of the goal space
over which the copilot action is superior to the pilot action. Also, when F is the sign function, the
normalization constant reduces to G =

∫
ĝ∈G∗ dĝ and if the goal space is discrete then G = |G∗| is

the number of goals.

We adapt the value based intervention function proposed by Xue et al. (2023) to use for shared
autonomy by allowing intervention to occur when A(s̃, ac, ap) = 1. The copilot therefore intervenes
when its action has a higher expected return compared to the pilot action for all possible goals.
Formally, we let

T(s̃, ac, ap) =

{
1 if A(s̃, ac, ap) = 1

0 otherwise
, (8)

with intervention policy, πI = Tπc + (1 − T)πp. The process for performing Shared Autonomy
(SA) with IA is highlighted in Algorithm 1. The copilot advantage is computed at every timestep.
The behavioral (IA) policy is then determined by Equation 8.
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3.5 Theoretical Guarantees on the Performance of IA

We prove that the return associated with IA is guaranteed to have the following safety and performance
guarantees.

Theorem 1. Let J(π) = Es0∼d0,at∼π(·|st),st+1∼P (·|st,at)[
∑∞

t=0 γ
tr(st, at)] be the expected dis-

counted return of following a policy π. Then, the performance following the Interventional Assistance
policy (or behavior policy) πI has the following guarantees:

1. For a near-optimal pilot, (Qπe(s, ap) ≈ maxa∗ Qπe(s, a∗)), πI is lower bounded by πp:

J(πI) ≥ J(πp).

2. For a low performing pilot, (Qπe(s, ap) ≈ mina Q
πe(s, a)), πI is low bounded by πc:

J(πI) ≥ J(πc).

The proof of Theorem 1 is in Appendix A. Intuitively, the copilot will only intervene when the pilot
attempts to play actions from the current state that have expected future returns less than that of the
copilot’s action across all possible goals. The IA policy therefore does not degrade performance of a
high-performing pilot, and when the pilot is poor, guarantees performance no worse than the copilot.

4 Results

4.1 Experimental Setup

Baselines. In the experiments that follow, we compared three different control methods. The first
method is pilot-only control. The second method is copilot control, where the behavior policy is
equal to the copilot policy πc(ac|ap, s̃). Copilot control is the standard practice in SA (Reddy et al.,
2018; Yoneda et al., 2023; Schaff and Walter, 2020; Jeon et al., 2020) as it allows a copilot to improve
the human action before it is played in the environment. For copilot control, the action played is
the action generated by the diffusion copilot using a forward diffusion ratio of γ = 0.2, the setting
that obtained the best control in (Yoneda et al., 2023). Our third method is IDA, which involves
dynamically setting the behavior policy based on Equation 8.

Environments. The first environment we use is Reacher, a 2D simulation environment that models
a two-jointed robotic arm with inertial physics. In this environment, torques are applied to the two
joints of the robotic arm to position the arm’s fingertip at a randomly spawned goal position within
the arm’s plane of motion. The state of the environment is an 11 dimensional observation containing
information about the position and velocities of the joints and goal location. Rewards are given for
making smooth trajectories that move the fingertip close to the goal. In each episode, the arm’s
position is reset to a starting location and a new goal is sampled uniformly across the range of the
arm’s reach. Following previous works ((Reddy et al., 2018; Schaff and Walter, 2020; Yoneda et al.,
2023; Tan et al., 2022)), we also use Lunar Lander, a 2D continuous control environment in which
a rocket ship must be controlled with three thrusters to land at a desired goal location on the ground.
We modify the environment as described in (Yoneda et al., 2023) to make the landing location spawn
randomly at different locations along the ground. On each episode the landing zone is indicated by
two flags. The states are 9 dimensional observations of the environment containing information about
the rocket ship’s position, angular velocity, and goal landing zone. We define the success rate as the
fraction of episodes that ended with a successful landing between the landing zone flags. We define
the crash rate as the fraction of episodes that terminated due to a crash or flying out of bounds.

Pilots. We use simulated surrogate pilots (Reacher, Lunar Lander) and eight human pilots (Lunar
Lander) to benchmark the performance of pilot-only, copilot, and IDA control (see Appendix D
for details about human participants). All human experiments were approved by the IRB and
participants were compensated with a gift card. Surrogate control policies are designed to reflect
some suboptimalities in human control policies. We consider noisy and laggy surrogate control
policies. Surrogate policies are constructed by drawing actions from either an expert policy or a
corrupted policy. We use a switch that controls if actions are drawn from the expert or corrupt policies.
Actions are initially sampled from the expert policy. At every time step there is a probability of
corruption being turned on. Once corruption is turned on, actions are sampled from the corrupt
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Continuous Linear Quadrant

Framework Expert Noisy Laggy Expert Noisy Laggy Expert Noisy Laggy

Pilot-Only 18.8 1.6 8.5 17.7 2.07 8.94 19.05 2.07 8.38
Copilot 0 0 0 0 0 0 0 0 0.03
IDA (FG) 18.0 2.9 8.5 17.3 3.1 9.0 18.5 2.9 8.4
IDA (DS) 18.5 2.4 8.8 18.5 2.7 9.5 17.9 2.8 8.7
IDA 18.8 3.3 8.7 20.0 3.1 9.4 19.7 3.6 9.2

