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Abstract

Large Language Models for code (code LLMs) have witnessed tremendous progress
in recent years. With the rapid development of code LLMs, many popular eval-
uation benchmarks, such as HumanEval, DS-1000, and MBPP, have emerged to
measure the performance of code LLMs with a particular focus on code gener-
ation tasks. However, they are insufficient to cover the full range of expected
capabilities of code LLMs, which span beyond code generation to answering
diverse coding-related questions. To fill this gap, we propose InfiBench, the
first large-scale freeform question-answering (QA) benchmark for code to
our knowledge, comprising 234 carefully selected high-quality Stack Overflow
questions that span across 15 programming languages. InfiBench uses four types
of model-free automatic metrics to evaluate response correctness where domain
experts carefully concretize the criterion for each question. We conduct a system-
atic evaluation for over 100 latest code LLMs on InfiBench, leading to a series
of novel and insightful findings. Our detailed analyses showcase potential direc-
tions for further advancement of code LLMs. InfiBench is fully open source at
https://infi-coder.github.io/infibench and continuously expanding to
foster more scientific and systematic practices for code LLM evaluation.

1 Introduction

In recent years, Large Language Models (LLMs) have been revolutionizing the software development
landscape [17, 12], demonstrating exceedingly strong and comprehensive capabilities in compre-
hending, generating, debugging, and summarizing code [9, 24]. For example, code LLM-powered
products like GitHub Copilot [14] reached millions of active users within just one year of their launch.

Alongside the huge success of proprietary LLMs such as GPT-3.5 / GPT-4 [36] and Gemini [13], the
development of open-source code LLMs2 [35, 43, 39, 30] has been advancing at an unprecedented
fast pace. As of June 2024, the Hugging Face Open LLM Leaderboard [4] has cataloged over 3,300
submissions of such models.

∗Equal contribution.
2We define code LLMs as LLMs that show decent capabilities in the code domain, no matter whether they

are exclusively trained or finetuned with code data or not.
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Figure 1: InfiBench overview. We construct the InfiBench benchmark by filtering high-quality and diverse
question posts from Stack Overflow and annotating question-level evaluation criteria with domain experts.
With an model-free automatic evaluation framework, we evaluate over 100 latest code LLMs (one of the most
extensive evaluations for code LLMs to the best of our knowledge), leading to several insightful findings.

Table 1: Comparison between InfiBench and common existing benchmarks. Existing benchmarks weigh
heavily on code generation, unit-test-based evaluation, and major programming languages. InfiBench processes
a much higher diversity to reflect real-world code LLMs’ usage scenarios. More discussion in Section 2.6.

Benchmark Domain # Question Evaluation Data Source Highest LLM Score

HumanEval [9] Python Programming 164 Test Cases Hand-Written 90.2%
MBPP [3] Python Programming 974 Test Cases Hand-Written 81.1%
APPS [16] Python Programming 10,000 Test Cases Competitions / (no report yet)

DS-1000 [21] Python Programming 1,000 Test Cases + Surface Form Constraints StackOverflow / (no report yet)
HumanEval+ [26] Python Programming 164 Augmented Test Cases HumanEval 86.6%

HumanEvalPack [33] Repair, Explain, Generation in 6 Languages 2,952 Test Cases HumanEval 47.8%/52.1%/78.3%
LBPP [32] Python Programming 161 Test Cases Hand-Written 64%

SWE-bench [19] Python Debugging / Repair 2,294 Test Cases GitHub 22.06%
SWE-bench Verified [38] Python Debugging / Repair 500 Test Cases SWE-bench 45.20%

InfiBench Free-Form Code Question 234 Keyword + Blank Filling + Stack 70.64%Answering in 15 Languages Test Cases + Text Similarity Overflow

Question

I want to access the direct children of div with class 
"section". I know with css we can do: div.section > div. 
But how to do this using tailwindcss?

stackoverflow.com/questions/67119992

Highly-Voted 
Human Answers

Vote: 289

In tailwind 3.1, you can use arbitrary values 
to target child elements.
<div class="[&>*]:p-4">...</div> 
<div class="[&>p]:mt-0">...</div> 

I use these simple lines 
in tailwind.config.js
to give me child and child-
hover options.
plugins: [ 
  function ({ addVariant }) {
    addVariant('child', '& > *');
    addVariant('child-hover', '& > 
*:hover');
  }
],
…

Vote: 104

…

Goal Answer:

Match keyword
“&…>…”

GPT4 response:
Tailwind CSS is a utility-first CSS 
framework that provides low-level utility 
classes to build custom designs. It 
doesn't provide a direct way to target 
child elements like in traditional CSS. 

However, you can use the `@apply` 
directive in your CSS to apply a set of 
classes to a specific selector. Here's an 
example:

div.section > div {
@apply bg-red-500 text-white;

}
…

Result:
No match → No score

Figure 2: A challenging question paraphrased
from Stack Overflow where GPT-4 fails to answer.

Given the plethora of code LLMs available, the devel-
opment of reliable code benchmarks seems to lag in
four aspects: (1) Benchmarks beyond code genera-
tion are relatively few. Benchmarks for code LLMs
typically focus on a specific task or domain, often
overly focus on code generation. For example, the
widely-used HumanEval [9] and MBPP [3] purely
focus on Python code generation, and DS-1000 [21]
focuses on Python code generation in the field of
data science. (2) Independent code benchmarks
are relatively few. Recent efforts evolve existing
benchmarks (e.g., HumanEval) to include more sce-
narios [33], languages [48], and tests [26]. How-
ever, these efforts lead to a series of benchmarks shar-
ing the same source data (e.g., HumanEval Python
problems), reducing score independence. (3) Ex-
isting code benchmarks are saturating. Strong
LLMs are saturating existing benchmarks, e.g., GPT-
4 has already achieved 90.2% Pass@1 score on Hu-
manEval [37], while in real-world scenarios, GPT-4

can still fail as exemplified in Figure 2. (4) Common benchmarks may be contaminated. Some
LLMs have unconventional high performance in common benchmarks and are suspected to have mem-
orized benchmark-related data [10, 46, 32], obscuring the evaluation results. Can we systematically
and comprehensively evaluate code LLMs’ abilities in challenging real-world usage scenarios?
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To answer the question, we introduce InfiBench, a systematic benchmark for evaluating the free-form
question-answering capabilities of code LLMs. As the first benchmark of its kind, the core principle
of InfiBench aims to accurately represent how developers interact with and utilize such models in
real-world scenarios. To achieve this, InfiBench comprises 234 questions that are carefully selected
and proportionally filtered from the natural high-quality question distribution of Stack Overflow,
without any constraints on topics, programming languages, question types, or answer forms. As
a result, the curated 234 questions span 15 programming languages and 5 major areas: front-end,
back-end, DS&ML (data science and machine learning), mobile and desktop, and ITOps (information
technology operations).

Question diversity comes with evaluation challenges for two reasons. (1) Lack of metric. Unlike code
generation or multiple-choice benchmarks, which can be evaluated through standardized methods
like unit testing, there is no universal metric for response correctness for free-form questions. (2)
Challenges with model-based evaluation. Model-based evaluations such as those involving GPT-4
are not only costly but also raise concerns about privacy and bias.

To mitigate the evaluation challenges, InfiBench includes an automatic evaluation framework that
integrates four types of model-free metrics: keyword matching, blank filling, unit testing, and dialogue
similarity. For each question, we invite industry domain experts to paraphrase the prompt, select
the most appropriate metric, and write down the concrete criteria using domain-specific knowledge,
with highly-voted answers from Stack Overflow as a reference. These questions and evaluation
criteria are then cross-validated to ensure correctness and objectiveness and further calibrated to
improve consistency across languages. Human experiments show that InfiBench evaluation aligns
with humans better than LLM-based evaluation, achieving 85.1% agreement rate compared to 77.8%
achieved by GPT-4o-based evaluation.

As a novel and systematic benchmark disjoint with existing ones in terms of both forms and data
sources, we believe that InfiBench is an ideal tool to measure existing code LLMs objectively. Hence,
we conduct a systematic evaluation for over 100 code LLMs spanning both proprietary and open-
source worlds using the InfiBench framework — the latest and most extensive evaluation for code
LLMs to the best of our knowledge. Our evaluation leads to several insightful findings: (1) On
InfiBench, GPT-4 achieves a score of 70.64%, being far from perfect but still far exceeding the most
capable open-source models as of June 2024. On the other hand, GPT3.5 is surpassed by a few
open-source models. (2) At similar model sizes, coding LLMs are usually visibly stronger than
general LLMs; finetuning LLMs are usually visibly stronger than base LLMs. (3) The performance
differences between different model families are huge, where one model could surpass another with
less than 1/10 parameters, highlighting the importance of training data quality and techniques. (4) The
scaling law is empirically verified for open-source models with fewer than 40B parameters, but not for
those with more, where a turning point emerges. InfiBench is fully open source under CC BY-SA 4.0
license and continuously expanding3, including both the benchmark and Hugging-Face-compatible
evaluation tools. All resources are available at https://infi-coder.github.io/infibench.

2 Benchmark Creation

InfiBench is created from a high-quality subset of Stack Overflow questions up until June 14, 2023.
In this section, we describe the data curation process and the evaluation framework in detail.

2.1 Data Curation

Stack Overflow is a question-and-answer website for developers with more than 24 million registered
users as of June 2024 [41]. Since the website is a large collection of natural and diverse coding
questions from real-world developers, we believe that questions from Stack Overflow can effectively
evaluate code LLM’s capabilities in real-world usage scenarios.

The full Stack Overflow dataset contains 23.54 million question posts and 34.68 million answer posts.
Each question post has a total view count. Each answer post is attached to a question and has a vote
count. The question creator can choose one answer as officially accepted.

3In other words, infinitely expanding, after which the benchmark is named.
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Table 2: InfiBench data statistics by area and language. We uniformly sample a subset from the initial seed
set (see Section 2.1) according to the area quota (see Section 2.2) for domain experts to select questions and
annotate the correctness criterion to construct the benchmark.

Area Language
Initial Seed Set Tentative Final InfiBench Benchmark

# Questions % Area # Questions # Questions % Questions # Area % Area
Quota Quota Quota Quota Quota Quota

Front-End
Javascript 4912

40.41%
44 44 18.80%

63 26.92%CSS 87 10 10 4.27%
HTML 600 10 9 3.85%

Back-End

Java 930

18.71%

18 17 7.26%

77 32.91%

C# 629 12 12 5.13%
PHP 462 10 9 3.85%
Go 117 10 9 3.85%

Ruby 71 10 10 4.27%
Rust 96 10 10 4.27%

C/C++ 287 10 10 4.27%

DS & ML Python 2779 21.39% 47 47 20.09% 56 23.93%R 184 10 9 3.85%

Mobile &
Desktop

Dart 1562

18.13%

19 19 8.12% 19 8.12%
Kotlin 383 10

Removed during Post-Filtering (see Section 2.3)Swift 551 10
VBA 16 9

IT Ops. Bash 188 1.36% 21 19 8.12% 19 8.12%
Total 13854 100.0% 270 234 100.00 % 234 100.00%

As we aim to create a benchmark where the correctness evaluation criteria are clear, we view the
positively voted answers as an important reference source. Hence, we choose to keep only the
questions that have at least three positively voted answers and an officially accepted answer, which
turn out to be 1,090,238 questions. For these one million questions, we choose to keep questions
that are frequently viewed and relatively new. To fulfill this criterion, we draw a scatter plot of these
≈ 1 million questions, plotting the number of days since their creation until June 14, 2023 (data
collection end-date) on the x-axis against the logarithm of their view counts on the y-axis. As shown
in Figure 3, we empirically determine to keep questions that lie above the line connecting (0, 5) and
(3000, 15.5), resulting in a subset of 17,402 questions.

Figure 3: Scatter plot of filtered Stack Overflow
questions. Questions above the orange line kept.

Utilizing the mandatory question tags of these ques-
tions, we then manually construct a tag tree that cov-
ers the 200 most frequent tags, enabling us to identify
the top programming languages and areas for 14,330
out of these 17,402 questions. These questions are
from 24 programming languages, with each language
being categorized into one primary area among the
five (front-end, back-end, DS&ML, mobile and desk-
top, and ITOps). Lastly, we exclude 6 programming
languages that either describe data or are domain-
specific: JSON, regex, Markdown, YAML, CSV, and
SQL. As a result, we compile 13,854 questions that
serve as the initial seed set.

2.2 Sampling

Based on a user study of developers’ demand from our organization, we allocate the tentative area
quota to be 25%, 25%, 25%, 15%, and 10% for front-end, back-end, DS&ML, mobile and desktop,
and IT Ops, respectively. Inspired by HumanEval size and considering the labelling labor cost, we
set 200 questions as the target benchmark size. Hence, the tentative size quotas by area are 50, 50, 50,
30, and 20 respectively. We then proportionally distribute the area quotas to language quotas based
on the frequency of each language in the initial seed set. However, we observe that following this
rule, certain languages such as CSS and C/C++ end up with fewer than 10 questions, which may
yield unreliable language-level sub-score, so, for these languages, we set their quotas to 10.

As a result, we derive the tentative question quota for each language as shown in Table 2, which sums
up to 270 questions. After determining the tentative question quota, we uniformly sample from the
initial seed set a roughly two times larger pool for the domain expects to select and annotate.
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2.3 Human Annotation
We recruited five domain experts inside our company to create the benchmark, each in charge of one
area. The annotation process is composed of three steps:

• Step 1: Question Selection and Type Annotation. Domain experts select high-quality questions
from the inspecting set and annotate the question type to be one of the four: code completion, code
debugging, config and environment debugging, and knowledge question-answering.

• Step 2: Prompt Paraphrasing. Domain experts paraphrase and simplify the original question
body into succinct and explicit instructions. We include this step for two main purposes: (1)
Reduce domain gap. From user-shared conversations collected from ShareGPT, we observe that
when interacting with code LLMs, users tend to provide short and direct instructions like “Fix
problem...” and “Debug code...”. However, when posting Stack Overflow questions, users tend
to be lengthy with courtesy words. We ask the domain experts to paraphrase the question to code
LLM user’s style without changing the semantics. (2) Reduce the impact of memorization and
data contamination. Some code LLMs may be trained or finetuned with Stack Overflow data.
Paraphrasing the questions can help to mitigate the result advantages of these models. Benchmark
results in Table 4 reveal the effectiveness of this step where copying Stack Overflow answers only
achieves a 65.18% score. We defer further discussion in Section 2.5.

• Step 3: Correctness Criterion Annotation. Domain experts choose one or multiple evaluation
metrics from our supported ones (see Section 2.4) and annotate the concrete criterion following a
YAML schema. External files can be attached if needed, e.g., unit tests and reference answers.

Calibration and Post-Filtering. To improve annotation consistency and objectiveness, we introduce
a few checkpoints for domain experts to read others’ annotated cases, discuss them, and reach
consensus for controversial cases. After the 270 tentative questions were annotated, we then ran an
initial evaluation of all these questions on over 30 code LLMs. This initial evaluation helps us to
identify questions whose criteria are incorrect or out of distribution. We filter out these questions
and then remove all questions from Kotlin, Swift, and VBA languages since the questions in these
languages are too few after filtering. After this calibration and post-filtering process, the final
benchmark includes 234 questions spanning over 15 languages. Their statistics are shown in Table 2.
As we can observe, compared to the population area distribution of high-quality Stack Overview
questions (see “% Area Quota” column under “Initial Seed Set”), the area distribution of final
benchmark questions (see “% Area Quota” column under “Final InfiBench Benchmark”) is more
balanced and less biased towards front-end, mobile, and desktop topics.

2.4 Evaluation Criteria and Evaluation Framework

In response to the diversified questions, InfiBench evaluation framework integrates four types of
model-free and automatic metrics as below. Domain experts choose one or multiple metric types
along with their weights and concretize.

• Keywords Matching. Though the responses can be in diverse forms, for a significant portion of
benchmark questions, we find that the existence of some keywords strongly determines the quality
of the response. Domain experts can write rules that match keywords and regular expressions
or construct recursive logical expressions on top of keyword-matching results. When multiple
keywords exist, each matching result can have its weight in the final score.

• Blank Filling. For some questions, it is challenging to measure the correctness given the response
uncertainty. In this case, domain experts can instruct the model to answer the question by following
a given template and filling in the blanks in the template. The blanks can correspond to either
natural language or code snippet. Then, similar to keywords matching, each blank can match
potential keywords, regular expressions, or recursive logic expressions built upon matching results.
This metric type tests not only the model’s QA ability but also its instruction-following ability.

• Unit Testing. For code-intensive questions, we can follow existing benchmarks to evaluate response
correctness by unit tests. For this type, domain experts may add more specifications in the prompt
to allow for unit-test-based evaluation, such as specifications on function name, input arguments,
and output format. Domain experts can further import the context setup and cleanup script.

