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Abstract

We propose a Regularized Adaptive Momentum Dual Averaging (RAMDA)
algorithm for training structured neural networks. Similar to existing regular-
ized adaptive methods, the subproblem for computing the update direction
of RAMDA involves a nonsmooth regularizer and a diagonal preconditioner,
and therefore does not possess a closed-form solution in general. We thus
also carefully devise an implementable inexactness condition that retains
convergence guarantees similar to the exact versions, and propose a compan-
ion efficient solver for the subproblems of both RAMDA and existing methods
to make them practically feasible. We leverage the theory of manifold iden-
tification in variational analysis to show that, even in the presence of such
inexactness, the iterates of RAMDA attain the ideal structure induced by the
regularizer at the stationary point of asymptotic convergence. This structure
is locally optimal near the point of convergence, so RAMDA is guaranteed
to obtain the best structure possible among all methods converging to the
same point, making it the first regularized adaptive method outputting
models that possess outstanding predictive performance while being (lo-
cally) optimally structured. Extensive numerical experiments in large-scale
modern computer vision, language modeling, and speech tasks show that
the proposed RAMDA is efficient and consistently outperforms state of the
art for training structured neural network. Implementation of our algorithm
is available at https://www.github.com/ismoptgroup/RAMDA/.

1 Introduction

Since the recent emergence of ChatGPT, large language models (LLMs) and other huge
deep learning models have garnered much attention and popularity, even among the public
who are unfamiliar with machine learning. A challenge with such gigantic neural network
models is their vast number of model parameters, reaching hundreds of billions, resulting in
expensive storage and inference. It thus becomes crucial to find ways to exploit structures in
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trained models to reduce their spatial and prediction costs without degrading the prediction
performance. An active line of research is to explicitly add a nonsmooth regularization term
to the training objective function and apply proximal stochastic (sub)gradient methods,
with or without a diagonal preconditioner for adaptiveness, to induce a pre-specified type
of desirable structure in the final model [49, 51, @]. Unfortunately, although the added
regularizer indeed induces some desirable structures at the stationary points of the training
objective function, the iterates of these methods only converge to those stationary points
asymptotically, but never really attain such a point at any iteration. Therefore, whether
the output model of these algorithms, which is also an iterate that is only close enough to
a stationary point, indeed possesses the ideal structure at the nearby stationary point is
unknown, and theoretical analyses of these algorithms do not cover any guarantees regarding
the obtained structure. Indeed, [I6] oberserd empirically that the structures obtained by
those methods are highly suboptimal and unstable over iterations. They then proposed a
regularized dual averaging method called RMDA, and proved that after a finite number of
steps, the iterates of RMDA can stably identify the locally optimal structure induced by the
regularizer at the stationary point of asymptotic convergenceﬂ This is up to our knowledge
the only method with such structure guarantees for training structured neural networks.
With this property, their experiments demonstrated that their method also empirically
outperforms existing methods on modern computer vision tasks. However, since RMDA does
not incorporate adaptiveness and their experiments are conducted only on medium-scale
image classification problems, its usefulness beyond computer vision is in doubt.

For a wide range of tasks in deep learning such as language modeling and speech recognition,
researchers have developed numerous architectures to achieve state-of-the-art prediction
performance, including the transformer [44] and the LSTM [I5]. The transformer is also
gaining prominence in computer vision for achieving exceptional performance [29]. Therefore,
it is becoming increasingly important to devise methods that attain satisfactory performance
for training these network architectures with structure. For such modern architectures,
adaptive methods like Adam [20] that iteratively rescale the stochastic gradient update
directions via a coordinate-wise/diagonal preconditioner are known to outperform their
non-adaptive counterparts and thus considered state-of-the-art [10, [T}, [52] 28] [22]. It is hence
expected that the non-adaptive RMDA of [I6] might not lead to promising results for such
widely-used architectures and tasks.

This work aims to fill this gap to propose a practical regularized adaptive method with guar-
antees for both convergence and structure identification. Since RMDA already has structure
guarantees, it might look like we just need to combine it with an arbitrary preconditioner
for adaptiveness. However, this seemingly easy extension actually requires deliberation in
two aspects. First, except for few exceptions, combination of even a simple diagonal precon-
ditioner and a nonsmooth regularizer makes the training subproblem complicated with no
closed-form solution. This is totally different from adaptive methods with no regularization,
whose subproblem optimal solution can be easily computed by coordinate-wise divisions.
Therefore, in the regularized case, the best we can hope for is to apply an iterative approach
to approximately solve the subproblem. This calls for careful design and control for the
measure and the degree of the inexactness in the approximate subproblem solution. The
second aspect is the need of an appropriate preconditioner that provides not only outstanding
empirical performance but also desirable theoretical properties. The interplay between the
inexactness and the preconditioner makes it particularly difficult to address the following
three challenges simultaneously. (i) Convergence: Proving convergence of a new algorithm
with even just one added component is always a nontrivial task. For example, although
convergence of SGD has been well-studied for decades, similar guarantees for its adaptive
correspondence, Adagrad, is not established until very recently [8]. We are dealing with both
a preconditioner that changes the whole algorithm, just like from SGD to Adagrad, and the
inevitable inexact subproblem solutions that could nullify many useful properties (regard-
ing the subdifferential) commonly used in convergence proofs. (ii) Structure: Theoretical
guarantees for structure identification is another critical aim of this work. Inexactness alone
already makes this goal difficult; see Example 1 of [24] for a simple instance such that even

DSee the first paragraph in Section 1 and Appendix B of [I6] for a discussion about why the
structure at the point of convergence is locally optimal.
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infinitesimal inexactness could hinder structure identification. Even without inexactness,
finding a preconditioner that leads to structure identification guarantees is already difficult
because no adaptive algorithm, even in the much simpler deterministic and exact setting, is
known to have such a guarantee. (iii) Subproblem solver: Our goal is a practical algorithm, so
we need to solve the subproblem efficiently. This requires the inexact measure be checkable
and the degree quickly attainable by a well-designed solver, and the preconditioner should
make the subproblem well-conditioned and cannot complicate the computation of the solver.

To tackle these difficulties, we start from considering structure identification. We leverage
the theory of manifold identification in variational analysis and nonlinear optimization
to design a method that leads to finite-iteration structure identification guarantees. As
discussed by [37, [T6], the key to such guarantees for stochastic algorithms is to ensure the
variance in the stochastic estimations decreases to zero. Due to the standard practice of data
augmentation in deep learning, the training loss in the objective function is essentially the
expected value of the training loss over a certain probability distribution instead of a finite
sum. We thus draw inspirations from [25] [I6] to consider a dual-averaging-type approach
[32,[47] with momentum to attain variance reduction in this setting for the stochastic gradient
estimation. However, we also need variance reduction for the preconditioner, so we carefully
select a preconditioner whose update is in a manner similar to dual averaging, and prove
that its variance also decreases to zero. We then conceive an implementable and practical
subgradient-norm-based inexactness measure compatible with the structure identification
theory. Further requirements are then added to the inexactness degree and the preconditioner
to ensure convergence, and we also safeguard the preconditioner to keep the subproblems
well-conditioned and the computation simple. We then propose to solve the subproblem by a
proximal gradient (PG) solver that provably achieves our inexactness requirement efficiently.
This leads to our Regularized Adaptive Momentum Dual Averaging (RAMDA) algorithm.

