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Abstract

Synthetic Aperture Radar (SAR) object detection has gained significant attention
recently due to its irreplaceable all-weather imaging capabilities. However, this
research field suffers from both limited public datasets (mostly comprising <2K
images with only mono-category objects) and inaccessible source code. To tackle
these challenges, we establish a new benchmark dataset and an open-source method
for large-scale SAR object detection. Our dataset, SARDet-100K, is a result of
intense surveying, collecting, and standardizing 10 existing SAR detection datasets,
providing a large-scale and diverse dataset for research purposes. To the best of
our knowledge, SARDet-100K is the first COCO-level large-scale multi-class SAR
object detection dataset ever created. With this high-quality dataset, we conducted
comprehensive experiments and uncovered a crucial challenge in SAR object
detection: the substantial disparities between the pretraining on RGB datasets and
finetuning on SAR datasets in terms of both data domain and model structure.
To bridge these gaps, we propose a novel Multi-Stage with Filter Augmentation
(MSFA) pretraining framework that tackles the problems from the perspective of
data input, domain transition, and model migration. The proposed MSFA method
significantly enhances the performance of SAR object detection models while
demonstrating exellent generalizability and flexibility across diverse models. This
work aims to pave the way for further advancements in SAR object detection. The
dataset and code is available at https://github.com/zcablii/SARDet_100K.

1 Introduction

Synthetic Aperture Radar (SAR) [57; 60]is a pivotal technology in remote sensing, providing numer-
ous advantages over traditional optical sensors. Notably, SAR possesses the capability to acquire
geographical images under any weather conditions, irrespective of factors such as sunlight, land
cover, or certain types of camouflage, as demonstrated in Fig. 1(a). As a consequence of these ad-
vantages, SAR has found extensive applications in critical domains, including national defence [48],
humanitarian relief [3; 68], camouflage detection [19], and geological exploration [51; 24].

With its invaluable benefits, the field of SAR object detection has garnered increasing attention. In
recent years, there has been a substantial increase in the number of research papers focusing on this
field, as illustrated in Fig. 1(b). Despite the increasing influence, this research area has suffered from
significant challenges including limited resources and transferring gaps.

Limited resources. A significant obstacle in high-resolution SAR image object detection is the
sensitivity of SAR images, coupled with the high costs associated with annotating these images. This
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Fig. 1: (a) Advantages of SAR image: independent of weather conditions, sunlight and
land cover. (b) Number of papers (in thousands) retrieved from Google Scholar using
keywords “SAR Detection”.
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Figure 1: (a) Advantages of SAR image: independent of weather conditions, sunlight and land cover.
(b) Number of papers (thousands) retrieved from Google Scholar using keywords “SAR Detection”.

severely restricts the availability of public datasets. Existing datasets, such as SAR-AIRcraft [90], Air-
SARShip [76], SSDD [84], and HRSID [71], typically consist of a singular type of object against a
simplistic background. Moreover, these datasets are generally limited in scale, potentially introducing
bias when evaluating different methodologies. Additionally, a notable barrier to advancing research
in SAR object detection is the lack of publicly accessible source code, making it challenging to
reproduce previous research findings and conduct fair comparisons or build upon existing work.

To address this problem, we merge the most publicly available SAR detection datasets. This effort
includes a comprehensive review of current public SAR detection resources, followed by the collection
and standardization of these datasets into a uniform format, creating a unified large-scale multi-class
dataset for SAR object detection, named SARDet-100k. This dataset comprises approximately 117k
images and 246k instances of objects across six distinct categories. To our knowledge, SARDet-100k
is the first dataset of COCO-scale magnitude in this research area. It significantly contributes to
overcoming the previously mentioned limitations by providing a rich resource for the development
and evaluation of SAR object detection models. Moreover, the dataset and source code will be made
publicly available.

Transferring gaps. Through our empirical research and detailed analysis, we have identified that a
principal hurdle in SAR object detection is the significant domain gap and model gap encountered
when transferring a backbone network pretrained on natural RGB datasets (e.g., ImageNet [17]), to
a detection network on SAR imagery. The domain gap stems from the stark visual discrepancies
between RGB and SAR imagery, whereas the model gap arises from the model differences between
the pretrained backbone and the whole detection framework employed in the downstream task.

To mitigate the aforementioned domain gap and model gap, we propose a novel Multi-Stage with
Filter Augmentation (MSFA) pretraining framework to bridge these gaps. This framework addresses
the challenge from multiple angles: data input, domain transition, and model migration, each tailored
to the unique properties of the SAR image detection task. For data input: to address the input domain
gap between the pretrain and finetune datasets, we employ traditional, handcrafted feature descriptors.
These descriptors efficiently transform the input data from pixel space to a feature space that is not
only robust to noise but also statistically narrows the gap between data from RGB and SAR modalities
(see Fig. 2(a)), thereby enhancing the transferability of pretrained knowledge. For domain transition:
we propose a domain transition bridge utilizing an optical remote sensing detection dataset. This
bridge connects natural RGB images through optics correlation and SAR images through object
correlation, establishing a hierarchical pretraining approach that effectively closes the domain gap
between RGB and SAR imagery (see Fig. 2(b)). For model migration: to guarantee thorough training
of the entire detection framework and to facilitate complete model migration for finetuning, we
employ the entire detector as a bridging model throughout the multi-stage pretraining process.

The MSFA framework demonstrates remarkable efficacy in reducing the substantial domain and
model gaps typically encountered between the pretraining and finetuning stages. MSFA is not only
effective but also general and applicable across various modern deep neural networks.
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Our contribution to the field of SAR object detection can be concluded into the following FOUR
points:

• Introduction of the first COCO-level large-scale dataset for SAR multi-category object detection.
• Identification of critical gaps in traditional model pretrain and finetune approaches for SAR

object detection.
• Proposal of a Multi-Stage with Filter Augmentation (MSFA) pretraining framework, which

demonstrates remarkable effectiveness, as well as excellent generalizability and flexibility across
various deep network models.

• Establishment of a new benchmark in SAR object detection by releasing the datasets and code
associated with our research. This contribution is expected to foster further advancements and
progress in the field.

2 Related Work

2.1 SAR Images and Handcraft Features

SAR imaging often suffers from poor image quality due to multiplicative speckle noise and arti-
facts [57; 47]. To mitigate this, many traditional handcrafted feature descriptors have been developed
or adapted to extract more discernible features from SAR images. These include Histogram of
Oriented Gradients [15] (HOG), Canny Edge Detector [5], Gradient by Ratio Edge (GRE) [29], Haar-
like [62] Feature Descriptor and Wavelet Scattering Transform [45] (WST). Early works employed
traditional algorithms, such as HOG for SAR object recognition [56; 49], Canny [28; 38] for edge
detection. However, in recent years, the field of SAR image analysis has been largely dominated by
deep learning approaches.

