
Graph Structure Inference with BAM:
Neural Dependency Processing via Bilinear Attention

Philipp Froehlich Heinz Koeppl
Department of Electrical Engineering and Information Technology

Technische Universität Darmstadt
{philipp.froehlich, heinz.koeppl}@tu-darmstadt.de

Abstract

Detecting dependencies among variables is a fundamental task across scientific
disciplines. We propose a novel neural network model for graph structure infer-
ence, which aims to learn a mapping from observational data to the corresponding
underlying dependence structures. The model is trained with variably shaped and
coupled simulated input data and requires only a single forward pass through the
trained network for inference. Central to our approach is a novel bilinear attention
mechanism (BAM) operating on covariance matrices of transformed data while
respecting the geometry of the manifold of symmetric positive definite (SPD) ma-
trices. Inspired by graphical lasso methods, our model optimizes over continuous
graph representations in the SPD space, where inverse covariance matrices encode
conditional independence relations. Empirical evaluations demonstrate the robust-
ness of our method in detecting diverse dependencies, excelling in undirected graph
estimation and showing competitive performance in completed partially directed
acyclic graph estimation via a novel two-step approach. The trained model effec-
tively detects causal relationships and generalizes well across different functional
forms of nonlinear dependencies.

1 Introduction

The discovery and understanding of dependencies among variables are fundamental to scientific in-
quiry across diverse disciplines, such as biology [10], climate science [48], economics [8], and social
studies [18]. These dependencies are commonly represented as edges within graphical models, par-
ticularly directed acyclic graphs (DAGs), first introduced by Wright [70] to study genetic inheritance,
and later advanced for probabilistic inference by Lauritzen and Spiegelhalter [35]. Graph structure
inference, the process of deriving such graphical representations from observational data, is essential
for gaining insights into complex systems and their underlying causal relationships [49]. A prime
example is the estimation of gene regulatory networks from experimental data [19], where identifying
dependencies between genes is crucial for understanding biological processes and mechanisms.

Graph structure inference typically employs unsupervised learning methods to estimate the underlying
graph through either score-based approaches, which rank graphs by predefined metrics, or constraint-
based approaches that identify edges between variable pairs via conditional independence tests [66].
However, these methods face challenges. Score-based approaches encounter computational burdens
due to the superexponential growth of potential graph structures with node count, and the necessity to
balance fit and structural sparsity [31]. Constraint-based methods usually require a large sample size
[66], rely on an elusive optimal threshold hyperparameter , and Shah and Peters [58] proved that the
failure of Type I error control in underlying conditional independence tests is unavoidable, which can
have significant consequences in downstream analyses.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

128847 https://doi.org/10.52202/079017-4093

Supervised causal learning techniques, as presented by Lopez-Paz et al. [39, 40, 41], Li et al. [36], Ke
et al. [31], Lorch et al. [42], Dai et al. [15], have recently emerged as an appealing alternative to
unsupervised methods. In this rising approach, a neural network is typically trained on simulated
matrix-shaped data, with corresponding graph structures serving as ground-truth labels for supervised
learning. The paradigm capitalizes on the strengths of deep learning to discern complex patterns in
data, thereby enabling accurate graph structure inference.

Supervised causal learning strongly relies on neural networks’ ability to extract dependency infor-
mation from observational data matrices. Current approaches for processing observational data,
whether in causal learning [31, 42], or related fields [34, 54], typically embed the data into expanded
observational data spaces, attempting to implicitly capture dependencies within the Euclidean space
in transformed data matrices. After marginalizing over the sample dimension, existing supervised
causal learning methods [31, 42] then predict edges separately from each other via compressed
observational representation vectors, rather than estimating a single graph object as in graphical
lasso (GLASSO) algorithms [72, 7, 17]. GLASSO methods effectively optimize inverse covariance
matrices in SPD space, where matrix entries directly encode the graph’s conditional dependencies.
This classical, highly influential approach is particularly powerful in the Gaussian case, where the
covariance matrix is a sufficient statistic for the distribution. We extend this geometric insight
from classical optimization to the neural network era by introducing SPD layers that learn and
process dependency information directly. Instead of using pre-derived mathematical operations as
in GLASSO-based algorithms, our network learns these shape-invariant transformations from data.
Combined with learned transformations in the observational space, our approach generalizes beyond
the Gaussian assumption of classical methods while preserving both the theoretical guarantees and
computational efficiency of GLASSO approaches. In contrast to GLASSO methods which must solve
an optimization problem for each new dataset, our approach requires only a single forward pass.

Analogous to GLASSO-based methods, the symmetry of covariance matrices constrains our approach
to undirected graph estimation. We extend beyond this limitation via a novel two-phase procedure.
We first estimate the graph’s skeleton and immoralities, then identify edge directions to obtain a
completed partially directed acyclic graph (CPDAG) [12]. While this follows the general principle
of the PC-algorithm [61], our deep learning approach distinguishes between skeleton edges and
moralized edges through joint optimization in SPD space, instead of relying on sequential conditional
independence tests over all possible immoralities for edge identification. By efficiently identifying
immoralities in the first step, our method drastically reduces the number of required independence
tests, minimizing both computational complexity and the propagation of false positive orientation
errors.

d

M

observational
data

C

attention
attributes

attention
datapoints

d

d

C

bilinear
attention

elementwise
activation

Riemannian
manifold

d

d

C

d

d

3

Probabilities of classes:
-no edge
-skeleton edge
-moralized edge

channel
embedding

covariance LogEig

dense +
softmax

Figure 1: Neural network architecture: An input of arbitrarily shape (M,d) is provided, which
is then embedded into C channels. Attention between attributes and attention between datapoints
are applied alternately. Covariance matrices are calculated, followed by alternating applications of
bilinear attention and the custom activation function in the Riemannian manifold of SPD matrices.
The matrices are then transformed back into Euclidean space using the Log-Eig layer. Output
probabilities for each pair of variables being in the classes "no edge", "skeleton edge", and "moralized
edge" are calculated using dense layers and applying a softmax layer on the channel axis.

2

128848https://doi.org/10.52202/079017-4093

2 Method

2.1 Supervised approach for learning graph structures

In supervised graph learning, simulated training data is generated in the form of input/label pairs
(X,G). Each pair consists of an observational data matrix X ∈ RM×d, where M denotes the
number of samples and d represents the number of attributes, and its corresponding graph structure
G = (V,E). The graph G is defined by a set of nodes V = {v1, . . . , vd} and a set of edges
E ⊆ V × V . Alternatively, graphs can be represented as adjacency matrices A ∈ {0, 1}d×d, where
Aij = 1 if an edge exists between nodes vi and vj , and Aij = 0 otherwise. The process begins
by creating a random graph, followed by generating obserational data matrices using a structural
equation model (SEM) Xv = fv(XpaG(v), ϵv), where fv is a measurable coupling function of parent
nodes pa(G) and zero-mean error ϵv . The random coupling in the SEM is designed to approximate a
broad class of functions, enabling the model to perform classification of the presence or absence of
causal relationships, irrespective of their specific functional forms. A neural network then learns the
relationship between the graph and the generated data matrix as a mapping X 7→ G, enabling the
inference of graph structures from observational data. The supervised causal learning procedure is
shown in Figure 2.

Figure 2: Overview of our supervised graph learning approach. We generate synthetic training data
by first creating random ground truth graphs. Then, observational data matrices are generated using
SEMs with randomly parameterized polynomials. Employing our novel neural network architecture,
we learn the mapping X 7→ G from observational data matrices to the corresponding graph structures.

2.2 Generation of training data

For training data generation, we utilize Erdős–Rényi (ER) graphs, denoted as ER(d, q), where
the number of nodes d and the expected degree q are sampled from discrete uniform distributions
d ∼ U({d, . . . , d}) and q ∼ U([q, q]), respectively. The shape-invariant design of our model enables
it to train without restriction to a fixed (d, q) pair, which proves advantageous when the graph density
is unknown. For each graph Gi, we generate a data matrix Xi ∈ RM×d using an SEM, where the
sample size M is drawn from a discrete uniform distribution, M ∼ U({M, . . . ,M}). Although ER
graphs are used for training, we demonstrate that our approach maintains its performance when tested
on graphs generated using different random graph models, as detailed in Appendix G.6.

As coupling functions in the SEM, we employ random multivariate Chebyshev polynomial functions
to generate diverse continuous training data. Chebyshev polynomials effectively approximate real-
world functions, showing factorial decay in their coefficients given that higher order derivatives are
bounded [63], i.e., for the n-th coefficient cn it holds |cn| ≤ C

n! for a constant C, making higher-
degree terms negligible, such that all such smooth functions can be efficiently approximated with a

3

128849 https://doi.org/10.52202/079017-4093

low polynomial degree Chebyshev polynomial. This choice of parameterization avoids unnatural,
non-smooth coupling functions where a higher-order derivative is much larger than a lower-order one,
and where there is a hard cutoff in the approximated order of the derivative. Chebyshev polynomials
have been widely used in various applications due to their excellent approximation properties and
computational efficiency [44, 53]. Scatterplots of input/output values of four example Chebyshev
polynomials are shown on the left side of Figure 2. The error terms ϵv in the SEM are modeled using
Gaussian mixture models, which provide a flexible and expressive framework for capturing a diverse
range of error distributions [55]. Details about the parameterization of the SEM can be found in
Appendix E.

2.3 Prediction task: three-class edge classification

Our neural network architecture is designed to process SPD matrices, which inherently contain
exclusively symmetrical relationship information, thus excluding non-symmetrical information
necessary for estimating edge directionality. While this configuration prevents the estimation of a
DAG or CPDAG in a single run, it enables efficient estimation of symmetrical structures such as the
graph skeleton. Additionally, it facilitates the identification of moralized edges. We differentiate
between the following edge types:

• Skeleton edges: Undirected edges found in the underlying DAG.
• Moralized edges: Not present in the DAG but emerge due to conditional dependencies

among nodes sharing a common child without a connecting edge between the parents.
• No edge: Conditionally independent variables given all other variables.

Skeleton and moralized edges are both represented as undirected edges in models that use partial
correlations or conditional independence tests, in which the conditioning set includes all other
variables, to estimate the moral graph, as e.g., in [17, 59].

Using the assumption of faithfulness and the Markov condition enable us to identify the Markov
equivalence class [61] and thus uniquely solve the three-class classification problem. Appendix C
provides an explicit proof outlining the conditional independence relations that lead to a unique
solution.

The prediction targets are an extension of the binary adjacency matrix A ∈ {0, 1}d×d to a set of
one-hot encoded adjacency matrices, denoted as Ã ∈ {0, 1}d×d×3. Here, for each i, j, the vector
Ãi,j,· ∈ {0, 1}3 represents a one-hot encoded classification among the three classes: skeleton edge,
moralized edge, and no edge.

2.4 Neural network architecture

We use the multi-dimensional analogue of matrix multiplication: For a tensor A ∈ RI×J×K and a
matrix B ∈ RK×L we denote

AB = C ∈ RI×J×L with Cijl =
∑
k

AijkBkl. (1)

The network architecture is depicted in Figure 1. In the following, we introduce the individual layers.

Channel embedding. We perform an embedding of the input X ∈ RM×d to obtain a hidden
representation with C channels. For this, one axis for X is extended to X̃ ∈ RM×d×1 and then
trainable weights W 1 ∈ R1×C , W 2 ∈ RC×C are used to obtain

H = X̃ + relu
(
X̃W 1

)
W 2 ∈ RM×d×C ,

where broadcasting is used for the addition.

A shape- and permutation-invariant neural network is achieved by employing C × C̃ weight matrices
in conjunction with attention mechanisms for fixed channel dimensions C and C̃ of the current and
the next layer. This enables information flow among elements both within each matrix and across the
C matrices, analogous to sequence models like the Transformer [65], where a sequence of length l is
embedded into an l × C matrix and processed via self-attention with C × C̃ trainable weights.