Table 1: Target hit rate (per minute) of surrogate pilots in Reacher environment. “Continuous“ uses
the default environment goal space where targets spawn anywhere in the arm’s plane of motion.
“Linear” uses goals that are restricted to a line 100cm in front of the arm. “Quadrant” uses goals that
are restricted to the top right quadrant of the workspace. “Copilot” is the pilot with a diffusion copilot
(Yoneda et al., 2023) with γ = 0.2. “IDA” is the pilot with interventional diffusion assistance. IDA
(FG) is inferenced with faux goals obtained via monte Carlo sampling and IDA (DS) is inferenced
with an expert Q function trained on a different goal distribution of five discrete goals.

control policy. At every time step while corruption is on, there is a probability of turning corruption
off. Once corruption is turned off, actions are sampled again from the expert control policy. The
noisy surrogate policy is constructed by sampling actions uniformly randomly with a 30% corruption
probability. The laggy surrogate policy actions are drawn by repeating the action at the previous time
step with an 85% corruption probability.

4.2 Reacher Experiments

We compared the performance of IDA to pilot-only and the copilot SA method of (Yoneda et al.,
2023) in the Reacher environment with targets that could randomly appear anywhere (“Continuous”
in Table 1). We introduce two additional goal spaces to probe the generalization abilities of IDA:
“Linear” and “Quadrant.” In the linear goal space, goals spawned uniformly random along a horizontal
line located 100cm in front of the arm. In the quadrant goal space, goals spawned uniformly random
in the upper right quadrant of the workspace. To use IDA without making the goal space known to
the advantage computation (Equation 6) we constructed a “faux goal” space (FG) by assuming a
uniform distribution over potential next positions as goals. We then estimated the copilot advantage
through Monte-Carlo sampling. Furthermore, we examined IDA’s performance when the goal space
is unknown during Q function training by using a domain shift (DS) environment where goals appear
randomly at one of five locations during training. In lieu of using humans, we employed laggy and
noisy surrogate control policies to emulate imperfect pilots in the Reacher environment across these
goal spaces.

We evaluated performance by quantifying hit rate, the number of targets acquired per minute. In
the continuous goal space we found that IDA always achieved performance greater than or equal to
pilot-only control and outperformed the copilot (Table 1). The expert control policy was optimal,
and IDA therefore rarely intervened with a copilot action, leading to similar performance. We also
found the laggy pilot performed relatively well because laggy actions do not significantly impair
target reaches, although it may delay target acquisition. When the policy was noisy, IDA improved hit
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Figure 2: Reacher experiments. (a) Continuous Reacher environment. (b) Laggy pilot experiments
as the number of possible goals varies. IDA performance slightly decreases as the number of possible
goals increase, but it never significantly underperforms the pilot. The copilot is significantly worse
than both the laggy pilot and IDA. (c) Noisy pilot experiments. IDA outperforms the pilot and copilot.
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rate from 1.6 to 3.3 targets per minute, approximately doubling performance. In contrast, we found
the copilot was unable to acquire any targets. This may be because the copilot is unable to infer the
precise goal location from surrogate pilot actions. Together, these results demonstrate that IDA is
simultaneously capable of preserving optimal control for high performing pilots while improving hit
rate for sub-optimal surrogate control policies, consistent with Theorem 1.

Additionally, we found that even without knowing the goal space during inference (IDA (FG)) or
training (IDA (DS)), IDA still increased or maintained the hit rate of the noisy and laggy pilots in the
continuous, linear, and quadrant goal spaces (Table 1). We also investigated how the performance of
IDA varies with goal space size when goals can appear anywhere (Figure 2a). For each evaluation,
we randomly sampled a specified number of candidate goal positions (ranging from 1 to 10, as well
as 100 and 1000) from the continuous goal space and then evaluated IDA with goals restricted to
these sampled positions. IDA consistently outperformed copilot and the noisy pilot while maintining
the performance of the laggy pilot for all goal space sizes (Figure 2b, c). Collectively, these results
demonstrate that IDA performance is robust even when the true goal space is unknown.

4.3 Lunar Lander

We next evaluated the performance of IDA in Lunar Lander with the noisy and laggy surrogate control
policies. Consistent with Yoneda et al. (2023), we modified Lunar Lander so that the landing zone
appears randomly in one of nine different locations. IDA always achieved performance greater than
or equal to the performance of the pilot-only control policy (Table 2). Under the expert policy, which
achieves 100% success rate and 0% crash rate, IDA does not degrade its performance, although copilot
does. We observed that both copilot and IDA improved the performance of noisy and laggy surrogate
control policies, with IDA consistently outperforming copilot in successful landings. Copilots and
IDA also reduced crash rates for surrogate pilots. Additionally, we compared the performance of IDA
to the penalty-based intervention approach proposed by Tan et al. (2022). Because the penalty-based
intervention in Tan et al. (2022) used an MLP, we compare it to both IDA and IA with an MLP based
copilot. We found that IA consistently achieved a higher rate of successful landings for both the noisy
and laggy surrogate pilots than penalty based intervention for both copilot architectures. We further
found that IA (MLP and IDA) yielded a lower crash rate than penalty-based intervention.