While recent studies have focused on tasks related to low-level processing [69; 86], classification [83;
85; 93; 26; 50; 78] and pretrain [29; 29], they have attempted to integrate classic handcrafted features
into modern neural networks for robust SAR image feature extraction and refinement. In contrast,
our work does not simply inject such handcrafted features into networks, but explores the benefits
and potentials of handcrafted features in domain adaptation and SAR object detection under modern
deep neural networks. This research area remains largely unexplored, and our work aims to bridge
this gap.

2.2 SAR Object Detection

Various popular deep learning-based object detection frameworks, including RetinaNet [33],
FCOS [59], GFL [30], RCNN series [53; 4], YOLO series [52; 10], and DETR [6], demonstrate
remarkable generalizability in the field of general object detection. Additionally, modern backbone
networks such as ConvNext [42], VAN [22], LSKNet [31] and Swin Transformer [41] are designed
to efficiently and effectively model visual features. However, SAR image object detection poses
unique challenges due to factors such as small object size, speckle noise, and sparse information
inherent in SAR images. As a result, recent deep learning methods for SAR object detection primarily
focus on network and module design to address these challenges. Approaches like MGCAN [9],
MSSDNet [91], and SEFEPNet [79] enhance object features through multiscale feature fusion.
Quad-FPN [82] combines four distinct feature pyramid networks for thorough multiscale feature
interaction to alleviate noise interferences and multi-scale object feature misalignment. PADN [88]
and EWFAN [65] employ attention mechanisms to enhance object features in the presence of SAR
speckle noise. CenterNet++ [21], an extension of CenterNet [92], incorporates feature enhancement,
multi-scale fusion, and head refinement modules to improve the detector’s robustness specifically for
SAR images. Additionally, CRTransSar [74], built on the high-performance Swin transformer [41],
leverages context representation learning to enhance object features.

While most existing works concentrate on mitigating SAR speckle noise interference through network
structure improvements, few attempts to address the issue at the level of input data. Furthermore,
most studies utilize ImageNet pretrained backbones as the initialization of the detection framework,
overlooking the substantial domain gap between the pretrained nature scenes dataset and the finetuned
SAR dataset, as well as the model gap between the backbone and the entire detection framework.
Instead, we seek to address these unique challenges through a carefully designed pretraining strategy.
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Table 1: Image and instance level statistics of SARDet-100K dataset. *: Origin datasets are cropped
into 512 × 512 patches. Ins: Instances, Img: Images.

Images InstancesDataset
Train Val Test ALL Train Val Test ALL

Ins/Img

AIR_SARShip 1* [76] 438 23 40 501 816 33 209 1,058 2.11
AIR_SARShip 2 [76] 270 15 15 300 1,819 127 94 2,040 6.80

HRSID [71] 3,642 981 981 5,604 11,047 2,975 2,947 16,969 3.03
MSAR* [75] 27,159 1,479 1,520 30,158 58,988 3,091 3,123 65,202 2.16
SADD [80] 795 44 44 883 6,891 448 496 7,835 8.87

SAR-AIRcraft* [90] 13,976 1,923 2,989 18,888 27,848 4,631 5,996 38,475 2.04
ShipDataset [67] 31,784 3,973 3,972 39,729 40,761 5,080 5,044 50,885 1.28

SSDD [84] 928 116 116 1,160 2,041 252 294 2,587 2.23
OGSOD [63] 14,664 1,834 1,833 18,331 38,975 4,844 4,770 48,589 2.65
SIVED [35] 837 104 103 1,044 9,561 1,222 1,230 12,013 11.51

SARDet-100k 94,493 10,492 11,613 116,598 198,747 22,703 24,023 245,653 2.11

Table 2: SARDet-100K source datasets information. GF-3: Gaofen-3, S-1: Sentinel-1. Target
categories S: ship, A: aircraft, C: car, B: bridge, H: harbour, T: tank.

Datasets Target Res. (m) Band Polarization Satellites License

AIR_SARShip [76] S 1,3m C VV GF-3 -

HRSID [71] S 0.5∼3m C/X HH, HV, VH, VV S-1B,TerraSAR-X,TanDEMX GNU General Public

MSAR [75] A, T, B, S ≤ 1m C HH, HV, VH, VV HISEA-1 CC BY-NC 4.0

SADD [80] A 0.5∼3m X HH TerraSAR-X -

SAR-AIRcraft [90] A 1m C Uni-polar GF-3 CC BY-NC 4.0

ShipDataset [67] S 3∼25m C HH, VV, VH, HV S-1,GF-3 -

SSDD [84] S 1∼15m C/X HH, VV, VH, HV S-1,RadarSat-2,TerraSAR-X Apache2.0

OGSOD [63] B, H, T 3m C VV/VH GF-3 -

SIVED [35] C 0.1,0.3m Ka,Ku,X VV/HH Airborne SAR synthetic slice -

3 A New Benchmark Dataset for SAR Object Detection

3.1 Current Status

SAR images are typically captured by satellites, and there is a wealth of low-resolution SAR
imagery available, often with a Ground Sample Distance (GSD) of 10m × 10m or larger. Platforms
like Sentinel-1 [12] provide access to these images, which offer a macroscopic view of various
geophysical places such as cities, mountains, rivers, and cultivated land. This makes them particularly
advantageous for scene classification tasks. However, the inherent low resolution of these images
constrains their capability to delineate fine details of smaller objects, such as ships, cars, and airplanes.
Conversely, high-resolution SAR images provide more detailed information but require significant
hardware resources. Moreover, these high-definition images often encompass sensitive information,
making them unsuitable for public release. Furthermore, acquiring high-resolution SAR datasets can
be very expensive, posing significant challenges to their accessibility.

Numerous research teams frequently encounter budgetary limitations that restrict their capacity to
obtain a large and diverse collection of high-resolution SAR datasets. These financial constraints
not only limit the scope of geographical areas that can be covered but also affect the variety of
data sources that can be accessed. Consequently, the datasets made available by these groups often
lack diversity, particularly in aspects such as spectral bands, polarization, and resolution. From a
researcher’s perspective, evaluating models on such small and homogeneous datasets can introduce
bias and lead to unfair performance comparisons.

3.2 SARDet-100K

To address the aforementioned challenges, we undertake a thorough survey of SAR object detection
datasets. As a result, we carefully collect a total of 10 publicly available high-quality datasets that
are not only diverse but also have no conflicting object categories. These data are released by or
collected from different countries and institutions, such as scientific research departments in China,
space departments in Europe, and military departments in the United States. Detailed information
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Fig. 4: Illustration of the significant domain gap exists between Nature RGB dataset
and remote sensing SAR datasets. (a) showcases the WST feature space significantly
narrows the domain gap. (b) demonstrates that the remote sensing RGB dataset serves
as an effective domain transit bridge, facilitating smoother domain transfer.