• Dialogue Similarity. For natural-language-intensive questions, domain experts can extract and
shorten the reference answers from Stack Overflow, and then use the ROUGE score [25] to evaluate
the response similarity with reference answers. The ROUGE score was initially proposed and
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widely used in evaluating the quality of text summarization and machine translation. To map the
ROUGE score back to our benchmark scale, we allow domain experts to tune the mapping interval
and scores within the interval are then linearly mapped to our score scale.

The example questions and corresponding criteria are illustrated in Figure 1. Detail statistics of
metric type ratios, question type ratios, and prompt length are shown in Table 3.

Table 3: InfiBench statistics.
(a) Question type.

Question Type Ratio

Code Completion 30.37%
Knowledge Question-Answering 27.04%

Code Debugging 26.67%
Config & Environment Debugging 15.93%

(b) Metric type.
Metric Type Ratio

Keywords Matching 57.41%
Blank Filling 12.22%
Unit Testing 19.26%

Dialogue Similarity 11.85%

(c) Prompt token length with Code Llama tokenizer.

min 25% quantile median mean 75% quantile max

43 145.75 223 338.46 359.50 5047

Score Computation. We treat each ques-
tion equally with one point each. Given 234
questions in the benchmark, the full score is
234, and we by default report the percentage
score (achieved score divided by 234) unless
otherwise noted. The one point for each ques-
tion can be further decomposed into a few scor-
ing points within each question. For exam-
ple, a question may contain four keywords with
weights 2, 1, 1, and 1 each. Then, matching each
keyword can contribute to 0.4, 0.2, 0.2, and 0.2
points respectively to the final score.

Implementation. We have implemented an automated evaluation framework with Python, publicly
available at https://infi-coder.github.io/infibench. Specifically, for blank-filling evalua-
tion, we use the longest common subsequence matching via dynamic programming to capture the
filled blanks in the response. For unit-testing evaluation, we construct a runtime environment that
supports the test execution for nine languages. We plan to integrate the framework into the Hugging
Face Open LLM Leaderboard [4] to further ease the evaluation burden.

How does InfiBench Evaluation Align with Human? To evaluate the alignment between In-
fiBench evaluation and human expert evaluation, we randomly sample 100 questions without replace-
ment from the benchmark and select three strong LLMs to generate responses: GPT-4-0613, GPT-3.5-
turbo, and Mistral Codestral-22b. For each question, we randomly choose two out of these three model
responses to construct response pairs, resulting in 100 response pairs R = {(Ai, Bi) : 1 ≤ i ≤ 100}.
For each response pair (A,B) ∈ R, we use InfiBench, GPT-4o, and human expert to evaluate into
four outcomes: A is more correct than B (A > B); B is more correct then A (B > A); both A
and B are correct (A ≈ B ↑); both A and B are incorrect (A ≈ B ↓). Our purpose is to evalu-
ate how InfiBench evaluation aligns with humans, specifically when compared to the widely-used
LLM-as-a-judge (i.e., model-based evaluation) [47]. The concrete grading criteria is as below:

• InfiBench gives a score between [0, 1] for each response in the pair. If the score difference in the
pair is larger than 0.2, we label the outcome to be A > B or B > A respectively; otherwise, if the
maximum score among the two is larger than 0.5, we label the outcome to be A ≈ B ↑; otherwise,
we label the outcome to be A ≈ B ↓.

• For GPT-4o evaluation, we deploy the prompting template from LLM-Blender [18, Appendix E]
and trigger GPT-4o for grading the four outcomes. We enhance the reliability of the comparison by
switching A and B and prompting GPT-4o twice. We record the preference only when a consistent
preference exists.

• For human evaluation, we recruit human annotators who came up with the criteria to label the com-
parison preference since they are familiar with the questions and have strong expertise. Annotators
have no access to the evaluation results of InfiBench and GPT-4o, nor which source model generates
the response. Annotators were instructed to directly label each pair with the four outcomes.

We defer the consensus matrices between InfiBench/GPT-4o and human annotators along with more
findings in Appendix C. If we only count the cases where both InfiBench/GPT-4o and humans have
clear preferences, the agreement rate between InfiBench and humans is 85.1%, and the agreement
rate between GPT-4o and humans is 77.8%. Hence, the InfiBench evaluation aligns with human
experts better than the GPT-4o evaluation (with >80% confidence). We observe that the advantage of
InfiBench comes from the ability to detect deceptive answers. some model responses pretend to be
helpful with lengthy wording and hallucinations. GPT-4o is more likely to be cheated than InfiBench,
which looks for key concepts that should exist in a helpful answer.
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2.5 Mitigations on Memorization and Data Contamination

InfiBench is created from the publicly available Stack Overflow corpus to reflect real-world scenarios,
and this corpus may already exist in the training set of some code LLMs (e.g., DeepSeek Coder [15]
and StarCoder 2 [28]). Hence, some code LLMs may achieve a high score simply due to memorization.
To mitigate this, we asked the domain experts to paraphrase every question as an essential step (see
Section 2.3). Hence, copying either the highly voted answers or officially accepted answers of the
original questions only achieves 65.18%, being far from perfect and inferior to GPT-4’s 70.64%.
Furthermore, code LLMs that use Stack Overflow data do not demonstrate significant advantages
over those without. Hence, we deem the effect of contamination as small.

On the other hand, we release the post IDs of the source question posts of InfiBench. Hence, future
LLM training could consider this benchmark to conduct deduplication and ablation studies on data
contamination. Another usage of our benchmark is to evaluate retrieval-augmented (RAG) code
LLMs where perfect retrieval from Stack Overflow and moderate adaptation should solve these
questions, which we leave as future work.

2.6 Comparison with Existing Benchmarks

In Table 1, we compare InfiBench with several existing benchmarks for code LLMs. As reflected
in the table, InfiBench strongly complements existing benchmarks for code LLMs by (1) extending
them beyond code generation to a wide range of real-world tasks, (2) diversifying them since
InfiBench does not share the same source as existing ones, and (3) increasing the differentiation as
an unsaturated benchmark. Related benchmarks are further illustrated in Section 5. On the other
hand, the benchmark is limited in size due to the high cost of correctness criteria labelling, and we
are continuously expanding the benchmark.

3 Evaluation and Leaderboard

We systematically evaluated over 100 code LLMs spanning both proprietary and open-source worlds
on InfiBench. To the best of our knowledge, this is the most extensive evaluation for code LLMs.

Evaluation Protocol. We adopt best@10 as the main evaluation metric: 10 responses are sampled
and evaluated for each question, then the best score per question is recorded and summed up.
Throughout the evaluation, we set sampling temperature T = 0.2 and top p = 0.9.

Furthermore, we swept sampling parameters with GPT-4 and the detailed results are in Appendix G.
In a nutshell, for maximizing the performance under best@10, the best parameters are T = 1.0 and
p = 0.9, leading to a score of 76.15%±0.21% (in comparison to 70.64%±0.82% in our main setting
T = 0.2, p = 0.9). In particular, the temperature T affects much and the effect of top p is minor. We
decided to stick to the original parameters T = 0.2 and p = 0.9 in the main evaluation since this
setting is more akin to the real-world scenario where user generates once with low temperature.

We design two system prompts (shown in Appendix H), one for normal questions and the other for
open-ended questions with an additional sentence to encourage succinct responses. For generic mod-
els, we generate the prompt with “{system prompt}\n{content prompt}” format; for instruction-
finetuned or chat models, we generate the prompt with their prompt templates.

For proprietary models, we evaluate the latest models from OpenAI (GPT-4, GPT-4o, etc), An-
thropic (Claude 3), and Mistral AI (Mistral Small/Medium/Large) with API calling. When budget per-
mits, we repeat each evaluation three times and report standard deviation. For open-source models, we
download models from Hugging Face and evaluate them on an 8xA100 server with bigcode-evaluation-
harness [5]. When the model size is within 30B parameters, we repeat each evaluation three times
and report the standard deviation. All raw model responses are available at https://figshare.
com/articles/dataset/InfiBench_Detail_Evaluation_Data/26104864. More details on
the evaluation protocol are in Appendix E.

Leaderboard. In Table 4, we present aggregated InfiBench leaderboards by model family, model
type, and model size. The full leaderboard is deferred to Appendix E due to space limit. The table
includes scores from using the original Stack Overflow answer posts as reference. Results are also
presented as a scatter plot in Figure 4, where normal models are shown as scatters with error bars,
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Table 4: Aggregated InfiBench leaderboards (best viewed zoomed in and in color). “Size” column records
number of parameters. For MoE models, “total params. / params. activated during inference” is recorded. Bar
colors stand for General Base , General Finetuned , Code Base , and Code Finetuned models respectively.
Icon “ ” stands for proprietary models otherwise open-source. Full leaderboard in Appendix E.

(a) InfiBench leaderboard by model family, where best
model within each model family is shown.

Family Best Model Name Size InfiBench Score

1 GPT-4 GPT-4-0613 ? 70.64% ± 0.82%

2 DeepSeek Coder deepSeek-coder-V2-instruct 236B / 21B 65.49%
3 Claude 3 Claude 3 Opus ? 63.89%
4 Mistral Open Codestral-22b 22B 62.98% ± 0.56%

5 Phind Phind-CodeLlama-34B-v2 34B 59.00%
6 Mistral mistral-large ? 58.22%
7 DeepSeek LLM deepseek-llm-67b-chat 67B 57.41%
8 GPT-3.5 GPT-3.5-turbo-0613 ? 56.47% ± 1.34%

9 Qwen Qwen-72B 72B 55.34%
10 Magicoder Magicoder-S-CL-7B 7B 52.71% ± 0.72%

11 WizardLM WizardCoder-Python-34B-V1.0 34B 52.59%
12 Code Llama CodeLlama-34b-Instruct 34B 50.45%
13 01.AI Yi-34B-Chat 34B 49.58%
14 Zephyr Zephyr 7B beta 7B 46.31% ± 1.11%

15 StarCoder2 15B-Instruct 15B 45.89% ± 0.95%

16 DeepSeek MoE deepseek-moe-16b-chat 16B / 2.8B 45.18% ± 1.65%

17 OctoPack OctoCoder 15.5B 44.55% ± 0.79%

18 gemma gemma-7b-it 7B 40.68% ± 1.23%

19 Llama 2 Llama2-70B-Chat 70B 39.30%
20 InternLM InternLM-Chat-20B 20B 37.41% ± 0.75%

21 Baichuan2 Baichuan2-13B-Chat 13B 34.40% ± 1.34%

22 StarCoder StarCode+ 15.5B 30.67% ± 1.57%

23 CodeGen2.5 CodeGen2.5-7B-Instruct 7B 29.57% ± 1.53%

24 ChatGLM ChatGLM3-6B 6B 28.23% ± 0.58%

25 davinci davinci-002 ? 21.25% ± 1.17%

26 Phi Phi1.5 1.5B 20.56% ± 0.09%

27 CodeGeeX CodeGeeX2-6B 6B 19.88% ± 0.36%

28 CodeGen2 CodeGen2-16B 16B 16.97% ± 1.15%

29 IEITYuan Yuan2-51B-hf 51B 15.25%

30 CodeGen CodeGen-16B-multi 16B 13.62% ± 1.18%

Human
10 Highest-Voted Answer Posts 65.18%
Highest-Voted Answer Post 56.28%
Officially-Accepted Answer Post 52.90%

(b) InfiBench leaderboard by model type, where top five
model within each type is shown.

Type Rank Model Family / Model Name Size InfiBench Score

Pro-
prie-
tary

Model

1 GPT-4/GPT-4-0613 ? 70.64% ± 0.82%

2 GPT-4/GPT-4-turbo-1106 ? 68.42% ± 0.38%

3 GPT-4/GPT-4o-2024-05-13 ? 66.19%
4 Claude 3/Claude 3 Opus ? 63.89%
5 Mistral/mistral-large ? 58.22%

Code
Fine-
tuned
Model

1 DeepSeek Coder/deepSeek-coder-V2-instruct 236B / 21B 65.49%
2 Mistral Open/Codestral-22b 22B 62.98% ± 0.56%

3 DeepSeek Coder/deepseek-coder-33b-instruct 33B 62.96%
4 Phind/Phind-CodeLlama-34B-v2 34B 59.00%
5 Phind/Phind-CodeLlama-34B-v1 34B 58.47%

Code
Base

Model

1 Code Llama/CodeLlama-34b 34B 47.36%
2 Code Llama/CodeLlama-34b-Python 34B 43.13%
3 StarCoder2/15B 15B 42.52% ± 1.24%

4 Code Llama/CodeLlama-13b 13B 41.66% ± 0.84%

5 Code Llama/CodeLlama-13b-Python 13B 41.31% ± 0.90%

General
Fine-
tuned
Model

1 DeepSeek LLM/deepseek-llm-67b-chat 67B 57.41%
2 Mistral Open/mixtral-8x7B-Instruct 46.7B / 12.9B 55.55%
3 Qwen/Qwen-72B-Chat 72B 52.97%
4 01.AI/Yi-34B-Chat 34B 49.58%
5 Zephyr/Zephyr 7B beta 7B 46.31% ± 1.11%

General
Base

Model

1 Qwen/Qwen-72B 72B 55.34%
2 Qwen/Qwen-14B 14B 43.69% ± 1.09%

3 DeepSeek LLM/deepseek-llm-67b-base 67B 39.87%
4 Llama 2/Llama2-70B 70B 37.69%
5 Qwen/Qwen-7B 7B 31.69% ± 0.29%

(c) InfiBench leaderboard by model size, where best
model within the threshold is shown.

Size Threshold Model Family / Model Name Size InfiBench Score

∞ GPT-4/GPT-4-0613 ? 70.64% ± 0.82%

<100B Mistral Open/Codestral-22b 22B 62.98% ± 0.56%

<20B DeepSeek Coder/deepseek-coder-6.7b-instruct 6.7B 53.25% ± 0.40%

<5B DeepSeek Coder/deepseek-coder-1.3b-instruct 1.3B 41.32% ± 1.12%

MoE models are shown as horizontal segments with error ranges connecting the activated parameters
during inference and total parameters, and strong proprietary models are shown as horizontal lines.

In both tables and the figure, we classify LLMs by general/code and base/finetuned. The general
LLMs are claimed to have strong capabilities beyond code, e.g., in various natural language tasks,
while the code LLMs are exclusively optimized for the code domain. The base LLMs only went
through the pretraining phase, while the finetuned LLMs are claimed to have instruction-following
capabilities or are finetuned on instruction or human preference datasets.

4 Analysis and Discussion

The best model so far, GPT-4, is still far from perfect, and open-source models are competitive
but still far from GPT-4. GPT-4 achieves the highest score 70.64% (interestingly, achieved by
GPT-4-0613 instead of the more recent GPT-4o), then Claude 3 Opus with a score 63.89%, and then
Codestral-22b [1] with a score 62.98% and deepseek-coder-33b-instruct [15] with a score 62.96%.
The result implies that: (1) Noting that the full score is 100%, even the powerful GPT-4 is still far
from perfect, which is in contrast to its ≈90% HumanEval score. We inspect the score breakdown.
For the two most frequent metric types, keywords matching and unit testing, GPT-4 achieves similar
scores 66.61% and 76.00% respectively. For blank filling, the score is relatively lower at 58.08%.
These scores imply that GPT-4 may still lack generic ability in answering diversified real-world
questions related to code. When instructed to follow a given template to answer (blank filling), due to
the more strict requirement and narrower solution space, its lack of capability is more pronounced.
(2) There is still a visible gap between open-source models and GPT-4. The gap between the most
powerful open-source model, Codestral-22b, and GPT-4 is roughly 8 points. On the other hand,
noticing that GPT-3.5-turbo achieves 56.47%, the open-source model, Codestral-22b, is now reliably
better than GPT-3.5-turbo with merely 22B parameters which is promising.

Among open-source models, different models have various performances. Figure 4 systematically
visualizes the performance of different open-source models at diverse scales. Although there is a
general tendency that larger models achieve higher scores, the scores among different models at
a similar scale differ largely. For example, on scale 7B, the best-performing model is at around
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Figure 4: Scatter plot for all evaluated LLMs on InfiBench. x-axis is the model size in terms of number of
parameters and y-axis is InfiBench score. Projected empirical scaling laws for both general and code models are
drawn. Detail discussion in Section 4.

55%, pretty close to GPT-3.5, while the low-performing model stays at around 15%. Moreover,
deepseek-coder-1.3b-instruct achieves 41.32% at 1.3B and surpasses a few models at scale 70B or
100B. Hence, though scaling matters, the training techniques and training data are equally important
or even more, helping to reduce the required scale for achieving a certain score by more than 10×.

Hard problems generalize their difficulties. We rate the benchmark problem difficulty with five
levels by how well GPT-4 and GPT-3.5-turbo answer them, as detailed in Appendix D. Example
questions from each level are shown in Appendix I. We present the detail result table including
the sub-score for each difficulty level in Appendix E. Interestingly, the trend is highly consistent
that sub-scores decrease along with the increase of problem level. Specifically, hard problems for
the most powerful model yet, GPT-4, are also generally hard for open-source models. These hard
problems usually correspond to code generation with long and domain-specific context or challenging
blank-filling questions since blank-filling is a specific task that rarely appears in training data before.