We summarize our main contributions as follows.

1. An adaptive algorithm for finding locally optimal structures: RAMDA is the first
regularized adaptive method guaranteed to find the locally optimal structure possessed
by the stationary point to which its iterates converge. It thus produces models that are
more structured while retaining the superb prediction performance of adaptive methods.

2. Efficient subproblem solver for regularized adaptive methods: We propose an
implementable inexactness condition and a companion efficient subproblem solver for
regularized adaptive methods (including ours and existing ones) whose subproblems have
no closed-form solution. We show that the induced inexactness does not affect convergence
or structure identification guarantees. This condition and subproblem solver thus also
serve as a key step for realizing existing frameworks for regularized adaptive methods.

3. A method with outstanding empirical performance: Experiments on training mod-
ern neural networks in computer vision (ImageNet), language modeling (Transformer-XL),
and speech (Tacotron2) with structured sparsity show that RAMDA steadily outper-
forms state of the art by achieving higher structured sparsity ratio and better prediction
performance simultaneously.

2 Related Work

Dual Averaging for Deep Learning. Our method is motivated by [I6] that adapted
the famous regularized dual averaging [47, 25] approach with momentum to train structured
neural network models with data augmentation. They selected dual averaging for the gradient
estimation to achieve variance reduction for structure guarantees, but their algorithm does not
allow for adaptiveness. Inspired by this approach, we also take dual-averaging-like updates
for the diagonal preconditioner in the subproblem for adaptiveness. Our preconditioner
design also borrows ideas from the empirically successful MADGRAD of [7] for training
non-regularized neural networks. RAMDA can thus also be seen as a generalization of
MADGRAD to the regularized setting. Since no regularizer is present, unlike RAMDA, the
subproblem of MADGRAD has a closed-form solution and no structure is expected. Moreover,
[7 only analyzed convergence rates of the objective value when the problem is convex. Our
analysis of (i) variance reduction in the preconditioner, (ii) convergence in the nonconvex
nonsmooth regularized case, and (iii) structure identification guarantees are novel and closer
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to properties desirable in practice. The first two items are also applicable when no regularizer
is present, so our theory also expands guarantees for MADGRAD.

Regularized Stochastic Algorithms for Deep Learning. Other than RMDA, there are
several works on training structured neural networks through regularization and its proximal
operator, but none have structure guarantees. [49] considered a simple regularized SGD
method with momentum, but their convergence analysis is only for the nonadaptive case.
[51] studied a general regularized adaptive framework ProxGen that incorporates diagonal
preconditioners, and showed that the subgradient of the objective function can decrease
to the reciprocal of the batch size, but their result does not guarantee further convergence
to stationary points. Moreover, they do not allow inexactness in the subproblem, so their
framework can be realized for only a small class of problems. [9] proposed ProxSSI that extends
ProxGen to the case of group-sparsity regularizers, whose corresponding subproblem indeed has
no closed-form solution. They applied the Newton-Raphson method to obtain nearly-optimal
subproblem solutions, and proposed a seemingly mild inexactness condition. Unfortunately,
their condition is not checkable, and their corresponding convergence guarantee requires the
regularizer to be locally smooth around each iterate, which excludes most regularizers that
induce meaningful structures. On the other hand, we will show that with our implementable
inexactness condition, ProxGen still possesses the same convergence guarantees in [51] without
any additional requirement on the regularizer. Moreover, we will see in that the
time cost of the subproblem solver of ProxSSl is prohibitively high.

Structure and Manifold Identification. The major tool for our structure guarantees is
the theory of manifold identification [12} 13}, 27, [24] in variational analysis and nonlinear
optimization. This theory shows that points possessing the same structure induced by the
regularizer at a stationary point form a smooth manifold around this stationary point, and
with properties from the regularizer, if a sequence of points converges to this stationary
point with their corresponding subgradients decreasing to zero, this sequence is guaranteed
to eventually stay in this manifold, thus identifying the structure. [25] [37, [I6] have leveraged
this tool to show manifold identification for various stochastic algorithms, and the common
key, as pointed out by [37], is variance reduction. Our analysis uses a result given in [40] to
prove so for both the gradient estimator and the preconditioner.

3 Problem Setting and Algorithm

As described in we consider the case in which the training objective function is
the expectation over a probability distribution as follows.

minweg  F (W) = Eeop [fe (W) + ¢ (W), (1)
where £ is a Euclidean space with inner product (-, -) and its induced norm |||, D is a
distribution over a space {2 representing all possible data modifications, f¢ is differentiable

almost everywhere for any £, and the possibly nonsmooth regularizer (W) is for promoting
a desirable structure in the optimal solutions.

Our algorithm can be seen as a double-dual averaging method that incorporates momentum,
a proximal operation for the regularization, and dual averaging for updating both the
stochastic gradient estimation and the preconditioner. For ease of description, we assume
without loss of generality that £ = R™ in this section. At the tth iteration with learning
rate 1, and iterate W*™!, we first draw an independent and identically distributed sample
& ~ D, compute the stochastic (sub)gradient G* := V f¢, (W'™1) of the loss function at the
current point W*~! with respect to &, and then update the weighted sum V; of historical
stochastic gradients and the weighted sum U; of their squared norms using the value s;:

Vo=0, Vi=Vi 1+ Sth7 Vit > 0, 5 — \/’ (2)
Up=0, U =U_1+sGoGt vt>0, 7 MV

where o denotes the Hadamard (pointwise) product in €. We then construct the preconditioner

Pt and the weight sum «; by

t

P! = Diag(VU! +¢), o= Zk:l Sk, (3)
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Algorithm 1 RAMDA (WO T, Ty, ¢, {n:}, {ct}, {e:})

Vo0, U0, ay«0

fort=1,...,T do
Sample & ~ D, sy < nVt, o1+ 8, G Ve, (W)
Compute V*, U by [(2)[and construct P* by and 0; <+ max(diag(P?))~!
Compute W ir@ (WL WO a7 'Vt a7 PPt by, Ta, €;)

Update W? by [(5

output: W7

where € > 0 is a (usually small) constant for numerical stability and Diag(-) is the diagonal
matrix whose diagonal entries are the elements of the input vector. The update direction is
then obtained by (approximately) solving the following subproblem.

Wt ~ argVIVnin (QuW) = ayp(W) + (V!, W) + %<W - WO PY(W - W), (4)

where W0 is the initial point. Details regarding and how to solve it are deferred to
m The iterate is then updated by averaging W and W= with some ¢; € [0, 1]:

Wt = (1 — Ct) Wtil + CtWt. (5)

The choice of P! in that uses the accumulated square of the stochastic gradient norm as
the preconditioner is the key to adaptivity and is widely seen in adaptive methods such as
Adagrad [11], while the choice of the cubic root instead of the square root is motivated by
the impressive numerical performance of MADGRAD of [7] for smooth problems without a
regularization term. The averaging step in with ¢; # 1 can be interpreted as incorporating
a momentum term in the non-regularized non-adaptive case [43], [19].