Filter Augmented Input. As discussed in the Related Work section, numerous273 273

existing handcrafted feature descriptors leverage meticulously designed filters to274 274

extract features. These features, robust and rich in information, act as augmented275 275

information derived from the original image. Thus, we propose employing such276 276

features as auxiliary information alongside the original pixel data. The filter277 277

augmented feature M of data x can be generally defined as:278 278

 \label {eqn:1.1} M_i^x = T_i(x), i \in \{HOG, Canny, Haar, WST, GRE\} \text {.} 
      (1)279 279

Where Ti is a pre-defined transformation. The resulting Filter Augmented Input280 280

to the detection model, Inp, will be a concatenation of the original single channel281 281

grayscale SAR image x and the generated filter augmented feature Mx
i as:282 282

 \label {eqn:1.2} Inp = \text {concat}(x, M_i^x) \text {.} \vspace {-4pt}  
  (2)283 283

By casting the original data input from the heterogeneous pixel space to a284 284

homogeneous filter augmented feature space, the domain gaps between different285 285

image domains can be greatly reduced, as illustrated in Fig. 4a.286 286

Multi-stage pretrain. We formulate the traditional pretrain schema as:287 287

 \label {eqn:2} B = \text {Train}_{cls}(B_{\theta })(D_{IN}) \text {,}    (3)288 288

289 289 \label {eqn:3} A = \text {Train}_{det}(A_B)(D_{SAR}) \text {.} \vspace {-2pt}   (4)290 290

The function Traint(a)(b) means training a model a on a dataset b with a task291 291

t, and it returns a trained model. t is the training task, t ∈ {cls, det} where292 292

cls stands for classification and det for detection. B indicates the backbone293 293

model and A is the whole detection model. Traditionally, the pretrain stage will294 294

randomly initialize the backbone model Bθ and train on the dataset ImageNet295 295

DIN (as Eq. (3)). Then finetune on the SAR dataset DSAR with pretrained296 296

backbone initialised from detection model AB (as Eq. (4)).297 297

Figure 2: Illustration of the significant domain gap exists between Nature RGB dataset and remote
sensing SAR datasets. (a) showcases the WST feature space significantly narrows the domain gap.
(b) demonstrates that the remote sensing RGB dataset serves as an effective domain transit bridge,
facilitating smoother domain transfer.

on the collected datasets is shown in Table. 2. To ensure consistency across the collected datasets,
we invest considerable time and effort in rigorous dataset standardization. This involves addressing
variations in train-val-test splitting status, image resolutions, and annotation formats. More details
about data collection and standardization can be found in the Appendix.

Table 1 presents the standardized sub-datasets of SARDet-100K along with their corresponding
statistics, which includes information on both image-level and instance-level statistics. The SARDet-
100K dataset encompasses a total of 116,598 images, and 245,653 instances distributed across six
categories: Aircraft, Ship, Car, Bridge, Tank, and Harbor. SARDet-100K dataset stands as the first
large-scale SAR object detection dataset, comparable in size to the widely used COCO [34] dataset
(118K images), which is the standard benchmark for general object detection. The scale and diversity
of the SARDet-100K dataset effectively simulate real-world scenarios encountered in the application
of SAR object detection models across multiple data sources. SARDet-100K provides researchers
with robust training and evaluation for advancing SAR object detection algorithms and techniques,
fostering the development of SOTA models in this domain.

4 Multi-Stage with Filter Augmentation Pretraining Framework

Several recent studies [26; 78; 74; 21] have demonstrated the effectiveness of mature handcrafted
features and specialized network module designs in improving SAR object detection performance.
However, most of these works rely on the default ImageNet pretraining approach, thus overlooking
the significant domain gap between the pretrained nature scenes dataset and the finetuned SAR
dataset. Additionally, they fail to address the model gap that exists between the backbone and the
entire detection framework. To address these limitations, we propose a novel framework called
the Multi-Stage with Filter Augmentation (MSFA) Pretraining Framework. Our framework tackles
the challenges from the perspective of data input, domain transition, and model migration. MSFA
comprises two core designs: the Filter Augmented Input and the Multi-Stage pretrain strategy.

4.1 Filter Augmented Input

As discussed in the Related Work section, numerous existing handcrafted feature descriptors leverage
meticulously designed filters to extract features. These features, robust and rich in information, act as
augmented information derived from the original image. Thus, we propose employing such features
as auxiliary information alongside the original pixel data. The filter augmented feature M of data x
can be generally defined as:

5
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Mx
i = Ti(x), i ∈ {HOG,Canny,Haar,WST,GRE}. (1)

Where Ti is a pre-defined transformation. Drawing inspiration from the information residual design in
ResNet [23], we construct the Filter Augmented Input to the detection model, Inp, by concatenating
the original grayscale SAR image x with the generated filter augmented feature Mx

i as:

Inp = concat(x,Mx
i ). (2)

By casting the original data input from the heterogeneous pixel space to a homogeneous filter
augmented feature space, the domain gaps between different image domains can be greatly reduced,
as illustrated in Fig. 2(a).

4.1.1 Multi-stage pretrain

We formulate the traditional pretrain schema as:

B = Traincls(Bθ)(DIN ), (3)

A = Traindet(AB)(DSAR). (4)

The function Traint(a)(b) means training a model a on a dataset b with a task t, and it returns a
trained model. t is the training task, t ∈ {cls, det} where cls stands for classification and det for
detection. B indicates the backbone model and A is the whole detection model. Traditionally, the
pretrain stage will randomly initialize the backbone model Bθ and train on the dataset ImageNet
DIN (as Eq. (3)). Then finetune on the SAR dataset DSAR with pretrained backbone initialised from
detection model AB (as Eq. (4)).

Our proposed multi-stage pretrain strategy, alternatively, can be illustrated as in the Eq. (3) (5) (6).

A′ = Traindet(AB)(DRS). (5)

A = Traindet(AA′)(DSAR). (6)

Where an extra second stage pretraining in Eq. (5) is added. We propose the utilization of a large-scale
optical remote sensing dataset, DRS , as a detection pretrain for domain transit. The dataset consists of
optical modal imagery, which also shares similar object shapes, scales, and categories in downstream
SAR datasets. This characteristic serves as a valuable bridge between the optical distribution of
natural images in ImageNet and the object distribution in SAR remote sensing images. By leveraging
such second stage pretrain, the domain gap is effectively minimized, as illustrated in Fig. 2(b).
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4.1.2 MSFA

Finally, the proposed MSFA framework integrates Filter Augmented Input with Multi-Stage pretrain-
ing, as illustrated in Fig. 3. Our MSFA framework effectively bridges the substantial domain and
modal gaps between pretraining on nature images and finetuning on SAR image detection.

