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Abstract

The cortico-spinal neural pathway is fundamental for motor control and move-
ment execution, and in humans it is typically studied using concurrent electroen-
cephalography (EEG) and electromyography (EMG) recordings. However, current
approaches for capturing high-level and contextual connectivity between these
recordings have important limitations. Here, we present a novel application of
statistical dependence estimators based on orthonormal decomposition of density
ratios to model the relationship between cortical and muscle oscillations. Our
method extends from traditional scalar-valued measures by learning eigenvalues,
eigenfunctions, and projection spaces of density ratios from realizations of the
signal, addressing the interpretability, scalability, and local temporal dependence of
cortico-muscular connectivity. We experimentally demonstrate that eigenfunctions
learned from cortico-muscular connectivity can accurately classify movements and
subjects. Moreover, they reveal channel and temporal dependencies that confirm
the activation of specific EEG channels during movement. Our code is available at
https://github.com/bohu615/corticomuscular-eigen-encoder.

1 Introduction
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Figure 1: The cortico-muscular pathway
allows brain-muscle communication with co-
herent cortical and peripheral oscillations.
This paper models this connectivity through
the statistical dependence between their con-
current recordings of EEG and EMG.

The brain communicates with muscles by sending informa-
tion to the spinal cord. Part of this information is directly
transmitted from the cortex to spinal motor neurons via
the cortico-spinal neural pathway, which is vital for motor
control and movement execution. Because motor neurons
are directly connected to muscles, cortical oscillations trav-
eling through the cortico-spinal pathway are coherent with
oscillations in muscle electrical activities, both in humans
and non-human primates [1–3]. This relationship, known
as functional cortico-muscular connectivity, is critical in
neuroscience and is typically studied using concurrent
recordings of neural signals such as electroencephalogra-
phy (EEG) and electromyography (EMG) [4, 5] (Fig. 1).
Practical applications include diagnosing and monitoring
of neuromuscular disorders, such as amyotrophic lateral
sclerosis [6], stroke [7], and Parkinson’s disease [8], as
well as developing brain-computer interfaces (BCIs) for
individuals with motor impairments [9].
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Despite several applications, there is still a lack of proper statistical tools to model the relationship
between EEG and EMG. The predominant method, Cortico-Muscular Coherence (CMC), measures
temporal and spectral coherence by computing the normalized cross-spectrum in time intervals [10].
From this analysis, it is generally accepted that the EEG’s beta band (13-30 Hz) is linked to steady
motor control, while the gamma band (>30 Hz) is associated to motor planning and execution
[5, 11–13].

While CMC provides some relevant information on cortico-muscular connectivity, there remains
a lack of generalized and higher-order statistical measures that quantify nonlinear and high-level
connectivity. Can high-level contextual information, such as muscle movements and participant
identifiers, be directly learned from modeling cortico-muscular connectivity? Our paper explores the
potential of using statistical dependence estimators to address this problem.

Statistical dependence estimators typically follow a procedure of defining a measure preferably by
probabilistic distributions, deriving a variational bound, and optimizing a variational cost of this
bound using a function approximator, such as mutual information estimators [14–16] and Kernel
Independent Component Analysis (KICA) [17, 18]. These measures are defined for realizations.

However, statistical dependence estimators above have rarely been successfully applied to cortico-
muscular analysis, mainly due to three reasons: instability and poor scalability, lack of spatio-temporal
resolution, and lack of practical contextual connections. As these estimators typically quantify
dependence at the trial level, they overlook the importance of channel and temporal dependence in
cortico-muscular analysis. More importantly, these measures only produce a scalar-valued score, but
how this score should be used and its connection to the desired contextual factors are unclear.

This paper successfully applies statistical dependence estimators to EEG-EMG pairs using the concept
of orthonormal decomposition of the density ratio. Recently, there has been a shift from scalar-valued
measures to decomposing density ratio as a positive definite function, and learning its eigenvalues,
eigenfunctions, and associated projection spaces through neural network optimization with matrix cost
functions such as log det and nuclear norm [19–21]. This decomposition, known as the Functional
Maximal Correlation Algorithm (FMCA), addresses the fundamental issue of relating dependence to
contextual information: Eigenvalues define a multivariate dependence measure, and eigenfunctions
span a feature projection space that captures the contextual factors affecting dependence.