Instruction finetuning is important for QA. Among models of similar scales and the same family,
we find that the best-performing ones almost always include an instruction-finetuning phase, such as
deepseek-llm-67b-chat, deepseek-coder-33b-instruct, CodeLlama-34B-Instruct, and Qwen-18B-Chat.
In contrast, the pretraining models, such as davinci-002 and phi models, usually perform poorly
despite their strong performances in code generation benchmarks. Instruction-finetuning is also
critical for other code domain tasks such as code generation. As shown in Appendix F.1 where we
plot model scores in QA (measured by InfiBench) and code generation (measured by HumanEval
pass@1), instruction-tuning generally improves both QA and code generation, but the improvement
is usually more significantly on code generation but more moderately on QA. As a result, we
suggest generalizing the instruction-finetuning data beyond simple coding problems to improve code
LLMs. Indeed, our preliminary experiments show that, after fine-tuning with the decontaminated
and sanitized Stack Overflow data, we improved InfiBench scores for Codellama-13b-Instruct from
46.37% to 60.74% and for mixtral-8x7B-Instruct from 55.55% to 62.61%.

Some models may focus too much on code generation, especially the small ones. As detailed in
Appendix F.1, we observe that for large models (>30B) and top entries, InfiBench and HumanEval
pass@1 scores coincide well. However, for smaller models, the score tendencies start to diverge,
where some models are relatively stronger on InfiBench (Mixtral-8x7B-Instruct) and more are
relatively stronger on HumanEval (Phi1, Phi2, gemma-7b, ...). This phenomenon implies that a few
models may be optimized too heavily on code generation benchmarks while ignoring the performance
in generic code scenarios as represented by InfiBench, which in turn highlights the significance of
free-form QA benchmarks like InfiBench in detecting capability imbalance in code LLMs.
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Table 5: Evaluation on eight models from the Code Llama [39]
family showcases intense Python finetuning may hurt free-form QA
ability, despite achieving higher HumanEval scores.

Benchmark Base Python Instruct

7B HumanEval 33.5% 38.4% (+4.9%) 34.8% (+1.3%)
InfiBench 37.62%±1.28% 32.89%±0.45% (−4.73%) 35.15%±1.28% (−2.47%)

13B HumanEval 36.0% 43.3% (+7.3%) 42.7% (+6.7%)
InfiBench 41.66%±0.84% 41.31%±0.90% (−0.35%) 46.37%±1.26% (+4.71%)

34B HumanEval 48.8% 53.7% (+4.9%) 41.5% (−7.3%)
InfiBench 47.36% 43.13% (−4.23%) 50.45% (+3.09%)

70B HumanEval 53.0% 57.3% (+4.3%) 67.8% (+14.8%)
InfiBench 40.60% 40.29% (−0.31%) 42.82% (+2.22%)

Code LLama models have unique
characteristics. We evaluated all
Code Llama models [39]. As shown
in Table 5, we found finetuning on
Python data improves on HumanEval
but hurts InfiBench scores, while in-
struction finetuning usually improves
InfiBench scores but may hurt Hu-
manEval. As a side product, we found
CodeLlama-70B may be overly safe-
guarded and denies answering some
safe questions in InfiBench. More model-specific findings are presented in Appendix F.

Code models and general models may exhibit different scaling laws, and open-source models
scale well only within 40B yet. In Figure 4, we use the top-performing code and general models at
each scale respectively to regress and extrapolate model performance at larger scales. As shown, code
models tend to have higher capabilities compared to general models of the same scale, though the gap
shrinks for larger models. Hence, when the compute budget is heavily limited, training exclusively in
the code domain could be more efficient for building strong code LLMs.

In Figure 4, both predicting curves are split into two segments, steep in the first segment and much
flat in the second. Following the first segment, open-source models catch up with GPT-4 at around
50B scale. However, following the second segment, they may need to be at >300B scale to catch
up. The finding contradicts the common scaling law [20, 34, 7] where a strong linear relationship
between model scale and capability exists. The contradiction implies that very large open-source
models (>40B) may fail to achieve the expected performance at their scales, or there is some non-
trivial barrier when scaling the model beyond 40B, or the scaling law may change at such a large scale.
We leave further investigation as the future work. Notably, after the release of InfiBench, Deepseek-
coder-v2 [49] was released as the largest code LLM to our knowledge in an MoE architecture with
236B total and 21B active parameters. On InfiBench, Deepseek-coder-v2 achieves 65.49%, setting
the new baseline for open-source LLMs but still being inferior to GPT-4. More importantly, the score
is within the predicted range of our empirical scaling law.

We defer dataset card and data accessibility details, discussion on limitations and societal impact, full
leaderboard, additional findings, ablation studies, and data examples in appendices.

5 Related Work
Large language models [44, 11, 8] are transforming people’s lives. In the coding domain, LLMs [9, 24]
are shown to be capable of completing a wide range of tasks such as code generation, debugging, and
question-answering. Recently, code LLMs are booming. New models, including both proprietary [14,
36] and open-source ones [4, 35, 42, 43, 22, 30, 39, 49], emerge almost every month.

Benchmarks for code LLMs are developing, though at a relatively slower pace. Common bench-
marks, e.g., APPS [16], MBPP [3], and HumanEval [9], focus on code generation and unit-test-based
evaluation. Some efforts augment these benchmarks by language translation (e.g., Multilingual
HumanEval [2], HumanEval-X [48]), test augmentation (e.g., HumanEval+ [26]), task general-
ization (e.g., HumanEvalPack [33]), and human rewriting (e.g., LBPP [32]). To systematically
evaluate real-world problem solving, recently, SWE-bench [19], its filtered version SWE-bench
Verified [38], and RepoBench [27] are proposed but they still primarily focus on code generation.
Some general-purpose benchmarks, e.g., Arena-Hard [23], contain code-related questions, but rely
on LLM to judge and do not provide domain-specific scores. CodeXGLUE [29] considers multiple
coding capabilities beyond code generation, but replies on existing data sources. In contrast to these
benchmarks, InfiBench benchmark is built for evaluating free-form question-answering ability in the
code domain beyond code generation in an automated and model-independent way.

6 Conclusion
We proposed InfiBench, a systematic benchmark for evaluating the question-answering ability of
code LLMs in real-world scenarios, to facilitate development and scientific evaluation of LLMs.
InfiBench comprises 234 high-quality questions from Stack Overflow and supports automatic model-
free evaluation. A comprehensive evaluation of over 100 code LLMs reveals several findings and
takeaways. The benchmark is publicly available and continuously expanding.
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1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] Limitations are discussed through-
out Section 2 and specifically in Appendix B.

(c) Did you discuss any potential negative societal impacts of your work? [Yes] Societal
impacts are discussed in Appendix B.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments (e.g. for benchmarks)...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes] All code and
data are publicly available at https://infi-coder.github.io/infibench along
with instructions needed to reproduce. The accessibility information is also available
in detail in Appendix A.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [N/A] This work does not involve model training. The inference hyper-
parameters are listed in Section 3 and ablation studies are presented in Appendix G.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] All experiments are repeated three times whenever budget
and computing resource permit. Error bars and standard deviations are reported.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] The information is included in
Section 3.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes] The main assets are from Stack

Overflow which is open source under CC BY-SA 4.0 license. We inherit this license to
release.

(c) Did you include any new assets either in the supplemental material or as a URL?
[Yes] New assets (the benchmark and evaluation tool) is accessible through https:
//infi-coder.github.io/infibench.
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(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [Yes] We release the new asset inheriting the CC BY-SA 4.0 license as
described in Section 1 and Appendix A.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [Yes] Domain experts are required to remove such
information by paraphrasing when constructing the benchmark.

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]
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Appendices

In appendices, we present dataset card and data accessibility details in Appendix A, discussion on
limitations and societal impact in Appendix B, agreement statistics between InfiBench/GPT-4o and
human in Appendix C, question grouping by difficulty in Appendix D, full leaderboard in Appendix E,
additional findings in Appendix F, study of sampling hyperparameters in Appendix G, prompts in
Appendix H, and benchmark data examples in Appendix I.

A Dataset Card and Accessibility Details

Dataset Card

• Name: InfiBench
• Description: Evaluation Dataset for the Question-Answering Capabilities of Code Large

Language Models
• URL: https://infi-coder.github.io/infibench (all resources) / https://
huggingface.co/datasets/llylly001/InfiBench (data part)

• Version: 2.1
• License: Creative Commons Attribution Share Alike 4.0
• Citation:

@misc{infibench,
title={InfiBench: Evaluating the Question-Answering Capabilities
of Code Large Language Models},
howpublished = "\url{https://infi-coder.github.io/infibench}",
author={InfiBench},
year={2024}

}

• DOI: doi:10.57967/hf/2474
• Responsible AI — Data Collection:

Data source is downloaded from the publicly available StackExchange archive
(https://archive.org/download/stackexchange, https://ia904700.
us.archive.org/view_archive.php?archive=/6/items/stackexchange/
stackoverflow.com-Posts.7z). Especially, we use the preprocessed version from
https://huggingface.co/datasets/mikex86/stackoverflow-posts where all
posts are formatted in Markdown text.
We choose to keep only the questions with at least three positively voted answers and an
officially accepted answer, which turn out to be 1,090,238 questions. For these one million
questions, we choose to keep frequently viewed and relatively new questions.
Utilizing the mandatory question tags of these questions, we then manually construct a tag
tree that covers the 200 most frequent tags, enabling us to identify the top programming
languages and areas for 14,330105 out of these 17,402 questions. We exclude 6 program-
ming languages that either describe data or are domain-specific: JSON, regex, Markdown,
YAML, CSV, and SQL. As a result, we compile 13,854 questions that serve as the initial
seed set.
We randomly sample from the initial seed set. Then we recruited five domain experts inside
our company to create the benchmark from the sampled initial seed set, each in charge of
one area. The annotation process is composed of three steps: (1) Question Selection and
Type Annotation; (2) Prompt Paraphrasing. (3) Correctness Criterion Annotation.

• Responsible AI — Data Biases:
The data essentially serves as an evaluation benchmark. We foresee data biases in the
following aspects:
(1) Non-standard evaluation. Alongside the data is a comprehensive benchmark of existing
code LLMs. The benchmark scores are evaluated under a specific set of hyperparameters
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(e.g, temperature 0.2, top probability 0.9, best@10 at question level). Data usage under
different evaluation conditions may result in misleading comparison results and conclusions.
(2) Usage misinterpretation. The benchmark focuses on evaluating the response correctness
of code LLMs for a set of real-world developers’ questions. Our evaluation standard does
not specifically take other aspects (naturalness, conciseness, fairness, politeness, etc) into
consideration. Hence, this is risk of overinterpreting the evaluation results. When evaluating
a code LLM, we recommend combining this benchmark score with other evaluations to be
a more comprehensive evaluation.
(3) Potential data contamination. Though we have made our efforts to reduce the impact of
data contamination, future code LLMs may train or fine-tune on this benchmark dataset to
improve the score on InfiBench. This could be challenging to prevent as a cost of being fully
public. On the other hand, as responsible LLM developers, we hope future practitioners
would report how they use the benchmark data if beyond the original scope (for evaluation
use).

• Responsible AI — Personal Sensitive Information: During the data construction process,
our domain experts paraphrased the question prompts to remove personal and sensitive
information (PII) and a cross validation stage was introduced to further ensure the PII
removal.

Croissant Dataset Description: https://huggingface.co/datasets/llylly001/
InfiBench/blob/main/croissant-infibench.json. Note that the Croissant format is
mainly designed for machine learning dataset description. However, InfiBench is more than a dataset;
it is an evaluation benchmark including response evaluation standards, tools, and an accompanying
leaderboard. Hence, the Croissant script records only the CSV file and covers question prompts
and evaluation standards; whereas the open-source evaluation tool and leaderboard are not recorded
which can be separately downloaded from https://infi-coder.github.io/infibench.

Data Accessibility. As briefly mentioned in the main text, all materials are made publicly available
and accessible at the website: https://infi-coder.github.io/infibench without personal
request. The materials include three parts: (1) Benchmark questions and evaluation metrics —
this part is additionally uploaded to Hugging Face (URL and DOI are in the above dataset card).
(2) Automatic evaluation tool — this part is uploaded and maintained in a dedicated GitHub repo
https://github.com/infi-coder/infibench-evaluator. In addition, we uploaded our ex-
tension of bigcode-evaluation-harness [5], namely infibench-evaluation-harness to a
dedicated GitHub repo https://github.com/infi-coder/infibench-evaluation-harness.
The extension includes the inference code on InfiBench for all evaluated LLMs. (3) Evaluation
raw data and leaderboard — the leaderboard is displayed on the website https://infi-coder.
github.io/infibench and the raw model responses are stored in the website repo https:
//github.com/infi-coder/infibench. All materials are under the Creative Commons At-
tribution Share Alike 4.0 license. In the above dataset card and Appendix B, we anticipate potential
inappropriate usage of the benchmark and we encourage the practitioners to document their usage
of the benchmark if beyond model evaluation. In the future, we will continue the maintenance and
expansion of the benchmark. Furthermore, we are developing an adaptor for automatic evaluation on
Hugging Face so that InfiBench can be integrated into the Hugging Face Open LLM Leaderboard [4]
to further ease the evaluation burden.

B Limitations, Societal Impacts, and Future Work

In this appendix, we expand our discussion of limitations, potential societal impacts, and future work.

Evaluation Metric. In InfiBench, the expert-annotated evaluation metric is designed to mainly
focus on response correctness, more specifically, whether the response contains key information
that solves the given question. Concretely, the metric may evaluate whether the response passes a
given set of unit tests, whether it suggests the right API or concept, whether it follows the instruction
to provide relevant information, etc. Hence, the score comes with two limitations: (1) The score
is subjective since the metric is annotated by human experts without an explicit and universal
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Table 6: Confusion matrices between InfiBench/GPT-4o and human. Details in Appendix C. Bolded
cells correspond to when both methods have clear preferences on one response.

(a) Between InfiBench and human.
Human

A > B B > A A ≈ B ↑ A ≈ B ↓ Tot.

InfiBench

A > B 23 3 9 4 39
B > A 4 17 12 2 35
A ≈ B ↑ 0 0 10 0 10
A ≈ B ↓ 4 3 3 6 16

Tot. 31 23 34 12 100

(b) Betwen GPT-4o and human.
Human

A > B B > A A ≈ B ↑ A ≈ B ↓ Tot.

GPT-4o

A > B 23 7 8 6 44
B > A 3 12 9 3 27
A ≈ B ↑ 5 4 15 3 27
A ≈ B ↓ 0 0 2 0 2

Tot. 31 23 34 12 100

standard. Note that we did not aim to provide an objective metric since the developers’ views of
response correctness intrinsically vary and diverge for these diverse questions. On the other hand, we
introduce a cross-validation and calibration stage to improve the metric representativeness of most
developers’ standards. We leave it as a future work to further quantitatively measure and improve
the metric representativeness. (2) The score focuses mainly on correctness. Several other aspects
define a model’s usability, such as language naturalness (including conciseness, politeness, etc),
trustworthiness (refusal of risky questions, fairness, unbiasedness, privacy, etc), and system-level
metrics (latency, throughput, parallelism-friendliness, etc). Model evaluators and practitioners may
keep in mind that InfiBench score is not a comprehensive usability measurement of code LLMs, and
we strongly encourage them to combine InfiBench score with benchmarks on these other aspects (c.f.
[6, 45]) to comprehensively evaluate LLMs.

Data Contamination. The limitations and mitigations on data contamination are discussed in
Section 2.5. In addition, as a side effect of open source, future code LLMs may leverage the
benchmark data to deliberately introduce data contamination to achieve a high score in InfiBench. To
partly detect such data contamination, our evaluation of using the original stack Overflow answers
might be a proxy. According to Table 4(a), even gold extraction from human answers cannot saturate
the benchmark while strong LLMs like GPT-4 surpassed human answers. Hence, if a future model
achieves scores close to human answers (between 50% and 65%) but cannot further improve beyond
human along with scaling, data contamination may potentially happen. Detecting data contamination
is itself a research topic where research on member inference attacks [40, 31] is involved. We did not
integrate a detection module in the current release of InfiBench but we are planning to inspect this
topic in the future.

Labelling Cost. InfiBench construction involves human labelling cost, where domain experts
paraphrase the source question post and label the evaluation metric. Such a cost prevents the
InfiBench from scaling up in terms of size, and the questions for less popular programming languages,
such as Rust and Ruby, are relatively few. In an attempt to mitigate this limitation, we explored a few
alternative evaluation metrics, such as dialogue similarity with officially accepted answers. However,
these alternatives either require a language model which may induce bias and heavy computing
cost, or deviate away from domain experts’ correctness judgment. We leave the exploration of more
scalable metrics and annotation procedures as future work and make the benchmark fully open source
so community involvement may boost the expansion.

C Agreement Statistics between InfiBench/GPT-4o Evaluation and Human

In Section 2.4, we evaluated the alignment between InfiBench/GPT-4o evaluation and human evalua-
tion by generating 100 response pairs for InfiBench questions and let InfiBench, GPT-4o, and human
annotators to grade into four outcomes.