By introducing Filter Augmented Input, we leverage mature handcrafted feature descriptors to extract
noise-robust features. This also enables us to effectively transform the heterogeneous image domains
of both pretraining and finetuning images into a homogeneous feature domain. By unifying the input
data into a consistent feature domain, we address the disparities that exist between different types of
images. Consequently, it enhances the alignment and transferability of knowledge across domains.
Moreover, the incorporation of multi-stage training involves utilizing an additional large-scale optical
remote sensing dataset for detection pretraining. This dataset acts as a domain bridge, connecting the
domain of ImageNet’s nature images with that of SAR remote sensing images. As a result, it further
reduces the domain gaps, facilitating a smoother transition between the two domains. Furthermore,
the detection pretraining in the second stage of the MSFA framework can also act as a model bridge.
It allows for the comprehensive training of the entire detection framework, rather than solely focusing
on the backbone, making the whole detection framework well-initialized to perform optimally in the
SAR detection finetuning.

5 Experiments and Analysis

5.1 Filter Augmented Input

To investigate and assess the impact of the proposed Filter Augmented Input, we conduct
experiments on each traditional feature descriptor discussed in the Related Work, within the

Input mAP ↑ mAP50 ↑
SAR (as RGB) 50.2 83.0
SAR+Canny 50.7 83.6
SAR+Hog 50.7 83.5
SAR+Haar 50.6 83.4
SAR+WST 51.1 83.9
SAR+GRE 50.6 83.8
SAR+Hog+Haar+WST 51.1 84.0

Table 3: Comparison of different Filter
Augmented Inputs using Faster R-CNN and
ResNet50 as the detection model.

Domain PCC ↑
Pixel Space 0.394

Canny Space 0.992
Hog Space 0.995
Haar Space 0.990
WST Space 0.996
GRE Space 0.984

Table 4: Pearson Correlation Coefficients
(PCC) of ImageNet and SARDet-100k on
RGB and handcrafted feature spaces.

framework of our proposed MSFA method. The findings, detailed in Table 3, indicate that incorporat-
ing these handcrafted features notably enhances the performance of the detector. Additionally, our
analysis reveals that converting image pixels into handcrafted feature spaces significantly minimizes
the distributional gaps between the ImageNet and the SARDet-100K datasets. This is particularly
evident in the Pearson Correlation Coefficients (PCC) between the inputs of the ImageNet and
SARDet-100K datasets, as illustrated in Table 4. This underscores the efficacy of the proposed
approach in bridging the domain gap between natural and SAR images, thereby enhancing the
efficiency of knowledge transfer from the pretraining process.

Remarkably, the Wavelet Scattering Transform (WST) feature stands out for its exceptional perfor-
mance. This superiority can be attributed not just to its role in significantly narrowing the domain
gap, but also to its capacity for extracting rich, multi-scale information. Such information acts as a
robust auxiliary feature by mitigating noise and preserving object-related details. However, we also
find that using multiple filter augmented features will not have further significant performance gain.
It is possible that the existing WST already captures the essential information necessary for effective
object detection, and incorporating additional ones does not provide substantial additional beneficial
information.

Due to the outstanding performance of WST, we employed it as the default Filter Augmented Input
in our MSFA method for the remainder of the paper.

7
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Table 5: Comparison of different pretrain strategies using Faster-RCNN and ResNet50 as the detection
model.

ID Model Input
Pretrain

mAP ↑
Multi-stage Dataset Component

1
SAR

(Raw Pixels)

✗ ImageNet Backbone 49.0
2 ✓ ImageNet + DIOR Framework 49.5
3

✓ ImageNet + DOTA
Backbone 49.3

4 Framework 50.2
5

SAR+WST
(Filter Augmented)

✗ ImageNet Backbone 49.2
6 ✓ ImageNet + DIOR Framework 50.1
7

✓ ImageNet + DOTA
Backbone 49.6

8 Framework 51.1

5.2 Multi-stage Pretrain

To evaluate the effectiveness of the proposed multi-stage pretraining approach, we conduct experi-
ments in which we keep the input modality consistent and finetuned the detection model using various
pretraining strategies on the SARDet-100K dataset. As a baseline, Exp. 1 takes single-channel SAR
data as input, pretrains the backbone model on ImageNet for 100 epochs, and then directly finetune
the detector on the SARDet-100K dataset (following the widely used default setting). In addition to
the baseline, we perform a second stage pretrain specifically for object detection on optical remote
sensing datasets, such as DOTA [73] or DIOR [27]. (Details on DOTA and DIOR datasets can be
found in the Appendix). Following the second pretraining stage, we finetune the model either solely
on the backbone or on the entire framework.

The results of Exp. 2, 4, 6, and 8 in Table 5 prove the substantial advantages of the two-stage
pretraining approach. Notably, even the relatively small-scale DIOR dataset showcases noticeable
performance gains compared to the baseline (Exp. 1 and 5). This observation underscores the
significance of reducing the domain gap during the pretraining phase of SAR detection.

However, the DIOR dataset pretraining is not as effective as the larger-scale DOTA dataset (Exp. 2 vs
4, 6 vs 8). This comparison underscores the significance of the pretraining scale in achieving optimal
results. The DOTA dataset, with its larger scale and similar average instance area to SARDet-100K,
provides a more comprehensive and informative pretraining, leading to improved performance during
the subsequent finetuning stage.

The comparison between Exp. 3 & 4 and Exp. 7 & 8, demonstrate the superiority of pretraining the
entire framework over solely the backbone, highlighting the significant impact of the model gap on
the performance of SAR detection.

In summary, our proposed multi-stage pretraining strategy in MSFA alleviates both the data domain
gap and the model gap between pretraining and the downstream model, leading to significant
enhancements in SAR detection performance. Detailed experimental results and visualization are
available in the Appendix.

5.3 Generalizability of MSFA

To assess the effectiveness and generalizability of the proposed MSFA, we conduct experiments
using various detectors and backbones, as presented in Fig. 4(a) and 4(b). Significant performance
improvement is observed across different frameworks (including single-stage [53; 4; 43], two-
stage [33; 30; 59], and end2end [94; 58; 39]) and diverse backbones (including ResNets [23],
ConvNexts [42], VANs [22], and Swin-Transformer [41] networks). It provides strong evidence for
the effectiveness and wide applicability of our proposed method. Furthermore, we observe stable
performance improvements as we scale up the backbone size, as shown in Fig. 4(b), indicating the
good scalability of our proposed method.