4 Subproblem Solver

Given an iterate W'~ a momentum term m;, a preconditioner P!, and a stepsize 7,
existing regularized adaptive stochastic gradient algorithms for can be summarized in
the following form [51]:

W = argmin (Q,(W) := (my, W) + %W — WL PY W —WEh) + (W), (6)

w t

whose form is similar to When the preconditioner P is a multiple of the identity matrix
like in the case of [I6], the exact subproblem solution of can be efficiently computed
through the proximal operator associated with the regularizer. However, a major difficulty for
realizing regularized adaptive methods, including the proposed RAMDA and the framework
of [51] whose preconditioners are not a multiple of the identity, is that except for few special
regularizers, the subproblem usually has no closed-form solution. We therefore consider
using approximate solutions of the subproblem.

We propose to apply a few iterations of proximal gradient (PG) [see, e.g., 5 B3] to approxi-
mately solve the subproblems in and @ when no closed-form solution is available, and
we will show theoretically and empirically in the following sections that the inexactness of
such approximate solutions has barely any effects on the theoretical guarantees and the final
model quality. For the inexactness of the approximate solution in we require

min sl S e, QW) < Q(W'), (7)

S€Q. (W)
for some pre-specified ¢;, where 9Q;(W*1) is the (limiting) subdifferential [see, e.g., 38|
Definition 8.3]. This condition can be easily checked using information available in the PG
iterations. For the sake of time efficiency, we also impose an upper limit for the number of
PG iterations. Likewise, when applying our subproblem solver to @, we enforce but
with @, replaced by Q, and W' by W*. We focus on the case of diagonal and positive P?,
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Algorithm 2 PG(Z°, WO, V, P,0, Ty, ¢)
if ¢ is nonconvex then 6 <« 6/2
forj=1,....,T> do 4
77 prox, (Z7=1 —0(V + P(Z7~1 —=W?)))
if holds with ¢, = ¢ and W = Z7 then Z™2 + ZJ, and break
output: Z™>

and thus the largest eigenvalue max(diag(P?)), where diag(-) is the vector formed by the
diagonal entries of the input matrix, can be calculated easily and used to compute a step
size guaranteeing sufficient objective decrease. For cases in which this value is difficult to
obtain, one can apply a simple backtracking linesearch for the subproblem to find a suitable
step size efficiently. This PG subproblem solver is summarized in [Algorithm 2| To guarantee
convergence for both our algorithm and the framework of [51], our analysis in [Section 5
requires that {e;} satisfy

-\ 2
€ .= Zt:o € < 00. (8)
We will show in that holds after at most O(e; ?) iterations of [Algorithm 2

5 Analysis

This section discusses theoretical guarantees for RAMDA and the proposed subproblem solver

in We also prove convergence guarantees for applying [PG to approximately

solve [(6)| for the framework of [5I]. All proofs are in the appendices. Some of our results
are inspired by [16], but with the added inexactness in and the adaptiveness for the
preconditioner, the analysis is nontrivial. Recall that we assume that f¢ is differentiable only
almost everywhere but not everywhere, which conforms with widely-used network structures
like ReLU-type activations.

We first show that can be attained by [Algorithm 2|and that the point of convergence of
RAMDA is almost surely a stationary point.

Theorem 1. Assume that and @ has at least one optimal solution with a finite optimal

objective value. Given €, > 0, the number of iterations|Algorithm 2| takes to satisfy for
both and @ is O(log(e; ') when 1 is convex and O(e; ) when 1 is nonconver.

Theorem 2. Consider {W'} generated by|Algorithm 1 for with and {c;} and {e:}
.]f

satisfying > ¢, = oo and [(8)] Assume there is L > 0 such that for any &, fe is almost surely
L-Lipschitz-continuously-differentiable, so the expectation is also L-Lipschitz-continuously-

differentiable, there is C' > 0 such that EgtNDHVfgt (Wt_l) H4 < C for all t, and that the set
of stationary points Z = {W | 0 € OF (W)} is nonempty. For any given WO, consider the
event that {Wt} converges to a point W (each event corresponds to a different W) If 0 is
outer semicontinuous at W, this event has a nonzero probability, and {m} satisfies

USSR N

then we have that W € Z with probability one conditional on this event. Moreover, {W'}
also converges to this stationary point W.

Usually, convergence to a point requires some further regularity conditions like the Kurdyka—
t.ojasiewicz condition and boundedness of the iterates. However, existing frameworks
regarding iterates convergence using such conditions also require the method analyzed to
have a subgradient-descent-like behavior and to be a descent algorithm. Neither of these
hold true even for the basic stochastic gradient algorithm, and we leave the analysis for this
part as a challenging future work.

Our next key result shows that after a finite number of iterations, iterates of RAMDA all
possess the same structure as that of the point of convergence W. For this end, we first
need to introduce the notions of partial smoothness and prox-regularity, and impose these
assumptions on ¢ at W.
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Definition 1 (Partial Smoothness [26, 12]). A function 1 is partly smooth at a point W

relative to a set My, > W if

1. Around W, My, is a C?-manifold and | s, is C2.

2. 1 is reqular (finite and the Fréchet subdiﬁgrential coincides with the limiting Fréchet
subdifferential) at all points W € My, near W, with 0(W) # 0. ~

3. The affine span of OY(W) is a translate of the normal space to My, at W.

4. O is continuous at W relative to M.

We often call My the active manifold at W. Locally, this manifold represents all points
near W that share the same structure induced by the regularized as W. Therefore, finding
the active manifold is equivalent to finding the locally optimal structure.

Definition 2 (Prox-regularity [36]). A function v is proz-regular at W for V* € dy(W)
if 1 is locally lower semi-continuous around W, finite at W, and there is p > 0 such that
P(Wh) > (Wa)+(V, Wy —Wa) — &||Wy — Wa||? for every Wi, Wy near W with 1(Wa) close
to (W) and V € O(Wa) close to V*. 1 is proz-regular at W if it is proz-regular for all
Ve op(W).

Theorem 3. Consider[Algorithm 1] with the conditions in satisfied. Consider
the event of {Wt} converging to a certain point W as in If the probability of
this event is nonzero; 1 is proz-regular and subdifferentially continuous at W and partly
smooth at W relative to the active C* manifold My, ; O is outer semicontinuous at W;
and the nondegeneracy condition —V f (V_V) € relative interior of 0y (V_V) holds at W, then
conditional on this event, almost surely there is Ty > 0 such that

Wte My, Vit>T,.

We note particularly that convex and weakly-convex [34] functions are all regular, prox-
regular, and subdifferentially continuous everywhere.

We also show that our subproblem solver and condition can be effectively applied to the
framework of [51] while retaining the same convergence guarantees. As mentioned in [Section 2]
our result is much stronger than that of [9] for having no unrealistic smoothness requirement
on 1 and using an implementable inexactness condition.