This paper expands on this idea, addressing interpretability, scalability, and local-level dependence
that are missing in existing dependence analyses. Sec. 2.1 explains why eigenfunctions, learned
from cortico-muscular connectivity, can capture contextual factors for motor control and participant
identification. Sec. 2.2 introduces FMCA-T, optimizing a new matrix trace cost for the theory, which
demonstrates greater efficiency and stability than the log det cost. Sec. 2.3 shows that while the
objective estimates global dependence from trial realizations, localized channel-level and temporal-
level dependencies can also be formed in a top-down manner, which are important in EEG as they
indicate channel activations and synchronization of activities. Our framework is illustrated in Fig. 2.

Our main experiment demonstrates that the learned eigenfunctions, without labels, effectively capture
factors such as movements and subjects that contribute to high-level cortico-muscular connectivity.
After training, using EEG’s eigenfunction as a feature projector noticeably improves classification
accuracy over various baselines. Additionally, channel-level and temporal-level dependencies indicate
that specific EEG channels are selectively activated during movements, corroborating neuroscientific
findings. Simulated data further confirm that our proposed measure is invariant to nonstationary
noise, including pink noise and random delays.

2 Methods

2.1 Density ratio decomposition for EEG-EMG signal pairs

Problem formulation. Consider EEG signals X := X1:T and EMG signals Y := Y 1:T . Denote
s as the subject, c as the type of movement, and u as other auxiliary contextual factors. These are
factors that could potentially affect the statistical dependence between EEG and EMG signals. Each
signal is conditioned on these parameters. Denote these factors as z := {s, c,u} with distribution
P(z). Distributions for EEG and EMG given these conditions are p(X = X|z) and p(Y = Y |z),
respectively. Their joint distribution is given by p(X,Y ) =

∫
p(X|z)p(Y |z)p(z)dz. Similarly, the

marginal distributions are given by p(X) =
∫
p(X|z)p(z)dz, and likewise p(Y ) =

∫
p(Y |z)p(z)dz.
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Figure 2: Diagram for learning cortico-muscular dependence by decomposing density ratios: (a) Network f θ is
applied to EEG X1:T and gω to EMG Y 1:T to minimize a matrix trace cost. (b) EEG-EMG pairs are sampled
from a joint distribution, from which a density ratio ρ(X, Y ) is defined and considered a positive definite
function. Its linear operator has a spectral decomposition of eigenfunctions {ϕ, ψ} and eigenvalues {σk}.
The networks provably approximate the dominant eigenvalues and eigenfunctions of this decomposition with
network outputs {f̂ θ , ĝω}, and SVD results {λk}. Eigenvalues here measure multivariate statistical dependence;
eigenfunctions are optimal feature projectors. (c) After training, the eigenfunctions, specifically those from EEG,
form a projection space containing contextual information for motor control and participant identification. (d) To
provide channel activation and activity synchronization for cortico-muscular analysis, we compute density ratios
between channel-level Zc and temporal-level features Zc,s against global features ZF to quantify channel-level
and temporal-level dependencies.

Our goal is to extract factors s, c,u that affect the dependence between two modalities, from available
sample pairs of X and Y , even when s, c, and u are not given. We propose that this can be achieved
by decomposing the density ratio of this probabilistic system.

Decomposition of EEG and EMG density ratios. Following the work on FMCA, we propose an
orthonormal decomposition of the density ratio to measure the dependence between EEG and EMG:

ρ := p(X,Y )
p(X)p(Y ) =

∞∑
k=1

√
σk ϕk(X)ψk(Y ),

∫
X
ϕi(X)ϕj(X) dP(X) =

{
1, if i = j

0, if i ̸= j
,

∫
Y
ψi(Y )ψj(Y ) dP(Y ) =

{
1, if i = j

0, if i ̸= j
,

(1)

for any i, j = 1, 2, · · · . The density ratio ρ(X,Y ) is treated as a positive definite function associated
with a linear operator Lf :=

∫
ρ(X, ·)f(X) dX for any measurable scalar function f . According

to Mercer’s theorem, this operator has a spectral decomposition with eigenvalues σ1, σ2, · · · , and
orthonormal basis functions ϕ1, ϕ2, · · · and ψ1, ψ2, · · · . In scenarios where X and Y are statistically
independent, all eigenvalues are zero. Conversely, larger eigenvalues suggest stronger dependence.