Significantly, the design of our MSFA method was developed with flexibility, generalizability and
wide applicability in mind. Therefore the method can be seamlessly integrated into most existing
models without any modifications.
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5.3 Generalizability of MSFA387 387

To assess the effectiveness and generalizability of the proposed MSFA, we con-388 388

duct experiments using various detectors and backbones, as presented in Fig. 6a389 389

and 6b. Significant performance improvement is observed across different frame-390 390

works (including single-stage [4,42,51], two-stage [29,32,57], and end2end [38,56,391 391

91]) and diverse backbones (including ResNets [22], ConvNexts [41], VANs [21],392 392

and Swin-Transformer [40] networks). It provides strong evidence for the effec-393 393

tiveness and wide applicability of our proposed method. Furthermore, we observe394 394

stable performance improvements as we scale up the backbone size, as shown in395 395

Fig. 6b, indicating the good scalability of our proposed method.396 396

Significantly, the design of our MSFA method was developed with flexibility,397 397

generalizability and wide applicability in mind. Therefore the method can be398 398

seamlessly integrated into most existing models without any modifications.399 399

5.4 Comparasion with SOTAs400 400

We compare various SOTA methods, including both general object detection401 401

models [4,12,42,51,62,70,84], as well as SAR object detection models [7,11,19,402 402

20,24,36,39,68,72,86]. We evaluate their performance on the SSDD and HRSID403 403

datasets, which are the commonly used benchmarks for SAR object detection.404 404

To leverage the superior efficiency and performance of the VAN [21] backbone (as405 405

shown in Fig. 6b), we employ the classic faster R-CNN detection framework with406 406

the lightweight VAN-B (Param. 26.6M) backbone as our detection model. The407 407

results presented in Table 5 demonstrate that our MSFA method outperforms408 408

all the compared methods by a significant margin. Specifically, MSFA achieves a409 409

mAP@50 of 97.9% on the SSDD dataset and a mAP@50 of 83.7% on the HRSID410 410

dataset, setting new state-of-the-art results. It is noteworthy that our method is411 411

the only open-sourced method among the compared SAR detection SOTAs.412 412

413 413

Figure 4: Generalization of MSFA on different detection frameworks (a) and different backbones (b).
Models are finetuned and tested on SARDet-100K dataset. INP: Traditional ImageNet Pretrain on
backbone network only.

Table 6: Comparison of the proposed MSFA with previous state-of-the-art methods on SSDD and
HRSID datasets.

Detectors
Open

Source
Year

mAP50 ↑
SSDD HRSID

General
Detectors

Grid R-CNN [43] ✓ 2019 88.9 79.4
Faster R-CNN [53] ✓ 2015 89.7 80.7
Cascade R-CNN [4] ✓ 2019 90.5 81.3
Free-Anchor [87] ✓ 2019 91.0 81.8
Double-Head R-CNN [72] ✓ 2020 91.1 82.1
PANET [40] ✓ 2018 91.2 81.6
DCN [14] ✓ 2017 92.3 82.1

SAR
Detectors

NNAM [7] ✗ 2019 79.8 -
DCMSNM [25] ✗ 2018 89.6 -
ARPN [89] ✗ 2020 89.9 81.8
DAPN [13] ✗ 2019 90.6 81.8
HR-SDNet [70] ✗ 2020 90.8 82.5
SER Faster R-CNN [37] ✗ 2018 91.5 81.5
FBR-Net [20] ✗ 2020 94.1 -
NRENet [44] ✗ 2024 94.6 75.6
CenterNet++ [21] ✗ 2021 95.1 -
CRTransSar [74] ✗ 2022 97.0 -
SARATR-X [77] ✗ 2024 97.3 80.3

Faster R-CNN + VAN-B ✓ 2023 92.9 81.8
MSFA (Faster R-CNN + VAN-B) ✓ 2024 97.9(+5.0) 83.7(+1.9)

5.4 Comparison with SOTAs

We compare various SOTA methods, including both general object detection models [43; 53; 14; 64;
4; 87; 72], as well as SAR object detection models [7; 25; 89; 13; 70; 40; 37; 74; 21; 20]. We evaluate
their performance on the SSDD and HRSID datasets, which are the commonly used benchmarks
for SAR object detection. To leverage the superior efficiency and performance of the VAN [22]
backbone (as shown in Fig. 4(b)), we employ the classic faster R-CNN detection framework with
the lightweight VAN-B (Param. 26.6M) backbone as our detection model. The results presented in
Table 6 demonstrate that our MSFA method outperforms all the compared methods by a significant
margin. Specifically, MSFA achieves a mAP@50 of 97.9% on the SSDD dataset and a mAP@50 of
83.7% on the HRSID dataset, setting new state-of-the-art results. It is noteworthy that our method is
the only open-sourced method among the compared SAR detection SOTAs.
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6 Limitaion and Future Work

The scope of this paper is limited to supervised pretraining. However, considering the availability
of a vast amount of unannotated SAR images, it would be valuable to explore the potential of
semi-supervised, weakly-supervised or unsupervised learning methods for domain transfer in SAR
object detection.

While this paper aims to propose a simple, practical, effective, and generic method, it does not delve
into the details of specific designs. Future work can be expanded to explore the aforementioned
directions in more depth, incorporating intricate and specialized designs to enhance the performance
and capabilities of SAR object detection.

7 Conclusion

This paper presents a new benchmark for large-scale SAR object detection, introducing the SARDet-
100k dataset and the Multi-Stage with Filter Augmentation (MSFA) pretrain method. Our SARDet-
100k dataset comprises over 116K images spanning 6 categories, providing a large and diverse
dataset for conducting SAR object detection research. To bridge the domain and model gaps
between pretraining and finetuning stages in SAR object detection, we propose the MSFA pretraining
framework. MSFA significantly enhances the performance of SAR object detection models, setting
new state-of-the-art performance in previous benchmark datasets. Moreover, MSFA demonstrates
remarkable generalizability and flexibility across various models. Our research endeavours to
overcome the current obstacles prevalent in SAR object detection. We anticipate our contributions
will pave the way for future research and innovations in this domain.

Our research endeavours to overcome the current obstacles prevalent in SAR object detection. We
anticipate our contributions will pave the way for future research and innovations in this domain.
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A Appendix

A.1 SARDet-100K Dataset Visualization

Fig. S5 offers a visualization of sample images from the proposed SARDet-100K dataset. Repre-
sentative samples for each category, including Ship, Tank, Bridge, Harbour, Aircraft, and Car, are
showcased.

Ship Tank Bridge Harbour Aircraft Car

Figure S5: Visualization of sample images from the proposed SARDet-100K dataset.

A.2 Standardization.

We collect a total of 10 publicly available high-quality datasets that are not only diverse but also
have no conflicting object categories. These data are released by or collected from different countries
and institutions, such as scientific research departments in China, space departments in Europe, and
military departments in the United States. To ensure consistency across the collected datasets, it is
necessary to undertake standardization processes. This involves addressing variations in train-val-test
splitting status, image resolutions, and annotation formats. The overview of SARDet-100K dataset
process pipeline is illustrated in Fig. S6(a).

If the source dataset already provides predefined train, validation, and test splits, we adopt their split
settings. Otherwise, we perform the splitting by ensuring a ratio of 8:1:1 for the train, validation, and
test sets respectively.