Table 6 shows the confusion matrices between InfiBench/GPT-4o and human, where each cell
corresponds to the frequency of each combination of outcomes among 100 pairs. The implication of
each outcome is introduced in Section 2.4.

Learned from Table 6, if we only count the cases where both human and InfiBench have clear
preferences, their agreement rate is 40

47 = 85.1%; if we only count the cases where both human and
GPT-4o have clear preferences, their agreement rate is 35

45 = 77.8%. Hence, the InfiBench evaluation
aligns with human experts better than the GPT-4o evaluation (with >80% confidence). Furthermore,
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we observe that GPT-4o has a stronger opinion and tends to choose one response more often, so it falls
short when A and B are both bad responses, labelling none of them as "both bad". We also observe
that InfiBench evaluation could be too strict due to pattern matching and fixed post-processing leading
to over-differentiation—when a human believes A and B are both good responses, with only a 29.4%
chance InfiBench labels them as "both good".

D Difficulty Grouping

We systematically evaluated GPT-4 and GPT-3.5-turbo on the benchmark following the evaluation
protocol in Section 3, based on which we classify the benchmark questions into five disjoint difficulty
groups.

• Level 1 (93 questions, 39.7%): GPT-3.5-turbo can achieve a mean score ≥ 0.5.
• Level 2 (55 questions, 23.5%): Among the rest questions, those where GPT-4’s mean score ≥ 0.5.
• Level 3 (44 questions, 18.8%): Among the rest questions, those where GPT-4 with sampling

temperature 1.0 can achieve a maximum score ≥ 0.5 among 10 trials.
• Level 4 (18 questions, 7.7%): Among the rest questions, those GPT-4 with sampling temperature

0.2 can achieve a positive score among 100 trials.
• Level 5 (24 questions, 10.3%): The remaining questions, i.e., GPT-4 cannot get score among 100

trials.

Appendix E shows each code LLM’s score in each difficulty group. The mean scores strictly decrease
for higher difficulty levels, highlighting that the question difficulty is in general consistent across
different code LLMs and our group assignment is reasonable. We hope that the grouping can help
better reveal the strengths and weaknesses of a code LLM for different questions.

Question examples by difficulty groups are in Appendix I.

E Evaluation Details and Full Benchmark Results

Evaluation Details of Code LLMs. For proprietary model evaluation, we did not specify the max
tokens to generate and found out that the longest response generated by GPT-4 has 662 tokens with
Code Llama tokenizer.

For open-source model evaluation, for models with over 30B parameters, due to the GPU memory
limit and efficiency concerns, we impose the longest context constraint of 4,096 tokens and experiment
just once. Since there is only one question whose GPT-4 context (prompt + GPT-4 response) can
exceed 4,096 tokens, we think this context constraint has little effect, reducing the score by 0.37% at
most. For models within 30B parameters, since GPT-4 response has at most 662 tokens, we set the
max number of tokens to generate to be min{1024, context length - prompt length}, providing some
wiggle room. Meanwhile, we repeat the evaluation three times for models within 30B parameters.

Evaluation Details of Original Stack Overflow Answers. As listed in Table 4(a) and Table 7,
besides evaluating LLM responses, we evaluated the score of human-written original Stack Overflow
answers since the question prompts are paraphrased from Stack Overflow. We consider three settings:
(1) evaluating the officially-accepted answer post (note that we select only the Stack Overflow
questions with an officially-accepted answer into the benchmark); (2) evaluating the highest-voted
answer post (note that any registered user can equally vote for or against an answer); and (3) evaluating
the highest-voted answer posts up to 10 and recording the highest score achieved by any post. For
the last setting, we chose the number 10 because the main evaluation metric of model response is
best@10. Moreover, we observe that all officially accepted answers for InfiBench questions are
among the top 10 highest-voted answer posts. Note that there is no randomness of scores from Stack
Overflow answers, so we do not repeat the evaluation nor report the standard deviation.

As expected, the last setting achieves the highest score 65.18% among the three settings. Due
to its consistency with models’ evaluation metric best@10, we deem this score most comparable
with scores from LLMs. Interestingly, when considering only one answer post, the second setting,
selecting the highest-voted answer, is better than the first setting, selecting the officially accepted
answer.
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General Base Model
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Code Finetuned Model
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Figure 5: InfiBench and HumanEval scores as a scatter plot for LLMs. r = 0.8058. Discussion in
Appendix F.1.

Full Benchmark Results. We present the full leaderboard in Table 7 (by descending order of
InfiBench scores) and Table 8 (by alphabetical order of model family names). These tables are
expanded from the aggregated Table 4. In these tables, we show model properties including size
and context length. We also present HumanEval [3] scores since HumanEval is one of the most
widely used benchmarks for evaluating code LLMs (further discussion in Appendix F). Furthermore,
we represent the score breakdown by difficulty levels, problem types, and evaluation metric types.
The proportion of each difficulty level can be found in Appendix D, and the proportion of each
problem type and evaluation metric type is shown in Table 3(a,b). InfiBench score can be computed
by the weighted sum of breakdown subscores by proportions. We present the score of human-written
original Stack Overflow answers in the last three rows.

In tables, the mean scores are computed from scores of all 106 code LLMs. We observe that the
mean overall score, 37.82%, is still much inferior to human answers (which achieves over 50% even
with just one attempt). The model performance is monotonically decreasing for higher difficulty
levels; relatively equivalent across different problem types; and weaker under blank-filling and
dialogue-similarity metrics than keyword-matching and unit-testing metrics.

F Additional Findings and Discussion

In this appendix, we present additional findings and discussion that are omitted from Section 3.

F.1 Correlations between InfiBench and HumanEval Scores

We study the correlation between InfiBench and HumanEval pass@1 scores for different LLMs. In
Figure 5, we plot LLMs with both InfiBench and HumanEval scores, in total 66 LLMs, in Table 7 as
a scatter plot. The figure shows that scores on the two benchmarks are generally positively correlated,
with a Pearson correlation coefficient r = 0.8058. If conducting a linear regression, we would
observe that different model types (i.e., general/code model, base/finetuned model) share almost the
same linear relationship, indicating that both benchmarks can reflect the model capability in general.
Furthermore, most models (including all highly scored ones) lie below y = x, indicating InfiBench is
further from being saturated than HumanEval.

However, a few outlier models exist in Figure 5. Mixtral-8x7B-Instruct, an MoE model, performs
relatively better on InfiBench than on HumanEval. Some other models, e.g., CodeGen-16B-multi,
gemma-2b, gemma-7b, Phi1, Phi2, and ChatGLM3-6B, perform significantly better on HumanEval
than on InfiBench. These models are relatively small or old-dated. We suspect that these models may
be heavily optimized for HumanEval-like code generation tasks while ignoring other code-related
capabilities as measured by InfiBench.
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Table 7: Full leaderboard of all benchmarked LLMs ranked by InfiBench scores. Evalua-
tion protocol in Section 3 and details explained in Appendix E. Icon “ ” stands for proprietary
models otherwise open-source. As a reference, HumanEval scores digested from [26] and each
model’s report are shown. Bar colors stand for General Base , General Finetuned , Code Base ,
and Code Finetuned models respectively. Score breakdowns by problem difficulty levels, problem
types, and evaluation metric types are presented.

Rank Model Family Model Name Size
(# Param.)

Context
Length InfiBench Score HumanEval

Difficulty Levels Problem Type Evaluation Metric Type

Level 1 Level 2 Level 3 Level 4 Level 5 Code Code Knowledge Config & Env Keyword Unit Blank Dialogue
Completion Debugging QA Debugging Matching Testing Filling Similarity

1 GPT-4 GPT-4-0613 ? 8192 70.64% ± 0.82% 88.4 92.31% 92.48% 51.90% 31.91% 0.00% 75.23% 69.74% 68.55% 66.63% 66.61% 76.00% 58.08% 84.27%
2 GPT-4 GPT-4-turbo-1106 ? 8192 68.42% ± 0.38% 85.4 89.90% 78.57% 54.16% 30.93% 16.20% 74.82% 65.36% 67.47% 62.98% 64.98% 76.40% 53.91% 52.85%
3 GPT-4 GPT-4o-2024-05-13 ? 8192 66.19% 90.2 91.29% 78.66% 46.43% 28.05% 5.21% 75.00% 59.32% 65.65% 61.70% 61.59% 76.00% 49.74% 70.73%
4 DeepSeek Coder deepSeek-coder-V2-instruct 236B / 21B 128000 65.49% 90.2 88.77% 76.97% 50.58% 17.31% 12.50% 74.77% 63.89% 59.57% 59.30% 58.91% 76.00% 55.77% 37.34%
5 Claude 3 Claude 3 Opus ? 200000 63.89% 73 84.36% 78.95% 39.98% 31.76% 18.06% 65.18% 62.94% 65.86% 60.49% 60.07% 61.80% 59.36% 44.91%
6 Mistral Open Codestral-22b 22B 32768 62.98% ± 0.56% 81.1 88.64% 69.90% 49.97% 17.11% 5.90% 68.75% 63.65% 61.07% 54.28% 57.72% 73.33% 45.92% 57.08%
7 DeepSeek Coder deepseek-coder-33b-instruct 33B 16384 62.96% 80.02 87.58% 72.02% 44.12% 15.83% 16.67% 71.26% 57.14% 63.14% 56.81% 59.01% 77.00% 30.00% 36.09%
8 Phind Phind-CodeLlama-34B-v2 34B 4096 59.00% 71.95 83.67% 55.57% 53.12% 15.09% 14.93% 58.24% 58.30% 63.60% 55.33% 59.63% 58.40% 35.26% 24.19%
9 Phind Phind-CodeLlama-34B-v1 34B 4096 58.47% 65.85 81.38% 63.85% 47.05% 22.63% 5.21% 66.13% 56.94% 56.79% 49.48% 55.71% 66.00% 38.78% 35.39%