4

128850https://doi.org/10.52202/079017-4093

Observational data self-attention. Self-attention for C observational M × d data matrices, stored
in a tensor X ∈ RM×d×C , proposed by Kossen et al. [34], is based on axial attention [26, 67] and
commonly used for processing observational data [4, 31, 42]. The attention-between-attributes layer
(Figure 3, left) computes M attention matrices A of shape d × d, allowing attributes to attend to
each other in parallel for each sample. The attention-between-samples layer interchanges M and d,
resulting in d attention matrices of shape M ×M , enabling samples to attend to each other. These
layers capture information flow along both axes of the observational data matrices. A mathematical
description is provided in Appendix B.1.

(d, d, C)

WK
(C, C)

K
(d, d, C)

WQ
(C, C)

Q
(d, d, C)

A
(d, d, C)

H
(d, d, C)

X
(M, d, C)

WK
(C, c)

K
(M, d, c)

Q
(M, d, c)

V
(M, d, C)

A
(M, d, d)

H
(M, d, C)

WQ
(C, c)

WV
(C, C)

<latexit sha1_base64="71AHAgO1FIX8u+TZtu7BSfU29K4=">AAAB/HicbVA7T8MwGHTKq5RXoCOLRYXEVCWI11jBwlgEfUhNVDmO01p17Mh2kKKo/BUWBhBi5Yew8W9w2gzQcpLl0933yecLEkaVdpxvq7Kyura+Ud2sbW3v7O7Z+wddJVKJSQcLJmQ/QIowyklHU81IP5EExQEjvWByU/i9RyIVFfxBZwnxYzTiNKIYaSMN7boXCBaqLDZX7t3TUYymQ7vhNJ0Z4DJxS9IAJdpD+8sLBU5jwjVmSKmB6yTaz5HUFDMyrXmpIgnCEzQiA0M5iony81n4KTw2SggjIc3hGs7U3xs5ilWRz0zGSI/VoleI/3mDVEdXfk55kmrC8fyhKGVQC1g0AUMqCdYsMwRhSU1WiMdIIqxNXzVTgrv45WXSPW26F83zu7NG67qsowoOwRE4AS64BC1wC9qgAzDIwDN4BW/Wk/VivVsf89GKVe7UwR9Ynz9vgJVL</latexit>

⌃

Figure 3: Left: Observational data self-attention layer across attributes. Gray denotes non-trainable
tensors, and red represents trainable weights. Matrix multiplication is performed after necessary
transposition to match axis dimensions. Right: Bilinear self-attention layer. The double arrow
signifies the use of the matrix as a bilinear operator.

Transition to SPD space via covariance calculation. Let a transformed data matrix X ∈
RM×d×C be given. To obtain explicit dependency information, we calculate channelwise covariance
matrices, i.e.:

Σ =
1

M − 1

(
(X − µX)

T (3,2,1) ⊙ (X − µX)
T (3,1,2)

)T (2,3,1)

∈ Rd×d×C ,

where we define for tensors A ∈ RI×J×K , B ∈ RI×K×L the I-parallel matrix multiplication
A ⊙B := (Ai,·,·Bi,·,·)i=1,...,I ∈ RI×J×L, and µX = 1

M 1T
MX ∈ R1×d×C is a tensor of sample

means. We denote by Sd×d
⪰ the cone of d× d symmetric positive semi-definite (SPD) matrices, and

by Sd×d×C
⪰ = Sd×d

⪰ × · · · × Sd×d
⪰ the C-ary Cartesian power of Sd×d

⪰ . It holds Σ ∈ Sd×d×C
⪰ .

The transpose notation T (i,j,k) permutes the dimensions of a tensor according to the specified
order (i, j, k), following the commonly used notation in deep learning [1]. For example, AT (2,3,1)

rearranges the dimensions of A such that the second dimension becomes the first, the third becomes
the second, and the first becomes the third.

Introducing the bilinear attention mechanism. To effectively process dependency information
stored in the covariance matrices, which is crucial for causal discovery, we propose a novel bilinear
attention mechanism. Inspired by the success of SPD networks in image processing, our bilinear
attention layer is designed to be shape-invariant and permutation-invariant. In contrast to existing
SPD architectures [28, 68] that typically parameterize weights W ∈ Rd×dout to be applied as
WTΣW ∈ Sd×d

⪰ to a matrix Σ ∈ Sd×d
⪰ , we parameterize weights W ∈ RC×C to act as linear

combinations ΣW ∈ Sd×d×C
⪰ on a set of covariance matrices Σ ∈ Sd×d×C

⪰ . We employ an attention
mechanism to generate attention matrices A ∈ Rd×d×C , serving as adaptable d× d weights on each
d× d matrix of Σ ∈ Rd×d×C . Our bilinear attention mechansim is shown in (Figure 3, right).

The Riemannian manifold of SPD matrices has nonpositive sectional curvature, and its geometric
properties are not preserved under Euclidean operations [9], leading to issues when using traditional
neural networks [46]. Specialized architectures respecting the SPD manifold’s geometry are necessary.
Bilinear1 matrix multiplication Σ → W TΣW , analogous to a dense layer in Euclidean space,
preserves the space of SPD matrices Sd×d

⪰ and serves as a primary tool for SPD layers [68].

1The mapping A 7→ AΣAT is quadratic and hence nonlinear in A. It is often referred to as bilinear as it is
a special case of the mapping (A,B) 7→ AΣBT .

5

128851 https://doi.org/10.52202/079017-4093

For an input Σ ∈ Sd×d×C
⪰ , we obtain keys K = ΣWK ∈ Sd×d×C

⪰ and queries Q = ΣWQ ∈
Sd×d×C
⪰ , using non-negativity constraints on the weights WK ,WQ ∈ RC×C

+ .

Keys and queries are now combined in a bilinear fashion, parallel over the C channels by calculating

K ⊗Q :=
(
K·,·,cQ·,·,cK·,·,c

)
c=1,...,C

∈ Sd×d×C
⪰ , (2)

resulting in a tensor of C SPD matrices.

We replace the softmax function for traditional attention with a custom softmax function σ̃ to preserve
positive definiteness, i.e.,

σ̃ : Sd×d
⪰ → Sd×d

⪰ σ̃(S) :=
√

Λ(S) exp[S]
√

Λ(S) where Λ(S) := diag

(
1

exp[S]1d

)
, (3)

where exp[·] denotes the elementwise application of the exponential function, 1d is a vector of length
d with all entries being 1, and diag transforms a vector of length d into a d× d diagonal matrix. The
quotient and root are also taken elementwise.

Using the definition of the bilinear parallel tensor product in 2,we obtain the attention matrix A by
applying σ̃ channelwise, i.e.,

A :=
(
σ̃((K ⊗Q)·,·,c)

)
c=1,...,C

∈ Sd×d×C
⪰ ,

and we obtain the output of the bilinear layer as

H = A⊗Σ ∈ Sd×d×C
⪰ .

The elementwise exponential function preserves positive definiteness because SPD matrices are
closed under addition and the Hadamard product [9], and exp[S] =

∑∞
n=0

1
n! [S]

n, with elementwise
exponentiation [·]n. Theorems regarding the eigenvalue regularization and stability properties of our
modified softmax function σ̃ can be found in Appendix A.

Log-Eig layer and output softmax. Data representation transitions from the SPD space to Eu-
clidean space through the Log-Eig layer, as proposed by [28]. This transformation, given an input
matrix S = UDUT via eigendecomposition can be expressed as

l : Sd×d
⪰ → Rd×d, l(S) := log(S) := U log(D)UT .

The final layer, equipped with a softmax activation function, consists of C = 3 output units for
generating the probabilities.

Interpretation. In standard attention, the (i, j)-th entry of the attention matrix A directly represents
a scalar influence of element i on element j. In our bilinear attention framework, however, interdepen-
dencies emerge. Specifically, for an output pair (i, j), the corresponding output value is given by the
bilinear form

∑
k,l Ai,k Sk,l Al,j . Hence, the influence on the (i, j)-th entry depends not only on Ai,j

but on the entire i-th row and j-th column of A. This produces a cross-shaped attention pattern within
A and allows columns of S to attend to each other, capturing more complex interactions. The learned
SPD representations can be interpreted as end-to-end learned kernel matrices encoding different kinds
of dependencies across multiple channels. A detailed discussion of the intuition behind our bilinear
attention mechanism is provided in Appendix I.

Implementation details. Additional details regarding the activation function, residual connections
and normalization, the use of multiple heads in attention layers and the initialization of the C × C
weights in the BAM layers are provided in Appendices B.2, B.3, B.4, B.5, respectively.

CPDAG estimation from the graph skeleton and the set of moralized edges. To derive the
CPDAG from the graph skeleton and identified immoralities, we train a second neural network to
infer v-structures from two parent nodes together with potential common child nodes that have edges
to both parents, as well as other neighbor nodes related to these parents. We iterate over all inferred
immoralities, treating the two nodes involved in each immorality as parent nodes. By applying distinct
layers to the data corresponding to the parent nodes, potential common children, and neighbors,
we can break the symmetry among nodes and enable role-specific learning, thus facilitating edge
directionality inference. The resulting CPDAG is further refined using Meek rules [45]. Details about
the CPDAG estimation step can be found in Appendix D.

6

128852https://doi.org/10.52202/079017-4093

3 Related Work

Causal discovery primarily relies on unsupervised learning methods, including constraint-based
approaches that infer conditional independencies [61, 16] and score-based methods that optimize
a score function under acyclicity constraints [13, 71]. Some studies have estimated relations from
multi-sequence alignment (MSA) data matrices, such as Rao et al. [54] using axial attention [26] and
Li et al. [37] employing a convolutional neural network on precision matrices. However, these models
are designed for the specific conditions of the MSA prediction task and its fixed data dimension of 20
naturally-occurring residue types.

Our work closely aligns with Ke et al. [31] and Lorch et al. [42], which also use attention mechanisms
between samples and attributes to estimate adjacency matrices. The methodologies differ in their
strategies for deriving an adjacency matrix from observational data representations. [31] employ
an autoregressive transformer approach, whereas [42] utilize the dot product of embedding vectors
derived from max-pooling across the sample axis of the observational data matrices. We demonstrate
that deriving output adjacency matrices can be efficiently achieved through covariance matrices,
allowing for direct processing of dependency information and enhanced learning efficiency through
geometric learning on the SPD manifold.

Unlike [31], our model can be trained across different shapes of sample and attribute numbers,
eliminating the need for re-training on different datasets. While [42]’s model can evaluate data
with varying dimensions, their implementation has practical limitations in training across variable
sample sizes, and it is restricted to handling a limited range of dimensions for training. Our model
addresses identifiability challenges by first estimating an undirected graph, then proceeding to CPDAG
estimation by testing immoralities and using Meek’s rules. In contrast, [31] and [42] deduce a DAG
using both observational and interventional data such that these models dependent on the availability
of interventional data or making random guesses for edges that cannot be directly inferred.

Closely related to our approach, Li et al. [36] used permutation-invariant models for supervised
causal inference, but their method directly computes correlation matrices without learning a high-
dimensional representation of the observational data, which may limit its efficacy when covariance
matrices are not sufficient. Despite preserving invariances, the small number of 5 free parameters per
layer could restrict its representational power.

[39, 40] proposed a supervised learning framework using kernel mean embeddings. [43] address
identifiability with independence tests and cascade classifiers trained on vicinal graphs specific to
observational data. Our method adopts a more general approach, training a network that does not
require re-training for new evaluation samples. [15]’s work on immoralities aligns with our second
CPDAG estimation step.

4 Experiments

Training data hyperparameter settings. The hyperparameters for sampling training data, which
are defined in section 2.2, are set to d = 10, d = 100, q = 1, q = min(d3 , 5), M = 50, and
M = 1000. This configuration allows for denser graphs than those explored in other studies
[15, 31, 71].