Theorem 4. For the framework in [51)] with the subproblem solved approzimately by
such that holds with {e;} satisfying [(8)} Then Theorem 1 of [51) still holds, but

with the constants {Q;} being also dependent on €.

6 Experiments

This section examines the practical performance of RAMDA for training structured neural
networks. As sparsity is arguably one of the most widely adopted structures in machine
learning, we follow [45] to consider structured sparsity as the representative structure in our
experiments. Particularly, we employ the group LASSO regularization [50] to encourage
group sparsity and disable weight decay in all experiments, except for the dense baselines.
We begin from examining the efficiency and effectiveness of [PG for both RAMDA and existing
regularized adaptive methods. We then consider tasks in computer vision, language modeling,
and speech to compare the following algorithms using Pytorch.

o RAMDA: The proposed
« RMDA [16]
o ProxSGD [49]

ProxGen [5I]: We follow their experiments to use AdamW and apply our as the
subproblem solver.
o ProxSSI [9]

These algorithms are introduced in [Section 2| and also further summarized in

For each task, we also provide for reference a baseline that does not include a group LASSO
regularizer in the training (SGD with momentum (MSGD) for computer vision, and Adam
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Table 1: Weighted group sparsity and validation accuracy of different subproblem stopping

criteria.
No early stopping Early stopping
Model/Data | Algorithm Accuracy Sparsity Accuracy Sparsity
VGG19 / ProxGen 92.7 £ 02% 838+ 0.0% | 927 £0.1% 86.9 + 0.4%
CIFARI10 RAMDA 92.7 £ 0.2% 86.7+0.3% | 92.9 £ 0.2% 86.3 £ 0.4%
ResNet50 /| ProxGen 73.6 £01% 747+ 0.6% | 74.0 £ 0.1% 67.6 £ 3.1%
CIFAR100 RAMDA 69.9 £ 1.5% 69.5+21% | 71.2 £ 1.4% 67.5 £ 1.6%

for the other two), but our comparison is only among those for training structured models.
Our code for reproducing the experiments and the hyperparameter settings are available
at https://github.com/ismoptgroup/ramda_exp/. Additional details of the stability of
the structure (level of structured sparsity here) over epochs of RAMDA are available in
Appendix D

We use two criteria for comparison: 1. Model predictive ability, and 2. Structured sparsity
level. The former is task-dependent and thus specified in each experiment. Regarding the
latter, sparsifying neural networks while preserving its performance requires prior knowledge
of model design. A common approach is retaining certain parameters during the training
process, and we adhere to this convention such that the bias, batch normalization [I7], layer
normalization [3], and embedding layers do not have any sparsity-inducing regularization
imposed on them [J] B5]. For the rest, we adopt channel-wise grouping for convolutional
layers, input-wise grouping for fully-connected and LSTM layers during the training phase.
For evaluation, our structured sparsity is calculated using the weighted group sparsity with
the weights proportional to the number of parameters in each group.

We run each experiment with three different random initializations and show the mean and
standard deviation of the validation predictive performance and the structured sparsity of
the final model of all methods.

Subproblem We start from showing the effectiveness of our proposed subproblem solver
for RAMDA and ProxGen. For both approaches, we use Theorem 2 of [9] to safely screen
out a portion of groups that will be zero at the optimal subproblem solution, and opt
for the [PG algorithm to solve the remaining parts. We consider two practical stopping
criteria for 1. Running until it reaches the maximum iterations (no early stopping),
and 2. Terminate when the subproblem objective improvement is small (early stopping).
For the former, we set the maximum to 100. For the latter, we terminate [PG| early if
(Qu(Z771) — Qu(27))/(|Qi(Z7| + 1) < 1078 is reached. Moreover, to ensure incorporation
of the preconditioner into ProxGen, we set its minimum PG iterations to 2. We examine
how these stopping criteria affect the final model of RAMDA and ProxGen using image
classification problems of a smaller scale. From we see that early stopping does not
affect the outcome much. Given that early stopping is more efficient, we will adopt it in all
subsequent experiments.

Next, we compare ProxGen with ProxSSI (these two only differ in the subproblem solver)
to examine the efficiency and performance differences between solving the subproblems
approximately and (almost) exactly in [Table 2l We see that our solver is around 3X
faster than ProxSSl, and the model qualities are similar. We thus exclude ProxSSl from
our comparisons in the following experiments due to its excessively lengthy running time,
especially for large-scale tasks.

Image Classification We conduct a classical computer vision task of training ResNet50
[14] with the ILSVRC 2012 ImageNet dataset [39]. The result in [Table 3| shows that RAMDA
attains the best validation accuracy and structured sparsity simultaneously.

Language Modeling For language modeling, we train Transformer-XL (base) [6] using the
WikiText-103 dataset [31]. Transformer-XL is comprised of embedding and non-embedding
layers, and in the PyTorch implementation, the non-embedding layers are built using linear
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Table 2: Weighted group sparsity, validation accuracy and time/epoch of ProxSSI and ProxGen
for CIFAR10/CIFAR100. We report the average time/epoch using one NVIDIA V100 GPU.

Algorithm Accuracy Sparsity Time | Accuracy Sparsity Time
VGG19/CIFAR10 VGG19/CIFAR100

ProxSSI 92.8 £ 0.1% 88.4 £ 0.2% 79s | 67.3 £0.1% 78.6 £ 0.3% 79s

ProxGen 92.8 + 0.0% 86.6 + 0.1% 24s | 68.1 £ 0.4% 75.5 + 0.2% 26s
ResNet50/CIFAR10 ResNet50/CIFAR100

ProxSSI 94.0 £ 0.1% 83.7 £ 0.6% 260s | 73.7 £ 0.4% 70.4 £ 0.7%  251s

ProxGen 94.1 + 0.1% 80.4 £+ 0.4% 70s | 73.6 £ 0.4% 65.5 + 3.6% T4s

Table 3: Weighted group sparsity and validation accuracy on ImageNet/ResNet50.

Algorithm Accuracy Sparsity
MSGD 77.14 + 0.04% -

RAMDA 74.53 £ 0.10% 29.19 £ 0.94%
ProxSGD 73.50 &£ 0.20% 17.54 £ 1.26%
ProxGen 74.17 £ 0.08% 20.29 £ 0.22%
RMDA 74.47 £ 0.08% 25.20 £ 1.69%

and layer-normalization layers. We apply group LASSO regularization to the linear layers,
and present in the perplexity and the weighted group sparsity of the models trained.
We see that RAMDA gives the best perplexity and structured sparsity simultaneously.

Speech Synthesis We consider Tacotron2 [41I] for speech synthesis on the LJSpeech
dataset [I8]. We apply regularization to the convolutional, LSTM, and linear layers of
Tacotron2 and show the results in Clearly, RAMDA gives the lowest validation loss
and the highest group sparsity.

Time Efficiency In[Tables 4 and[5] we see that although RAMDA and ProxGen have more
difficult subproblems without a closed-form solution to solve, our proposed [PG| solver is
highly efficient such that the running time of them is still close to other approaches, making
these regularized adaptive approaches practically feasible.