Next we examined when and why copilot intervention occurred for surrogate pilots. Because these
control policies were constructed by corrupting an expert’s control policy, we were able to characterize
intervention during periods of expert control versus corruption. We examined the distribution of
copilot-human advantage scores, which measures the fraction of the goal space over which the
copilot’s action has a higher expected return than the pilot’s action. For both the noisy and laggy
pilots, we found the distribution of copilot advantage scores were different during expert actions vs
corrupted actions (Figure 3a,b). When corrupted actions were played, there were a greater number
of states where the copilot advantage was equal to 1, indicating the copilot’s action had a greater
expected return over the entire goal space. Consistent with this, we see that intervention was more
common during periods of corruption.

Success Rate Crash Rate

Shared Autonomy Expert Noisy Laggy Expert Noisy Laggy

Pilot-only 100% 21% 61% 0% 76% 39%
Copilot (MLP) 92% 54% 85% 0% 1.6% 0.7%
Copilot (diffusion) 93.3% 75% 92% 0.3% 3% 0.7%
Intervention-Penalty (MLP) 100% 58% 76% 0% 4% 8%
IA (MLP) 99% 83% 96% 0% 0.7% 0%
IDA (diffusion) 100% 83% 100% 0% 3.3% 0%

Table 2: Performance of surrogate pilots in the Lunar Lander environment. IDA is interventional assist
with a diffusion copilot. IA (MLP) is interventional assist with an MLP copilot. Intervention-Penalty
(MLP) refers to the intervention penalty approach proposed by Tan et al. (2022)

.
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Figure 3: Analysis of copilot advantages during intervened states. (a) Characterization of intervention
during the noisy pilot control. The left plot shows the copilot advantage, which is generally higher for
corrupted (random) actions compared to pilot actions. When quantifying the number of intervened
states, we see IDA intervenes more when the corrupted actions are taken. (b) Same as (a) but for
the laggy pilot. (c) Example intervened states. In the top panel, the copilot prevents flipping. In the
bottom panel, the copilot action helps to make a graceful landing.

We also visualized example states of copilot intervention for both the noisy and laggy pilots (Fig-
ure 3c). In two representative examples, we see that intervention generally occurs to stabilize and
prevent the rocket ship from crashing or flipping over. In Figure 3c (top), we observe that during
intervention, the copilot applies lateral thrust to the rocket to prevent it from rotating sideways despite
the pilot operator attempting to fire the main rocket, which would result in a destabilizing rotation
of the rocket ship. In Figure 3c (bottom), we observe that intervention occurred during landing
where the copilot increased the amount of thrust on the main thruster to soften the touch down
while simultaneously applying thrust on the right rocket to level the rocket ship for landing. In both
instances, the copilot action prevented the rocket ship from entering a universally low-value state.

4.4 Lunar Lander with Human-in-the-loop Control

Given IDA improved the performance of surrogate pilots in Lunar Lander, we performed experiments
with eight human participants. Participants played Lunar Lander using pilot-only, copilot, or IDA.
Participants used a Logitech game controller with two joysticks to control the rocket ship. The left
joystick controlled the lateral thrusters and the right joystick controlled the main thruster. Each
participant performed three sequences of 3 experimental blocks (pilot, copilot, IDA) for a total of 9
blocks (see Appendix D for experiment block details). Each block consisted of 30 trials (episodes).
Participants were blind to what block they were playing. The game was rendered at 50 fps.

Human pilots experienced considerable difficulty playing Lunar Lander, successfully landing at
the goal locations only 14% of the time (Table 3). Copilot control allowed humans participants to
successfully land the rocket ship at the goal locations 68.2% of the time. However, the copilot also
frequently prevented any landing, resulting in a timeout in 13.8% of trials (0% in pilot only and
0.1% in IDA). While this led to a lower crash rate (3.6%), it also reduced user autonomy and overall

Human-in-the-Loop Lunar Lander

Success Rate Crash Rate Timeout Rate Out of Goal Landing

Human Pilot 14.0 (16.8) % 85.8 (16.7) % 0.0 (0.0) 0.2 (0.6) %
w/ Copilot 68.2 (9.1) % 3.6 (2.4) % 13.8 (5.5) 14.4 (3.6)%
w/ IDA 91.7 (4.9) % 8.2 (5.1) % 0.1 (0.4) 0.0 (0.0) %

Table 3: Results of human pilots playing Lunar Lander. Mean and (standard error of the mean)
presented for each metric.
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lowered the success rate. In contrast, IDA achieved the highest performance, enabling participants to
successfully land at the goal location 91.7% of the time which was significantly higher than pilot
(p < 0.01, Wilcoxon signed-rank) and copilot (p < 0.01, Wilcoxon signed-rank) control. IDA also
resulted in a significant reduction of crash rate when compared to human pilot control (p < 0.01,
Wilcoxon signed-rank).