Baseline algorithms. We evaluate BAM’s performance against other algorithms: PC [61], PC-
HSIC [73], rcot and rcit [62], ccdr [3], GES [13], GIES [23], LiNGAM [60], MMPC [64], CAM [11],
SAM [30], all implemented in the causal discovery toolbox [29], GLASSO [17], as implemented
by [50], along with DAG-GNN [71]. Default hyperparameters as in [29] are used. For GLASSO,
cross-validation for the sparsity parameter is performed as proposed by [50]. As a supervised causal
discovery baseline, we use the AVICI model [42], both a pre-trained version (SCM-v0) and a version
trained from scratch on the same Chebyshev data as our method, using default hyperparameters and
data dimensions d ∈ {2, 5, 10, 20, 30, 40, 60, 80, 100}. For the number of samples M , which can
only be chosen as a single hyperparameter value for AVICI [42] due to memory allocation constraints,
we selected M = 150. GLASSO and MMPC are excluded from CPDAG estimation as they focus on
undirected graphs. For algorithms estimating directed edges, the skeleton is computed for undirected
prediction. We also compare SHD and accuracy results against a naive zero graph without edges.

7

128853 https://doi.org/10.52202/079017-4093

Figure 4: Undirected graph estimation results arranged from worst (left) to best (right) performance.
(A, B) AUC values for different dependencies, with (A) d = 50, M = 200, and (B) d = 100,
M = 50. (C) Accuracy for the same dependencies as in (B). (D, E) AUC vs. M for d = 100 with (D)
Chebyshev and (E) cosine dependencies. (F) SHD vs. M for d = 100 with Chebyshev dependency.

Figure 5: CPDAG estimation results arranged from worst (left) to best (right) performance. (A-C)
SHD for different dependencies, with (A) d = 20, M = 200, (B) d = 50, M = 200, and (C)
d = 100, M = 500. (D) AUC vs. M for d = 100 with Chebyshev dependency. (E, F) SHD vs. M
for d = 100 with (E) Chebyshev and (F) sine dependencies.

Performance indicators. We assess the performance of both undirected and CPDAG graph estima-
tions using the Area Under the Precision-Recall Curve (AUC), which is well-suited for imbalanced
binary classification tasks like sparse graph detection [24]. For CPDAG estimations, we also employ
the Structural Hamming Distance (SHD), a standard metric in structure learning [71, 31]. In the
undirected graph estimation task, SHD is equivalent to accuracy, defined as the percentage of correctly
inferred edges, which we also report. Additional Structural Intervention Distance (SID) [52] results
for CPDAG estimation are provided in Appendix G.5.

Graph estimation results. Figure 4 showcases BAM’s efficacy in undirected graph prediction.
Trained on synthetic Chebyshev polynomial data, BAM consistently outperforms other methods

8

128854https://doi.org/10.52202/079017-4093

Figure 6: Heatmaps of mean AUC values with standard deviations across graph distributions and
dependency functions for expected degrees 2, 3, and 4 obtained from 10 independent simulation
runs. Graph distributions include Erdős-Rényi (ER), Watts-Strogatz (WS) [69], Exponential Random
Graph Model (ERGM) [56], configuration models with both homogeneous (Conf) and heterogeneous
(Conf2) degree distributions [47], and geometric random graphs (Geom) [51].

across various dependency relations, dimensions, and sample sizes (Figure 4 (A - C)). It excels
in capturing intricate non-monotonic dependencies (Figure 4 (A, B, E) and demonstrates superior
performance over Avici on the training set (Figure 4 (D, F)).

Figure 5 displays the results for CPDAG estimation tasks. In high-dimensional scenarios (d = 100,
M = 50), no algorithm surpassed the baseline of a zero-graph in SHD, as shown in Appendix G.4.
Therefore, our SHD analysis focuses on the low-dimensional setting shown in (A) and two moderate-
dimensional (M > d) settings in (B) and in in (C) across various dependencies. Across these
scenarios, the two-step method of our algorithm remains competitive, though its advantage is less
pronounced than in the task of undirected graph estimation. Panels (D) and (E) depict the AUC and
SHD across varying M values for the training datasets of BAM and the re-trained Avici, illustrating
BAM’s competitive performance in learning CPDAG-structure. Specifically, panel (E) presents
SHD values for sine dependency across different M values for d = 100, further demonstrating the
robustness of BAM in non-linear settings. Additional evaluation results for more complex multivariate
dependencies using random Fourier features and MLPs are provided in Appendix G.3 and Figure
9, respectively. Additional SID results for CPDAG estimation in Appendix G.5 demonstrate that
our method achieves the highest performance for the best DAG of the estimated equivalence class.
Compared to competing algorithms, it infers fewer edge orientations.

Table 1: Ablation study results featuring loss values.
Data generated under Chebyshev dependencies.
"−" indicates the removal of a corresponding layer.
∆Param quantifies the difference in the number of
parameters to the full model.

model loss ↓ ∆Param

FULL 0.173± 0.007
−BAM 0.202± 0.005 80 K
−BAM −LogEig 0.271± 0.012 100 K
−obs. att. 0.189± 0.006 120 K
−obs. att. −Dense 0.205± 0.006 160 K

Graph distribution robustness. To demon-
strate that our architecture generalizes beyond
the Erdős-Rényi graphs it was trained on, we
evaluate its performance on graphs generated
using various random graph models. Our re-
sults, shown in Figure 6, demonstrate consis-
tent performance across all graph distributions,
suggesting that our method is robust to vari-
ations in underlying graph structure. Details
about the configuration of the distributions can
be found in Appendix G.6.

Ablation study. Table 1 presents our abla-
tion study results, underscoring the crucial
role of the bilinear layer, whose removal sig-
nificantly increases loss metrics. Omitting the
LogEig layer leads to a substantial deteriora-
tion in loss, indicating that direct predictions from the SPD-space are problematic. Notably, bilinear
data processing alone yields relatively good results, possibly due to the embedding layer’s ability to

9

128855 https://doi.org/10.52202/079017-4093

decode non-linearities in the data, which are lost when solely relying on covariance matrices. Further
details are provided in Appendix F.2.

Effectiveness of novel two-step approach for CPDAG estimation. To validate our approach of
identifying immoralities through the first network step, we ran additional experiments where we
maintained the undirected edge estimation network but modified the second step. Specifically, we
first obtained an undirected graph as the union of skeleton and moralized edges, then trained another
neural network with identical hyperparameters to test each possible immorality in this graph, not just
those identified by our first network. Table 2 shows that our selective testing strategy consistently out-
performs this exhaustive approach across different settings, particularly for Chebyshev dependencies
used in training. This suggests that conditional dependencies are more accurately identified when
leveraging information from the entire graph structure, rather than examining estimated local Markov
blankets independently.

Table 2: CPDAG estimation performance (AUC scores) with M = 200 samples. The baseline (’All
Moralizations’, AM) tests all possible moralizations, while BAM only tests those identified by the
first network. Mean ± standard deviation over 10 runs.

Dependency Function Model d = 10 d = 20 d = 50 d = 100

Chebyshev BAM 0.79± 0.09 0.85± 0.05 0.78± 0.05 0.76± 0.03
AM 0.73± 0.03 0.69± 0.02 0.71± 0.02 0.70± 0.01

Linear BAM 0.71± 0.06 0.72± 0.02 0.69± 0.06 0.70± 0.02
AM 0.67± 0.03 0.63± 0.06 0.63± 0.04 0.68± 0.03

sin BAM 0.69± 0.16 0.68± 0.09 0.62± 0.07 0.66± 0.04
AM 0.63± 0.08 0.62± 0.07 0.60± 0.06 0.64± 0.04

cos BAM 0.71± 0.04 0.74± 0.05 0.65± 0.11 0.59± 0.04
AM 0.67± 0.07 0.64± 0.05 0.62± 0.07 0.59± 0.05

x2 BAM 0.77± 0.05 0.77± 0.09 0.71± 0.08 0.63± 0.11
AM 0.68± 0.06 0.64± 0.05 0.64± 0.05 0.61± 0.05

x3 BAM 0.56± 0.03 0.55± 0.17 0.54± 0.09 0.59± 0.06
AM 0.58± 0.05 0.50± 0.10 0.56± 0.09 0.57± 0.05

Efficiency. Training our neural network takes approximately 6 hours on an A-100 GPU with
81,920 MiB of graphical memory, while inference typically requires less than a few seconds and
can be run on a normal computer. The overall memory complexity of our proposed method is
O(CMd + Cd2 + Md2 + M2d + C2). The runtime complexity of our approach is O(C2Md +
CMd2 + CM2d + C2d2 + Cd3). We present a detailed breakdown of the single components in
Appendix H. Empirical evaluations show that our model achieves significantly lower computational
times compared to most unsupervised approaches, as shown in Appendix G.7.

5 Conclusion

In this study, we introduced a novel neural network model for supervised graph structure learning
that addresses identifiability issues in observational data through a two-step approach. Our approach
extends the classical GLASSO paradigm to the neural network era by incorporating a novel bilinear
attention mechanism operating in both Euclidean and SPD spaces, effectively learning shape-invariant
transformations directly from data rather than relying on pre-derived mathematical operations. The
trained model effectively detects causal relationships and generalizes well across different functional
forms of nonlinear dependencies, while requiring only a single forward pass for inference. Compre-
hensive empirical evaluations demonstrate that our approach consistently outperforms state-of-the-art
methods across diverse scenarios. Future directions include extending our approach to handle more
complex settings and investigating its performance under various noise and confounding conditions,
as well as scaling through local attention mechanisms. Limitations and future directions are further
discussed in Appendix J.

10

128856https://doi.org/10.52202/079017-4093

Acknowledgments and funding disclosure

This project (HA project no.: 1304/22-09) is funded by the State of Hesse and the HOLM funding
programme as part of the ’Innovations in the field of logistics and mobility’ initiative of the Hessian
Ministry of Economics, Energy, Transport and Housing. Additional funding was provided by the
Federal Ministry of Education and Research (BMBF, project KI4ELM - 01IS24022C) and the
European Union’s Horizon 2020 programme iPC (individualizedPaediatricCure) project under grant
agreement No. 826121.

The computational work was supported by the High-Performance Computing facility Lichtenberg at
the NHR Centers NHR4CES at TU Darmstadt.

Competing interests: The authors declare no competing interests.

11

128857 https://doi.org/10.52202/079017-4093

References
[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,

Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, et al. TensorFlow: Large-scale
machine learning on heterogeneous systems, 2015. URL https://www.tensorflow.org/.
Software available from tensorflow.org.

[2] Andrea Apicella, Francesco Donnarumma, Francesco Isgrò, and Roberto Prevete. A survey on
modern trainable activation functions. Neural Networks, 138:14–32, 2021.

[3] Bryon Aragam and Qing Zhou. Concave penalized estimation of sparse Gaussian Bayesian
networks. JMLR, 16(1):2273–2328, 2015.

[4] Sercan Ö. Arik and Tomas Pfister. TabNet: Attentive interpretable tabular learning. In AAAI,
volume 35, 2021.

[5] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization.
arXiv:1607.06450, 2016.

[6] Thomas Bachlechner, Bodhisattwa Prasad Majumder, Henry Mao, Gary Cottrell, and Julian
McAuley. ReZero is all you need: Fast convergence at large depth. In UAI, 2021.

[7] Onureena Banerjee, Laurent El Ghaoui, and Alexandre d’Aspremont. Model selection through
sparse maximum likelihood estimation for multivariate Gaussian or binary data. JMLR, 9:
485–516, 2008.

[8] Wolfram Barfuss, Guido Previde Massara, Tiziana Di Matteo, and Tomaso Aste. Parsimonious
modeling with information filtering networks. Physical Review E, 94, 2016.

[9] Rajendra Bhatia. Positive definite matrices. In Positive Definite Matrices. Princeton University
Press, 2009.

[10] Peter Bühlmann, Markus Kalisch, and Lukas Meier. High-dimensional statistics with a view
toward applications in biology. Annual Review of Statistics and Its Application, 1(1):255–278,
2014.

[11] Peter Bühlmann, Jonas Peters, and Jan Ernest. CAM: Causal additive models, high-dimensional
order search and penalized regression. The Annals of Statistics, 2014.