Summary In summary, thanks to its adaptive nature (for better predictive performance)
and its ability of manifold identification (for higher structured sparsity), RAMDA is superior
to state of the art on modern language modeling and speech synthesis tasks as well as the
ImageNet problem. We also observe from the plots in the appendices that it is possible to
further improve the sparsity level of RAMDA if we run it for more epochs.

7 Conclusions

In this work, we proposed a regularized dual averaging method with adaptiveness, RAMDA,
for training structured neural networks. Our method outperforms state of the art on modern

Table 4: Weighted group sparsity and validation perplexity on Transformer-XL with WikiText-
103.

Alg. Perplexity Sparsity  Time/epoch
Adam 23.00 &+ 0.05 - 6261 &+ 21s
RAMDA  26.97 + 0.10 36.2 + 0.3% 6954 4+ 30s
ProxSGD 27.42 +0.02 33.1 +1.5% 6167 + 12s
ProxGen  27.49 + 0.19 30.5 + 0.6% 6652 + 21s
RMDA 27.10 £ 0.08 36.0 £ 2.7% 6184 + 20s
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Table 5: Weighted group sparsity and validation loss on Tacotron2 with LJSpeech.

Alg. Loss Sparsity  Time/epoch
Adam 0.39 + 0.02 - 431 £ 2s
RAMDA  0.44 + 0.01 52.9 + 1.6% 443 £ 1s

ProxSGD 0.50 & 0.00 34.3 £ 1.6% 431 + Os
ProxGen 0.45 4+ 0.01 45.6 £ 0.9% 438 + 2s
RMDA 0.46 £ 0.01 459 + 1.7% 431 £+ 2s

architectures including LSTM and transformers as well as the ImageNet problem. We
also proposed a subroutine with strong convergence guarantees to approximately solve the
regularized subproblem of both our method and an existing framework efficiently. Extensive
experiments on group sparsity showed that our subproblem solver can greatly reduce the
training time for existing methods, and our proposed RAMDA achieves simultaneously
higher structured sparsity ratio and better prediction performance than existing methods.
Implementation of our method is available at https://www.github.com/zhisyuan1214/
RAMDA/.
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A  More Experiment Details

This section describes details of our implementation of RAMDA and the setting of the
experiments conducted in
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A.1 TImplementation and Hyperparameter Setting of RAMDA

Similar to [16], we introduce a restart strategy to the implementation of RAMDA. During each
stage of the training, the learning rate 7; and the momentum factor ¢; are fixed. Once the
epoch count enters the next stage, we reset the counter ¢ to 1 and use the output parameter
WT from the previous round as the new input parameter W° to the same algorithm, set
ayg, Vt and U to 0, but keep the scheduling for  and ¢ going without resetting them, and
decrease € by a factor. We initialize ¢; as either 0.1 or 0.01, depending on the problems, and
use a constant ¢; until the final stage, where we gradually increase it by

c = min(C\ﬂ7 1),

where i counts the training steps executed at this final stage. This momentum strategy is
applied to both RAMDA and RMDA in our experiments.

A.2 Detalils of the Algorithms Compared
In we summarize details of the algorithms compared in

Table 6: Algorithms used in the experiments.

Algorithm | Unregularized counterpart | Subproblem
RAMDA MADGRAD [7] [PG

RMDA MDA [19] ‘Closed-form solution
ProxSGD MSGD Closed-form solution
ProxGen AdamW [30 PG

ProxSSI AdamW [30 Newton-Raphson

A.3 Computational Resource

We conduct all experiments utilizing NVIDIA TESLA V100 (32 GB) GPUs. We employ
eight V100 GPUs for each run of the ImageNet experiments. For all other experiments, we
utilize a single V100 GPU per run.

B Proofs

This section provides proofs of the theoretical results stated in We restate these
results and provide their corresponding proofs right after each statement.

Theorem |1, Assume that and @ has at least one optimal solution with a finite optimal

objective value. Given €, > 0, the number of iterations of|Algorithm 2| takes to satisfy for
both and @ is O(e; ') when v is convex and O(e; ?) when v is nonconve.

Proof. We use the notation B

Qu(2) = f(2) +v(2)
to unify the two objective function @;/a; and Q:, where f; is the smooth part and we define
the Lipschitz constant of V f; as L.

At each iteration, [PG] solves the following subproblem
Zitl e argzmin (Vf(Z9), Z — Z9) + ;&Hz — ZjH2 +(2),
and thus from the first-order optimality conditions, clearly we have
V(27— Y (20) — 9% (Z9+1 — 79) € 0Qu(Z7H).
We thus have from the Lipschitz continuity of V f; that

: j+1y i i +1 i —1 j+1 i
il < (VA - VRE| 4 g2 - 2 < (L0 |24 - 2|
(9)
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Note that Q; is lower bounded, say by Q;‘, and has at least one solution Z* (unique when ¢
is convex).

In the case that ¢ is convex, we know that 6; = 1 /L, and clearly shows that the
subproblem objective @ is e-strongly convex. Therefore, standard analysis of proximal
gradient [see, for example, [4 Lemma 10.4 and iTheorem 10.29] gives that

iﬂﬂ“fzwg@wﬂf@w“% vj 20, (10)
QuUZ) - Q2 < %

The combination of |(9)| shows that it takes O(loge; ') iterations for to reach the
required precision of ¢;.

(1—7) 120 = z*|)?, vi>1. (11)

When 1 is nonconvex, we have that §, = 1/(2L) and standard analysis [2, Section 5.1] gives

. mm HZJJrl ZjH < 5} (12)

for some constant C' depending on L and Q;(W*) — Q. Therefore, and @ show that it
takes O(e; ?) iterations to reach the desired precision. O

Theorem [2} Consider {W*'} generated by|Algorithm 1 for |(1) . with |(7)| . and {c;} and {e}
satisfying > ¢z = oo and . Assume there is L > 0 such that for any &, fe is almost surely
L-Lipschitz-continuously-differentiable, so the expectation is also L-Lipschitz-continuously-

differentiable, there is C' > 0 such that EgthHVfgt (Wt_l) ||4 < C for allt, and that the set
of stationary points Z := {W [ 0 € OF (W)} is nonempty. For any given WP, consider the
event that {Wt} converges to a point W (each event corresponds to a different W) If Oy is
outer semicontinuous at W, this event has a nonzero probability, and {n;} satisfies

Zsta;1 = 00, Z sta;1)2 < o0, (13)

W — W (siart) ™ 225 0, (14)

then we have that W € Z with probability one conditional on this event. Moreover, {wty
also converges to this stationary point W.

Proof. First, we prove that when {W?*} converges to W, {W*} also converges to W. From
(5)} we have that

Wt =W < (1= e[t = W + e = . (15)

Since W' — W, for any € > 0 we can find an integer ¢, > 0 such that ||[IW* — W/ < e for all
t>te. Therefore by deducting e from both sides of - we get

t t

v s (TT0-eo) (et o] - <o (= 3 ) (et <] ) e

k=t. k=t.
By letting ¢t approach infinity and noting that > ¢; = oo, we see that
lim HWt WH <e

t—o0
Because e is arbitrary, we see that ||WW* — W/| — 0, and hence {W?*} converges to W.