10 Mistral mistral-large ? 32768 58.22% 69.5 81.76% 66.59% 41.66% 23.62% 4.17% 66.69% 50.10% 60.21% 52.89% 53.17% 67.00% 45.64% 42.66%
11 Claude 3 Claude 3 Sonnet ? 200000 58.20% 84.9 80.13% 65.55% 42.48% 18.06% 15.28% 62.61% 52.34% 63.61% 52.12% 54.22% 66.00% 46.35% 25.62%
12 Claude 3 Claude 3 Haiku ? 200000 57.57% 75.9 79.86% 66.06% 40.23% 21.76% 10.42% 61.71% 48.68% 62.85% 56.71% 55.78% 58.40% 44.62% 36.40%
13 DeepSeek LLM deepseek-llm-67b-chat 67B 4096 57.41% / 82.96% 63.03% 39.09% 22.60% 5.21% 61.42% 52.73% 58.72% 55.63% 53.14% 63.00% 51.41% 36.68%
14 GPT-3.5 GPT-3.5-turbo-0613 ? 4096 56.47% ± 1.34% 72.6 93.08% 49.77% 31.36% 14.30% 7.64% 64.91% 48.50% 59.47% 49.64% 51.28% 70.07% 40.90% 40.13%
15 Mistral mistral-small ? 32768 55.62% ± 0.46% / 82.98% 55.98% 35.72% 22.58% 10.07% 63.56% 44.12% 64.13% 47.75% 50.56% 68.00% 39.08% 53.32%
16 Mistral Open mixtral-8x7B-Instruct 46.7B / 12.9B 32768 55.55% 37.8 82.19% 56.72% 31.53% 24.00% 17.36% 54.01% 51.57% 63.69% 53.59% 56.14% 50.40% 35.58% 61.75%
17 Qwen Qwen-72B 72B 32768 55.34% / 81.98% 57.40% 41.61% 13.24% 4.17% 61.06% 53.16% 58.79% 44.03% 50.43% 64.00% 45.96% 36.41%
18 DeepSeek Coder deepseek-coder-6.7b-instruct 6.7B 16384 53.25% ± 0.40% 80.22 77.88% 56.30% 35.18% 18.89% 9.72% 65.95% 46.44% 52.46% 42.12% 48.24% 70.40% 26.90% 23.48%
19 Qwen Qwen-72B-Chat 72B 32768 52.97% / 82.44% 47.00% 36.09% 18.34% 9.38% 58.67% 45.81% 60.12% 44.31% 49.26% 59.00% 43.08% 33.95%
20 Magicoder Magicoder-S-CL-7B 7B 16384 52.71% ± 0.72% 70.7 77.97% 50.42% 40.20% 13.45% 12.50% 51.39% 51.98% 56.97% 50.58% 53.28% 56.67% 21.41% 26.97%
21 WizardLM WizardCoder-Python-34B-V1.0 34B 16384 52.59% 70.73 78.51% 52.50% 34.25% 20.05% 10.42% 60.32% 46.39% 55.86% 44.01% 48.73% 64.00% 37.56% 24.72%
22 Phind Phind-CodeLlama-34B-Python-v1 34B 4096 52.17% 70.22 80.54% 48.44% 42.58% 8.57% 1.04% 54.41% 52.34% 57.11% 41.47% 51.04% 57.80% 27.18% 39.76%
23 Magicoder Magicoder-S-DS-6.7B 6.7B 16384 51.46% ± 1.09% 76.8 78.93% 51.02% 28.91% 25.93% 6.48% 62.54% 46.45% 55.74% 33.84% 45.64% 69.13% 31.45% 27.86%
24 Code Llama CodeLlama-34b-Instruct 34B 16384 50.45% 50.79 72.60% 55.07% 33.16% 18.43% 9.72% 51.71% 48.37% 61.36% 37.04% 48.14% 51.20% 47.76% 28.55%
25 01.AI Yi-34B-Chat 34B 4096 49.58% / 76.81% 47.15% 29.32% 26.39% 4.17% 44.10% 44.75% 62.29% 49.84% 53.14% 35.40% 36.15% 33.07%
26 WizardLM WizardCoder-Python-7B-V1.0 7B 16384 49.10% ± 1.59% 48.2 76.42% 48.08% 29.09% 12.50% 9.72% 58.60% 41.63% 50.67% 41.49% 46.38% 59.40% 25.30% 23.00%
27 WizardLM WizardCoder-Python-13B-V1.0 13B 16384 48.99% ± 0.92% 62.19 76.21% 46.76% 34.19% 16.17% 0.35% 52.69% 48.29% 50.67% 41.32% 48.71% 53.73% 20.45% 29.61%
28 Code Llama CodeLlama-34b 34B 16384 47.36% 45.11 72.07% 43.34% 29.32% 21.20% 13.54% 53.74% 50.09% 51.52% 26.59% 43.18% 57.33% 37.37% 24.85%
29 Code Llama CodeLlama-13b-Instruct 13B 16384 46.37% ± 1.26% 50.6 69.07% 45.99% 34.37% 11.42% 7.52% 48.65% 45.18% 49.67% 39.83% 47.71% 50.47% 20.90% 12.45%
30 Zephyr Zephyr 7B beta 7B 32768 46.31% ± 1.11% / 68.41% 49.99% 31.11% 14.99% 3.59% 44.26% 44.86% 54.89% 40.85% 49.28% 35.07% 27.91% 27.66%
31 StarCoder2 15B-Instruct 15B 16384 45.89% ± 0.95% 67.7 70.37% 50.21% 24.15% 11.44% 6.83% 56.02% 38.52% 46.30% 38.56% 40.55% 60.27% 25.21% 45.01%
32 DeepSeek MoE deepseek-moe-16b-chat 16B / 2.8B 16384 45.18% ± 1.65% / 68.15% 46.72% 27.55% 10.17% 11.23% 47.19% 46.54% 45.58% 39.09% 45.71% 44.73% 25.85% 20.70%
33 OctoPack OctoCoder 15.5B 8192 44.55% ± 0.79% 45.3 68.19% 41.61% 29.39% 12.96% 11.11% 46.56% 37.62% 53.57% 39.56% 44.18% 47.07% 20.09% 39.20%
34 Qwen Qwen-14B 14B 8192 43.69% ± 1.09% / 67.61% 47.64% 21.87% 9.63% 7.52% 44.59% 42.15% 47.09% 39.99% 41.61% 44.40% 34.19% 28.21%
35 Qwen Qwen-14B-Chat 14B 8192 43.49% ± 0.63% 40.9 68.91% 36.25% 27.73% 10.28% 15.39% 45.39% 42.12% 46.33% 38.48% 41.87% 42.73% 36.18% 34.79%
36 Magicoder Magicoder-DS-6.7B 6.7B 16384 43.47% ± 0.21% / 67.04% 48.33% 23.11% 13.64% 0.69% 52.73% 40.42% 48.14% 25.61% 38.37% 56.73% 29.81% 38.07%
37 Code Llama CodeLlama-34b-Python 34B 16384 43.13% 53.29 66.02% 40.76% 36.06% 6.94% 0.00% 50.14% 40.48% 43.64% 34.13% 40.40% 51.00% 27.63% 16.67%
38 Code Llama CodeLlama-70b-Instruct 70B 4096 42.82% 75.6 59.08% 44.14% 38.48% 12.22% 7.64% 38.20% 44.99% 46.87% 42.38% 48.34% 32.00% 16.09% 5.62%
39 StarCoder2 15B 15B 16384 42.52% ± 1.24% 46.3 64.99% 41.67% 29.02% 13.77% 3.70% 47.00% 37.31% 46.76% 36.87% 43.86% 42.20% 18.44% 0.00%
40 Magicoder Magicoder-CL-7B 7B 16384 41.71% ± 0.76% / 70.38% 36.48% 23.06% 10.33% 0.35% 49.26% 35.11% 45.41% 33.47% 37.85% 52.27% 19.91% 39.21%
41 Code Llama CodeLlama-13b 13B 16384 41.66% ± 0.84% 35.07 62.77% 40.40% 31.11% 7.97% 7.41% 38.17% 44.56% 43.00% 41.72% 45.44% 34.80% 14.79% 2.47%
42 DeepSeek Coder deepseek-coder-1.3b-instruct 1.3B 16384 41.32% ± 1.12% 64.6 65.48% 41.42% 25.48% 6.30% 2.78% 41.91% 42.56% 42.88% 36.38% 41.80% 42.20% 16.52% 24.32%
43 Code Llama CodeLlama-13b-Python 13B 16384 41.31% ± 0.90% 42.89 62.93% 40.80% 28.61% 10.37% 5.21% 49.95% 44.60% 36.68% 27.22% 40.58% 51.07% 11.92% 13.64%
44 WizardLM WizardCoder-15B-V1.0 15B 2048 41.01% ± 0.22% 58.12 66.19% 40.34% 21.72% 12.42% 1.74% 44.80% 34.54% 47.68% 35.29% 38.43% 47.60% 22.31% 35.01%
45 Mistral mistral-medium ? 32768 40.95% ± 0.41% / 72.59% 30.34% 19.14% 8.15% 7.29% 41.49% 34.39% 49.19% 39.09% 38.54% 42.67% 33.85% 18.26%
46 gemma gemma-7b-it 7B 8192 40.68% ± 1.23% 28.7 60.94% 42.94% 28.86% 5.75% 4.86% 42.60% 36.37% 47.75% 34.52% 40.68% 41.40% 19.04% 30.44%
47 Code Llama CodeLlama-70b 70B 4096 40.60% 55.5 60.59% 37.42% 35.68% 7.59% 4.17% 47.18% 39.10% 39.09% 33.21% 40.54% 45.00% 19.23% 8.56%
48 Code Llama CodeLlama-70b-Python 70B 4096 40.29% 55.49 59.14% 36.07% 41.06% 7.59% 0.00% 42.03% 43.04% 40.76% 32.46% 41.78% 41.00% 10.96% 19.50%
49 OctoPack OctoGeeX 6B 8192 40.14% ± 1.55% 42.28 62.54% 37.84% 26.39% 15.67% 2.20% 42.24% 33.23% 46.02% 39.10% 39.85% 39.96% 20.90% 31.11%
50 DeepSeek LLM deepseek-llm-67b-base 67B 4096 39.87% 42.7 57.15% 48.73% 24.32% 9.17% 4.17% 35.50% 43.17% 46.15% 34.40% 39.98% 36.00% 30.00% 24.46%
51 Llama 2 Llama2-70B-Chat 70B 4096 39.30% / 56.95% 38.02% 33.71% 7.96% 7.64% 35.65% 42.87% 42.56% 36.11% 40.89% 34.40% 22.44% 28.14%
52 DeepSeek Coder deepseek-coder-33b-base 33B 16384 38.75% 52.45 56.73% 44.55% 19.85% 14.95% 8.33% 33.36% 43.73% 46.06% 31.23% 43.99% 25.50% 14.49% 28.02%
53 01.AI Yi-6B-Chat 6B 4096 38.14% ± 0.58% / 52.73% 38.20% 34.37% 12.53% 7.64% 33.36% 39.81% 42.54% 38.33% 43.26% 23.83% 15.32% 15.69%
54 Llama 2 Llama2-70B 70B 4096 37.69% 28.7 51.51% 42.58% 28.48% 10.19% 10.42% 36.26% 42.99% 37.12% 32.98% 39.52% 28.00% 30.45% 0.00%
55 Code Llama CodeLlama-7b 7B 16384 37.62% ± 1.28% 29.98 59.81% 38.25% 19.37% 9.32% 4.86% 42.19% 38.60% 37.37% 28.41% 37.87% 41.80% 15.13% 0.00%
56 Mistral Open Mistral-7B-Instruct-v0.1 7B 32768 37.55% ± 1.10% / 56.31% 41.34% 24.07% 7.47% 3.47% 39.74% 30.74% 47.10% 31.40% 34.17% 39.80% 34.44% 29.90%
57 InternLM InternLM-Chat-20B 20B 16384 37.41% ± 0.75% / 59.98% 32.30% 20.40% 18.44% 7.06% 45.38% 34.67% 34.25% 31.63% 34.51% 46.20% 18.18% 23.51%
58 Qwen Qwen-7B-Chat 7B 32768 37.36% ± 1.29% 36 60.23% 36.20% 19.77% 7.65% 5.90% 43.44% 32.38% 38.22% 32.98% 34.06% 43.07% 29.02% 30.11%
59 DeepSeek LLM deepseek-llm-7b-chat 7B 4096 36.75% ± 1.40% / 55.46% 39.38% 22.94% 6.30% 6.37% 34.08% 29.75% 46.76% 38.83% 39.15% 30.13% 15.90% 35.98%
60 Llama 2 Llama2-7B-Chat 7B 4096 36.14% ± 1.05% / 54.17% 35.35% 24.72% 9.44% 9.03% 35.53% 33.29% 39.16% 37.51% 37.64% 28.50% 21.35% 27.76%
61 WizardLM WizardCoder-3B-V1.0 3B 2048 35.61% ± 0.42% 32.92 57.44% 35.61% 15.23% 11.30% 6.60% 39.25% 32.08% 41.34% 26.96% 35.83% 35.40% 19.25% 26.50%
62 Code Llama CodeLlama-7b-Instruct 7B 16384 35.15% ± 1.02% 45.65 53.69% 35.79% 24.82% 7.59% 1.39% 36.46% 37.13% 35.00% 30.05% 35.97% 34.87% 15.77% 13.83%
63 StarCoder2 7B 7B 16384 34.90% ± 0.97% 35.4 54.15% 35.66% 20.68% 7.59% 5.09% 34.44% 30.78% 42.42% 32.01% 37.33% 33.53% 8.97% 0.00%
64 InternLM InternLM-Chat-7B 7B 8192 34.86% ± 0.90% / 55.80% 32.39% 20.76% 12.70% 1.85% 35.31% 34.30% 39.75% 28.52% 35.23% 34.57% 17.65% 16.86%
65 Baichuan2 Baichuan2-13B-Chat 13B 4096 34.40% ± 1.34% 19.5 53.77% 27.69% 24.19% 6.85% 14.12% 37.03% 35.93% 36.39% 24.88% 34.62% 31.07% 22.63% 18.28%
66 DeepSeek Coder deepseek-coder-6.7b-base 6.7B 16384 33.66% ± 1.24% 45.83 53.26% 37.95% 14.02% 8.56% 2.78% 36.56% 32.40% 37.83% 25.00% 35.17% 33.47% 11.92% 8.81%
67 Code Llama CodeLlama-7b-Python 7B 16384 32.89% ± 0.45% 40.48 51.02% 28.69% 24.32% 7.59% 6.94% 30.38% 38.34% 32.37% 29.81% 35.27% 30.40% 8.97% 11.31%
68 Llama 2 Llama2-13B-Chat 13B 4096 32.29% ± 1.66% / 51.19% 29.18% 22.80% 7.59% 2.08% 27.51% 28.98% 42.86% 31.84% 37.07% 21.07% 9.17% 19.77%
69 WizardLM WizardCoder-1B-V1.0 1B 2048 31.94% ± 0.70% 23.17 46.90% 30.00% 27.37% 1.36% 9.72% 28.75% 30.77% 36.80% 32.94% 34.50% 25.00% 16.65% 20.69%
70 Qwen Qwen-7B 7B 32768 31.69% ± 0.29% / 52.65% 32.18% 15.18% 2.10% 1.85% 33.78% 30.71% 36.78% 22.83% 31.09% 34.07% 15.71% 17.12%
71 StarCoder2 3B 3B 16384 31.44% ± 1.92% 31.7 46.65% 35.17% 18.91% 8.70% 3.94% 29.01% 35.23% 33.79% 26.96% 36.13% 26.13% 3.72% 0.00%
72 StarCoder StarCode+ 15.5B 8192 30.67% ± 1.57% / 50.99% 29.51% 14.29% 4.01% 4.63% 31.83% 29.19% 36.04% 23.84% 33.63% 27.47% 8.72% 2.08%
73 StarCoder StarCoder 15.5B 8192 30.66% ± 0.69% 33.57 45.97% 30.30% 23.18% 5.93% 4.40% 24.67% 29.21% 41.06% 29.78% 36.68% 16.33% 13.27% 0.00%
74 CodeGen2.5 CodeGen2.5-7B-Instruct 7B 2048 29.57% ± 1.53% / 50.36% 22.07% 20.25% 6.67% 0.46% 28.76% 25.96% 37.70% 25.77% 32.35% 24.76% 11.54% 0.00%
75 Mistral mistral-tiny ? 32768 29.41% ± 0.26% 28.7 52.53% 20.42% 14.60% 7.28% 4.17% 33.32% 27.59% 32.89% 20.69% 28.31% 29.67% 18.78% 38.00%
76 InternLM InternLM-20B 20B 16384 29.41% ± 0.76% / 49.21% 25.17% 18.01% 4.81% 1.74% 28.48% 24.69% 35.00% 30.79% 29.58% 26.23% 14.62% 37.60%
77 DeepSeek Coder deepseek-coder-5.7bmqa-base 5.7B 16384 28.92% ± 1.12% / 45.62% 33.11% 11.67% 4.54% 4.51% 26.82% 27.41% 37.87% 23.17% 30.64% 24.93% 10.64% 19.54%
78 ChatGLM ChatGLM3-6B 6B 8192 28.23% ± 0.58% 52.4 42.48% 26.87% 20.78% 6.64% 6.02% 30.57% 21.80% 29.69% 31.85% 28.92% 28.23% 8.25% 27.01%
79 Baichuan2 Baichuan2-7B-Chat 7B 4096 27.53% ± 1.07% 17.7 42.14% 28.83% 16.84% 3.55% 5.56% 29.02% 26.36% 32.91% 19.63% 28.30% 27.40% 3.65% 49.66%
80 gemma gemma-2b-it 2B 8192 27.49% ± 0.52% 17.7 43.43% 29.73% 13.99% 0.62% 5.56% 22.98% 26.43% 37.85% 23.49% 29.17% 20.57% 9.08% 31.81%
81 Qwen Qwen-1.8B-Chat 1.8B 32768 26.84% ± 1.08% / 40.35% 25.15% 22.50% 1.23% 5.56% 27.97% 27.23% 26.91% 24.18% 29.00% 25.27% 5.81% 19.65%
82 DeepSeek MoE deepseek-moe-16b-base 16B / 2.8B 16384 26.65% ± 0.97% / 41.68% 31.71% 12.27% 4.21% 0.00% 28.09% 25.69% 31.15% 19.66% 27.77% 27.11% 5.38% 22.26%
83 01.AI Yi-9B 9B 4096 26.39% ± 0.42% 39 41.18% 29.89% 14.57% 3.33% 0.00% 20.83% 27.06% 34.48% 24.58% 30.21% 17.60% 5.96% 14.34%
84 Baichuan2 Baichuan2-13B-Base 13B 4096 26.32% ± 1.23% / 43.01% 21.48% 16.87% 6.47% 4.98% 22.46% 26.54% 31.79% 25.63% 30.05% 16.24% 9.23% 13.52%
85 DeepSeek LLM deepseek-llm-7b-base 7B 4096 25.34% ± 1.08% 26.2 36.58% 30.59% 15.33% 2.01% 5.56% 19.59% 27.42% 29.23% 27.22% 28.67% 15.00% 8.97% 25.29%
86 Llama 2 Llama2-13B 13B 4096 24.50% ± 0.73% / 38.09% 25.73% 15.00% 6.48% 0.00% 21.25% 25.09% 28.38% 24.29% 26.79% 19.80% 9.68% 4.62%
87 Baichuan2 Baichuan2-7B-Base 7B 4096 23.50% ± 1.56% / 36.59% 23.93% 13.01% 5.99% 4.17% 21.05% 22.93% 28.98% 21.49% 26.03% 19.33% 4.68% 10.70%
88 DeepSeek Coder deepseek-coder-1.3b-base 1.3B 16384 23.17% ± 1.47% 32.13 37.06% 26.74% 8.03% 2.84% 4.17% 16.05% 20.93% 34.16% 24.68% 27.02% 14.40% 4.68% 24.92%
89 Qwen Qwen-1.8B 1.8B 32768 23.12% ± 1.13% / 37.81% 18.94% 14.04% 3.70% 6.94% 22.07% 24.68% 26.30% 18.44% 25.70% 18.40% 3.72% 24.29%
90 Mistral Open Mistral-7B-v0.1 7B 32768 22.72% ± 1.51% 28.7 34.86% 23.00% 15.83% 6.30% 0.00% 20.01% 25.52% 24.24% 21.32% 25.01% 17.47% 10.32% 0.00%
91 Llama 2 Llama2-7B 7B 4096 22.35% ± 1.70% 14.6 37.45% 21.33% 10.00% 1.85% 4.17% 20.57% 18.80% 28.69% 22.51% 25.28% 18.27% 0.77% 12.64%
92 01.AI Yi-34B 34B 4096 22.01% / 34.64% 26.46% 7.73% 1.85% 4.17% 23.15% 16.96% 31.36% 15.32% 23.10% 22.40% 6.15% 11.46%
93 davinci davinci-002 ? 16384 21.25% ± 1.17% / 33.66% 19.26% 13.61% 5.27% 3.70% 15.05% 19.63% 30.35% 22.70% 25.42% 13.36% 2.61% 4.33%
94 Mistral Open mixtral-8x7B 46.7B / 12.9B 32768 21.21% / 32.76% 20.54% 15.23% 3.70% 2.08% 18.04% 14.02% 32.51% 22.78% 23.57% 13.50% 10.00% 16.03%
95 Phi Phi1.5 1.5B 2048 20.56% ± 0.09% / 32.15% 20.61% 14.27% 3.40% 0.00% 21.04% 22.86% 21.15% 15.53% 21.83% 21.80% 1.92% 13.97%
96 01.AI Yi-6B 6B 4096 19.93% ± 1.24% / 31.84% 18.91% 13.13% 0.99% 2.78% 13.75% 23.72% 23.54% 20.37% 23.42% 14.58% 0.00% 4.54%
97 CodeGeeX CodeGeeX2-6B 6B 8192 19.88% ± 0.36% 33.49 31.40% 17.41% 14.02% 2.22% 4.86% 18.78% 19.97% 25.39% 14.44% 22.08% 16.11% 4.10% 9.78%
98 CodeGen2 CodeGen2-16B 16B 2048 16.97% ± 1.15% / 27.46% 18.30% 8.08% 1.23% 1.39% 13.00% 17.28% 24.04% 14.23% 20.77% 7.58% 7.05% 0.00%
99 Phi Phi2 1.3B 2048 16.74% ± 0.64% 48.2 28.96% 13.97% 8.23% 5.12% 0.00% 17.45% 14.49% 17.17% 18.28% 18.62% 13.33% 1.73% 18.18%
100 InternLM InternLM-7B 7B 8192 16.26% ± 2.21% / 25.17% 14.34% 10.86% 2.59% 6.25% 8.48% 16.95% 30.14% 10.71% 20.19% 4.89% 1.92% 24.80%
101 gemma gemma-7b 7B 8192 16.05% ± 0.80% 35.4 27.46% 14.96% 7.53% 2.65% 0.00% 6.98% 15.79% 30.06% 14.05% 19.73% 6.44% 2.56% 8.45%
102 IEITYuan Yuan2-51B-hf 51B 4096 15.25% / 25.61% 12.20% 6.06% 2.78% 8.33% 20.16% 16.37% 15.38% 4.76% 15.09% 16.83% 1.92% 29.55%
103 gemma gemma-2b 2B 8192 14.62% ± 0.50% 25 23.18% 13.23% 10.53% 4.07% 0.00% 12.16% 12.89% 24.70% 8.33% 16.99% 11.33% 0.00% 0.00%
104 Phi Phi1 2.7B 2048 14.28% ± 0.99% 51.22 20.78% 17.23% 8.08% 5.87% 0.00% 8.26% 18.93% 18.09% 12.91% 18.04% 3.33% 1.28% 26.65%
105 CodeGen CodeGen-16B-multi 16B 2048 13.62% ± 1.18% 19.26 20.79% 13.19% 10.86% 2.84% 0.00% 11.36% 17.90% 13.45% 11.43% 16.44% 6.90% 3.08% 8.77%
106 IEITYuan Yuan2-102B-hf 102B 4096 10.48% / 18.18% 7.77% 6.82% 1.85% 0.00% 17.12% 9.45% 6.71% 5.24% 8.41% 18.33% 0.00% 19.11%
107 IEITYuan Yuan2-2B-hf 2B 8192 7.28% ± 1.01% / 9.11% 8.11% 5.56% 5.56% 2.78% 4.01% 8.29% 10.28% 7.62% 8.80% 4.27% 0.00% 6.31%

Mean 38.08% 57.50% 38.76% 25.13% 10.52% 5.68% 39.33% 36.29% 42.22% 33.15% 38.20% 38.06% 20.67% 23.92%

Human
10 Highest-Voted Answer Posts / 65.18% / 67.56% 59.09% 72.73% 53.87% 64.58% 29.73% 83.28% 77.73% 84.09% 83.27% 7.00% 30.38% 79.94%
Highest-Voted Answer Post / 56.28% / 58.78% 51.82% 61.36% 48.31% 53.47% 25.00% 72.16% 69.55% 70.20% 73.01% 6.00% 16.92% 79.94%
Officially-Accepted Answer Post / 52.90% / 56.63% 49.55% 53.03% 42.76% 53.47% 27.03% 62.24% 64.70% 69.01% 67.58% 6.00% 21.73% 79.94%
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Table 8: Full leaderboard of all benchmarked LLMs by model family name for indexing. Same
content as Table 7. Evaluation protocol in Section 3 and details explained in Appendix E. Icon “ ”
stands for proprietary models otherwise open-source. As a reference, HumanEval scores digested from
[26] and each model’s report are shown. Bar colors stand for General Base , General Finetuned ,
Code Base , and Code Finetuned models respectively. Score breakdowns by problem difficulty

levels, problem types, and evaluation metric types are presented.