Additionally, we tackle the issue of high image resolution in some of the collected datasets. This
concern arises because resizing these images before passing them to the model could result in
extremely small targets. We perform image slicing on all datasets that contain images larger than
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Fig. 3: (a) SARDet-100K dataset standardization process, encompassing set splitting,
large image slicing, and label annotation format unification. (b) Percentage of instances
for each category and average instance area (in pixels) in SARDet-100K.

both image-level and instance-level statistics. Fig. 3b provides an overview of249 249

the category-level statistics for the SARDet-100K dataset. The SARDet-100K250 250

dataset encompasses a total of 116,598 images, and 245,653 instances distributed251 251

across six categories: Aircraft, Ship, Car, Bridge, Tank, and Harbor. SARDet-252 252

100K dataset stands as the first large-scale SAR object detection dataset, com-253 253

parable in size to the widely used COCO [33] dataset (118K images), which is254 254

the standard benchmark for general object detection. The scale and diversity of255 255

the SARDet-100K dataset provide researchers with robust training and evalu-256 256

ation for advancing SAR object detection algorithms and techniques, fostering257 257

the development of SOTA models in this domain.258 258

259 259

4 Multi-Stage with Filter Augmentation Pretraining260 260

Framework261 261

Several recent studies [20, 25, 72, 75] have demonstrated the effectiveness of ma-262 262

ture handcrafted features and specialized network module designs in improving263 263

SAR object detection performance. However, most of these works rely on the264 264

default ImageNet pretraining approach, thus overlooking the significant domain265 265

gap between the pretrained nature scenes dataset and the finetuned SAR dataset.266 266

Additionally, they fail to address the model gap that exists between the backbone267 267

and the entire detection framework. To address these limitations, we propose a268 268

novel framework called the Multi-Stage with Filter Augmentation (MSFA) Pre-269 269

training Framework. Our framework tackles the challenges from the perspective270 270

of data input, domain transition, and model migration. MSFA comprises two271 271

core designs: the Filter Augmented Input and the Multi-Stage pretrain strategy.272 272

Figure S6: (a) SARDet-100K dataset standardization process, encompassing set splitting, large image
slicing, and label annotation format unification. (b) Percentage of instances for each category and
average instance area (in pixels) in SARDet-100K.

1000 × 1000 resolution. Specifically, for AIR SARShip 1, MSAR, and SAR-AIRcraft datasets, we
crop each image into patches of size 512 × 512 with a patch overlap of 200.

Furthermore, we convert all dataset annotations into the COCO annotation format [34]. This step
ensures consistency and compatibility among the different datasets. Consequently, the merged
dataset, SARDet-100K, is also standardized in the COCO format, which is readily compatible with
popular open-source detection code frameworks, eliminating the need for additional manual data
preprocessing. Fig. S6(b) provides an overview of the category-level statistics for the SARDet-100K
dataset.
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A.3 Handcrafted Feature Descriptors

Histogram of Oriented Gradients [15] (HOG). HOG is a widely used local feature descriptor
in image processing and computer vision. It captures and represents the image’s local structure
and shape information by analyzing the distribution of gradient orientations. HOG is proven to be
effective for SAR image classification and object detection tasks because it is invariant to random
noise in SAR images. Early works employ HOG for SAR object recognition [56; 49], and recent
studies demonstrate the effectiveness of HOG features for SAR image classification [83; 85], as well
as the model pretraining [66] in modern neural networks.

Canny Edge Detector [5]. Canny is a widely used edge detection algorithm, which aims to identify
significant edges in an image while minimizing noise and spurious responses. The algorithm utilizes
Gaussian smoothing, pixel orientation gradient magnitude, and non-maximum suppression. Early
research [28; 38] recognize the advantage of Canny for SAR image processing. Recent works
also verify the effectiveness of the Canny feature in SAR image edge detection [69], interference
detection [18], and image registration [86]. Other than Canny Edge Detector, Gradient by Ratio Edge
(GRE) [29], a recently proposed edge detector, leverages SAR-HOG [16] and SAR-SIFT [56] to
achieve effective edge detection in SAR images.

Haar-like [62] Feature Descriptor. Haar-like features are commonly used for face detection [46; 2],
pedestrian detection [81], and other target detection tasks [32; 36]. They describe the characteristics
of an image by utilizing predefined feature templates. Haar-like features can capture linear features,
edge features, point features, and diagonal features. Early studies [54; 55] demonstrate the robustness
of Haar-like features for SAR object detection. A recent approach called MSRIHL [1] integrates
low-level Haar-like features into deep learning models for accurate SAR object detection, highlighting
its potential effectiveness.

Wavelet Scattering Transform [45] (WST). The WST is a powerful signal-processing technique that
is widely used in image processing. It aims to extract robust and discriminative low-level and high-
level features simultaneously. By capturing both high-frequency and low-frequency information, it
provides a rich representation of both local and global image features. The hierarchical representation
offered by the Wavelet Scattering Transform enables feature extraction at different scales and
resolutions, which is particularly useful for capturing fine details of small objects in SAR images
and robustly handling high-frequency noise. Vidal et al. [61] conduct a comprehensive investigation
demonstrating the high potential performance of Wavelet Transform in SAR image denoising. Many
recent works [93; 26; 50; 78] utilize Wavelet Transform or WST for robust feature extraction and
integration with CNN networks for target recognition. These studies validate the feasibility of
incorporating WST features into modern CNN models.

SAR HOG Canny Haar WSTGRE

image 1

image 2

image 3

Figure S7: Visualization of handcrafted features on SAR images. (To facilitate visualization, the
features are average pooled and represented as a single channel.

A.4 Multi-Stage Filter-Augmentation

Fig. S8 provides a visual illustration of the proposed filter-augmented data input. It involves concate-
nating the original single-channel grayscale Synthetic Aperture Radar (SAR) image, denoted as x,
with the filter-augmentation representation Mx

i .
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Figure S8: Illustration of filter-augmented input.

Table S7: Comparsion of different filter augmented inputs using Faster R-CNN and Resnet-50 as
detection model.

Modality mAP @50 @75 @s @m @l
SAR (as RGB) 50.2 83.0 54.8 44.8 61.6 58.6
SAR+Canny 50.7 83.6 55.0 45.3 62.0 57.1
SAR+Hog 50.7 83.5 55.2 45.1 61.4 58.4
SAR+Haar 50.6 83.4 54.7 45.4 61.6 58.0
SAR+WST 51.1 83.9 54.7 45.2 62.3 57.5
SAR+GRE 50.6 83.8 54.7 44.8 61.7 57.6
SAR+Hog+Haar+WST 51.1 84.0 55.9 45.7 62.0 58.2

Table S8: Generalization of MSFA on different detection frameworks. INP: Traditional ImageNet
Pretrain on backbone network only.