Next, consider the update of a; LUt we can see from that
U o U n 5:Ve, (WY (1 St) Ut
Qi

V(. (16)

Qi Qp Qg1 Qg Q1
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Moreover, the assumptions on 7 satisfies all the required conditions of Lemma 1 of [40]. We
therefore apply Lemma 1 of [40] to conclude that

Ut a.s.

o Eer [Vfe (W) oV fe (WH]. (17)
The update for o, 1Yt has a form analogous to and we have from Jensen’s inequality
that

Ben|[Vfe W) < /Benl Vse, W) < VC,
implying that the second moment is also bounded in expectation. We can therefore also
apply Lemma 1 of [40] to a; 'V* and conclude that
Vt a.s.
Ckit — Vng'D [fg (Wt)] . (18)

We further notice that the union of two events that happens almost surely is still an event
that happens almost surely.

From and we can see that there is a sequence {z;} such that
& pt . A
(G R Do wY) coui). Jul<e. (19)

(673 (673 (673
Our assumption in implies that a; — oo, which together with leads to
Zt
~ o 20
- (20)
From |(18)} that VE¢p [fe (W)] is Lipschitz continuous, and that Wt — W (which we have
proven in the first part), we see that
Vt a.s.
o 5 VEc [£:01)]. 2
For the third term, we have from and that

P! _2 Ut
— =0y 3Diag<3 ) +iI.
(677 Qt e77

Again since a; — 0o, the second term of the equation above converges to 0. Therefore, by

(17)] we obtain that
Pt a.s. 3
<n—%%3m%(w%wW%ﬂwkammO'

Again from the continuity of VE¢.p [fe (W)] and that oy — oo, we conclude that

2 22 o7 Diag (/B (V1 (W) o VE ()] ) 2250 (22)

Qi

Finally, using the outer semicontinuity of 9v(W) at W, we conclude from that
0 € VE¢p [fe (W)] + lim YW C VEeop [fe (W)] + (W) = 9F(W)
with probability one, showing that W is a stationary point almost surely. O

Theorem [3] .. Consider [Algorithm 1| with the conditions _in satisfied. Consider the

event of {W*'} converging to a certain point W as in 2| If the probability of this
event is nonzero; v is prox-reqular and subdifferentially continuous at W and partly smooth
at W relative to the active C* manifold My, ; 0 is outer semicontinuous at W; and the
nondegeneracy condition

— Vf (W) € relative interior of 9y (W) (23)
holds at W, then conditional on this event, almost surely there is Ty > 0 such that
Whe My, Vt>T,. (24)

In other words, the active manifold at W is identified by the iterates of |Algorithm 1| after a

finite number of iterations almost surely.
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Proof. From there exists a sequence {Y*} such that

~ ¢ Pt
vieapt), L2 P ai _woyiyvi—o v (25)

o7 e77 Qg
For notational ease, we denote

fW) =Eeup [fe(W)]. (26)
From we then get
- vt Pt . .
VWY — — = 2L (Wt — W) € OF(W). (27)
o7 Qi Qg
We aim to show that .
dist(0,0F(W*')) == min ||V
Y EDF (W)
converges to 0 almost surely. From [(27), we have
i vt ey VY oa P 0
a0, o) < vty - 22 P i)
t t
. & Pt
=< Vf(Wt)—HJr — (W' -w")
Qg Qg
. & Pt
< |V = |+ L+ || = = w0, (28)
Qi Qi Qi

where we get the first inequality from the triangle inequality and the second from [(19)

According to [(18)| and there are {A;} and {B;} such that
{W = Vi) + A A 220

at

2 —a; " Diag (VW VIWY) + Biy 1Bl 22 0.

(€27

(29)

Substituting the above two equations back to we obtain
dist (0, F (W?))
. 2
< [wrovty = wrwt)| + 1 + L+ (arF
t

WA+ 1) | - we|

< L= wr A+ S (o [T e TV | ) [ - we)|
(30)

From we know that W* and W' both converge to W, so

[t —w|| < ||t = w |+ wt = ]| 0.
From and we know that e;/az — 0. Because Wt — W, we also have that
| = W = wo < oo,
From W' — W, we have that
YV (W) o V(W) \/Vf W) o Vf( )H < 0.
Combining these results with [(30)} we conclude that h
Ll —we | A+ (a; Hvwrwnyevrwn|_+ 1) [t - we|| ==,

proving that

dist(0, OF (W?)) 22 0.
On the other hand, since f is continuous and v is subdifferentially continuous at W (which
implies Fis also subdifferentially contnuous at W), Wt — W, and that Vf (Wt) +Y 2

0 € F(W) (from [Theorem 2)), we know that F(W?') 225 F(W) as well. Therefore, we can

apply Lemma 1 of [24] to conclude that [(24) mdeed holds for some Ty < oo almost surely. [

128505 https://doi.org/10.52202/079017-4081



Algorithm 3 ProxGen (WO, T, Ty, {n:}, {p:}, {c:}, {e:}, {bs}, 1)
mg < 0

fort=1,...,T do

Sample & ~ D with batch size by

G' Ve, (W)

my < pemi_1 + (1 — py)G?

Construct P! satisfying Pt = 61

0 < 1/]1P*]],

Compute W1 by roughly solving @ that satisfies with Q, replaced by Q; and W'
replaced by W+!, using (WEWE my,n; L P 0, To, €;)
output: W7

B.1 Convergence Result for ProxGen

We next discuss the convergence result for the framework of [5I] with inexactness added. For
consistency, we first use our notations to introduce their framework, with our inexactness

condition added, in

In their analysis, [5I] made the following four assumptions, and we will follow these assump-
tions using the notation |(26)|

(C-1) The expected loss function f is L-Lipschitz-continuously-differentiable and lower-
bounded for some L > 0.

(C-2) The stochastic gradient G = V f,(W*™1) is an unbiased estimator of V f(W*~1)
with bounded variance.

2

g
by’

EeplG'] = VW), Bep |G = VAW "] < 30 ez,

where b; is the batch size of & and o > 0 is a constant.

(C-3) There are some po,p € [0,1) and D, G > 0 such that ||[W!™ — W*|| < D, |G!|| < G,
and p; = pout~?! for all ¢.

(C-4) There is some 7 > 0 such that ||17t_1PtH2 <1/v < oo for all t.
(C-5) There is 6 > 0 such that

P'>6, < —, Vt>0. (31)

Theorem 4 For the framework in [51)] with the subproblem solved approzimately by
such that [(7)] holds with {e;} satisfying[(8)l Then Theorem 1 of [51] still holds, but
with the constants {Q);} being also dependent on €.

Proof. The major flow of our proof follows that of [51] but with suitable modifications to
accommodate the inexactness condition in the subproblem solving.