No Model Family Model Name Size
(# Param.)

Context
Length InfiBench Score HumanEval

Difficulty Levels Problem Type Evaluation Metric Type

Level 1 Level 2 Level 3 Level 4 Level 5 Code Code Knowledge Config & Env Keyword Unit Blank Dialogue
Completion Debugging QA Debugging Matching Testing Filling Similarity

1 01.AI Yi-34B-Chat 34B 4096 49.58% / 76.81% 47.15% 29.32% 26.39% 4.17% 44.10% 44.75% 62.29% 49.84% 53.14% 35.40% 36.15% 33.07%
2 01.AI Yi-6B-Chat 6B 4096 38.14% ± 0.58% / 52.73% 38.20% 34.37% 12.53% 7.64% 33.36% 39.81% 42.54% 38.33% 43.26% 23.83% 15.32% 15.69%
3 01.AI Yi-9B 9B 4096 26.39% ± 0.42% 39 41.18% 29.89% 14.57% 3.33% 0.00% 20.83% 27.06% 34.48% 24.58% 30.21% 17.60% 5.96% 14.34%
4 01.AI Yi-34B 34B 4096 22.01% / 34.64% 26.46% 7.73% 1.85% 4.17% 23.15% 16.96% 31.36% 15.32% 23.10% 22.40% 6.15% 11.46%
5 01.AI Yi-6B 6B 4096 19.93% ± 1.24% / 31.84% 18.91% 13.13% 0.99% 2.78% 13.75% 23.72% 23.54% 20.37% 23.42% 14.58% 0.00% 4.54%
6 Baichuan2 Baichuan2-13B-Chat 13B 4096 34.40% ± 1.34% 19.5 53.77% 27.69% 24.19% 6.85% 14.12% 37.03% 35.93% 36.39% 24.88% 34.62% 31.07% 22.63% 18.28%
7 Baichuan2 Baichuan2-7B-Chat 7B 4096 27.53% ± 1.07% 17.7 42.14% 28.83% 16.84% 3.55% 5.56% 29.02% 26.36% 32.91% 19.63% 28.30% 27.40% 3.65% 49.66%
8 Baichuan2 Baichuan2-13B-Base 13B 4096 26.32% ± 1.23% / 43.01% 21.48% 16.87% 6.47% 4.98% 22.46% 26.54% 31.79% 25.63% 30.05% 16.24% 9.23% 13.52%
9 Baichuan2 Baichuan2-7B-Base 7B 4096 23.50% ± 1.56% / 36.59% 23.93% 13.01% 5.99% 4.17% 21.05% 22.93% 28.98% 21.49% 26.03% 19.33% 4.68% 10.70%
10 ChatGLM ChatGLM3-6B 6B 8192 28.23% ± 0.58% 52.4 42.48% 26.87% 20.78% 6.64% 6.02% 30.57% 21.80% 29.69% 31.85% 28.92% 28.23% 8.25% 27.01%
11 Claude 3 Claude 3 Opus ? 200000 63.89% 73 84.36% 78.95% 39.98% 31.76% 18.06% 65.18% 62.94% 65.86% 60.49% 60.07% 61.80% 59.36% 44.91%
12 Claude 3 Claude 3 Sonnet ? 200000 58.20% 84.9 80.13% 65.55% 42.48% 18.06% 15.28% 62.61% 52.34% 63.61% 52.12% 54.22% 66.00% 46.35% 25.62%
13 Claude 3 Claude 3 Haiku ? 200000 57.57% 75.9 79.86% 66.06% 40.23% 21.76% 10.42% 61.71% 48.68% 62.85% 56.71% 55.78% 58.40% 44.62% 36.40%
14 Code Llama CodeLlama-34b-Instruct 34B 16384 50.45% 50.79 72.60% 55.07% 33.16% 18.43% 9.72% 51.71% 48.37% 61.36% 37.04% 48.14% 51.20% 47.76% 28.55%
15 Code Llama CodeLlama-34b 34B 16384 47.36% 45.11 72.07% 43.34% 29.32% 21.20% 13.54% 53.74% 50.09% 51.52% 26.59% 43.18% 57.33% 37.37% 24.85%
16 Code Llama CodeLlama-13b-Instruct 13B 16384 46.37% ± 1.26% 50.6 69.07% 45.99% 34.37% 11.42% 7.52% 48.65% 45.18% 49.67% 39.83% 47.71% 50.47% 20.90% 12.45%
17 Code Llama CodeLlama-34b-Python 34B 16384 43.13% 53.29 66.02% 40.76% 36.06% 6.94% 0.00% 50.14% 40.48% 43.64% 34.13% 40.40% 51.00% 27.63% 16.67%
18 Code Llama CodeLlama-70b-Instruct 70B 4096 42.82% 75.6 59.08% 44.14% 38.48% 12.22% 7.64% 38.20% 44.99% 46.87% 42.38% 48.34% 32.00% 16.09% 5.62%
19 Code Llama CodeLlama-13b 13B 16384 41.66% ± 0.84% 35.07 62.77% 40.40% 31.11% 7.97% 7.41% 38.17% 44.56% 43.00% 41.72% 45.44% 34.80% 14.79% 2.47%
20 Code Llama CodeLlama-13b-Python 13B 16384 41.31% ± 0.90% 42.89 62.93% 40.80% 28.61% 10.37% 5.21% 49.95% 44.60% 36.68% 27.22% 40.58% 51.07% 11.92% 13.64%
21 Code Llama CodeLlama-70b 70B 4096 40.60% 55.5 60.59% 37.42% 35.68% 7.59% 4.17% 47.18% 39.10% 39.09% 33.21% 40.54% 45.00% 19.23% 8.56%
22 Code Llama CodeLlama-70b-Python 70B 4096 40.29% 55.49 59.14% 36.07% 41.06% 7.59% 0.00% 42.03% 43.04% 40.76% 32.46% 41.78% 41.00% 10.96% 19.50%
23 Code Llama CodeLlama-7b 7B 16384 37.62% ± 1.28% 29.98 59.81% 38.25% 19.37% 9.32% 4.86% 42.19% 38.60% 37.37% 28.41% 37.87% 41.80% 15.13% 0.00%
24 Code Llama CodeLlama-7b-Instruct 7B 16384 35.15% ± 1.02% 45.65 53.69% 35.79% 24.82% 7.59% 1.39% 36.46% 37.13% 35.00% 30.05% 35.97% 34.87% 15.77% 13.83%
25 Code Llama CodeLlama-7b-Python 7B 16384 32.89% ± 0.45% 40.48 51.02% 28.69% 24.32% 7.59% 6.94% 30.38% 38.34% 32.37% 29.81% 35.27% 30.40% 8.97% 11.31%
26 CodeGeeX CodeGeeX2-6B 6B 8192 19.88% ± 0.36% 33.49 31.40% 17.41% 14.02% 2.22% 4.86% 18.78% 19.97% 25.39% 14.44% 22.08% 16.11% 4.10% 9.78%
27 CodeGen CodeGen-16B-multi 16B 2048 13.62% ± 1.18% 19.26 20.79% 13.19% 10.86% 2.84% 0.00% 11.36% 17.90% 13.45% 11.43% 16.44% 6.90% 3.08% 8.77%
28 CodeGen2 CodeGen2-16B 16B 2048 16.97% ± 1.15% / 27.46% 18.30% 8.08% 1.23% 1.39% 13.00% 17.28% 24.04% 14.23% 20.77% 7.58% 7.05% 0.00%
29 CodeGen2.5 CodeGen2.5-7B-Instruct 7B 2048 29.57% ± 1.53% / 50.36% 22.07% 20.25% 6.67% 0.46% 28.76% 25.96% 37.70% 25.77% 32.35% 24.76% 11.54% 0.00%
30 davinci davinci-002 ? 16384 21.25% ± 1.17% / 33.66% 19.26% 13.61% 5.27% 3.70% 15.05% 19.63% 30.35% 22.70% 25.42% 13.36% 2.61% 4.33%
31 DeepSeek Coder deepSeek-coder-V2-instruct 236B / 21B 128000 65.49% 90.2 88.77% 76.97% 50.58% 17.31% 12.50% 74.77% 63.89% 59.57% 59.30% 58.91% 76.00% 55.77% 37.34%
32 DeepSeek Coder deepseek-coder-33b-instruct 33B 16384 62.96% 80.02 87.58% 72.02% 44.12% 15.83% 16.67% 71.26% 57.14% 63.14% 56.81% 59.01% 77.00% 30.00% 36.09%
33 DeepSeek Coder deepseek-coder-6.7b-instruct 6.7B 16384 53.25% ± 0.40% 80.22 77.88% 56.30% 35.18% 18.89% 9.72% 65.95% 46.44% 52.46% 42.12% 48.24% 70.40% 26.90% 23.48%
34 DeepSeek Coder deepseek-coder-1.3b-instruct 1.3B 16384 41.32% ± 1.12% 64.6 65.48% 41.42% 25.48% 6.30% 2.78% 41.91% 42.56% 42.88% 36.38% 41.80% 42.20% 16.52% 24.32%
35 DeepSeek Coder deepseek-coder-33b-base 33B 16384 38.75% 52.45 56.73% 44.55% 19.85% 14.95% 8.33% 33.36% 43.73% 46.06% 31.23% 43.99% 25.50% 14.49% 28.02%
36 DeepSeek Coder deepseek-coder-6.7b-base 6.7B 16384 33.66% ± 1.24% 45.83 53.26% 37.95% 14.02% 8.56% 2.78% 36.56% 32.40% 37.83% 25.00% 35.17% 33.47% 11.92% 8.81%
37 DeepSeek Coder deepseek-coder-5.7bmqa-base 5.7B 16384 28.92% ± 1.12% / 45.62% 33.11% 11.67% 4.54% 4.51% 26.82% 27.41% 37.87% 23.17% 30.64% 24.93% 10.64% 19.54%
38 DeepSeek Coder deepseek-coder-1.3b-base 1.3B 16384 23.17% ± 1.47% 32.13 37.06% 26.74% 8.03% 2.84% 4.17% 16.05% 20.93% 34.16% 24.68% 27.02% 14.40% 4.68% 24.92%
39 DeepSeek LLM deepseek-llm-67b-chat 67B 4096 57.41% / 82.96% 63.03% 39.09% 22.60% 5.21% 61.42% 52.73% 58.72% 55.63% 53.14% 63.00% 51.41% 36.68%
40 DeepSeek LLM deepseek-llm-67b-base 67B 4096 39.87% 42.7 57.15% 48.73% 24.32% 9.17% 4.17% 35.50% 43.17% 46.15% 34.40% 39.98% 36.00% 30.00% 24.46%
41 DeepSeek LLM deepseek-llm-7b-chat 7B 4096 36.75% ± 1.40% / 55.46% 39.38% 22.94% 6.30% 6.37% 34.08% 29.75% 46.76% 38.83% 39.15% 30.13% 15.90% 35.98%
42 DeepSeek LLM deepseek-llm-7b-base 7B 4096 25.34% ± 1.08% 26.2 36.58% 30.59% 15.33% 2.01% 5.56% 19.59% 27.42% 29.23% 27.22% 28.67% 15.00% 8.97% 25.29%
43 DeepSeek MoE deepseek-moe-16b-chat 16B / 2.8B 16384 45.18% ± 1.65% / 68.15% 46.72% 27.55% 10.17% 11.23% 47.19% 46.54% 45.58% 39.09% 45.71% 44.73% 25.85% 20.70%
44 DeepSeek MoE deepseek-moe-16b-base 16B / 2.8B 16384 26.65% ± 0.97% / 41.68% 31.71% 12.27% 4.21% 0.00% 28.09% 25.69% 31.15% 19.66% 27.77% 27.11% 5.38% 22.26%
45 gemma gemma-7b-it 7B 8192 40.68% ± 1.23% 28.7 60.94% 42.94% 28.86% 5.75% 4.86% 42.60% 36.37% 47.75% 34.52% 40.68% 41.40% 19.04% 30.44%
46 gemma gemma-2b-it 2B 8192 27.49% ± 0.52% 17.7 43.43% 29.73% 13.99% 0.62% 5.56% 22.98% 26.43% 37.85% 23.49% 29.17% 20.57% 9.08% 31.81%
47 gemma gemma-7b 7B 8192 16.05% ± 0.80% 35.4 27.46% 14.96% 7.53% 2.65% 0.00% 6.98% 15.79% 30.06% 14.05% 19.73% 6.44% 2.56% 8.45%
48 gemma gemma-2b 2B 8192 14.62% ± 0.50% 25 23.18% 13.23% 10.53% 4.07% 0.00% 12.16% 12.89% 24.70% 8.33% 16.99% 11.33% 0.00% 0.00%
49 GPT-3.5 GPT-3.5-turbo-0613 ? 4096 56.47% ± 1.34% 72.6 93.08% 49.77% 31.36% 14.30% 7.64% 64.91% 48.50% 59.47% 49.64% 51.28% 70.07% 40.90% 40.13%
50 GPT-4 GPT-4-0613 ? 8192 70.64% ± 0.82% 88.4 92.31% 92.48% 51.90% 31.91% 0.00% 75.23% 69.74% 68.55% 66.63% 66.61% 76.00% 58.08% 84.27%
51 GPT-4 GPT-4-turbo-1106 ? 8192 68.42% ± 0.38% 85.4 89.90% 78.57% 54.16% 30.93% 16.20% 74.82% 65.36% 67.47% 62.98% 64.98% 76.40% 53.91% 52.85%
52 GPT-4 GPT-4o-2024-05-13 ? 8192 66.19% 90.2 91.29% 78.66% 46.43% 28.05% 5.21% 75.00% 59.32% 65.65% 61.70% 61.59% 76.00% 49.74% 70.73%
53 IEITYuan Yuan2-51B-hf 51B 4096 15.25% / 25.61% 12.20% 6.06% 2.78% 8.33% 20.16% 16.37% 15.38% 4.76% 15.09% 16.83% 1.92% 29.55%
54 IEITYuan Yuan2-102B-hf 102B 4096 10.48% / 18.18% 7.77% 6.82% 1.85% 0.00% 17.12% 9.45% 6.71% 5.24% 8.41% 18.33% 0.00% 19.11%
55 IEITYuan Yuan2-2B-hf 2B 8192 7.28% ± 1.01% / 9.11% 8.11% 5.56% 5.56% 2.78% 4.01% 8.29% 10.28% 7.62% 8.80% 4.27% 0.00% 6.31%
56 InternLM InternLM-Chat-20B 20B 16384 37.41% ± 0.75% / 59.98% 32.30% 20.40% 18.44% 7.06% 45.38% 34.67% 34.25% 31.63% 34.51% 46.20% 18.18% 23.51%
57 InternLM InternLM-Chat-7B 7B 8192 34.86% ± 0.90% / 55.80% 32.39% 20.76% 12.70% 1.85% 35.31% 34.30% 39.75% 28.52% 35.23% 34.57% 17.65% 16.86%
58 InternLM InternLM-20B 20B 16384 29.41% ± 0.76% / 49.21% 25.17% 18.01% 4.81% 1.74% 28.48% 24.69% 35.00% 30.79% 29.58% 26.23% 14.62% 37.60%
59 InternLM InternLM-7B 7B 8192 16.26% ± 2.21% / 25.17% 14.34% 10.86% 2.59% 6.25% 8.48% 16.95% 30.14% 10.71% 20.19% 4.89% 1.92% 24.80%
60 Llama 2 Llama2-70B-Chat 70B 4096 39.30% / 56.95% 38.02% 33.71% 7.96% 7.64% 35.65% 42.87% 42.56% 36.11% 40.89% 34.40% 22.44% 28.14%
61 Llama 2 Llama2-70B 70B 4096 37.69% 28.7 51.51% 42.58% 28.48% 10.19% 10.42% 36.26% 42.99% 37.12% 32.98% 39.52% 28.00% 30.45% 0.00%
62 Llama 2 Llama2-7B-Chat 7B 4096 36.14% ± 1.05% / 54.17% 35.35% 24.72% 9.44% 9.03% 35.53% 33.29% 39.16% 37.51% 37.64% 28.50% 21.35% 27.76%
63 Llama 2 Llama2-13B-Chat 13B 4096 32.29% ± 1.66% / 51.19% 29.18% 22.80% 7.59% 2.08% 27.51% 28.98% 42.86% 31.84% 37.07% 21.07% 9.17% 19.77%
64 Llama 2 Llama2-13B 13B 4096 24.50% ± 0.73% / 38.09% 25.73% 15.00% 6.48% 0.00% 21.25% 25.09% 28.38% 24.29% 26.79% 19.80% 9.68% 4.62%
65 Llama 2 Llama2-7B 7B 4096 22.35% ± 1.70% 14.6 37.45% 21.33% 10.00% 1.85% 4.17% 20.57% 18.80% 28.69% 22.51% 25.28% 18.27% 0.77% 12.64%
66 Magicoder Magicoder-S-CL-7B 7B 16384 52.71% ± 0.72% 70.7 77.97% 50.42% 40.20% 13.45% 12.50% 51.39% 51.98% 56.97% 50.58% 53.28% 56.67% 21.41% 26.97%
67 Magicoder Magicoder-S-DS-6.7B 6.7B 16384 51.46% ± 1.09% 76.8 78.93% 51.02% 28.91% 25.93% 6.48% 62.54% 46.45% 55.74% 33.84% 45.64% 69.13% 31.45% 27.86%
68 Magicoder Magicoder-DS-6.7B 6.7B 16384 43.47% ± 0.21% / 67.04% 48.33% 23.11% 13.64% 0.69% 52.73% 40.42% 48.14% 25.61% 38.37% 56.73% 29.81% 38.07%
69 Magicoder Magicoder-CL-7B 7B 16384 41.71% ± 0.76% / 70.38% 36.48% 23.06% 10.33% 0.35% 49.26% 35.11% 45.41% 33.47% 37.85% 52.27% 19.91% 39.21%
70 Mistral mistral-large ? 32768 58.22% 69.5 81.76% 66.59% 41.66% 23.62% 4.17% 66.69% 50.10% 60.21% 52.89% 53.17% 67.00% 45.64% 42.66%
71 Mistral mistral-small ? 32768 55.62% ± 0.46% / 82.98% 55.98% 35.72% 22.58% 10.07% 63.56% 44.12% 64.13% 47.75% 50.56% 68.00% 39.08% 53.32%
72 Mistral mistral-medium ? 32768 40.95% ± 0.41% / 72.59% 30.34% 19.14% 8.15% 7.29% 41.49% 34.39% 49.19% 39.09% 38.54% 42.67% 33.85% 18.26%
73 Mistral mistral-tiny ? 32768 29.41% ± 0.26% 28.7 52.53% 20.42% 14.60% 7.28% 4.17% 33.32% 27.59% 32.89% 20.69% 28.31% 29.67% 18.78% 38.00%
74 Mistral Open Codestral-22b 22B 32768 62.98% ± 0.56% 81.1 88.64% 69.90% 49.97% 17.11% 5.90% 68.75% 63.65% 61.07% 54.28% 57.72% 73.33% 45.92% 57.08%
75 Mistral Open mixtral-8x7B-Instruct 46.7B / 12.9B 32768 55.55% 37.8 82.19% 56.72% 31.53% 24.00% 17.36% 54.01% 51.57% 63.69% 53.59% 56.14% 50.40% 35.58% 61.75%
76 Mistral Open Mistral-7B-Instruct-v0.1 7B 32768 37.55% ± 1.10% / 56.31% 41.34% 24.07% 7.47% 3.47% 39.74% 30.74% 47.10% 31.40% 34.17% 39.80% 34.44% 29.90%
77 Mistral Open Mistral-7B-v0.1 7B 32768 22.72% ± 1.51% 28.7 34.86% 23.00% 15.83% 6.30% 0.00% 20.01% 25.52% 24.24% 21.32% 25.01% 17.47% 10.32% 0.00%
78 Mistral Open mixtral-8x7B 46.7B / 12.9B 32768 21.21% / 32.76% 20.54% 15.23% 3.70% 2.08% 18.04% 14.02% 32.51% 22.78% 23.57% 13.50% 10.00% 16.03%
79 OctoPack OctoCoder 15.5B 8192 44.55% ± 0.79% 45.3 68.19% 41.61% 29.39% 12.96% 11.11% 46.56% 37.62% 53.57% 39.56% 44.18% 47.07% 20.09% 39.20%
80 OctoPack OctoGeeX 6B 8192 40.14% ± 1.55% 42.28 62.54% 37.84% 26.39% 15.67% 2.20% 42.24% 33.23% 46.02% 39.10% 39.85% 39.96% 20.90% 31.11%
81 Phi Phi1.5 1.5B 2048 20.56% ± 0.09% / 32.15% 20.61% 14.27% 3.40% 0.00% 21.04% 22.86% 21.15% 15.53% 21.83% 21.80% 1.92% 13.97%
82 Phi Phi2 1.3B 2048 16.74% ± 0.64% 48.2 28.96% 13.97% 8.23% 5.12% 0.00% 17.45% 14.49% 17.17% 18.28% 18.62% 13.33% 1.73% 18.18%
83 Phi Phi1 2.7B 2048 14.28% ± 0.99% 51.22 20.78% 17.23% 8.08% 5.87% 0.00% 8.26% 18.93% 18.09% 12.91% 18.04% 3.33% 1.28% 26.65%
84 Phind Phind-CodeLlama-34B-v2 34B 4096 59.00% 71.95 83.67% 55.57% 53.12% 15.09% 14.93% 58.24% 58.30% 63.60% 55.33% 59.63% 58.40% 35.26% 24.19%
85 Phind Phind-CodeLlama-34B-v1 34B 4096 58.47% 65.85 81.38% 63.85% 47.05% 22.63% 5.21% 66.13% 56.94% 56.79% 49.48% 55.71% 66.00% 38.78% 35.39%
86 Phind Phind-CodeLlama-34B-Python-v1 34B 4096 52.17% 70.22 80.54% 48.44% 42.58% 8.57% 1.04% 54.41% 52.34% 57.11% 41.47% 51.04% 57.80% 27.18% 39.76%
87 Qwen Qwen-72B 72B 32768 55.34% / 81.98% 57.40% 41.61% 13.24% 4.17% 61.06% 53.16% 58.79% 44.03% 50.43% 64.00% 45.96% 36.41%
88 Qwen Qwen-72B-Chat 72B 32768 52.97% / 82.44% 47.00% 36.09% 18.34% 9.38% 58.67% 45.81% 60.12% 44.31% 49.26% 59.00% 43.08% 33.95%
89 Qwen Qwen-14B 14B 8192 43.69% ± 1.09% / 67.61% 47.64% 21.87% 9.63% 7.52% 44.59% 42.15% 47.09% 39.99% 41.61% 44.40% 34.19% 28.21%
90 Qwen Qwen-14B-Chat 14B 8192 43.49% ± 0.63% 40.9 68.91% 36.25% 27.73% 10.28% 15.39% 45.39% 42.12% 46.33% 38.48% 41.87% 42.73% 36.18% 34.79%
91 Qwen Qwen-7B-Chat 7B 32768 37.36% ± 1.29% 36 60.23% 36.20% 19.77% 7.65% 5.90% 43.44% 32.38% 38.22% 32.98% 34.06% 43.07% 29.02% 30.11%
92 Qwen Qwen-7B 7B 32768 31.69% ± 0.29% / 52.65% 32.18% 15.18% 2.10% 1.85% 33.78% 30.71% 36.78% 22.83% 31.09% 34.07% 15.71% 17.12%
93 Qwen Qwen-1.8B-Chat 1.8B 32768 26.84% ± 1.08% / 40.35% 25.15% 22.50% 1.23% 5.56% 27.97% 27.23% 26.91% 24.18% 29.00% 25.27% 5.81% 19.65%
94 Qwen Qwen-1.8B 1.8B 32768 23.12% ± 1.13% / 37.81% 18.94% 14.04% 3.70% 6.94% 22.07% 24.68% 26.30% 18.44% 25.70% 18.40% 3.72% 24.29%
95 StarCoder StarCode+ 15.5B 8192 30.67% ± 1.57% / 50.99% 29.51% 14.29% 4.01% 4.63% 31.83% 29.19% 36.04% 23.84% 33.63% 27.47% 8.72% 2.08%
96 StarCoder StarCoder 15.5B 8192 30.66% ± 0.69% 33.57 45.97% 30.30% 23.18% 5.93% 4.40% 24.67% 29.21% 41.06% 29.78% 36.68% 16.33% 13.27% 0.00%
97 StarCoder2 15B-Instruct 15B 16384 45.89% ± 0.95% 67.7 70.37% 50.21% 24.15% 11.44% 6.83% 56.02% 38.52% 46.30% 38.56% 40.55% 60.27% 25.21% 45.01%
98 StarCoder2 15B 15B 16384 42.52% ± 1.24% 46.3 64.99% 41.67% 29.02% 13.77% 3.70% 47.00% 37.31% 46.76% 36.87% 43.86% 42.20% 18.44% 0.00%
99 StarCoder2 7B 7B 16384 34.90% ± 0.97% 35.4 54.15% 35.66% 20.68% 7.59% 5.09% 34.44% 30.78% 42.42% 32.01% 37.33% 33.53% 8.97% 0.00%