Framework Pretrain
Test

mAP @50 @75 @s @m @l

Two
Stage

Faster RCNN [53]
INP 49.0 82.2 52.9 43.5 60.6 55.0

MSFA 51.1 (+2.1) 83.9 54.7 45.2 62.3 57.5

Cascade RCNN [4]
INP 51.1 81.9 55.8 44.9 62.9 60.3

MSFA 53.9 (+2.8) 83.4 59.8 47.2 66.1 63.2

Grid RCNN [4]
INP 48.8 79.1 52.9 42.4 61.9 55.5

MSFA 51.5 (+2.7) 81.7 56.3 45.1 64.1 60.0

Single
Stage

RetinaNet [33]
INP 47.4 79.3 49.7 40.0 59.2 57.5

MSFA 49.0 (+1.6) 80.1 52.6 41.3 61.1 59.4

GFL [30]
INP 49.8 80.9 53.3 42.3 62.4 58.1

MSFA 53.7 (+3.9) 84.2 57.8 47.8 66.2 59.5

FCOS [59]
INP 46.5 80.9 49.0 41.1 59.2 50.4

MSFA 48.5 (+2.0) 82.1 51.4 42.9 60.4 56.0

End to
End

DETR [6]
INP 31.8 62.3 30.0 22.2 44.9 41.1

MSFA 47.2 (+15.4) 77.5 49.8 37.9 62.9 58.2

Deformable DETR [94]
INP 50.0 85.1 51.7 44.0 65.1 61.2

MSFA 51.3 (+1.3) 85.3 54.0 44.9 65.6 61.7

Sparse RCNN [58]
INP 38.1 68.8 38.8 29.0 51.3 48.7

MSFA 41.4 (+3.3) 74.1 41.8 33.6 53.9 53.4

Dab-DETR [39]
INP 45.9 79.0 47.9 38.0 61.1 55.0

MSFA 48.2 (+2.3) 81.1 51.0 41.2 63.1 55.4
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Table S9: Generalization of MSFA on different detection backbones. INP: Traditional ImageNet
Pretrain on backbone network only.

Framework #P(M) Pretrain
Test

mAP @50 @75 @s @m @l

R50 [23] 25.6
INP 49.0 82.2 52.9 43.5 60.6 55.0

MSFA 51.1 (+2.1) 83.9 54.7 45.2 62.3 57.5

R101 [23] 44.7
INP 51.2 84.1 55.6 45.9 61.9 56.3

MSFA 52.0 (+0.8) 84.6 56.6 46.6 63.4 57.7

R152 [23] 60.2
INP 51.9 85.2 55.9 46.4 62.5 57.9

MSFA 52.4 (+0.5) 85.4 57.2 47.4 63.3 58.7

ConvNext-T [42] 28.6
INP 53.2 86.3 58.1 47.2 65.2 59.6

MSFA 54.8 (+1.6) 87.1 59.8 48.8 66.7 62.1

ConvNext-S [42] 50.1
INP 54.2 87.8 59.2 49.2 65.8 59.8

MSFA 55.4 (+1.2) 87.6 60.7 50.1 67.1 61.3

ConvNext-B [42] 88.6
INP 55.1 87.8 59.5 48.9 66.9 61.1

MSFA 56.4 (+1.3) 88.2 61.5 51.1 68.3 62.4

VAN-T [22] 4.1
INP 45.8 79.8 48.0 38.6 57.9 53.3

MSFA 47.6 (+1.8) 81.4 50.6 40.5 59.4 56.7

VAN-S [22] 13.9
INP 49.5 83.8 52.8 43.2 61.6 56.4

MSFA 51.5 (+2.0) 85.0 55.6 44.8 63.4 60.4

VAN-B [22] 26.6
INP 53.5 86.8 58.0 47.3 65.5 60.6

MSFA 55.1 (+1.6) 87.7 60.2 48.8 67.3 62.2

Swin-T [41] 28.3
INP 48.4 83.5 50.8 42.8 59.7 55.7

MSFA 50.2 (+1.8) 84.1 53.9 44.1 61.3 58.8

Swin-S [41] 49.6
INP 53.1 87.3 57.8 47.4 63.9 60.6

MSFA 54.0 (+0.9) 87.0 59.2 48.2 64.5 61.9

Swin-B [41] 87.8
INP 53.8 87.8 59.0 49.1 64.6 60.0

MSFA 55.7 (+1.9) 87.8 61.4 50.5 66.5 62.5

A.5 Experimental Results

A.5.1 Main results on SARDet-100K.

The detailed experimental outcomes are presented in Table S7, Table S8, and Table S9, where com-
prehensive, fine-grained testing metrics are provided. These include AP@50, AP@75, AP@small
(AP@s), AP@medium (AP@m), and AP@large (AP@l), offering deeper insights and robust results
for model evaluation.

Table S7 serves as an extension of Table 3 from the main paper, showcasing a comparison of various
filter-augmented inputs utilizing Faster R-CNN with ResNet-50 as the detection model.

Table S8 expands upon Figure 6(a) of the main paper, and Table S9 expands upon Figure 6(b). These
tables centre on the experiments that explore the generalizability of the MSFA framework across
different detection frameworks and backbones. Notably, a significant enhancement in performance is
observed across various frameworks, including single-stage, two-stage, and query-based frameworks,
as well as across a spectrum of backbone architectures, ranging from ResNets and modern-designed
ConvNets to Vision Attention Networks (VANs) and Vision Transformer (ViT)-based Swin networks.
These results offer compelling evidence of the efficacy and broad applicability of the method we
propose.

20

128449https://doi.org/10.52202/079017-4079



Table S10: Dataset statistics comparison between DOTA and DIOR. *: multi-scale preprocessed.
Dataset Images Instances Categories Image Size Avg. Instance Area

DOTA* 68,324 1,058,641 15 1024*1024 5,021

DIOR 23,463 192,518 20 800*800 12,726

Table S11: Comparison of MSFA and Finetuning Performance under similar computational budgets.
INP: Backbones are pretrained on ImageNet.

Model INP MSFA Epoch Finetune Epochs Total Epochs Total Iterations mAP

Faster-RCNN [53] ✓ 12 24 36 16.1k 54.5

Faster-RCNN [53] ✓ 0 36 36 17.7k 52.8

To ensure a fair comparison, we evaluate MSFA and vanilla detection models under similar com-
putational budgets. In Table S11, we train Faster-RCNN models (with a ResNet-50 ImageNet-1K
pretrained backbone) with 12 epochs of MSFA pretraining on the DOTA dataset, followed by finetun-
ing on the SARDet-100K dataset. This is compared to directly finetuning the model for 36 epochs on
the SARDet-100K dataset. With the same total number of training epochs and a slightly less total
number of iterations, the proposed MSFA achieves a significantly higher (1.7% higher) mAP result on
the SARDet-100K test set. MSFA pretraining incorporates general knowledge from both natural and
remote sensing datasets, which allows efficient and effective finetuning and helps mitigate overfitting
in downstream tasks. It is also important to note that, MSFA pretraining is a one-time effort. The
pretrained MSFA models can be reused for finetuning different SAR detection datasets.

A.5.2 Comparison of SARDet-100K with other datasets.

To assess the quality of the proposed SARDet-100K dataset as a large-scale SAR object detection
benchmark, we evaluate different models on this dataset and compare the results with those obtained
from other popular benchmark datasets, such as SSDD [84] and HRSID [71]. The results are
presented in Fig S9. These results indicate that the performance of modern models on our dataset has
not yet reached saturation. Among the various models reviewed, there is an 8.4% performance gap
between the weakest and strongest models, whereas, for SSDD and HRSID, this gap is only 4.1%
and 4.3%, respectively. This suggests that SSDD and HRSID are relatively simple for most existing
models, leading to performance saturation on these smaller datasets.