Such eigenfunctions form a linear span. Our hypothesis is that this span captures shared contextual
factors such as c and s across two modalities, stated as follows.
Lemma 1. Assuming conditional independence given z := {s, c,u}, we have p(X,Y |z) =
p(X|z)p(Y |z). Hence, the ratio ρ(X,Y ) := p(X,Y )

p(X)p(Y ) decomposes as ρ(X,Y ) =
∫ p(X|z)p(z)

p(X)p(z) ·
p(Y |z)p(z)
p(Y )p(z) · p(z)dz. Assuming z is discrete (e.g., movement patterns c and participant identities s),

the information of z is contained in the span of the basis functions for the density ratio ρ(X,Y ).

Proof. Define the ratios ρX(X, z) = p(X,z)
p(X)p(z) and ρY (Y, z) = p(Y,z)

p(Y )p(z) . Considering the sample
space Z , the sets ρX(X, z) and ρY (Y, z) for z ∈ Z are discrete. Under the conditional independence
assumption, these ratios satisfy ρ(X,Y ) =

∑
z∈Z p(z)ρX(X, z)ρY (Y, z).

This indicates that the sets ρX(X, z) and ρY (Y, z) decompose ρ(X,Y ), similar to the eigenfunctions
ϕk and ψk. Since both decompositions represent ρ(X,Y ), the functions ρX(X, z) and ρY (Y, z)
must lie within the span of these basis functions. Hence, there exist coefficients αz,k and βz,k such
that ρX(X, z) =

∑
k αz,kϕk(X) and ρY (Y, z) =

∑
k βz,kψk(Y ) for each z. Thus, learning the

3

129305 https://doi.org/10.52202/079017-4108



dependence between X and Y is implicitly learning the dependence between each of them relative
to the factors z , even when z is not observed.

2.2 FMCA-T: Learning decomposition for the matrix trace

When probability densities are unavailable, we approximate eigenvalues and eigenfunctions using a
learning system with two neural networks and a cost function, typically a matrix cost like log det or
nuclear norm [19–21]. These costs optimize an aggregation of eigenvalues. The networks learn the
dominant eigenvalues and eigenfunctions when optimized.

Aggregation of eigenvalues. To measure the total power of the eigenspectrum, define a scalar-valued
measure using a convex function ξ : R → R with ξ(0) = 0. Assume the eigenvalues are ranked
σ1 ≥ σ2 ≥ · · ·. The truncated total statistical dependence measure of the top K eigenvalues is
defined by Tξ :=

∑K
k=1 ξ(σk). Function ξ(x) = − log(1− x) corresponds to the log det cost.

Prior work: log-determinant cost. Consider two networks, f θ : X → RK and gω : Y → RK ,
mapping realizations of X and Y to K-dimensional outputs, respectively. Assume f θ is for EEG
and gω for EMG. The autocorrelation (ACFs) and cross-correlation functions (CCFs) are defined as:

RF = EX [f θ(X)f ⊺
θ (X)], RG = EY [gω(Y )g⊺

ω(Y )],PF G = EX,Y [f θ(X)g⊺
ω(Y )], RF G =

[
RF PF G

P⊺
F G RG

]
.

(2)

FMCA minimizes a log det cost, which reaches the negative value of the total measure Tξ of
ξ(x) = − log(1− x) when minimized. The cost is defined by:

min
θ,ω

rL(θ, ω) = log det RF G − log det RF − log det RG, r∗
L =

K∑
k=1

log(1− σk). (3)

Normalization trick. After training, normalizations are needed to obtain eigenfunctions. The first
step is to ensure orthonormality: f θ = R− 1

2
F f θ, gω = R− 1

2
G gω. The second step is a singular value

decomposition: PF G = E[f θ(X)gω
⊺(X)] = US

1
2 V , where S = diag(λ1, · · · , λK). The third

step is to normalize functions such that they are invariant to the linear operator: f̂ θ = U⊺f θ, ĝω =
V ⊺gω. Functions f̂ θ, ĝω are the top eigenfunctions of the density ratio, and λ1, λ2, · · · are the top
eigenvalues. An approximation of the density ratio is given by ρ̂ = f̂ θ

⊺S
1
2 ĝω ≈ ρ.

Newly proposed: matrix trace cost. This paper explores alternative convex functions, specifically
the simplest case ξ(x) = x, The cost, in the form of a matrix trace, is described below.

Lemma 2. Denote P := PF G. Given neural nets f θ and gω , minimizing the matrix trace

min
θ,ω

rT (θ, ω) = −Trace(R−1
F PR−1

G P⊺), (4)

yields r∗
T (θ, ω) = −

∑K
k=1 σk, where r∗

T (θ, ω) is the optimal cost, reaching the sum of the top K
eigenvalues of the density ratio when minimized. We name this algorithm FMCA-T.