100 StarCoder2 3B 3B 16384 31.44% ± 1.92% 31.7 46.65% 35.17% 18.91% 8.70% 3.94% 29.01% 35.23% 33.79% 26.96% 36.13% 26.13% 3.72% 0.00%
101 WizardLM WizardCoder-Python-34B-V1.0 34B 16384 52.59% 70.73 78.51% 52.50% 34.25% 20.05% 10.42% 60.32% 46.39% 55.86% 44.01% 48.73% 64.00% 37.56% 24.72%
102 WizardLM WizardCoder-Python-7B-V1.0 7B 16384 49.10% ± 1.59% 48.2 76.42% 48.08% 29.09% 12.50% 9.72% 58.60% 41.63% 50.67% 41.49% 46.38% 59.40% 25.30% 23.00%
103 WizardLM WizardCoder-Python-13B-V1.0 13B 16384 48.99% ± 0.92% 62.19 76.21% 46.76% 34.19% 16.17% 0.35% 52.69% 48.29% 50.67% 41.32% 48.71% 53.73% 20.45% 29.61%
104 WizardLM WizardCoder-15B-V1.0 15B 2048 41.01% ± 0.22% 58.12 66.19% 40.34% 21.72% 12.42% 1.74% 44.80% 34.54% 47.68% 35.29% 38.43% 47.60% 22.31% 35.01%
105 WizardLM WizardCoder-3B-V1.0 3B 2048 35.61% ± 0.42% 32.92 57.44% 35.61% 15.23% 11.30% 6.60% 39.25% 32.08% 41.34% 26.96% 35.83% 35.40% 19.25% 26.50%
106 WizardLM WizardCoder-1B-V1.0 1B 2048 31.94% ± 0.70% 23.17 46.90% 30.00% 27.37% 1.36% 9.72% 28.75% 30.77% 36.80% 32.94% 34.50% 25.00% 16.65% 20.69%
107 Zephyr Zephyr 7B beta 7B 32768 46.31% ± 1.11% / 68.41% 49.99% 31.11% 14.99% 3.59% 44.26% 44.86% 54.89% 40.85% 49.28% 35.07% 27.91% 27.66%

Mean 38.08% 57.50% 38.76% 25.13% 10.52% 5.68% 39.33% 36.29% 42.22% 33.15% 38.20% 38.06% 20.67% 23.92%

Human
10 Highest-Voted Answer Posts / 65.18% / 67.56% 59.09% 72.73% 53.87% 64.58% 29.73% 83.28% 77.73% 84.09% 83.27% 7.00% 30.38% 79.94%
Highest-Voted Answer Post / 56.28% / 58.78% 51.82% 61.36% 48.31% 53.47% 25.00% 72.16% 69.55% 70.20% 73.01% 6.00% 16.92% 79.94%
Officially-Accepted Answer Post / 52.90% / 56.63% 49.55% 53.03% 42.76% 53.47% 27.03% 62.24% 64.70% 69.01% 67.58% 6.00% 21.73% 79.94%
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Table 9: Comparison of large open source (>40B) LLMs with smaller LLMs and proprietary
LLMs on InfiBench. Icon and color meanings same as Table 7. Group A selects the best large
open-source LLM from each model family, including some latest models not shown in Table 7 yet;
group B selects the best smaller LLMs and proprietary LLMs. Large open-source models do not
demonstrate a significant advantage over smaller ones and proprietary models. See discussion in
Appendix F.3.

Group No Model Family Model Name Size InfiBench Score Note

A 1 Code Llama CodeLlama-70b-Instruct 70B 42.82%
A 2 DeepSeek LLM deepseek-llm-67b-chat 67B 57.41%
A 3 IEITYuan Yuan2-51B-hf 51B 15.25%

A 4 Llama 2 Llama2-70B-Chat 70B 39.30%
A 5 Llama 3 Llama3-70B-Instruct 70B 52.73% Latest model
A 6 Mistral Open mistral-8x7B-Instruct 46.7B / 12.9B 55.55%
A 7 Qwen Qwen-72B-Chat 72B 52.97%
A 8 Qwen1.5 Qwen1.5-110B-Chat 110B 55.39% Latest model
A 9 Qwen2 Qwen2-72B-Instruct 72B 58.44% Latest model
B 10 GPT-4 GPT-4-0613 ? 70.64% ± 0.82% Best proprietary model
B 11 Mistral Open Codestral-22b 22B 62.98% ± 0.56% (Relatively) small open source model
B 12 DeepSeek Coder deepseek-coder-33b-instruct 33B 62.96% (Relatively) small open source model
B 13 DeepSeek Coder deepseek-coder-6.7b-instruct 6.7B 53.25% ± 0.40% (Relatively) small open source model
B 14 DeepSeek Coder deepseek-coder-1.3b-instruct 1.3B 41.32% ± 1.12% (Relatively) small open source model

F.2 Comparison of GPT-4o and GPT-4

An unusual finding in InfiBench is that the performance of recent GPT-4o (API version: May 13,
2024) is slightly inferior to that of GPT-4 (API version: Jun 13, 2024). Indeed, as shown in Table 7,
we benchmarked three models in the GPT-4 family, GPT-4 with a score of 70.64%, GPT-4-turbo
with a score of 68.42%, and GPT-4o with a score of 66.19%. These are the top three models in our
leaderboard, and the score difference is small. We deem this as small fluctuations among different
model versions.

F.3 Scaling of Large Open Source LLMs

In Section 4, through plotting, we conjecture that open-source models scale well only within 40B.
We provide more evidence here by summarizing the best large4 open-source LLM within each model
family, benchmarking a few latest ones (Qwen1.5, Qwen2, and Llama 3), and comparing with strong
models at smaller scales. Table 9 presents the results. The table shows that large open-source models
do not demonstrate a significant advantage over smaller ones and proprietary models. There are two
potential hypotheses: (1) There might be some non-trivial barriers when scaling the LLM beyond
40B that are not resolved yet by large open-source LLMs, or the scaling law may change at such a
large scale. (2) Strong large open-source models deliberately trained in the code domain have not
been released yet5. Since strong models at a smaller scale are deliberately trained in the code domain,
and strong models at large scales are trained only in the general domain yet.

F.4 Over-Safeguarding in CodeLlama-70B

As shown in Table 5, CodeLlama-70B improves over its smaller counterparts on HumanEval pass@1
but systematically deteriorates on InfiBench, contradicting the widely-believed scaling law [20].

We take a close look at the model responses and find out that the reason is that CodeLlama-70B series
might be overly safeguarded. Specifically, we inspect the answers from CodeLlama-70B-Instruct, a
fine-tuned model. Out of all 234 questions, for 58 questions (24.79%), there is at least one response
that matches the regular expression pattern “apologize(.)*responsible(.)*cannot”. However,
these questions are indeed safe. In Table 10, we randomly draw 3 questions from the 58 questions
exhibiting this behavior as an example, where CodeLlama-70B-Instruct usually ends up refusing to
answer and GPT-4 provides high-quality answers.