To quantify the level of ease, control, and autonomy human participants felt in each block (pilot only,
copilot, IDA), we asked participants to provide a subjective rating in response to multiple questions.
We asked participants to rate which blocks felt easiest, most controllable, and most autonomous.
To assess ease of control, we asked: “How easy was the task of landing the rocket ship at the goal
location?” To assess how much control the participants had, we asked: “How in control did you
feel when performing this task?” However, participants may not have felt much control even in
pilot-only mode, so to assess autonomy, we asked: “How much do you believe your inputs affected
the trajectory of the rocketship?” All questions were answered on a scale of 1 to 5 with 5 indicating
the easiest, most in control, or most autonomy, respectively. We found that humans subjectively prefer
IDA to baseline copilot assistance in terms of ease of use, controllability, and preserving autonomy
(p < 0.01, Wilcoxon signed-rank).

5 Conclusion and Discussion

IDA
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Figure 4: Participants rated IDA as the
easiest and most controllable condition.
Participants subjectively rated IDA as
achieving a similar level of autonomy to
pilot only control but significantly better
than copilot control.

Our primary contribution is Interventional Assistance (IA):
a hyperparameter-free and modular framework that plays a
copilot action when it is better than the pilot action across
all possible goals. We find that IA outperforms previous
methods for intervention based shared autonomy proposed
by Tan et al. (2022) as well as traditional copilot-only
based methods for control sharing (Yoneda et al., 2023;
Reddy et al., 2018). Furthermore, we empirically demon-
strated IDA (IA with a Diffusion copilot) improves both
objective task performance and subjective satisfaction with
real human pilots in Lunar Lander (Figure 4). While prior
SA systems may degrade pilot performance, particularly
when copilots incorrectly infer the pilot’s goal (Tan et al.,
2022; Du et al., 2021), IA does not degrade human perfor-
mance (Theorem 1) and often improves it.

One limitation of our approach is that we must train an
autonomous agent in a simulated environment to obtain an
expert Q function. However, this is not a fundamental requirement to learn an intervention function.
A straightforward extension of the current work may use an offline dataset of expert demonstrations
to train an ensemble of Q-networks (Chen et al., 2021). In general, while IA requires access to an
expert Q function it makes no assumptions about how that Q function is obtained and we leave
various methods of obtaining a Q function as directions for future work.

Additionaly, IDA demonstrated resilience across changes in goal space and can be easily adapted
to real world settings where the goal space is unknown by construction of these faux goal spaces.
Of course, in many settings task structure can be leveraged to further constrain the goal space and
improve the assistance IA is able to provide. In these settings, another direction for future work is an
implementation of IA that leverages a belief system to differentially weight candidate goals. Future
work could potentially improve IA by removing unlikely goals from the advantage computation.
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A Proof of Theorem 1

In this section, we will prove the theoretical guarantees on the performance of the interventional
assistance (IA) in Theorem 1. We first introduce several useful lemmas.

First, we introduce a lemma for later use by following the Theorem 3.2 in (Xue et al., 2023).
Lemma 1. For any behavior policy πI deduced by a copilot policy πc, a pilot policy πp, and an
intervention function T(s, ap, ac), the state distribution discrepancy between πI and πc is bounded
by the policy discrepancy and intervention rate:

∥τπI
− τπc

∥1 ≤ (1− β)γ

1− γ
Es∼τπI

∥πc(·|s)− πp(·|s)∥1 , (9)

where β =
Es∼τπI

,ac∼πc,ap∼πp∥T(s,ap,ac)[πc(ac|s)−πp(ap|s)]∥1

Es∼τπI
,ac∼πc,ap∼πp∥πc(ac|s)−πp(ap|s)∥1

is the weighted expected intervention
rate. τπI

and τπc
are the corresponding state visitation distributions following πI and πc, respectively.

Proof. We begin with the result of Theorem 3.2 in (Xue et al., 2023),

∥τπI
− τπc

∥1 ≤ γ

1− γ
Es∼τπI

∥πI(·|s)− πc(·|s)∥1

=
γ

1− γ
Es∼τπI

,ac∼πc,ap∼πp ∥Tπc(ac|s) + (1−T)πp(ap|s)− πc(ac|s)∥1

=
γ

1− γ
Es∼τπI

,ac∼πc(·|s),ap∼πp(·|s) ∥(1−T(s, ap, ac)) [πp(·|s)− πc(·|s)]∥1

=
(1− β)γ

1− γ
Es∼τπI

∥πc(·|s)− πp(·|s)∥1 .

To prove the theorem, the key lemma we use is the policy difference lemma in (Schulman et al.,
2015) introduced below. It introduces one policy’s advantage function computed on states and actions
sampled from another policy’s generated trajectory. Here, the advantage function is defined as
Aπ′

(s, a) = Qπ′
(s, a) − V π′

(s) and V π′
(s) = Ea∼π′Q(s, a) is the state value function. J(π) =

Es0∼d0,at∼π(·|st),st+1∼P (·|st,at)[
∑∞

t=0 γ
tr(st, at)] is the expected return following policy π.