Proof. Applying the Schur complement to rL, we obtain rL = log det(I −R− 1
2

F PR−1
G P⊺R− 1

2
F ).

Denoting eigenvalues of a matrix as λ1(·), · · · , λK(·), the cost becomes rL =
∑

k log(1− λk(M )),

where M = R− 1
2

F PR−1
G P⊺R− 1

2
F . Optimizing the sum of eigenvalues instead, we use Trace(M )

and, based on the trace property Trace(AB) = Trace(BA), derive the trace cost for learning
multivariate statistical dependence as rT = −Trace(R−1

F PR−1
G P⊺).

FMCA-T is more computationally efficient as it uses only matrix operations of dimensionK. Directly
optimizing the sum of the eigenvalues is also more stable than optimizing their logarithm.
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2.3 Channel-level and temporal-level dependencies

Motivations. For EEG X1:T and EMG Y 1:T , FMCA-T applies two networks, f θ and gω, to
minimize the matrix trace cost. Dependence is measured at two levels: random-process level,
measured by eigenvalues for the overall dataset dependence, and trial level, measured by the density
ratio—the higher the ratio, the greater the contribution of this pair of realizations to overall dependence.
In cortico-muscular analysis, it is vital to understand how individual channels and time steps contribute
to connectivity, especially in EEG signals, as they represent the temporal and spatial dynamics of brain.
Hence, we propose localized density ratios to measure temporal-level dependence and channel-level
dependence. The core idea is computing density ratios between channel-level and temporal-level
features against the global trial-level features.

Channel-level features. We design a specialized network topology to generate features for individual
channels and time intervals, ensuring that the internal layers of this network quantify channel-level
and temporal-level features, similar to [22–24].

Given X1:T = [X1:T (1), · · · ,X1:T (C)]⊺ for channels c = 1, · · · , C, we define a temporal network
FT N : RT → RK that maps single-channel signals to a K-dimensional feature space, and a channel
network FCN : RL×K → RK that maps concatenated channel features to global features:

Zc = FT N (X1:T (c)) , c = 1, · · · , C; ZF = FCN ([Z1,Z2, · · · ,ZC ]⊺) , (5)

where Z1,Z2, · · · ,ZC are channel-level features, and ZF is global trial-level features.

Channel-level dependence ρ̂C,F (c). The density ratio of Z1,Z2, · · · ,ZC relative to ZF measures
channel-level dependence. Post-training and with fixed parameters, we compute the ACF of the
channel features RC = 1

CE[
∑C

c=1 ZcZc
⊺], the ACF of the global features RF = E[ZF Z⊺

F ], and
the CCF between them PC,F = 1

CE[
∑C

c=1 ZcZ⊺
F ].

Next, the features are normalized as in the Sec. 2.2: Zc and ZF are normalized to Zc = R− 1
2

C Zc

and ZF = R− 1
2

F ZF for orthonormality. The SVD of R− 1
2

C PC,F R− 1
2

F = US
1
2 V is computed. The

outputs are further normalized to Ẑc = U⊺Zc and ẐF = V ⊺ZF to guarantee invariance in the
linear operator. Finally, the density ratio can be constructed as ρ̂C,F (c) = Ẑc

⊺SẐF .

This ratio ρ̂C,F (c) is a function of channel c and trial X , implying the dependence between channel
and global features. The greater the value, the stronger the activation of the channels, showing which
channels contribute the most to the cortico-muscular connectivity.

Temporal-level features and dependence. To measure time-domain dependence, we compute
density ratios between the internal features of the temporal network FT N and the global features, in
two steps: first, computing density ratios between adjacent network layers; second, aggregating these
ratios to consider all layers.