[12] David M. Chickering. Learning equivalence classes of Bayesian-network structures. JMLR, 2:
445–498, 2002.

[13] David M. Chickering. Optimal structure identification with greedy search. JMLR, 3:507–554,
2002.

[14] Hoon Chung, Sung Joo Lee, and Jeon Gue Park. Deep neural network using trainable activation
functions. In IJCNN, 2016.

[15] Haoyue Dai, Rui Ding, Yuanyuan Jiang, Shi Han, and Dongmei Zhang. ML4C: Seeing causality
through latent vicinity. In Proceedings of the 2023 SIAM International Conference on Data
Mining (SDM), 2023.

[16] Mathias Drton and Marloes H. Maathuis. Structure learning in graphical modeling. Annual
Review of Statistics and Its Application, 4(1):365–393, 2017.

[17] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Sparse inverse covariance estimation
with the graphical lasso. Biostatistics, 9(3):432–441, 2008.

[18] Tobias Gerstenberg, Noah D. Goodman, David A. Lagnado, and Joshua B. Tenenbaum. A
counterfactual simulation model of causal judgments for physical events. Psychological Review,
128(5):936, 2021.

[19] Clark N. Glymour, Kun Zhang, and Peter Spirtes. Review of causal discovery methods based
on graphical models. Frontiers in Genetics, 10:524, 2019.

12

128858https://doi.org/10.52202/079017-4093

https://www.tensorflow.org/

[20] Gene H. Golub and Charles F. Van Loan. Matrix computations. JHU press, 2013.

[21] Dominique Guillot and Bala Rajaratnam. Functions preserving positive definiteness for sparse
matrices. Transactions of the American Mathematical Society, 367(1):627–649, 2015.

[22] Aric Hagberg, Pieter Swart, and Daniel S. Chult. Exploring network structure, dynamics, and
function using NetworkX. Technical report, Los Alamos National Lab.(LANL), Los Alamos,
NM (United States), 2008.

[23] Alain Hauser and Peter Bühlmann. Characterization and greedy learning of interventional
Markov equivalence classes of directed acyclic graphs. JMLR, 13(1):2409–2464, 2012.

[24] Haibo He and Edwardo A. Garcia. Learning from imbalanced data. IEEE Transactions on
Knowledge and Data Engineering, 21(9):1263–1284, 2009.

[25] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In CVPR, 2016.

[26] Jonathan Ho, Nal Kalchbrenner, Dirk Weissenborn, and Tim Salimans. Axial attention in
multidimensional transformers. arXiv:1912.12180, 2019.

[27] Kurt Hornik. Approximation capabilities of multilayer feedforward networks. Neural networks,
4(2):251–257, 1991.

[28] Zhiwu Huang and Luc Van Gool. A Riemannian network for SPD matrix learning. In AAAI,
2017.

[29] Diviyan Kalainathan, Olivier Goudet, and Ritik Dutta. Causal discovery toolbox: Uncovering
causal relationships in Python. JMLR, 21(1):1406–1410, 2020.

[30] Diviyan Kalainathan, Olivier Goudet, Isabelle Guyon, David Lopez-Paz, and Michèle Sebag.
Structural agnostic modeling: Adversarial learning of causal graphs. JMLR, 23(219):1–62,
2022.

[31] Nan Rosemary Ke, Silvia Chiappa, Jane X. Wang, Jorg Bornschein, Anirudh Goyal, Melanie
Rey, Theophane Weber, Matthew Botvinick, Michael Curtis Mozer, and Danilo Jimenez
Rezende. Learning to induce causal structure. In ICML: Workshop on Spurious Correla-
tions, Invariance and Stability, 2022.

[32] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR,
2015.

[33] Daphne Koller and Nir Friedman. Probabilistic graphical models: Principles and techniques .
MIT press, 2009.

[34] Jannik Kossen, Neil Band, Clare Lyle, Aidan N. Gomez, Thomas Rainforth, and Yarin Gal.
Self-Attention between datapoints: Going beyond individual input-output pairs in deep learning.
In NeurIPS, 2021.

[35] Steffen L. Lauritzen and David J. Spiegelhalter. Local computations with probabilities on
graphical structures and their application to expert systems. Journal of the Royal Statistical
Society: Series B (Methodological), 50(2):157–194, 1988.

[36] Hebi Li, Qi Xiao, and Jin Tian. Supervised whole DAG causal discovery. arXiv:2006.04697,
2020.

[37] Yang Li, Jun Hu, Chengxin Zhang, Dong-Jun Yu, and Yang Zhang. ResPRE: high-accuracy
protein contact prediction by coupling precision matrix with deep residual neural networks.
Bioinformatics, 35(22):4647–4655, 2019.

[38] Min Lin, Qiang Chen, and Shuicheng Yan. Network in network. arXiv preprint arXiv:1312.4400,
2013.

[39] David Lopez-Paz, Krikamol Muandet, and Benjamin Recht. The randomized causation coeffi-
cient. JMLR, 16:2901–2907, 2015.

13

128859 https://doi.org/10.52202/079017-4093

[40] David Lopez-Paz, Krikamol Muandet, Bernhard Schölkopf, and Iliya Tolstikhin. Towards a
learning theory of cause-effect inference. In ICML, 2015.

[41] David Lopez-Paz, Robert Nishihara, Soumith Chintala, Bernhard Schölkopf, and Leon Bottou.
Discovering causal signals in images. In CVPR, 2017.

[42] Lars Lorch, Scott Sussex, Jonas Rothfuss, Andreas Krause, and Bernhard Schölkopf. Amortized
inference for causal structure learning. In NeurIPS, volume 35, 2022.

[43] Pingchuan Ma, Rui Ding, Haoyue Dai, Yuanyuan Jiang, Shuai Wang, Shi Han, and Dongmei
Zhang. ML4S: Learning causal skeleton from vicinal graphs. In SIGKDD, 2022.

[44] John C. Mason and David C. Handscomb. Chebyshev polynomials. Chapman and Hall/CRC,
2002.

[45] Christopher Meek. Causal inference and causal explanation with background knowledge. In
UAI, 1995.

[46] Maher Moakher and Mourad Zéraï. The Riemannian geometry of the space of positive-definite
matrices and its application to the regularization of positive-definite matrix-valued data. Journal
of Mathematical Imaging and Vision, 40(2):171–187, 2011.

[47] Michael Molloy and Bruce Reed. A critical point for random graphs with a given degree
sequence. Random structures & algorithms, 6(2-3):161–180, 1995.

[48] Peer Nowack, Jakob Runge, Veronika Eyring, and Joanna D. Haigh. Causal networks for
climate model evaluation and constrained projections. Nature communications, 11(1):1415,
2020.

[49] Judea Pearl. Probabilistic reasoning in intelligent systems: Networks of plausible inference.
Elsevier, 2014.

[50] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion,
Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al. Scikit-
learn: Machine learning in Python. JMLR, 12(85):2825–2830, 2011.

[51] Mathew Penrose. Random geometric graphs, volume 5. OUP Oxford, 2003.

[52] Jonas Peters and Peter Bühlmann. Structural intervention distance for evaluating causal graphs.
Neural computation, 27(3):771–799, 2015.

[53] William H. Press. Numerical recipes 3rd edition: The art of scientific computing. Cambridge
university press, 2007.

[54] Roshan M. Rao, Jason Liu, Robert Verkuil, Joshua Meier, John Canny, Pieter Abbeel, Tom
Sercu, and Alexander Rives. MSA transformer. In ICML, volume 139, 2021.

[55] Douglas A. Reynolds. Gaussian mixture models. Encyclopedia of biometrics, 741(659-663),
2009.

[56] Garry Robins, Pip Pattison, Yuval Kalish, and Dean Lusher. An introduction to exponential
random graph (p*) models for social networks. Social networks, 29(2):173–191, 2007.

[57] Isaac J. Schoenberg. Positive definite functions on spheres. Duke Mathematical Journal, 9:
96–108, 1942. MR0005922 (3,232c).

[58] Rajen D. Shah and Jonas Peters. The hardness of conditional independence testing and the
generalised covariance measure. The Annals of Statistics, 48(3), 2020.

[59] Gal Shalom, Eran Treister, and Irad Yavneh. pISTA: Preconditioned iterative soft thresholding
algorithm for graphical lasso. arXiv:2205.10027, 2022.

[60] Shohei Shimizu, Patrik O. Hoyer, Aapo Hyvärinen, Antti Kerminen, and Michael Jordan. A
linear non-Gaussian acyclic model for causal discovery. JMLR, 7(10), 2006.

14

128860https://doi.org/10.52202/079017-4093

[61] Peter Spirtes, Clark N. Glymour, Richard Scheines, and David Heckerman. Causation, predic-
tion, and search. MIT Press, 2000.

[62] Eric V. Strobl, Kun Zhang, and Shyam Visweswaran. Approximate kernel-based conditional
independence tests for fast non-parametric causal discovery. Journal of Causal Inference, 7(1):
20180017, 2019.

[63] Lloyd N. Trefethen. Is Gauss quadrature better than Clenshaw–Curtis? SIAM Review, 50(1):
67–87, 2008.

[64] Ioannis Tsamardinos, Laura E. Brown, and Constantin F. Aliferis. The max-min hill-climbing
Bayesian network structure learning algorithm. Machine learning, 65:31–78, 2006.

[65] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Ł ukasz Kaiser, and Illia Polosukhin. Attention is All you Need. In NeurIPS, volume 30, 2017.

[66] Matthew J. Vowels, Necati Cihan Camgoz, and Richard Bowden. D’Ya like DAGs? A survey
on structure learning and causal discovery. ACM Computing Surveys, 55(4):82:1–82:36, 2022.

[67] Huiyu Wang, Yukun Zhu, Bradley Green, Hartwig Adam, Alan Yuille, and Liang-Chieh Chen.
Axial-DeepLab: Stand-alone axial-attention for panoptic segmentation. In ECCV, 2020.

[68] Rui Wang, Xiao-Jun Wu, Tianyang Xu, Cong Hu, and Josef Kittler. Deep metric learning on
the SPD manifold for image set classification. IEEE Transactions on Circuits and Systems for
Video Technology, 2022.

[69] Duncan J. Watts and Steven H. Strogatz. Collective dynamics of ‘small-world’ networks. Nature,
393(6684):440–442, 1998.

[70] Sewall Wright. Correlation and causation. Journal of Agricultural Research, 20(7):557–585,
1921.

[71] Yue Yu, Jie Chen, Tian Gao, and Mo Yu. DAG-GNN: DAG structure learning with graph neural
networks. In ICML, 2019.

[72] Ming Yuan and Yi Lin. Model selection and estimation in the Gaussian graphical model.
Biometrika, 94(1):19–35, 2007.

[73] Kun Zhang, Jonas Peters, Dominik Janzing, and Bernhard Schölkopf. Kernel-based conditional
independence test and application in causal discovery. In UAI, 2011.

15

128861 https://doi.org/10.52202/079017-4093

A Properties and theorems regarding the custom softmax function

Similar to the standard softmax, our softmax for an SPD matrix returns positive values summing to d,
but unlike the standard softmax, the rows do not sum to 1. We demonstrate that our modified softmax
function σ̃ regularizes the eigenvalues:
Theorem 1. For any S ∈ Sd×d

⪰ , the largest eigenvalue of σ̃(S) is 1.

Proof. Let S̃ := exp[S]. By similarity transformation, the eigenvalues of σ̃(S) are equal to the
eigenvalues of S̃Λ(S). It holds that S̃Λ(S)S̃1 = S̃1, which demonstrates that S̃1 is the Perron
eigenvector corresponding to the eigenvalue 1. The assertion now follows from the Perron-Frobenius
theorem.

Proposition 2. The custom softmax σ̃ is invariant to additive shifting, i.e., σ̃(S + α) = σ̃(S) for
each α ∈ R, S ∈ Sd×d

⪰ .

Proposition 2 shows that σ̃, unlike standard softmax, does not need a scaling constant, and it can
easily manage exploding exp values via maximum-value scaling.