Lemma 2 (Policy difference lemma). Let π and π′ be two policies. The difference in expected returns
can be represented as follows:

J(π)− J(π′) = Est,at∼τπ

[ ∞∑
t=0

γtAπ′
(st, at)

]
(10)

We introduce two lemmas that exploits the intervention function we proposed in Section 3.4.
Lemma 3. The Q value of the behavior action under the expert’s Q estimate is greater or equal to
the Q value of the pilot action.

Ea∼πI(·|s)Q
πe(s, a) ≥ Eap∼πp(·|s)Q

πe(s, ap) (11)

Proof. According to the intervention function T in Equation 8, intervention happens when the copilot
advantage function A(s̃, ac, ap) = 1. If we consider F to be the sign function, then according to
Equation 6, A(s̃, ac, ap) = 1 means for all goals we will always have I(s̃, ac|ĝ) > I(s̃, ap|ĝ),∀ĝ.
Recall I(s̃t, ãt|ĝ) = Qπe(s̃t, ãt|ĝ), when intervention happens, we will have:

Qπe(s̃t, ac|ĝ) > Qπe(s̃t, ap|ĝ),∀ĝ (12)
Therefore,

T(s, ac, ap)Q
πe(s̃t, ac|ĝ) ≥ T(s, ac, ap)Q

πe(s̃t, ap|ĝ),∀ĝ, (13)
where the equality holds when intervention does not happen and T = 0.

Now we introduce the expectation over the behavior policy.
Ea∼πI(·|s)Q

πe(s̃t, a|ĝ) = Eap∼πp
Eac∼πc

TQπe(s̃t, ac|ĝ) + (1−T)Qπe(s̃t, ap|ĝ) (14)
≥ Eap∼πp

Qπe(s̃t, ap|ĝ),∀ĝ (15)

The above equation holds for arbitrary ĝ. Therefore Ea∼πI(·|s)Q
πe(s, a) ≥ Eap∼πp

Qπe(s, ap).
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Similar to Lemma 3, we have:
Lemma 4. The Q value of the behavior action under the expert’s Q estimate is greater or equal to
the Q value of the copilot action.

Ea∼πI(·|s)Q
πe(s, a) ≥ Eac∼πcQ

πe(s, ac) (16)

Proof. According to the intervention function T in Equation 8, intervention happens when the copilot
advantage function A(s̃, ac, ap) = 1. If we consider F to be the sign function, then according to
Equation 6, A(s̃, ac, ap) = 1 means for all goals we will always have I(s̃, ac|ĝ) > I(s̃, ap|ĝ),∀ĝ.
Recall I(s̃t, ãt|ĝ) = Qπe(s̃t, ãt|ĝ), when the intervention does not happen, we will have:

Qπe(s̃t, ac|ĝ) ≤ Qπe(s̃t, ap|ĝ),∀ĝ (17)

Therefore,

(1−T(s, ac, ap))Q
πe(s̃t, ap|ĝ) ≥ (1−T(s, ac, ap))Q

πe(s̃t, ac|ĝ),∀ĝ, (18)

Now we introduce the expectation over the behavior policy.

Ea∼πI(·|s)Q
πe(s̃t, a|ĝ) = Eap∼πp

Eac∼πc
TQπe(s̃t, ac|ĝ) + (1−T)Qπe(s̃t, ap|ĝ) (19)

≥ Eac∼πc
Qπe(s̃t, ac|ĝ),∀ĝ (20)

The above equation holds for arbitrary ĝ. Therefore Ea∼πI(·|s)Q
πe(s, a) ≥ Eac∼πc

Qπe(s, ac).

We introduce another useful lemma.
Lemma 5 (State Distribution Difference Bound). Let π and π′ be two policies, and let τπ : S → [0, 1]
and τπ′ : S → [0, 1] be the corresponding state visitation distributions. For any state-dependent
function f(s) that is bounded by M (i.e., ∥f(s)∥1 ≤ M for all s), the difference in expectations of
f(s) under these two distributions is bounded as follows:∣∣Es∼τπ [f(s)]− Es∼τπ′ [f(s)]

∣∣ ≤ M∥τπ − τπ′∥1, (21)

where
∥τπ − τπ′∥1 =

∑
s

|τπ(s)− τπ′(s)| . (22)

is the total variation distance between two distributions τπ and τπ′ .