Furthermore, we observed that on these smaller datasets, models with a relatively large number of
parameters tend to suffer from performance degradation due to overfitting. For example, ResNet-152
underperforms compared to ResNet-101 on SSDD, and ResNet-101 underperforms compared to
ResNet-50 and ResNet-18 on HRSID. However, on the large-scale SARDet-100K, this issue does not
arise. On our larger dataset, models continue to benefit from increased model size, indicating that
our proposed dataset is suitable for developing relatively larger models for large-scale SAR object
detection.
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Figure S9: Evaluate different backbone models on SARDet-100K dataset and other previous popular
benchmarks (SSDD [84] and HRSID [71]). Backbones are plugged under Faster-RCNN [53] detection
framework.

A.6 Implementaion Details

For the ImageNet pretrain, we adopt a 100-epoch backbone pretraining strategy on the Imagenet-1K,
with their default training strategy in MMPretrain [11] configurations.

For the second stage of the proposed multistage pretrain, we select the large-scale optical remote
sensing DOTA dataset as the main dataset. We also do comparison experiments on the DIOR dataset
to find out the downstream performance affection factors on the second stage pretrain dataset. Their
detailed information is illustrated in Table S10.

For the DOTA dataset, we perform an extra dataset preprocess because DOTA dataset images have a
large range of different image resolutions. The original image contains only 1,411 training images. To
have more image and multiscale instances for effective training, we follow [31] to adopt a multi-scale
dataset splitting strategy by rescaling the original high-resolution images into three distinct scales
(x0.5, x1.0, x1.5), and then cropping each scaled image into 1024×1024 patches with an overlap of
each patch of 500 pixels, to avoid destruction division on the instance at patch borders. With the
preprocessed dataset, load resize as 1024*1024, with a RandomFlip probability of 0.5. For the DIOR
dataset, we train the model by resizing the images as 800*800, with a RandomFlip probability of 0.5.

For finetuning on SARDet-100k, SSDD and HRSID, we train by resizing the image into 800*800,
with a RandomFlip probability of 0.5. We train the model by 12 epochs on the train set and test the
model on the test set with the 12th epoch checkpoint.

We primarily conduct our experiments using the MMPretrain [11] and the MMDetection [8] frame-
works, on 8 RTX-3090 GPUs (24G). For detailed information on the hyperparameters and training
settings, please refer to Table S12.

A.7 Detection Result Visualizations

The detection visualization results, comparing the MSFA framework with the traditional ImageNet
pretraining approach, are presented in Fig. S10. These results demonstrate that MSFA outperforms
the conventional ImageNet backbone pretrain in terms of reducing missed detections, false detection,
and improving localization accuracy.
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Table S12: Hyper-parameter of pretrain and finetune settings. Cls.: Classification, Det.: Detection,
B.S.: Batch Size, L.R.: Learning Rate.

Task / Model Dataset Optim. B.S. L.R Epochs

Cls. Pretrain ImageNet AdamW 512 1e-8 100
Det. Pretrain DOTA AdamW 16 1e-4 12
Det. Pretrain DIOR AdamW 16 1e-4 12
Det. Finetune SARDet-100k AdamW 16 1e-4 12
Det. Finetune SSDD AdamW 32 2.5e-4 12
Det. Finetune HRSID AdamW 32 2.5e-4 12

DETR DOTA/SARDet-100k AdamW 16 1e-4 150
Deformable-DETR DOTA/SARDet-100k AdamW 16 2e-4 50

Dab-DETR DOTA/SARDet-100k AdamW 16 1e-4 50
Sparse-RCNN DOTA/SARDet-100k AdamW 16 2.5e-5 12

Table S13: ConvNext-B MSFA
Category mAP @50 @75 @s @m @l

ship 0.669 0.923 0.783 0.653 0.714 0.555
aircraft 0.455 0.753 0.466 0.419 0.458 0.47
car 0.655 0.985 0.792 0.553 0.674 n/a
tank 0.454 0.766 0.427 0.429 0.891 n/a
bridge 0.441 0.885 0.368 0.411 0.609 0.714
harbor 0.711 0.979 0.858 0.601 0.751 0.756
Average 0.564 0.882 0.616 0.511 0.733 0.624

A.8 Failure Scenarios

However, the current model is not without its drawbacks and imperfections. Fig. S11 highlights several
failure scenarios. When the input SAR images lack identifiable details or contextual information, it
can lead to incorrect classifications. When SAR images contain small and densely packed objects,
the model may fail to detect some of them. Poor image quality characterized by fading, blurriness, or
overall low resolution, further exacerbates the risk of missed detections. In challenging cases, the
detector may also struggle with accurate localization.

Regarding fine-grained category detection performance, Table S13 presents the detection results
of Faster-RCNN [53] with ConvNext-B [42] and MSFA pretraining. Notably, the model exhibits
relatively low performance for objects with:

• Small sizes, such as Tank (with an average area of 461 pixels)
• Large length-width ratios, such as Bridge
• High appearance variability, such as Airplane

However, the primary focus of this work is to address the domain and model gaps existing in SAR
object detection pretraining and finetuning. Our method demonstrates excellent compatibility with
most existing deep networks and can seamlessly integrate with models specifically designed to tackle
the above challenging scenarios.
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Fig. S3: MSFA better than traditional ImageNet backbone pretrain in (a) missing
detection, (b) false detection and (c) inaccurate localization

Figure S10: MSFA better than traditional ImageNet backbone pretrain in (a) missing detection, (b)
false detection and (c) inaccurate localization
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The proposed dataset is well explained in Section 3, A.1, A.2, and the proposed
pretrain method is elaborated in Section 4. Experiments in Section 5, A.5, A.7 support our
claims.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations are discussed in Section 6 and A.8.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]

Justification: The paper does not include theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We give the implementation details in Section A.6. We upload the source code
as supplementary material.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We upload the source code as supplementary material. We will release our
code and dataset after paper acceptance.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We give the implementation details in Section A.6. We also provide train-
ing/testing configs in the uploaded code.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Based on our empirical experiments, the reproductive results of the same model
are highly consistent. There are significant differences in results between different models,
which exceed the margin of error bars. Additionally, we lack sufficient computational
resources to calculate error bars for every experiment.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Rough information is given in Section A.6. More details about training time,
memory required etc. for each experiment are provided as log files in our source code.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in the paper conforms, in every respect, with the
NeurIPS Code of Ethics
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: No societal impact of the work performed.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Licenses of merged datasets are put into Table S6. We cited relevant assets,
and our proposed dataset collection gets permission from the original dataset owners.

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We provided detailed information about the proposed dataset and detailed
documentation about our source code.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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