It is clear from [51, Lemma 1] that

[lme]] < G, Vt>0. (32)
By the update rule for m;, @ and we have that there is z; such that
0 € 2+ (1= po)gn + prme_1 + OH(W) + %(Pt)(Wt WY, el <e, V>0,
leading to
VW) = 2 — (1 p)gr — o1 — %(Pt)(Wt WY e aFWY.  (33)
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We thus have from [(33)| and |(C-4)| that
dist(0, 0F (W*))?

IN

1 t t t—1 t t—1 2
L (PO =W — |

4= oo = V) + pems + =W et a2y - we |

|20+ (1= po)ge = VWY + prme + (W' = W)

IN

2
n 4H(W’f - WH)H

IN

4”(1—pt)gt—Vf(Wthtmt,l+(W — Wt H +4( ! F1) W= W 44k

T
(34)

We will separately bound the quantities 77 and ||[W* — Wi=1 H2 below.
From the subproblem objective requirement in we get

1
<(17pt)gt+ptmt_1’Wt7wt71>+w(wt)+%<wtiwt71’ Pt(Wt*Wt71)> S w(Wtfl)'
t

(35)
From we have
JOVE) < WD) (VFWEhH, Wi —wi ) + glth - W (36)

Summing [(35)| and gives

((1=p)ge =V (W) 4 pemy g, WE =W D) 4 |[WF— W 1y| zogr S FW'™=hH—FW?).
(37)

Note that n; ' Pt — LI > 0 from L so the second term IHEIS nonnegative. mtogether

with [(C-3) - )| then leads to

W= W2,
2n¢

L
—L

IN

F(wt—l) _ F(Wt) _ <gt _ Vf(Wt_l), Wt _ Wt—1> 4 <ptgt’Wt _ Wt—1> _ <ptmt—1)Wt _ Wt—l)

IN

L 2 L
PV = FOW) 4 5 llge = VAW + S0 = W2 4 L g2 4 S — w2
IV -

p2u2t-1D G2
< FW'h —F(W!) + —Hgt VWD 4+ LW = W2+ 2+ pou' ™ DG
Summing it over ¢t = 1, 2, ..., T and utilizing the assumption that the step sizes are non-
increasing then give
1) 3
(3 - 5L)Z||Wt W <A+ O+ 52 ant VW,
0 t=1
where e -
A= F(W°) —min F(W), Cy:= 22 for
(W5) =min F(W),  Cr= ="+ 570 =)
From the inequality above, we obtain
T T
DW= WP < Hy+ Hy Y llge = VWY (38)

t=1 t=1
for some constants Hy, Hy depending on L, A, §, 19, and C;. From |(37), we also have

(1= pgi = VFOW) + prmey W= W)
F(Wt—l) _ F(Wt) _ <vf(Wt) _ vf(Wt—1)7Wt _ Wt—1> _ HWt Wt 1H21 (Pt) L]

IN

< FW'h = FWY) — (VW) = VW H, W — w1,
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Therefore, we obtain
T = 101 = po)gr = VOV + purm P+ W= W2 4 2{ (1= p)gy = THW) 4+ pomey, W= W)
<X =pe)ge = VW) + VW) = VW) + pemga |2+ [[WE = W2
2(F(W'h) = FW") — (VW) = VW H, Wt —w' 1))
< 4llge = VW 2+ AL W = W2 4 dp7 (fme—1[* + [gel1*) + W = W2
2(F(W'Y) = F(W') + L|W* = W1%)
<2 (F(W) = F(W) + 863" G 4+ (142 +4L7) [ — W2 4 g, — 7 (W)
(39)
Let Cy == 2+ 2L + 4L? + v~ 2 and insert into we get
dist(0, 0F (W*))?

<4 (2 (FW'Y) = F(W) +8p5u> VG + Co|[W! = W12 4 4lg — VAW + 2)

(40)
Therefore, we have from and |(40)| and that
Ea1§1 ----- ér [diSt(OvaF(Wa))2]
T
1 1812
< 5 B[ = prdge = VHOV) + 20+ pumecs + - (PO = W) ]
t=1
f A 8POG2 t—1y)(2 t t—12
< 28+ 772 - +4Z]E||gt VAW +CQZEHW WL +Zet
t=1 t=1
T
4 8p5G? 2 2 1
< —(2A 4o Cy(Hy + H —
_T< i ptie Z+2 1+2o;bt )
T
1 1 QA Q3
< * — X9
- ; by + T + T’
for some constants @1, Q2, Q3 dependent on {no,d, A, L, D, G, po, 11,7, €}, but not on 7. This
proves our theorem. O

C Additional Experiments for Computer Vision

In this section, we compare RAMDA with other methods on image classification with smaller
datasets. They are:

1. Logistic regression (neural network with no hidden layer) with the MNIST dataset
[23].

A modified VGG19 [42] with the CIFAR10 dataset [21].

The same VGG19 with the CIFAR100 dataset [21].

A modified ResNet50 [14] with the CIFAR10 dataset.

The same ResNet50 with the CIFAR100 dataset.

AR e

The results are shown in In the logistic regression problem, we only perform a single
run, with the initial point being the origin, as it is a convex problem. Moreover, in this
problem, when dealing with ProxSSI, ProxGen, and ProxSGD whose sparsity levels are highly
unstable over iterations, we report their highest weighted group sparsity over all epochs, but
for all other problems, we report the group sparsity level of the final output.

Experiments in this subsection show that RAMDA might sometimes perform worse than
existing methods on smaller problems like CIFAR10/100. Fortunately, for such smaller
problems, the training cost is not very significant, and one can afford to try more algorithms.
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Table 7: Group sparsity and validation accuracy of different methods on image classification

with smaller datasets.

Algorithm  Validation accuracy Group sparsity

Logistic Regression/MNIST

ProxSGD  91.31% 39.29%
ProxSSl 91.31% 39.92%
ProxGen 91.31% 39.92%
RMDA 91.34% 57.02%
RAMDA 91.35% 57.40%
VGG19/CIFAR10
MSGD 93.95 £+ 0.14% -
ProxSGD  92.82 + 0.09% 82.76 £+ 5.42%
ProxSSI 92.81 + 0.15% 88.40 + 0.23%
ProxGen 92.83 + 0.05% 86.64 + 0.12%
RMDA 93.13 + 0.10% 90.22 + 0.06%
RAMDA 92.89 + 0.13% 86.31 + 0.31%
VGG19/CIFAR100
MSGD 74.07 £ 0.05% -
ProxSGD  71.96 + 0.15% 72.34 £ 11.9%
ProxSSI 67.29 + 0.06% 78.58 + 0.34%
ProxGen 68.13 + 0.36% 75.46 + 0.17%
RMDA 71.96 + 0.31% 80.88 + 0.11%
RAMDA 70.47 + 0.25% 65.19 + 0.77%
ResNet50/CIFARI0
MSGD 95.54 £ 0.19% -
ProxSGD  92.36 £ 0.05% 82.18 £ 2.67%
ProxSSI 94.04 + 0.12% 83.67 + 0.63%
ProxGen 94.07 + 0.12% 80.45 4+ 0.45%
RMDA 95.11 + 0.11% 85.64 + 0.12%
RAMDA 93.85 + 0.10% 81.99 + 1.26%
ResNet50/CIFAR100
MSGD 79.49 £ 0.49% -
ProxSGD  74.54 £ 0.58% 49.29 £ 5.91%
ProxSSI 73.65 + 0.39% 70.38 + 0.74%
ProxGen 73.63 + 0.43% 65.51 + 3.58%
RMDA 75.62 + 0.19% 79.97 £+ 0.27%
RAMDA 69.23 + 0.86% 68.65 + 1.83%

D Plots of Sparsity Level and Validation Accuracy over Epochs

We provide in the plots of predictive ability and structured sparsity over epochs of
some representative experiments we have conducted. These experiments are:

® NSOt N

ResNetb0 with the ILSVRC 2012 ImageNet dataset.
Transformer-XL with the WikiText-103 dataset.
Tacotron2 with the LJSpeech dataset.