Proof. The expectation of f(s) under the state distribution τπ can be written as:

Es∼τπ [f(s)] =
∑
s

τπ(s)f(s). (23)

Similarly, for policy π′:
Es∼τπ′ [f(s)] =

∑
s

τπ′(s)f(s). (24)

The difference in these expectations is:

∣∣Es∼τπ [f(s)]− Es∼τπ′ [f(s)]
∣∣ = ∣∣∣∣∣∑

s

(τπ(s)− τπ′(s))f(s)

∣∣∣∣∣ ≤ ∑
s

|τπ(s)− τπ′(s)| |f(s)| . (25)

Given that ∥f(s)∥1 ≤ M , we have:∑
s

|τπ(s)− τπ′(s)| |f(s)| ≤ M
∑
s

|τπ(s)− τπ′(s)| = M∥τπ − τπ′∥1. (26)

Thus, combining these bounds, we have:∣∣Es∼τπ [f(s)]− Es∼τπ′ [f(s)]
∣∣ ≤ M∥τπ − τπ′∥1. (27)

This completes the proof.
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A.1 The relationship between the behavior policy and the pilot policy

In this section, we will lower bound the performance of the IDA policy J(πI) by the performance of
the pilot policy J(πp) under certain conditions.
Theorem 2. Let J(π) = Es0∼d0,at∼π(·|st),st+1∼P (·|st,at)[

∑∞
t=0 γ

tr(st, at)] be the expected dis-
counted return of following a policy π. Then for any behavior policy πI deduced by a copilot policy
πc, a pilot policy πp, and an intervention function T(s, ap, ac),

J(πI) ≥ J(πp)− βR

[
γ

1− γ

]2
Es∼dπI

∥πc(· | s)− πp(· | s)∥1 , (28)

wherein R = Rmax − Rmin is the range of the reward, β =
Es∼τπI

∥T(πc(·|s)−πp(·|s))∥1

Es∼τπI
∥πc(·|s)−πp(·|s)∥1

is the

weighted expected intervention rate, and the L1-norm of output difference ∥πc(·|s)− πp(·|s)∥1 =∫
A |πc(a|s)− πp(a|s)|da is the discrepancy between πc and πp on state s.

Proof. By following Lemma 2, we have

J(πI)− J(πe) (29)

= Es,a∼τπI

[ ∞∑
t=0

γtAπe(s, a)

]
(30)

= Es,a∼τπI

[ ∞∑
t=0

γt (Qπe(s, a)− V πe(s))

]
(31)

= Es∼τπI

[ ∞∑
t=0

γt
(
Ea∼πI(·|s)Q

πe(s, a)− V πe(s)
)]

(32)

By following Lemma 3, we continue to have:

Es∼τπI

[ ∞∑
t=0

γt
(
Ea∼πI(·|s)Q

πe(s, a)− V πe(s)
)]

(33)

≥ Es∼τπI

[ ∞∑
t=0

γt
(
Eap∼πp(·|s)Q

πe(s, ap)− V πe(s)
)]

(34)

= Es∼τπI

[ ∞∑
t=0

γt
(
Eap∼πp(·|s)A

πe(s, ap)
)]

(35)

At the same time, we have

J(πp)− J(πe) = Es∼τπp

[ ∞∑
t=0

γt
(
Eap∼πp(·|s)A

πe(s, ap)
)]

(36)

We want to relate Equation 35 with Equation 36, which has the expectation over state distribution
τπp

, instead of τπI
.

To solve the mismatch, we apply Lemma 5. Here, we let

f(s) =

∞∑
t=0

γtEap∼πp(·|s)A
πe(s, ap). (37)

We have ∥f(s)∥ ≤
γ

1− γ
R = M , where R = Rmax − Rmin is the range of the reward. Lemma 5

bounds the difference in expectations of f(s) under the state distributions τπp and τπI
as follows:∣∣∣Es∼τπp

[f(s)]− Es∼τπI
[f(s)]

∣∣∣ ≤ M∥τπp − τπI
∥1 (38)
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Substituting f(s) into this inequality, we get:∣∣∣∣∣Es∼τπp

[ ∞∑
t=0

γtEap∼πp(·|s)A
πe(s, ap)

]
− Es∼τπI

[ ∞∑
t=0

γtEap∼πp(·|s)A
πe(s, ap)

]∣∣∣∣∣ ≤ ϵ, (39)

where ϵ = M∥τπp − τπI
∥1.

Thus, we can write:

Es∼τπI

[ ∞∑
t=0

γtEap∼πp(·|s)A
πe(s, ap)

]
≥ Es∼τπp

[ ∞∑
t=0

γtEap∼πp(·|s)A
πe(s, ap)

]
− ϵ, (40)

From the deduction above, we have J(πI)− J(πe) ≥ Es∼τπI

[∑∞
t=0 γ

tEap∼πp(·|s)A
πe(s, ap)

]
and

the right hand side except ϵc is J(πc)− J(πe).

Therefore,

J(πI)− J(πe) ≥ J(πp)− J(πe)− ϵ. (41)

According to the Theorem 3.2 in (Xue et al., 2023) (Lemma 1), we have

∥τπp − τπI
∥1 ≤ βγ

1− γ
Es∼dπI

∥πc(· | s)− πp(· | s)∥1 , (42)

where β =
Es∼τπI

∥T(πc(·|s)−πp(·|s))∥1

Es∼τπI
∥πc(·|s)−πp(·|s)∥1

is the weighted expected intervention rate. Therefore, the ϵ

can be upper bounded by:

ϵ = M∥τπp
− τπI

∥1 ≤ βR

[
γ

1− γ

]2
Es∼dπI

∥πc(· | s)− πp(· | s)∥1 . (43)

Therefore, we have:

J(πI) ≥ J(πp)− βR

[
γ

1− γ

]2
Es∼dπI

∥πc(· | s)− πp(· | s)∥1 . (44)

This is the lower limit for IDA in terms of the pilot.