B Architectural details

B.1 Observational attention

This layer accepts an input X ∈ RM×d×C , from which it generates keys K = XWK ∈ RM×d×c,
queries Q = XWQ ∈ RM×d×c, and values V = XW V ∈ RM×d×C , with WK ,WQ ∈ RC×c,
and W V ∈ RC×C .

For each m = 1, . . . ,M , keys and queries are combined in parallel along the inner axis, leading to
K ⊙Q :=

(
Km,·,·Qm,·,·

)
m=1,...,M

∈ RM×d×d. (4)

This results in the attention weights

A = σ

(
K ⊙QT (1,3,2)

√
c

)
∈ RM×d×d,

where T (perm) denotes a permutation of the axes according to a permutation perm and σ is the
softmax operation along the last axis. For example, if perm = [1, 3, 2], the operation would rearrange
the second and third axes of the tensor while the first axis stays unchanged. Finally, for each m, the
output is computed as

H = A⊙ V ∈ RM×d×C . (5)

B.2 SPD activation function

To obtain an activation function for the SPD net, we leverage the following theorem, a direct
consequence of (Theorem 4.11 Guillot and Rajaratnam, 2015), which is based on the work of [57]:
Theorem 3. Any continuous function from C([−1, 1], [−1, 1]) acting elementwise on a matrix
preserves positive definiteness if it can be expressed as a series f : [−1, 1]→ [−1, 1] with

f(x) =

∞∑
k=1

xkwk,

subject to
∞∑
k=1

wk ≤ 1 with wk ≥ 0, ∀k ∈ N.

We employ this theorem to construct an activation function for the SPD neural network, using a
relatively small maximal polynomial degree value of Nmax = 3. This function employs trainable
weights wk and is applied after ’correlation normalization’, i.e., the conversion of covariance matrices
into correlation matrices. Trainable activation functions using low-degree Taylor polynomials were
also proposed in [14] for general neural networks, not focusing on SPD data. Additionally, [2]
provides various types of trainable activation functions for Euclidean neural networks.

16

128862https://doi.org/10.52202/079017-4093

B.3 Residual connections and normalization.

Normalization is critical in attention networks, with various methodologies available [25, 5]. We
adopt normalization and a residual connection [25] on the input of all attention layers, expressed as
S+Attention(LayerNorm(S)). Particularly when M < d, the residual connection can enhance the
rank of covariance matrices, so full-rank representations can be attained even for under-determined
problems. For learnable residual scaling, we utilize recently established methods [6].

Within the SPD manifold, we employ correlation normalization alongside residual connections. This
approach preserves positive definiteness and corresponds intuitively to standard normalization in
Euclidean space.

B.4 Multiple heads

In all attention layers, we employ multihead attention, a process that divides the input tensor along the
channel axis into several smaller tensors. Each of these is then subjected to attention independently.

B.5 Weight initialization

For initialization of the C × C weight matrices W+ in each bilinear attention layer, we draw initial
weights from U

(
0, 2

C

)
. Given a tensor of SPD matrices Σ ∈ Sd×d×C

⪰ , in expectation, the diagonal
entries in each of the d × d matrices in ΣW+ should stay within a comparable range, while off-
diagonal entries are expected to be drawn to zero due to the symmetric distribution of positive and
negative values, resulting in perturbed identity matrices for keys and queries.

17

128863 https://doi.org/10.52202/079017-4093

C Theoretical foundation for the three-class edge classification problem

Building upon the foundational principles of Markov and faithfulness [33], we demonstrate that the
three-class classification problem can be theoretically deduced from the distribution of the nodes by
examining the following independence relations: If there is an directed edge from node X to Y in the
DAG, then X and Y are dependent given any set from the power set of the other nodes, i.e.:

X → Y =⇒ X ⊥⊥̸ Y | C ∀C ∈ P(V \ {X,Y }).
For an immorality between X and Y , there exists a set of nodes C ∈ P(V \ {X,Y }) within the
power set of all other nodes such that X and Y are conditionally independent given this set (e.g., the
set of all common ancestors of X and Y , or the set of all parents of X or Y), but dependent given all
other nodes in the graph, i.e.:
X → Z ← Y,X ←− Y,X →− Y =⇒ ∃C ∈ P(V \ {X,Y }) : X ⊥⊥ Y | C, X ⊥⊥̸ Y | V \ {X,Y }.
If there is no edge between X and Y , and if X and Y do not have a common child, then X and Y
are conditionally independent given all other nodes, i.e.,

X ←− Y,X →− Y, ∄Z : X → Z ← Y =⇒ X ⊥⊥ Y | V \ {X,Y }.

Note that testing for the no-edge class is cost-effective, as one only needs to test for a single set,
rather than checking for any Z ∈ V \ {X,Y } if there is a v-structure X → Z ← Y . Testing for a
sepset to differentiate between the skeleton and moralized edge classes is more intricate. The neural
network is tasked with learning an approximation for this distinction.

D Details of the CPDAG estimation model

To estimate a CPDAG from the graph skeleton, along with the set of immoralities between pairs
of nodes, we test each estimated immorality to determine which potential common child nodes
are indeed common children. The parent nodes, denoted by pa, are the nodes between which an
immorality was first estimated. Potential common child nodes, denoted by cc, are nodes that have an
edge to both parent nodes. Neighbor nodes, denoted by ne, are nodes that have one edge to exactly
one parent.

We take the columns xpa ∈ RM×2,xcc ∈ RM×|cc|,xne ∈ RM×|ne| of the data matrix X corre-
sponding to pa, cc, ne as inputs for the neural network. Each of these submatrices undergoes a
dimensionality expansion to x̃pa ∈ RM×2×1, x̃cc ∈ RM×|cc|×1, x̃ne ∈ RM×|ne|×1. Next, three
separate feed-forward subnetworks lpa, lcc, lne are applied to the three inputs xpa,xcc,xne. Each of
these layers has the same architecture: For an input x̃ ∈ RM×d×1, weight matrices W 1 ∈ R1×C

and W̃ 1 ∈ RC×C , together with a bias vector b1 ∈ RC are used to embed x̃ to

h1 = tanh(x̃W 1 + b1)W̃ 1 ∈ RM×d×C

Then, two residual layers of the form

hi+1 = hi + tanh(hiW i + bi)W̃ i

with W i ∈ RC×C , W̃ i ∈ RC×C , bi ∈ RC , i = 1, 2 are applied to obtain representations hpa ∈
RM×2×C ,hcc ∈ RM×|cc|×C ,hne ∈ RM×|ne|×C . For the addition of the bias terms, broadcasting is
used, i.e.,

b ∈ RC 7→ b̃ ∈ RM×d×C with b̃m,l,c = bc m = 1, . . . ,M, l = 1 . . . , d, c = 1, . . . , C.

Now, the representations are concatenated along the dimension axis to obtain a M×(2+|cc|+|ne|)×C
tensor. We use d = 2 + |cc| + |ne|. We employ the same observation-to-dependency network as
before, but instead of using softmax on the output of the LogEig-Layer, we use mean-pooling

X 7→
(
1

d
XT (3,2,1)1d

)T

to inflate one of the variable axes of the Rd×d×C output of LogEig to obtain a Rd×C batch of C
vectors of dimension d. After applying a dense C × 1 layer, we obtain a vector of length d. Now, the
entries corresponding to the potential common children can be sliced out and backpropagated for
training.

The network architecture is shown in figure 7.

18

128864https://doi.org/10.52202/079017-4093

Figure 7: CPDAG Estimation Architecture: In the graph, black edges represent undirected connec-
tions, whereas the red edge signifies an immorality. Columns in the data matrix corresponding to
parent nodes, potential common children, and neighboring nodes are taken as input for the neural
network and are processed through three distinct feed-forward networks. The embeddings are con-
catenated along the variable axis and processed through a network with data matrix attention, bilinear
attention, and a LogEig layer. Mean pooling and sigmoid activation are applied to output probabilities
for potential common children.

19

128865 https://doi.org/10.52202/079017-4093

E Parameterization of the SEM

E.1 Chebyshev polynomials for training

For the Chebyshev polynomial, we utilize the following parameterization:

fv(xpa, ϵ1, ϵ2) =
∑

w∈paG(v)

βw

r∑
n=1

αnTn(xw) + ϵ1

+ αm

 ∑
s,t∈pa(G),s<t

δs,tTm(xs, xt) +
∑

w∈pa(G)

Tm(xw, ϵ2)

 ∀v ∈ V,

where r = 5 is the degree, and Tn denotes the Chebyshev polynomials of the first kind (scaled for
the input to have a maximum absolute value of 1), and bivariate polynomials are given by:

Tm(x, y) :=
(x− µx)(y − µy)

(1 + |µx|)(1 + |µy|)
(6)

where m in the index stands for "multidimensional".

Here, µx ∼ U [−1, 1], µy ∼ U [−1, 1], and the coefficients α1, . . . , αr, αm are calculated from

αi =
α̃i∑

n α̃n+α̃m
for i = 1, . . . , r, with α̃i =

γi

i! , γi ∼ U [−1, 1], and α̃m ∼ U [−1, 1]. βw = β̃w

|pa|

with β̃w ∼ U [0.7, 1.3]. δs,t are random weights with δs,t =
δ̃s,t∑

s,t∈pa(G),s<t |δ̃s,t|
, δ̃s,t ∼ U [−1, 1]

This parameterization is motivated by the observation that for a smooth function—where higher-
order derivatives are not significantly larger than the lower-order ones—the coefficients of the
Chebyshev approximation decrease in a factorial manner. This provides a rationale for training the
neural network on ’typical’ smooth functional dependencies. Furthermore, this suggests that using
Chebyshev polynomials of degree r = 5 is not a significant limitation, as the coefficients of higher
orders are already negligibly small.

In order to prevent the values from exploding and to properly account for the common domain of
Chebyshev polynomials, we implement several measures. Firstly, we scale each input to the SEM by
the maximum value within the batch. Secondly, we standardize all variables; we subtract the mean
and divide by the standard deviation for each batch. This ensures the variables are both centered and
scaled. To further improve stability and robustness of our model, we introduce thresholds for any
absolute values exceeding 5, thereby mitigating the potential impact of outliers.

E.2 Gaussian mixture error terms

The additive error term ϵ1 follows a Gaussian mixture distribution. We randomly determine the
number of components L ∼ U{1, . . . , 5} from a discrete uniform distribution. Each component has
randomly assigned parameters for the means µl ∼ U [−1, 1], standard deviations σl ∼ U [0.05, 1],
and weights w̃l ∼ U [0.3, 1], wl =

w̃l∑
l w̃l

such that ϵ1 ∼
∑L

l=1 wlN(µl, σ
2
l). The multiplicative error

term ϵ2 is uniformly distributed, with ϵ2 ∼ U [−1, 1]. We scale the error to zero mean and variance 1
after simulation.

E.3 Testing dependencies

To create testing data, we create synthetic data according to an SEM equipped with different depen-
dency function, while the error term follows a Gaussian mixture distribution as before. We use the
following dependencies for testing: Chebyshev, linear, sine, cosine, x2, x3, multidimensional multi-
plicative dependency. The Chebyshev-dependency used was the same as in the training procedure.
We used the following testing dependency functions: x, sin(x), cos(x), x2, x3 as g(x) in

ftest(xpa, ε) =
∑

w∈pa(G)

αwg(xw) + ϵ.

20

128866https://doi.org/10.52202/079017-4093

For the multi-dimensional multiplicative test dependency, we used

fv(xpa, ϵ1, ϵ2) = αm

 ∑
s,t∈pa(G),s<t

δs,tTm(xs, xt) +
∑

w∈pa(G)

Tm(xw, ϵ2)

 ∀v ∈ V,

with

Tm(x, y) :=
(x− µx)(y − µy)

(1 + |µx|)(1 + |µy|)

with µx ∼ U [−1, 1], µy ∼ U [−1, 1], δs,t = δ̃s,t∑
s,t∈pa(G),s<t |δ̃s,t|

, δ̃s,t ∼ U [−1, 1].