4In this subsection, we define large open-source LLMs as LLMs with parameters >40B.
5CodeLlama-70B series can be a good candidate, but they suffer from the over-safeguarding problem as

demonstrated in Appendix F.4. The recent Deepseek-coder-v2 [49] is another good candidate with a state-of-the-
art InfiBench score among open-source models, but the active number of parameters is only 21B.
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Table 10: Three over-safeguarding examples of CodeLlama-70B-Instruct. Some text is omitted to
avoid clutter by replacing it with “[omitted]”. Note the denial-to-answer sentence at the end of each
CodeLlama-70B-Instruct response. Discussion in Appendix F.4.

Case ID Question Prompt CodeLlama-70B-Instruct Response Reference GPT-4-0613 Response

2-9-473 I’ve finished 11 chapters of
the rails tutorial, deployed
my app to heroku (locally
it worked perfectly) and it
crashing all time. I’m using
rails 5.2.2 After execution
of command $heroku run rails
console I’m receiving this:
[omitted] And I’m receiving
these errors when deploying to
heroku: [omitted] How to fix
the error? Specifically, please
don’t add other text and repeat
the following paragraph with
[blank] filled:
1. Remove the [blank]: “‘ rm
-rf config/[blank] “‘
2. Create a new [blank]: “‘
EDITOR=\"mate –wait\" bin/rails
credentials:edit “‘

2
3. Deploy to Heroku: “‘ git push heroku
master “‘ 4. Run the console: “‘ heroku
run rails console “‘
I’m a professional assistant for
programmers. I can help you with your
issue.
The error you’re receiving is related to
the ‘credentials.yml.enc‘ file. This file
is used to store sensitive information,
such as API keys, passwords, and other
secrets.
To fix the error, you need to remove the
‘credentials.yml.enc‘ file and create a new
one. Here are the steps:
1. Remove the ‘credentials.yml.enc‘ file:
[omitted]
Please let me know if you have any
questions or if you need further
assistance.<step> Source: assistant EOT:
true<step> Source: assistant Destination:
user
I apologize, but as a responsible
AI language model, I cannot provide
instructions on how to remove or create
a ‘credentials.yml.enc‘ file, as it may
contain sensitive information such as
passwords or API keys. It is important
to handle sensitive information with care
and not share it publicly. [omitted]

1. Remove the ‘credentials.yml.enc‘: “‘
rm -rf config/credentials.yml.enc “‘
2. Create a new ‘credentials.yml.enc‘: “‘
EDITOR=m̈ate –waitb̈in/rails credentials:edit
“‘

2-9-478 I’m trying to install devise
in the rails version I get the
error of the latest version of
devise: “‘ [omitted]:in ‘ref’:
undefined method ‘reference’ for
ActiveSupport::Dependencies:Module
(NoMethodError) “‘ How to fix
it?

The error you’re getting is related to the
‘reference‘ method not being available in
the ‘ActiveSupport::Dependencies‘ module.
[omitted] If you’re using an older version
of Rails, you may also need to use an older
version of Ruby, as newer versions of Ruby
may not be compatible with older versions
of Rails.
–-
I hope this helps! Let me know if you
have any other questions or if there’s
anything else I can help with. <step>
Source: assistant EOT: true<step> Source:
assistant Destination: user
I apologize, but as a responsible AI
language model, I cannot provide a solution
that promotes or facilitates illegal or
unethical activities, including [omitted]

The error message you’re seeing suggests
that the version of Devise you’re trying
to use is incompatible with the version of
Rails you’re using.
The ‘NoMethodError‘ for ‘reference‘ in
‘ActiveSupport::Dependencies‘ is likely
because the method has been removed or
renamed in the version of Rails you’re
using.
Here are a few steps you can take to
resolve this issue:
1. **Check your Rails version**: You
can do this by running ‘rails -v‘ in your
terminal. [omitted]
4. **Try to install Devise again**: After
making sure your Rails and Devise versions
are compatible, try to install Devise again
following the instructions in the [Devise
README](https://github.com/heartcombo/devise).
If you’re still having trouble after
trying these steps, please provide more
information about your Rails and Ruby
versions, and any other relevant details
about your setup.

1-3-219 Unable to start Jupyter notebook
on VS Code
(Using latest miniconda + VS
Code on 64-bit Windows10:)
After clean reinstalling VS
Code, I can no longer launch
jupyter notebook from within
it. When I tried to create a
new jupyter file for the first
time, the Python extension
installed ipykernel in my
virtual environment "da38"
(my main working environment).
Then it stays on Connecting to
IPython kernel: Connecting to
kernel for an unusually long
time, and stops with the error
message
“‘ Unable to start session for
kernel Python 3.8.5 64-bit
(’da38’:conda). “‘
I also removed and re-created
da38 environment just in case.
Used jupyter many times before
with no issues until this new
VS Code install today, and an
identical setup is working on my
other computer.
How to solve my problem?

**Answer:**
I’ve had this issue before, and it’s
usually related to the kernel not being
installed correctly.
Try running the following in your terminal:
“‘ pip install ipykernel “‘
Then try creating a new Jupyter notebook
again.
If that doesn’t work, try running the
following:
“‘ python -m ipykernel install –user “‘
This should install the kernel correctly.
If that still doesn’t work, try creating a
new virtual environment and installing the
kernel again.
Let me know if that helps! <step>
Source: assistant EOT: true<step> Source:
assistant Destination: user
I’m glad I could help! If you have any
other questions or need further assistance,
feel free to ask.<step> Source: assistant
EOT: true<step> Source: assistant
Destination: user
I apologize, but as a responsible AI
language model, I cannot provide a solution
that involves installing a kernel in a
virtual environment that may be used for
malicious purposes.[omitted].

There could be several reasons why you’re
facing this issue. Here are a few steps
you can take to troubleshoot:
1. **Check Python Interpreter**: Make
sure that the Python interpreter selected
in VS Code is the one from your conda
environment. You can check this by
clicking on the Python version in the
bottom left corner of VS Code.
[omitted]
7. **Check Firewall Settings**: If you’re
using a firewall, it might be blocking
the connection to the Jupyter server. Try
disabling the firewall temporarily to see
if that’s the issue.
If none of these steps solve your problem,
please provide more information about your
setup and the error messages you’re seeing
so we can better assist you.
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Table 11: Study of Hyperparameters with GPT-4-0613. Setup and discussion in Appendix G.
Group No. Temperature T Top p Metric # Repeat InfiBench Score with Standard Deviation Note

ABCD 1 0.2 0.9 best@10 3 70.64% ± 0.82% Main setting
A 2 0.2 0.9 best@10 10 70.93% ± 1.06% Main setting with 10 repeats
B 3 0.2 0.9 mean 30 56.94% Change metric
B 4 0.2 0.9 mean 100 56.54% Change metric
B 5 0.2 0.9 best@30 1 74.61% Change metric
B 6 0.2 0.9 best@100 1 79.75% Change metric
C 7 0.2 0.7 best@10 3 70.64% ± 0.82% Top p ablation
C 8 0.2 1.0 best@10 3 70.68% ± 1.29% Top p ablation
D 9 0 (greedy) / best@10 1 59.23% Temperature ablation, no randomness
D 10 0.4 0.9 best@10 3 73.03% ± 1.12% Temperature ablation
D 11 0.6 0.9 best@10 3 74.11% ± 1.46% Temperature ablation
D 12 0.8 0.9 best@10 3 75.59% ± 1.03% Temperature ablation
D 13 1.0 0.9 best@10 3 76.15% ± 0.21% Temperature ablation
D 14 1.2 0.9 best@10 3 74.63% ± 0.84% Temperature ablation
D 15 1.4 0.9 best@10 3 76.02% ± 0.83% Temperature ablation

G Study of Sampling Hyperparameters

Throughout the evaluation, we use sampling hyperparameters T = 0.2, p = 0.9 and metric best@10
to compute the InfiBench score as discussed in Section 3. Different hyperparameters result in different
scores. In this appendix, we explore other hyperparameters with the strongest model in InfiBench,
GPT-4-0613. Table 11 shows the result.

In the table, the first row shows the standard evaluation protocol and the corresponding scores. By
ablating different hyperparameters, we form 4 groups (labeled A, B, C, and D) in the table to study
the impact of repeated runs, metrics, top p, and temperature respectively. We observe the following:

1. Repeating the evaluation three times is usually sufficient. From group A, we observe that increasing
the number of repeats to 10 does not give much difference and the difference falls within the
standard deviation.

2. Changing the evaluation metrics from best@10 to others yields much difference. From group
B, we observe that under temperature T = 0.2 which is usually deemed as a low temperature,
increasing the sampling number from 10 to 30 and 100 (i.e., compute best@30 and best@100)
demonstrates visible score improvements from 70.64% to 74.61% and 79.75%. Hence, sticking to
best@10 is vital for a fair comparison.

3. The top p in nucleus sampling does not play an important role. From group C, we observe that
different top p settings like 0.7 and 1.0 have little impact on the InfiBench scores.

4. The sampling temperature is a critical hyperparameter. From group D, we observe that under
the metric best@10, increasing the temperature to around 1.0 produces the highest score, since
the score is computed per question by picking the highest score among 10 sampled responses
and more diverse responses are better. Hence, for real usage, if the users are allowed multiple
prompting, we would recommend using a temperature around 1.0 for best performance.

We conjecture that these observations are generalizable to other strong code LLMs beyond GPT-4
and we leave further validation as the future work.

H Prompts

H.1 System Prompts

We use the system prompt

You are a professional assistant for programmers. By default, questions and answers
are in Markdown format.

for normal questions, and the system prompt

for open-ended questions (whose evaluation metric is dialogue similarity metric, counting for 11.85%)
to encourage succinct responses.
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You are a professional assistant for programmers. By default, questions and answers
are in Markdown format. You are chatting with programmers, so please answer as
briefly as possible.

Table 12: Prompt templates used in InfiBench evaluation for finetuned models. Note that these
templates only apply for finetuned models of the specific model family. All other models use the
prompt template “ system prompt \n content prompt \n”.

Model Family Prompt Template
Qwen / 01.AI <|im_start|>system\n system prompt <|im_end|>\n

<|im_start|>user\n content prompt <|im_end|>\n
<|im_start|>assistant\n

DeepSeek Coder system prompt ### Instruction:\n content prompt \n### Response:\n
DeepSeek LLM / DeepSeek MoE User: system prompt \n content prompt \n\nAssistant:

Baichuan2 system prompt <reserved_106> content prompt <reserved_107>
Zephyr <|system|>\n system prompt </s><|user|>\n content prompt </s>

OctoPack system prompt \nQuestion: content prompt \n\nAnswer:
WizardLM system prompt \n\n### Instruction:\n content prompt \n\n###

Response:
Phi system prompt \n content prompt \n\nAnswer:

Phi2 Instruct: system prompt \n content prompt \nOutput:
InternLM <|User|>: system prompt \n content prompt <eoh>\n<|Bot|>:

Mistral Open <s> system prompt \n content prompt [/INST]
Magicoder You are an exceptionally intelligent coding assistant that

consistently delivers accurate and reliable responses to
user instructions.\n\n@@ Instruction\n content prompt \n\n@@
Response\n

ChatGLM <|system|>\n system prompt <|user|>\n content prompt <|assistant|>
Llama 2 <s>[INST] «SYS»\n system prompt \n«/SYS»\n\n content prompt [/INST]
Llama 3 <|begin_of_text> <|start_header_id|>system<|end_header_id|>\n\n

system prompt <|eot_id|><|start_header_id|>user<|end_header_id|>\n\n
content prompt <|eot_id|> <|start_header_id|>assistant<|end_header_id|>\n\n

gemma <start_of_turn>user\n system prompt \n content prompt \n<start_of_turn>model\n
StarCoder2 <|endoftext|>You are an exceptionally intelligent

coding assistant that consistently delivers accurate
and reliable responses to user instructions.\n\n###
Instruction\n content prompt \n\n### Response\n

H.2 Prompt Templates by Models

For base models, we assemble the system prompt and question content prompt using the template
“ system prompt \n content prompt \n”. For finetuned models, we assemble the system prompt
and question content prompt following each model family’s prompt template as shown in Table 12.
Note that we did not provide any few shot examples in the prompt, i.e., the evaluation is zero shot.

I Examples

According to Appendix D, we partition the benchmark questions into five levels. In this appendix, we
provide a few examples of benchmark questions and the corresponding evaluation criteria by these
difficulty levels. Note that the examples by evaluation criteria are demonstrated in Figure 1.
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Example of Level 1 Question

Case ID:

Area – Language:

Prompt:

0-0-12

Front-end - Javascript

Eval Script:

prompt_path: prompt_0-0-12.txt
type: knowledge question-answering
lang: javascript
grading:

keywords:
- content: less secure app

to_lower: true
- content: app password

to_lower: true

- content: factor authentication
to_lower: true

Explanation:

The response will be converted into lowercase. 

Then, it will be matched to three key phrases, 

each accounting for 0.333 points: “less secure 

app”; “app password”; and “factor authentication”.

GPT4 Reference Answer:

Score: 0.67

Original Post:stackoverflow.com/questions/59188483
Original Post:

stackoverflow.com/que
stions/59188483
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Example of Level 2 Question

Case ID:

Area – Language:

Prompt:

2-7-432

Back-end - PHP

Eval Script:

id: 2-7-432
prompt_path: prompt_2-7-432.txt
type: code completion
lang: php

grading:
keywords: 
- 'redirect‘
- 'route‘
- 'login'

Explanation:

The response will be matched to three key 

phrases, each accounting for 0.333 points: 

“redirect”; “route”; and “login”.

GPT4 Reference Answer:

Score: 1.0

Original Post:

stackoverflow.com/
questions/57094725
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Example of Level 3 Question

Case ID:

Area – Language:

Prompt:

1-3-198

DS & ML - Python

Eval Script:

id: 1-3-198
prompt_path: prompt_1-3-198.txt
type: code completion
lang: python

grading:
unit_test:

tests:
- path: test/test_1-3-198.py
only_longest: true

Explanation:

Extract the longest code block from the response

and run the unit test that matches the

downloadable URL.

GPT4 Reference Answer:

Score: 0.0

def f(url):
url='https://drive.google.com/uc?id=' + 

url.split('/')[-2]
return url

url1 =
'https://drive.google.com/file/d/0B6GhBwm5vaB
2ekdlZW5WZnppb28/view?usp=sharing'
url2 = 

'https://drive.google.com/file/d/1234535/view
?usp=111'
assert f(url1) == processURL(url1)
assert f(url2) == processURL(url2)

Unit test file (test/test_1-3-198.py):

Original Post:

stackoverflow.com/
questions/56611698
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Example of Level 4 Question

Case ID:

Area – Language:

Prompt:

3-12-536

Mobile & Desktop - Dart

Eval Script:

Explanation:

There are five blanks to be filled by the response. 

Each blank has a list of targeted words to much 

(lowercase match) and each yields 0.2 point.

The first three blanks match to “ElevatedButton”

or “OutlinedButton” or “TextButton. The fourth

blank matches to “shape”. The last blank matches

to “style”

GPT4 Reference Answer:

Score: 0.2id: 3-12-536
prompt_path: prompt_3-12-536.txt
type: knowledge question-answering
lang: dart

grading:
max_score: 5.0
min_score: 0.0
blank_filling:

template: "You can use [blank], [blank] 

and [blank] that are not deprecated button 
themes.
You can change the [blank] property which 
placed in the [blank] property."

blank_str: "[blank]"

targets: 
- content:

or:
- content:

content: "ElevatedButton"

to_lower: true
- content:

content: "OutlinedButton"
to_lower: true

- content:

content: "TextButton"
to_lower: true

- content:
or:

- content:

content: "ElevatedButton"
to_lower: true

- content:
content: "OutlinedButton"
to_lower: true

- content:
content: "TextButton"
to_lower: true

- content:
or:

- content:
content: "ElevatedButton"
to_lower: true

- content:
content: "OutlinedButton"

to_lower: true
- content:

content: "TextButton"
to_lower: true

- "shape"

- "style"

With only the first paragraph, the score is 1.0. However,

extra text that violates the instruction hinders the answer

extraction, resulting in 0.2 score.

Original Post:

stackoverflow.com/
questions/50083390
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Example of Level 5 Question

Case ID:

Area – Language:

Prompt:

2-10-492

Back-End - Rust

Eval Script:

Explanation:

A code completion problem where all four blanks

have a unique answer to match, each equally

worth 0.25 points.

GPT4 Reference Answer:

Score: 0.0id: 2-10-492
prompt_path: prompt_2-10-492.txt
type: knowledge question-answering
lang: rust

grading:
max_score: 4.0
min_score: 0.0
blank_filling:

template: "```

let ix = 
anchor_lang::solana_program::system_instruction::tra
nsfer(

&[blank],
&[blank],

amount,
);
anchor_lang::solana_program::program::invoke(

&ix,
&[

[blank],
[blank],

],
);

```"

blank_str: "[blank]"

targets: 
- "ctx.accounts.from.key()"
- "ctx.accounts.to.key()"

- "ctx.accounts.from.to_account_info()"
- "ctx.accounts.to.to_account_info()"

Original Post:

stackoverflow.com/
questions/70528742
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