A.2 The relationship between the behavior policy and the copilot policy

In this section, we will lower-bound the performance of the IDA policy J(πI) by the performance of
the copilot policy J(πc).
Theorem 3. Let J(π) = Es0∼d0,at∼π(·|st),st+1∼P (·|st,at)[

∑∞
t=0 γ

tr(st, at)] be the expected dis-
counted return of following a policy π. Then for any behavior policy πI deduced by a copilot policy
πc, a pilot policy πp, and an intervention function T(s, ap, ac),

J(πI) ≥ J(πc)− (1− β)R

[
γ

1− γ

]2
Es∼dπI

∥πc(· | s)− πp(· | s)∥1 . (45)

Proof. According to Lemma 4,

J(πI)− J(πe) (46)

=Es,a∼πI

[ ∞∑
t=0

γtAπe(s, a)

]
(47)

=Es,a∼πI

[ ∞∑
t=0

γtQπe(s, a)− V πe(s)

]
(48)

≥Es∼πI

[
Eac∼πc(·|s)

∞∑
t=0

γt
[
Qπe(s, ac)− V πe(s)

]]
(49)
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With Lemma 2, we have

J(πc)− J(πe) = Es∼τπc

[ ∞∑
t=0

γt
(
Eac∼πc(·|s)A

πe(s, ac)
)]

(50)

Now we will use Lemma 5, letting

fc(s) =

∞∑
t=0

γtEac∼πc(·|s)A
πe(s, ac). (51)

We will have ∥fc(s)∥ ≤
γ

1− γ
R = M , where R = Rmax −Rmin is the range of the reward. Lemma 5

bounds the difference in expectations of f(s) under the state distributions τπc
and τπI

as follows:∣∣∣Es∼τπc
[fc(s)]− Es∼τπI

[fc(s)]
∣∣∣ ≤ M∥τπc

− τπI
∥1 (52)

Substituting f(s) into this inequality, we get:∣∣∣∣∣Es∼τπc

[ ∞∑
t=0

γtEac∼πc(·|s)A
πe(s, ac)

]
− Es∼τπI

[ ∞∑
t=0

γtEac∼πc(·|s)A
πe(s, ac)

]∣∣∣∣∣ ≤ ϵc, (53)

where ϵc = M∥τπc
− τπI

∥1 .

Thus, we can write:

Es∼τπI

[ ∞∑
t=0

γtEac∼πc(·|s)A
πe(s, ac)

]
≥ Es∼τπc

[ ∞∑
t=0

γtEac∼πc(·|s)A
πe(s, ac)

]
− ϵc. (54)

By substituting Equation 49 and Equation 50 into Equation 54, we have:

J(πI)− J(πe) ≥ J(πc)− J(πe)− ϵc. (55)

By using Lemma 1, we have ϵc = M∥τπc
− τπI

∥1 upper-bounded by:

ϵc ≤ (1− β)R

[
γ

1− γ

]2
Es∼dπI

∥πc(· | s)− πp(· | s)∥1 . (56)

Therefore, we have:

J(πI) ≥ J(πc)− (1− β)R

[
γ

1− γ

]2
Es∼dπI

∥πc(· | s)− πp(· | s)∥1 . (57)

This is the lower bound of IA in terms of the copilot.

A.3 Safety and Performance Guarantees of IA

We now prove our main theorem on the performance guarantees of following the IA policy, restated
below:
Theorem 1. Let J(π) = Es0∼d0,at∼π(·|st),st+1∼P (·|st,at)[

∑∞
t=0 γ

tr(st, at)] be the expected dis-
counted return of following a policy π. Then, the performance following the Interventional Assistance
policy (or behavior policy) πI has the following guarantees:

1. For a near-optimal pilot, (Qπe(s, ap) ≈ maxa∗ Qπe(s, a∗)), πI is lower bounded by πp:

J(πI) ≥ J(πp).

2. For a low performing pilot, (Qπe(s, ap) ≈ mina Q
πe(s, a)), πI is low bounded by πc:

J(πI) ≥ J(πc).
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Proof. From equation 44 and equation 57 we have obtained the following lower bounds on the
performance of IA,

J(πI) ≥ J(πc)− (1− β)R

[
γ

1− γ

]2
Es∼dπI

∥πc(· | s)− πp(· | s)∥1 (58)

J(πI) ≥ J(πp)− βR

[
γ

1− γ

]2
Es∼dπI

∥πc(· | s)− πp(· | s)∥1 (59)

For a near optimal pilot,
Q(s, ap) ≈ max

a
Qπe(s, a) (60)

and therefore,
Q(s, ap) ≥ Q(s, ac). (61)