21

128867 https://doi.org/10.52202/079017-4093

F Training details

F.1 Model hyperparameters

The implementation was performed using TensorFlow [1]. We employed the ADAM optimizer by
Kingma and Ba [32]. For training, we used the hyperparameters stated in Table 3:

Table 3: Hyperparameters for the undirected
graph estimation

Hyperparameter Value

Layer Parameters
Number of channels C 100
Number of inner channels c 100
Maximal degree activation function 3
Attention heads 5

Number of layers
Attention between attributes 10
Attention between samples 10
C × C dense observational layers 10
bilinear attention + SPD activation 10

Training Schedule
epochs 1000
samples per epoch 128
Initial learning rate 0.0005

Learning rate decrease factor
(

1
10

)1/500
Minibatchsize 1

Table 4: Hyperparameters of the CPDAG es-
timation model

Hyperparameter Value

Layer Parameters
Number of channels C 100
Number of inner channels c 100
Maximal degree activation function 3
Attention heads 5

Number of layers
Attention between attributes 10
Attention between samples 10
C × C dense observational layers 10
bilinear attention + SPD activation 10

Training Schedule
epochs 1000
matrices per epoch 1
Initial learning rate 0.0005

Learning rate decrease factor
(

1
10

)1/1000
Minibatchsize 1

Additionally, we generated data with a random number of samples M ∼ U{50, 51, . . . , 1000} and a
random variable dimension d ∼ U{10, 11, . . . , 100}.

F.2 Ablation study setting

In the ablation study, we evaluate the performance of the full model in comparison to models with
reduced complexities. The full model is comprised of two attention between attributes layers, two
attention between samples layers, two dense layers, and four bilinear layers equipped with SPD
activation functions. This setup maintains parity between the number of attention layers operating on
observational data and those focusing on covariance data, while also ensuring a comparable parameter
count across different configurations. All models in the study utilize C = c = 100 channels and are
trained over 500 epochs, with each epoch comprising 128 data matrix / adjacency label pairs. Again,
we generated data with a random number of samples M ∼ U{50, 51, . . . , 1000} and a random
variable dimension d ∼ U{10, 11, . . . , 100}.

F.3 Loss function for the three-class edge classification problem

We employ the categorical cross-entropy loss function for classifying edges into one of three cate-
gories: no-edge, skeleton edge, and moralized edge. Additionally, to enforce the condition that a
moral edge between nodes X and Y should only be predicted if there is a potential common child Z
(i.e., X − Z and Z − Y), we introduce a penalty term, Lp.

The overall loss function is defined as Lb + Lc + Lp. Here, Lc is the categorical crossentropy of the
three categories given by

Lc(A, Â) := H(A, Â) = −
d∑

i=2

i−1∑
j=1

3∑
c=1

Ai,j,c log(Âi,j,c)

22

128868https://doi.org/10.52202/079017-4093

denotes the categorical crossentropy of the three categories no-edge, skeleton edge, and moralized
edge with

A ∈ Rd×d×3 with Ai,j,c =

{
1 if (i, j) is in category c in the ground-truth DAG
0 else

and Âi,j,c denotes the estimation by the algorithm on it. A and Â are symmetric along its first two
axes, i.e., Ai,j,c = Aj,i,c, i, j = 1, . . . , d, c = 1, . . . , 3.

Lb denotes the binary loss of no-edge vs. any edge present (present edges = skeleton edges ∪
moralized edges):

Lb(A
(b), Â

(b)
) := H(A(b), Â

(b)
) = −

d∑
i=2

i∑
j=1

[
A

(b)
i,j log(Â

(b)
i,j) + (1−A

(b)
i,j) log(1− Â

(b)
i,j)
]

with

A(b) ∈ Rd×d with A
(b)
i,j =

{
1 if an edge is estimated between i and j

0 else

being the adjacency matrix of no-edge vs. (direct edge ∪ moralized edge).

The penalty term, Lp is defined as:

Lp(Â) := max
(
Â3 − [Â2Â2]

0.5, 0
)
.

Â1, Â2, Â3 ∈ Rd×d are estimates of A·,·,1, A·,·,2, and A·,·,3 by the algorithm respectively. This
term penalizes the prediction of a moralized edge in the absence of potential common child edges.
The square root operation is applied element-wise.

23

128869 https://doi.org/10.52202/079017-4093

G Further experiments

G.1 Error bars

In our experiments, each algorithm was evaluated on five distinct trials, each involving a unique data
matrix and corresponding ground-truth graph. The bars in the figures represent the mean performance
values across these trials, while the error bars indicate the standard deviation. It is important to
note that the observed variability, manifested as relatively large error bars, is predominantly due to
the random sampling of graph degrees, which has a substantial influence on estimation accuracy.
Despite this inherent variability, the comparison across algorithms remains valid, as each algorithm is
tested for the same graphs. Therefore, the magnitude of the error bars should not be interpreted as
undermining the reliability of our findings.

G.2 Additional results on undirected graph estimation

Figure 8: AUC values for undirected graph estimation in low-dimensional regimes: (a) d = 10,
M = 200 (b) d = 20, M = 500.

Figure 9: AUC values for undirected graph estimation for random MLP dependency: (a): d = 20,
(b): d = 50, (c): d = 100

Figures 8 and 9 provide supplemental data on the task of undirected graph estimation. Figures
8 showcases performance in low-dimensional settings characterized by d = 10, M = 200 and
d = 20, M = 500. In this scenario, our method (BAM) also outperforms competing graph inference
algorithms. To further assess its capability to recognize multidimensional dependencies, we extended
our tests to cases where the dependency function within the SEM is modeled via a randomly
initialized multilayer perceptron (MLP) with a random number of layers ∼ U{1, . . . , 5}, a random
number of hidden layers ∼ U{4, 64}, and relu or tanh activation with probability 0.5 each. Despite
these complexities, our algorithm maintained state-of-the-art performance, delivering AUC scores
competitive to the top-performing existing methods such as depicted in Figure 9.

24

128870https://doi.org/10.52202/079017-4093

G.3 Additional results on random Fourier feature dependencies

We evaluate our method’s performance on more complex dependency structures using random Fourier
features, which represent multidimensional non-linear relationships between variables. For undirected
graph estimation (Figure 10 A-C), our approach demonstrates strong performance across different
graph sizes and evaluation metrics, particularly outperforming baselines for most sample sizes. The
performance slightly decreases for very large sample sizes (M = 500, 1000), potentially due to
overfitting to the training distribution when encountering dependencies that deviate significantly from
the training patterns. For CPDAG estimation (Figure 10 D-F), while our method shows reasonable
performance as measured by AUC and SID, there remains room for improvement in handling
multidimensional dependencies. These results complement our findings on MLP dependencies
(Figure 9), indicating that our approach can effectively handle various types of non-linear relationships
while highlighting specific scenarios for future enhancements.

Figure 10: Additional computational results using random Fourier feature dependency. (A, B) AUC
for undirected graph estimation with (A) d = 20, M = 200 and (B) d = 50, M = 200. (C) Accuracy
for undirected graph estimation with d = 50, M = 200. (D) AUC for CPDAG estimation with
d = 50, M = 200. (E, F) SID for CPDAG estimation with (E) d = 20, M = 200 and (F) d = 50,
M = 200.

G.4 Additional results on CPDAG estimation

Figure 11: (a) SHD values for the high-dimensional CPDAG estimation d = 100, M = 50. (b) AUC
values for the high-dimensional CPDAG estimation d = 100, M = 50.

CPDAG estimation in high-dimensional settings presents significant challenges. In the specific case
of d = 100 and M = 50, none of the algorithms we evaluated could outperform a zero-graph (i.e., a

25

128871 https://doi.org/10.52202/079017-4093

graph with no edges) baseline in terms of Structural Hamming Distance (SHD). The results, depicted
in Figure 11 (a), substantiate this observation and suggest that CPDAG estimation remains a difficult
problem under these conditions, at least with our chosen graph density setup. Given the complexities
encountered in high-dimensional contexts, our analysis primarily emphasizes the evaluation of AUC,
as illustrated in Figure 11(b). In this evaluation, only the BAM and PC algorithms demonstrated AUC
values exceeding 0.5 in certain instances. However, the AUC metrics remain low. This underscores
the utility of undirected graph methods for high-dimensional (d > M) problems for such problems,
as directed approaches may not only be inefficient but also risk yielding misleading interpretations.

G.5 Additional results regarding SID metrics

We performed additional evaluations using the structural intervention distance (SID) metric for
CPDAG estimation and graph dimensions of d = 10, as shown in Figure 12. For higher graph
dimensions, the implementation of the SID metric within the causal discovery toolbox was leading to
computational errors due to instability and high complexity of the evaluation metric. The minimal
and maximal SID values, representing the best and worst DAGs within the equivalence classes, are
shown. Our method has the best performance for the best DAG of the estimated equivalence class.
However, the results were less favorable for the worst DAG configurations. These findings suggest
that our model estimates a broad equivalence class and tends to be conservative in the directionality
of edges.

G.6 Results with varying graph distributions

We investigate the robustness of our method to different graph distributions by testing various
distributions in combination with different dependency functions. Specifically, we consider the Watts-
Strogatz (WS) graph [69], the Exponential Random Graph Model (ERGM) [56], the configuration
model [47], and the geometric random graph [51] for generating graph structures. We report the area
under the precision recall curve (AUC) values for the undirected graph estimation task for the case
M = 200, d = 20.

The WS graph produces small-world graphs with high clustering and short average path lengths
by randomly rewiring edges of a regular ring lattice. We use the implementation in the NetworkX
package [22] to create WS graphs with a specified expected degree. The rewiring probability p is
sampled uniformly from 0.1 to 0.9 to cover a wide range of graph structures.

ERGM generates random graphs capturing various structural properties based on a probability
distribution defined by sufficient statistics. We use the ERGM implementation in NetworkX to
generate random DAGs with a specified expected degree, iteratively adding edges that maintain
acyclicity.

The configuration model [47] generates random graphs with a specified degree sequence. We use two
variations of the configuration model in our experiments:

1. In the first variation (conf), the degree sequence is set to a constant value equal to the expected
degree for all nodes, resulting in graphs with a homogeneous degree distribution.

2. In the second variation (conf2), we use a variable degree sequence sampled from a Poisson
distribution with a mean of q d

d−1 , where d is the number of nodes and q is the expected degree. This
allows for generating graphs with heterogeneous degree distributions while maintaining the expected
average degree. We ensure that the sum of the sampled degree sequence is even by resampling until
this condition is met.

The geometric random graph model [51] generates graphs based on the spatial proximity of nodes in
a metric space. Nodes are randomly placed in a unit square, and edges are formed between pairs of
nodes if their Euclidean distance is below a specified threshold radius. We calculate the radius using
the formula for the radius r =

√
q

π(d−1) , where d is the number of nodes and q is the expected degree.

This choice of radius ensures that the expected degree is approximately achieved in the resulting
graph.

To focus on the impact of graph distributions, we keep the expected degree fixed for evaluation.
Comparing results across different graph generations, we find no significant difference in performance,
suggesting robustness to variations in graph structure.