Logistic Regression with the MNIST dataset.

A modified VGG19 with the CIFAR10 dataset.

The same VGG19 with the CIFAR100 dataset.

A modified ResNet50 with the CIFAR10 dataset.
The same ResNet50 with the CIFAR100 dataset.

In the plot for Transformer-XL, one step processes ten batches, and for our batch size
of 64, one epoch consists of 8,401 batches. We further observe in the zoomed-in sparsity
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plots in that the sparsity level of RAMDA is stable at the final epochs. These
plots corroborates our theory that RAMDA is indeed capable of manifold identification
while achieving competitive prediction performance. On the other hand, in the absence
of manifold identification guarantees, the sparsity levels of ProxSGD, ProxSSI and ProxGen
exhibit oscillations that are sometimes drastic. We note that for the largest problems
Tacotron2 and Transformer-XL, the sparsity levels of RAMDA are still gradually increasing
even at the final epochs. This suggests that if we are willing to run the algorithm for longer,
it is possible that the structured sparsity level could be further improved.

E Experiment with Nuclear-norm Regularization

We further conduct some preliminary experiments with a different regularizer to showcase
that the proposed RAMDA can be applied to structures beyond sparsity. We consider the
structure such that each layer of the neural network is low-rank, induced by imposing one
nuclear-norm regularizer per layer individually by treating each layer as a matrix. Given
a matrix X € R™*" of rank r < min{m,n} with its singular value decomposition (SVD)
X =UXVT, where U € R™*", V € R™ " are orthogonal and the positive definite diagonal
matrix ¥ € R"*" represents the nonzero singular values of X, the nuclear norm of X is

computed by
-
IX1 = T,
i=1

and the corresponding proximal operator for A > 0 is
prox)\”.H*(X) = UV, where ii,i =max{0,%;; — A}, i=1,...,n
Given a point X* with rank r*, the active manifold of the nuclear norm at X* is
M(X*) ={Y | rank(Y) = r*}.

Using low-rankness to condense neural networks is itself an interesting research topic, but
conducting full SVDs could be rather time-consuming, so applying this structure to larger
problems is challenging but potentially useful. How to exploit this structure for prediction
acceleration and to make the training more efficient, possibly using iterative methods to
compute approximate SVDs, is an interesting topic we plan to investigate in the near future.
Instead, the purpose of the preliminary experiment here is merely for showing that our
method is also applicable to other structures.

We first consider training a simple neural network with six fully-connected layers using
the FashionMNIST dataset [46]. Since this is a rather small-scale problem and this is a
image classification problem, we do not expect RAMDA to outperform non-adaptive methods,
especially the RMDA method that is also able to identify the active manifold. The goal of
this experiment is just to demonstrate the possibilities of structures beyond sparsity. The
results are shown in As we have anticipated, RAMDA is indeed slightly worse than
RMDA regarding the low-rank level and the prediction accuracy, but it is still competitive
and outperforms ProxGen and ProxSGD. This exemplifies the potential of RAMDA as well as
RMDA for training neural networks with other useful structures.

We also conduct an experiment on pretraining a modified vision transformer model [29] for
masked image modeling [48] using the CIFAR10 dataset. Following the standard practice of
this task, we select the model that gives the lowest validation loss among the last 50 epochs
as the final output. The results are shown in We can see that RAMDA attains the
lowest validation loss and has a low-rank level almost identical to that of RMDA. On the
other hand, ProxSGD and ProxGen have worse low-rank levels.

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately
reflect the paper’s contributions and scope?
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Figure 1: Group sparsity level and validation prediction performance v.s epochs. In the plot
for Transformer-XL, one step processes ten batches, and for our batch size of 64, one epoch
consists of 8,401 batches.
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Figure 2: Group sparsity level at the last epochs.
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Table 8: Low-rank level and validation accuracy of different methods on training a six-layer
fully-connected neural network with the FashionMNIST dataset for image classification.

Algorithm  Validation accuracy

Low-rank level

MSGD 89.95 £+ 0.29% -

ProxSGD 87.54 £ 0.52% 78.00 £ 0.77%
ProxGen 86.66 + 0.33%  87.46 + 4.19%
RMDA 88.19 + 0.23% 91.88 + 0.12%
RAMDA 87.99 + 0.24%  89.59 + 0.42%

Table 9: Low-rank level and validation loss of different methods on pretraining a modified
vision transformer model using the CIFAR10 dataset for masked image modeling.

Algorithm Validation loss Low-rank level
AdamW 0.0865 £ 0.0001 -

ProxSGD 0.1042 £+ 0.0003  82.60 + 0.34%
ProxGen 0.1120 + 0.0019 82.64 + 2.47%
RMDA 0.1054 + 0.0031 86.23 + 0.41%
RAMDA 0.1035 + 0.0016 86.20 + 0.35%

Answer: [Yes|
Justification: Our claims accurately reflect the paper’s contributions and scope.
2. Limitations

Question: Does the paper discuss the limitations of the work performed by the
authors?

Answer: [Yes]

Justification: Limitations of our work are discussed in [Section 5| (after [Theorem 2J)
and

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assump-
tions and a complete (and correct) proof?

Answer: [Yes|

Justification: All assumptions are stated clearly in each theorem statement, and all
detailed proofs are provided in
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce
the main experimental results of the paper to the extent that it affects the main
claims and/or conclusions of the paper (regardless of whether the code and data are
provided or not)?

Answer: [Yes|

Justification: Algorithm details are all given in the paper, and the parameter settings
are all available in the supplementary materials.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient
instructions to faithfully reproduce the main experimental results, as described in
supplemental material?

Answer: [Yes|

Justification: Our code is provided in the supplementary materials, our data are
public data sets, and sufficient instructions are given in the README in the
supplementary materials.
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10.

11.

12.

13.

Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits,
hyperparameters, how they were chosen, type of optimizer, etc.) necessary to
understand the results?

Answer: [Yes|

Justification: All details are given in either the main paper or the supplementary
materials.

Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other
appropriate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report the mean and standard deviation of the comparison criteria
over three different random initializations.

Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the
computer resources (type of compute workers, memory, time of execution) needed
to reproduce the experiments?

Answer: [Yes]

Justification: Time of execution is reported in [Section 6] and details of the computer
resources are given in
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