This means that T (s, ap, ac) ≈ 0 and therefore β ≈ 0. When we take the limit of the pilot lower
bound as β → 0, we have:

lim
β→0

[
J(πI) ≥ J(πp)− βR

[
γ

1− γ

]2
Es∼dπI

∥πc(· | s)− πp(· | s)∥1

]
(62)

which simplifies to
J(πI) ≥ J(πp). (63)

Similarly for a pilot that is far from optimal,

Q(s, ap) ≈ min
a

Qπe(s, a) (64)

and therefore
Q(s, ap) ≤ Q(s, ac). (65)

This means that T (s, ap, ac) ≈ 1 and therefore β ≈ 1. When we take the limit of the copilot lower
bound as β → 1, we have:

lim
β→1

[
J(πI) ≥ J(πc)− (1− β)R

[
γ

1− γ

]2
Es∼dπI

∥πc(· | s)− πp(· | s)∥1

]
(66)

which simplifies to
J(πI) ≥ J(πc). (67)

We have therefore shown that for a near optimal pilot, IA is guaranteed to not degrade performance,
and for a very poor pilot, IA is guaranteed to do at least as good as the copilot.

B Computational Cost of IDA

We found that the computation time for IDA inference only slightly increase as the size of the goal
space increases (Table B.1). In all our experiments, we approximate continuous goal spaces by
sampling 1,000 candidate goals which costs about 3 ms. This is sufficiently fast for most real-time
control applications. Performance could further be improved by using Monte-Carlo estimates as done
in the Faux-Goal experiments.

Time 1 2 3 4 5 10 100 1000 10000 100000

(ms) 2.0 2.1 2.2 2.3 2.3 2.0 2.1 3.1 2.5 11.7

Table B.1: Computation time of Advantage Function v. Number of Goals on a single RTX 3080Ti
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C Examples of Real Human Intervention

We found that, for human experiments in Lunar Lander, interventions by IDA are most common
at the start of episodes and when touching down (Figure C.1). Each episode starts with a random
disruptive force applied to the rocket so it makes sense that intervention should occur initially to
ensure the human maintains a stable flight. Additionally, the rocket ship is very sensitive to the speed
and orientation when touching down. Interventions near touch down likely serve to prevent collisions
with the ground.
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Horizontal Position
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en
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eq
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Rocketship Altitude (m)
0 1.4

Figure C.1: Intervention tends to occur near the start of trajectories to stabalize the rocket and then
again near the end of trajectories to assist the touch down.

D Human-in-the-Loop Lunar Lander Experimental Design

Eight (2 female, 6 male) participants with no prior experience performed 3 sequences of Lunar Lander
experiments. All participants were compensated with a gift card for their time and involvement in
the study. Each sequence consisted of 3 experimental blocks (30 episodes per block) of pilot-only,
copilot, and IDA control (Figure D.1). An episode of lunar lander timed out after 30 seconds. In total,
each participant played 270 episodes of Lunar Lander, 90 for each condition of pilot-only, copilot,
and IDA.

...30 episodes
IDA
copilot
pilot
Block 1 Block 2 Block 3 Block 4 Block 5 Block 6 Block 7 Block 8 Block 9

Sequence 1 Sequence 2 Sequence 3

Figure D.1: All participants completed 3 sequences of three blocks. Each sequence was composed of
a pilot-only, copilot, and IDA control block. Each block consisted of 30 episodes.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We rigorously develop the IDA SA framework as described in the introduction
in sections 3.1-3.6. We further empirically demonstrate the utility of our framework in
Section 4.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss the limitations of our approach in the discussion. In particular,
we discuss the limitations of training a fully autonomous agent to perform the task and the
assumptions that space of possible goals is known.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: We provide a proof of theorem 1 in appendix A. All the preliminaries for
Theorem 1 are defined in sections 3.1-3.4
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide a description of our methods in section 3.1-3.5 as well as pro-
vided references for methods we adopted. We also provide descriptions of the gymnasium
environments that we use which are all publically available.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
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some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide code as a supplementary zip file. Polished code will be released
with the paper along with set up and installation instructs to allow others to reproduce results
as well as build future work.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Parameters for training are provided in sections 3 and 4.1. We specify the
agents and environments that we use to perform training.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Error bars corresponding to standard error of the mean are included on plots in
figures 2, 3, and 4.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Training hardware and time is described in Section 3.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have reviewed the Code of Ethics to ensure our paper complies with them.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss in the introduction the broader impacts of developing shared
autonomy systems and the overall need to develop AI that assists humans and does not
repalce humans.

22

128351https://doi.org/10.52202/079017-4075

https://neurips.cc/public/EthicsGuidelines


Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Or paper leverages publically available models and datasets and builds a model
for performing shared human-AI control. No new foundation models or datasets are released
with our research.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All the methods we adapt for training various parts of IDA are cited in section
3.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
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• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We do not introduce new assets in this paper.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [Yes]
Justification: Experimental set-up for human experiments is described in section 4.4. Com-
pensation is also reported in section 4.1
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [Yes]
Justification: We obtained consent from all subjects and all experiments were IRB approved.
Guidelines:
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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