26

128872https://doi.org/10.52202/079017-4093

<latexit sha1_base64="j9B2Ic/Py7Q72g0Ku32iadBBT1g=">AAAB6nicbVDJSgNBEK1xjXGLevTSGIR4CTPidgx48ZigWSAZQk2nJ2nS0zN09whhCPgDXjwo4tUv8ubf2FkOmvig4PFeFVX1gkRwbVz321lZXVvf2Mxt5bd3dvf2CweHDR2nirI6jUWsWgFqJrhkdcONYK1EMYwCwZrB8HbiNx+Z0jyWD2aUMD/CvuQhp2isdF/Cs26h6JbdKcgy8eakCHNUu4WvTi+macSkoQK1bntuYvwMleFUsHG+k2qWIB1in7UtlRgx7WfTU8fk1Co9EsbKljRkqv6eyDDSehQFtjNCM9CL3kT8z2unJrzxMy6T1DBJZ4vCVBATk8nfpMcVo0aMLEGquL2V0AEqpMamk7cheIsvL5PGedm7Kl/WLoqV2tMsjhwcwwmUwINrqMAdVKEOFPrwDK/w5gjnxXl3PmatK848wiP4A+fzB7ZujeM=</latexit>

(a)
<latexit sha1_base64="XZD2BvxgzqHkf9J4BYhH0Ux0uUk=">AAAB6nicbVDJSgNBEK1xjXGLevTSGIR4CTPidgx48ZigWSAZQk+nJmnS0zN09whhCPgDXjwo4tUv8ubf2FkOmvig4PFeFVX1gkRwbVz321lZXVvf2Mxt5bd3dvf2CweHDR2nimGdxSJWrYBqFFxi3XAjsJUopFEgsBkMbyd+8xGV5rF8MKME/Yj2JQ85o8ZK96XgrFsoumV3CrJMvDkpwhzVbuGr04tZGqE0TFCt256bGD+jynAmcJzvpBoTyoa0j21LJY1Q+9n01DE5tUqPhLGyJQ2Zqr8nMhppPYoC2xlRM9CL3kT8z2unJrzxMy6T1KBks0VhKoiJyeRv0uMKmREjSyhT3N5K2IAqyoxNJ29D8BZfXiaN87J3Vb6sXRQrtadZHDk4hhMogQfXUIE7qEIdGPThGV7hzRHOi/PufMxaV5x5hEfwB87nD7fzjeQ=</latexit>

(b)
<latexit sha1_base64="9shq/eND1G5mEm8yWsfNQyBSpfU=">AAAB6nicbVDJSgNBEK1xjXGLevTSGIR4CTPidgx48ZigWSAZQk+nJmnS0zN09whhCPgDXjwo4tUv8ubf2FkOmvig4PFeFVX1gkRwbVz321lZXVvf2Mxt5bd3dvf2CweHDR2nimGdxSJWrYBqFFxi3XAjsJUopFEgsBkMbyd+8xGV5rF8MKME/Yj2JQ85o8ZK9yV21i0U3bI7BVkm3pwUYY5qt/DV6cUsjVAaJqjWbc9NjJ9RZTgTOM53Uo0JZUPax7alkkao/Wx66picWqVHwljZkoZM1d8TGY20HkWB7YyoGehFbyL+57VTE974GZdJalCy2aIwFcTEZPI36XGFzIiRJZQpbm8lbEAVZcamk7cheIsvL5PGedm7Kl/WLoqV2tMsjhwcwwmUwINrqMAdVKEODPrwDK/w5gjnxXl3PmatK848wiP4A+fzB7l4jeU=</latexit>

(c)

<latexit sha1_base64="KduCG8mPo612eVNbjwN9lJONWcQ=">AAAB6nicbVDLSgNBEOyJrxhfUY9eBoMQL2FXfB2DXjxGNA9IljA7O5sMmZ1dZmaFsOQTvHhQxKtf5M2/cZLsQRMLGoqqbrq7/ERwbRznGxVWVtfWN4qbpa3tnd298v5BS8epoqxJYxGrjk80E1yypuFGsE6iGIl8wdr+6Hbqt5+Y0jyWj2acMC8iA8lDTomx0kM1OO2XK07NmQEvEzcnFcjR6Je/ekFM04hJQwXRuus6ifEyogyngk1KvVSzhNARGbCupZJETHvZ7NQJPrFKgMNY2ZIGz9TfExmJtB5Hvu2MiBnqRW8q/ud1UxNeexmXSWqYpPNFYSqwifH0bxxwxagRY0sIVdzeiumQKEKNTadkQ3AXX14mrbOae1m7uD+v1G/yOIpwBMdQBReuoA530IAmUBjAM7zCGxLoBb2jj3lrAeUzh/AH6PMHkHqNVw==</latexit>

(d)
<latexit sha1_base64="kz/GMKVGnusGwruGD7nceoFp5U4=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoMQL2FXfB2DXjxGNA9IljA76SRDZmeXmVkhLPkELx4U8eoXefNvnCR70MSChqKqm+6uIBZcG9f9dnIrq2vrG/nNwtb2zu5ecf+goaNEMayzSESqFVCNgkusG24EtmKFNAwENoPR7dRvPqHSPJKPZhyjH9KB5H3OqLHSQxlPu8WSW3FnIMvEy0gJMtS6xa9OL2JJiNIwQbVue25s/JQqw5nASaGTaIwpG9EBti2VNETtp7NTJ+TEKj3Sj5QtachM/T2R0lDrcRjYzpCaoV70puJ/Xjsx/Ws/5TJODEo2X9RPBDERmf5NelwhM2JsCWWK21sJG1JFmbHpFGwI3uLLy6RxVvEuKxf356XqTRZHHo7gGMrgwRVU4Q5qUAcGA3iGV3hzhPPivDsf89ack80cwh84nz+R/41Y</latexit>

(e)
<latexit sha1_base64="5qD/srldSiasj6P3anPEwosJHsE=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoMQL2FXfB2DXjxGNA9IQpid9CZDZmeXmVkhLPkELx4U8eoXefNvnCR70MSChqKqm+4uPxZcG9f9dnIrq2vrG/nNwtb2zu5ecf+goaNEMayzSESq5VONgkusG24EtmKFNPQFNv3R7dRvPqHSPJKPZhxjN6QDyQPOqLHSQzk47RVLbsWdgSwTLyMlyFDrFb86/YglIUrDBNW67bmx6aZUGc4ETgqdRGNM2YgOsG2ppCHqbjo7dUJOrNInQaRsSUNm6u+JlIZaj0PfdobUDPWiNxX/89qJCa67KZdxYlCy+aIgEcREZPo36XOFzIixJZQpbm8lbEgVZcamU7AheIsvL5PGWcW7rFzcn5eqN1kceTiCYyiDB1dQhTuoQR0YDOAZXuHNEc6L8+58zFtzTjZzCH/gfP4Ak4SNWQ==</latexit>

(f)

<latexit sha1_base64="EejU6b1GZSAWz4MyNzWCiQg5SlI=">AAAB6nicbVDLSgNBEOyJrxhfUY9eBoMQL2FXfB2DXjxGNA9IljA7md0MmZ1dZmaFsOQTvHhQxKtf5M2/cZLsQRMLGoqqbrq7/ERwbRznGxVWVtfWN4qbpa3tnd298v5BS8epoqxJYxGrjk80E1yypuFGsE6iGIl8wdr+6Hbqt5+Y0jyWj2acMC8ioeQBp8RY6aEanvbLFafmzICXiZuTCuRo9MtfvUFM04hJQwXRuus6ifEyogyngk1KvVSzhNARCVnXUkkipr1sduoEn1hlgINY2ZIGz9TfExmJtB5Hvu2MiBnqRW8q/ud1UxNcexmXSWqYpPNFQSqwifH0bzzgilEjxpYQqri9FdMhUYQam07JhuAuvrxMWmc197J2cX9eqd/kcRThCI6hCi5cQR3uoAFNoBDCM7zCGxLoBb2jj3lrAeUzh/AH6PMHlQmNWg==</latexit>

(g)
<latexit sha1_base64="yOmkyG6oiYMtsWbRpVeAV2YUd5M=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoMQL2FXfB2DXjxGNA9IljA76SRDZmeXmVkhLPkELx4U8eoXefNvnCR70MSChqKqm+6uIBZcG9f9dnIrq2vrG/nNwtb2zu5ecf+goaNEMayzSESqFVCNgkusG24EtmKFNAwENoPR7dRvPqHSPJKPZhyjH9KB5H3OqLHSQ3l42i2W3Io7A1kmXkZKkKHWLX51ehFLQpSGCap123Nj46dUGc4ETgqdRGNM2YgOsG2ppCFqP52dOiEnVumRfqRsSUNm6u+JlIZaj8PAdobUDPWiNxX/89qJ6V/7KZdxYlCy+aJ+IoiJyPRv0uMKmRFjSyhT3N5K2JAqyoxNp2BD8BZfXiaNs4p3Wbm4Py9Vb7I48nAEx1AGD66gCndQgzowGMAzvMKbI5wX5935mLfmnGzmEP7A+fwBlo6NWw==</latexit>

(h)

<latexit sha1_base64="EysZU4V01g7OpXNwO34iaBfF10k=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoMQL2FXfB2DXjxGNA9IljA7mSRDZmeXmV4hLPkELx4U8eoXefNvnCR70MSChqKqm+6uIJbCoOt+O7mV1bX1jfxmYWt7Z3evuH/QMFGiGa+zSEa6FVDDpVC8jgIlb8Wa0zCQvBmMbqd+84lrIyL1iOOY+yEdKNEXjKKVHsritFssuRV3BrJMvIyUIEOtW/zq9CKWhFwhk9SYtufG6KdUo2CSTwqdxPCYshEd8Laliobc+Ons1Ak5sUqP9CNtSyGZqb8nUhoaMw4D2xlSHJpFbyr+57UT7F/7qVBxglyx+aJ+IglGZPo36QnNGcqxJZRpYW8lbEg1ZWjTKdgQvMWXl0njrOJdVi7uz0vVmyyOPBzBMZTBgyuowh3UoA4MBvAMr/DmSOfFeXc+5q05J5s5hD9wPn8AmBONXA==</latexit>

(i)
<latexit sha1_base64="x9jLsPdKd+ij7VjRrZctPcaZWok=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoMQL2FXfB2DXjxGNA9IljA76SRjZmeXmVkhLPkELx4U8eoXefNvnCR70GhBQ1HVTXdXEAuujet+Obml5ZXVtfx6YWNza3unuLvX0FGiGNZZJCLVCqhGwSXWDTcCW7FCGgYCm8Hoeuo3H1FpHsl7M47RD+lA8j5n1Fjprvxw3C2W3Io7A/lLvIyUIEOtW/zs9CKWhCgNE1TrtufGxk+pMpwJnBQ6icaYshEdYNtSSUPUfjo7dUKOrNIj/UjZkobM1J8TKQ21HoeB7QypGepFbyr+57UT07/0Uy7jxKBk80X9RBATkenfpMcVMiPGllCmuL2VsCFVlBmbTsGG4C2+/Jc0TireeeXs9rRUvcriyMMBHEIZPLiAKtxADerAYABP8AKvjnCenTfnfd6ac7KZffgF5+MbmZiNXQ==</latexit>

(j)

Figure 12: Structural Intervention Distance (SID) results for CPDAG estimation, arranged by SID
values from highest (left) to lowest (right) for dimension d = 10. Panels (a), (b), (c), (g), and (h)
present the minimal SID values, while panels (d), (e), (f), (i), and (j) display the maximal SID values
within their respective Markov equivalence classes. The panels correspond to different sample sizes:
M = 50 for (a) and (d); M = 100 for (b) and (e); M = 200 for (c) and (f); M = 500 for (g) and (i);
and M = 1000 for (h) and (j).

G.7 Time comparison

Figure 13 depicts the average runtimes per evaluation step, accompanied by their corresponding
standard deviations. We compared BAM with various unsupervised methods, noting that the eval-
uation times for other supervised approaches, such as Avici, are comparable to those observed for
BAM. Specifically, the results are presented in the form of mean ± one standard deviation. The
x-axis enumerates various sample sizes, denoted as M , while both mean and standard deviation were
computed based on 5 independent inference tests for each configuration with a fixed sample size M
and graph dimension d.

27

128873 https://doi.org/10.52202/079017-4093

These empirical observations substantiate the computational efficiency of supervised approaches in
the inference phase.

Figure 13: Algorithm runtime for (a) d = 10, (b) d = 20, (c) d = 50, (d) d = 100 in seconds per
M × d data matrix inference.

28

128874https://doi.org/10.52202/079017-4093

H Computational complexity analysis

H.1 Memory complexity

The overall memory complexity of our proposed method is O(CMd+ Cd2 +Md2 +M2d+ C2),
where M is the number of datapoints, d is the data dimension, and C is the number of channels. This
complexity arises from the following components: attention-between-attributes O(CMd+Md2),
attention-between-datapoints O(CMd + M2d), covariance matrix calculation O(C(Md + d2)),
bilinear attention O(Cd2), and matrix logarithm O(Cd2). These complexities are derived from the
matrix shapes used in Figure 3. Additionally, C × C weight matrices are used, which require O(C2)
memory.

H.2 Runtime complexity

The overall runtime complexity of our approach is O(C2Md+ CMd2 + CM2d+ C2d2 + Cd3).
We present a detailed breakdown of the single components:

We first consider the computational complexity of the tensor multiplication defined in (1): a tensor
A ∈ RM×d×C is multiplied by a matrix B ∈ RC×C . This operation involves multiplying each of
the M slices ∈ Rd×C of A by B. The multiplication of a d × C matrix by a C × C matrix has
a time complexity of O(C2d). Since this multiplication is performed in parallel over the M axis,
the total complexity of this tensor multiplication is O(C2Md). Similarly, the parallel computation
of the attention matrix K ⊙Q for attention-between-attributes (defined in (4), matrix A in Figure
3 left) consists of M parallel matrix multiplications of d × C with C × d matrices, resulting in a
complexity of O(CMd2). Multiplying the attention matrix with the values in (5) is an M-parallel
computation of a M × d× d tensor with a M × d× C tensor, having complexity O(CMd2). Thus,
the overall complexity of attention-between-attributes is O(C2Md+ CMd2). By switching axes,
attention-between-datapoints has a time complexity of O(C2Md+ CM2d).

Calculating C covariance matrices has a complexity of O(CMd(minM,d)). In a BAM layer,
multiplying the d× d× C tensor with a C × C weight matrix has a complexity of O(C2d2). The
bilinear operation in (2) (for calculating the attention matrix and the output of the BAM layer) is
defined as C-parallel computation of two d × d matrix multiplications, resulting in a complexity
of O(Cd3). Computing the custom softmax can be expressed as d× d matrix multiplications in C
channels, so its complexity is O(Cd3). Calculating the matrix logarithm is equivalent to computing
an eigendecomposition, which has a complexity of O(Cd3) when performed over C channels [20]. In
summary, the overall time complexity of our approach is O(C2Md+CMd2+CM2d+C2d2+Cd3).

H.3 Computational efficiency discussion

While our method demonstrates strong performance across various settings, the computational
resources required for optimal training (approximately 82 GiB of GPU memory) may present
limitations in resource-constrained environments. This is primarily due to the attention mechanisms
in our architecture, which exhibit quadratic complexity with respect to sequence length.

For datasets with large sample sizes M , the attention-between-datapoints layer becomes the primary
computational bottleneck, with memory complexity O(M2d) and runtime complexity O(CM2d).
To address this limitation and enhance scalability, we propose a local attention strategy: dividing the
sample axis M = ms into s subsamples of size m and applying attention within these segments. This
modification reduces the runtime complexity to O(Cm2ds) = O(CM2d

s) and memory complexity
to O(dm2s). By maintaining fixed subsample size m, the approach achieves linear scalability in
M through linear increments in s. Similar principles can be applied to both the attention-between-
datapoints and bilinear attention mechanisms.

Furthermore, as demonstrated in Section G.7, our trained model offers significant practical advantages
through fast inference times compared to traditional unsupervised approaches, which require iterative
optimization for each new dataset.

29

128875 https://doi.org/10.52202/079017-4093

I Interpretation

I.1 Shape-agnostic architecture and the role of attention layers

When employing a shape-agnostic architecture for matrices ∈ RM×d, it is crucial to ensure that all
elements within the M × d matrix can interact and influence one another. Consider a scenario where
one axis of the matrix is expanded to the shape RM×d×1, followed by dense layers with 1× C and
C×C weights. In this configuration, the dense layers carry out element-wise operations on the M×d
elements, processing them in isolation from each other. This is because each hidden representation
is essentially a linear combination of C matrices of shape M × d prior to the application of an
element-wise activation function.

This limitation is addressed by incorporating attention layers into the architecture. These layers
adaptively compute non-trainable M ×M and d× d attention matrices based on trainable C × C
weights. This approach allows for a permutation- and shape-agnostic architecture, as the same set of
trainable weights can be employed for any M × d matrix, while still enabling the matrix entries to
influence each other. In this way, the attention mechanism becomes an essential component of our
model. Although we also experimented with Network-in-Network methods [38], we found that the
attention mechanism offers a more stable, efficient, and straightforward computation of non-trainable
M ×M and d× d attention matrices, using only trainable C × C weights.

Our proposed bilinear attention mechanism is, to our knowledge, the first SPD layer to enable shape-
agnostic computations. It uses trainable C × C weights to calculate non-trainable d× d attention
matrices, allowing for adaptive weighting across different d× d SPD matrix sizes. This flexibility
makes it a unique and essential component of our architecture. Additionally, this construction ensures
the desired permutation invariance among the variables. Our approach essentially learns matrix
operations that should be applicable to any input matrix with arbitrary M × d input.

I.2 Attention scores in the BAM layer

Consider the setting as in Figure 3 (right) and the computation of the output H by A⊗ S, where
A ∈ Sd×d×C

⪰ are the attention scores and S ∈ Sd×d×C
⪰ are the input matrices into the BAM layer.

Since A ⊗ S is processed parallel across the channels, we consider for simplicity the output of a
single channel here and assume A ∈ Sd×d

⪰ and S ∈ Sd×d
⪰ to be quadratic, positive definite d × d

matrices.

While traditional self-attention computes scores to assess the importance of one data point to another,
our bilinear attention mechanism extends this by exploring the interdependence of variable pairs.
Specifically, for an output pair (i, j), its associated output value is determined not merely by a direct
scalar relationship but by the bilinear form:

∑
k,l Ai,kSk,lAl,j . Thus, instead of a singular focus on

the relation "How does j affect i?", quantified in the score matrix A in classical attention, the score
matrix in bilinear attention shows the interaction strengths of pair sets {(i, k) | k = 1, . . . , d} and
{(l, j) | l = 1, . . . , d}. The "receptive field" adopts a cross-form within the scores A instead of being
Ai,j only, in the sense that relevant scores for the output at position (i, j) are not limited to Ai,j but
{Ai,· ∪A·,j}.

I.3 Keys and queries

Continuing with the single-channel assumption due to parallel channel processing, consider the
quadratic form Sd×d × Sd×d 7→ Sd×d, (K,Q) 7→ KTQK of the key-query interaction. The
(i, j)-th entry of KTQK is KT

i QKj for the columns K1, . . . ,Kd of K, which are often referred
to as keys. Using the eigendecomposition of Q = UTDU one obtains for the (i, j)-th entry
the bilinear form (UKi)

TD(UKj). Note that UKi is a similarity measure between K and Q
analogous to standard attention. So, for bilinear attention, similarity scores are calculated between
the keys K and the eigenvectors of the queries Q. Afterwards, the D

1
2 -weighted bilinear-form

(D
1
2UKi)

T (D
1
2UKj) is used to create covariance matrices by combining the similarity scores

between U and K. Hence, in bilinear attention, the similarity scores are functions of both the i-th
and j-th keys as well as all queries. This is consistent with the attention-score behavior, where the

30

128876https://doi.org/10.52202/079017-4093

interaction strengths of all pair sets {(i, k) | k = 1, . . . , d} and {(l, j) | l = 1, . . . , d} collectively
influence the output.

This is in contrast to standard attention, which uses the untransformed dot product (k, q) ∈ Rd ×
Rd 7→ kTq ∈ R for the columns of key and query matrices K, Q.

31

128877 https://doi.org/10.52202/079017-4093

J Limitations

The proposed model effectively captures smooth dependence relations using Chebyshev polynomials.
While this approach demonstrates excellent performance across various types of dependencies, it
may face challenges when dealing with data structures that significantly deviate from the generated
synthetic data, particularly those with rapidly increasing higher-order derivatives. However, adapting
the synthetic data generation process to accommodate these structures is straightforward and can
mitigate this limitation.

The Log-Eig layer performs efficiently within a moderate dimensional range, but it may encounter
computational constraints when scaling to higher dimensions. Training our model with parameters
similar to those used in this study requires substantial memory resources; in our experiments,
approximately 80 GB of GPU memory was necessary.

The attention mechanism, although effective, can be computationally expensive for high-dimensional
inputs (both in terms of M and d). Local attention can alleviate this issue, but it may introduce its own
set of challenges. Despite these limitations, the model’s architecture allows for easy extensions to
address specific applications. For instance, incorporating separate embedding layers for observational
and interventional data could enable the model to leverage interventional data effectively.

However, it is important to note that the high computational cost is primarily associated with the
training phase, and inference is much faster. While our experiments utilized substantial computational
resources (approximately 80 GB of GPU memory), the model architecture allows for effective scaling
to more modest computational environments. By reducing key parameters such as the maximum
number of samples (M), maximum data dimension (d), and number of channels (C), training can be
successfully conducted on standard computers with suitable GPU support, though potentially with
reduced performance in large dataset regimes.

An end-to-end approach for CPDAG estimation could potentially offer further benefits. However, the
current model loses directional information during the covariance computation, making an end-to-end
approach unfeasible with the existing architecture. A possible extension to facilitate directional
inference could involve using two separate embeddings for each variable, one for the variable as a
parent and another for the variable as a child, effectively doubling the dimensionality to 2d.

Another limitation of our approach is the difficulty in theoretically proving the identifiability of
causal effects using our neural network method. Identifiability of a causal effect, when having access
to the data distribution via a neural network, relies on the fundamental approximation theorem of
neural networks, which guarantees that a single-hidden-layer neural network can approximate any
continuous function on a compact subset of the input space, given sufficient hidden units [27], such
that any mapping X 7→ G from the data distribution to graph structures can be learned. However,
the theorem might not be directly applicable to the observational attention layers and the bilinear
attention layers employed in our approach. Furthermore, for identifiability to be assured, the test data
must be sufficiently close to the training data for out-of-sample approximation, which adds another
layer of complexity to the problem.

32

128878https://doi.org/10.52202/079017-4093

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We introduced a novel neural network model for supervised graph structure
learning. Our empirical evaluation demonstrates ability to detect the presence of causal
relationships, regardless of their specific parameterizations.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations are discussed in the conclusion and in detail in Appendix J.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

33

128879 https://doi.org/10.52202/079017-4093

Answer: [Yes]
Justification: The proof of Theorem 1 is provided, while Proposition 2 is obvious.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper provides detailed information for reproducing the main experimental
results, including the parameterization of the SEM (Appendix E), training details (Appendix
F), and the model architecture (Section 2 and Appendices B,D).
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

34

128880https://doi.org/10.52202/079017-4093

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provide source code in the supplementary material, together with a conda
environment file that specifies the required dependencies and their versions and a README
file with instructions to run the code.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Hyperparameters are stated in the main text in the "Training data hyperpa-
rameter settings" paragraph within the Experiments section. Additionally, a full list of
hyperparameters is provided in Appendix F.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: All results are reported as mean ± standard deviation, indicating the statistical
significance of the experiments. We discuss the error bars in Appendix G.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

35

128881 https://doi.org/10.52202/079017-4093

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The paper provides information on the computational resources required in the
"Efficiency" paragraph of the Experiments section in the main text. Additional details are
available in Appendix G.7.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: No ethical concerns or deviations from the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Broader impacts were discussed in the conclusion.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.

36

128882https://doi.org/10.52202/079017-4093

https://neurips.cc/public/EthicsGuidelines

• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All existing assets used in this work are properly cited and credited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

37

128883 https://doi.org/10.52202/079017-4093

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The provided code is documented and explained in the paper.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

38

128884https://doi.org/10.52202/079017-4093

paperswithcode.com/datasets

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

39

128885 https://doi.org/10.52202/079017-4093