Step 1: Construct density ratios ρ̂s−1,s,c(τ1, τ2) between adjacent layers. Fix a channel c and
feature Zc. Consider a simple temporal network with S convolution layers with nonlinaer ac-
tivation functions: F (1)

T N ,F
(2)
T N , · · · ,F

(S)
T N , with kernel sizes ∆1,∆2, · · · ,∆S , and their outputs

Zc,1,Zc,2, · · · ,Zc,S . Suppose the time dimensions of these layers are T1, T2, · · · , TS . Fix any layer
s. The τ -th element of Zc,s, denoted as Zc,s(τ), is obtained by applying a nonlinear operation to a
segment of the previous layer’s output:

Zc,s(τ) = F (s−1)
T N (Zc,s−1(τ : τ + ∆s−1)) . (6)

• Define the ACF of layer s− 1: Rc,s−1 = 1
Ts−1

E[
∑

τ Zc,s−1(τ)Z⊺
c,s−1(τ)]

• Define the ACF of layer s: Rc,s = 1
Ts
E[

∑
τ Zc,s(τ)Z⊺

c,s(τ)]

• Define the CCF between them: Pc,s−1,s = 1
Ts
E[

∑
τ

∑∆s

δ=1 Zc,s−1(τ + δ)Z⊺
c,s(τ)].
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Normalization with Rc,s−1, Rc,s, and Pc,s−1,s yields density ratios ρ̂s−1,s,c(τ1, τ2), which quantify
the dependence between time τ1 and τ2 across two layers s− 1 and s, for a given trial and channel c.
A higher value indicates a stronger dependence between adjacent network layers.

Step 2: Aggregate layer-wise ratios for localized responses ϱ̂s,c(τ). While ρ̂s−1,s,c(τ1, τ2) quanti-
fies dependence between two layers, we aggregate these ratios to account for all network layers.

Again, fix the element Zc,s(τ) in layer s. We focus on its mapping to the next layer s+ 1. Based on
Eq. (6), elements in layer s+ 1 that are mapped from Zc,s(τ) by F (s)

F P are within a window of size
∆s (the kernel size). To ensure this window stays within the feature vector’s boundary, we define
coordinates Is = [max (0, τ −∆s + 1) ,min (i, Ts+1 − 1)]. Feature elements in layer s+ 1 that are
mapped from Zc,s(τ) fall within these coordinates.

We then create a series of functions ϱ̂s,c(τ) with τ ∈ [1, Ts] for each layer s as the aggregations of
the ratios. Starting from ϱ̂S,c(τ) = ρ̂C,F (c) (channel-level density ratio), compute recursively

ϱ̂s,c(τ1) =
∑

τ2∈Is

ϱ̂s+1,c(τ2)ρ̂s,s+1,c(τ1, τ2), τ1 ∈ [1, Ts] (7)

That is, starting from the top layer of the network, we aggregate the density ratios within the window
Is, layer-by-layer, until we generate a localized measurement for each element of the function ϱ̂s,c(τ)
at layer s, channel c, and time τ ∈ [1, Ts], considering all neural network layers.

The final localized responses of the density ratio, ϱ̂s,c(τ), obtained in a top-down manner, are
functions of the EEG trial X1:T , time step τ , and channel c, providing both temporal and channel-
level resolution. The same analysis applies to EMG signals, differing only in the number of channels.

3 Experiments

Our experiments have three key findings: (1) Dependence measured by FMCA-T is stable against
nonstationary noises and delays in simulated dataset; (2) Learning from unlabeled EEG-EMG pairs
extracts movement and subject information from EEG’s eigenfunctions; (3) EEG’s spatio-temporal
dependencies are consistent with ground truth brain activations in simulated dataset and match
theoretical evidence in experimental dataset.

3.1 Datasets and baselines

Dataset 1: SinWav. We construct a simulated dataset where each data pair {X1:T ,Y 1:T } has a
clean sinusoidal signal Xt = A sin(ωt) and a noisy counterpart Y t superimposed with various
types of noise: stationary white noise ϵt ∼ N (0, σ2), nonstationary Gaussian noise σ2

t ∝ |Xt|, and
nonstationary pink noise S(f) ∝ 1/fα. Random delays are added by padding the start and end of the
signal with noise such that Y t = ϵt is white for 1 ≤ t ≤ τ1 and T − τ2 < t ≤ T , and Y t = Xt−τ1
is sinusoidal for τ1 < t ≤ T − τ2, where τ1 + τ2 = τ is fixed. Since these noises do not change the
underlying sinusoid, the signal pairs are statistically independent when conditioned on the sinusoid.
Thus, we expect the dependence measure to be unaffected by the noise level.

Dataset 2: EEG-EMG-Fusion. We use a public dataset [25] (approved by the Institutional Review
Board at Korea University, 1040548-KU-IRB-17-181-A-2) with paired 60-channel EEG and 7-
channel EMG recordings from 25 subjects. The subjects perform three main movements: arm-
reaching, hand-grasping, and wrist-twisting. Each main movement contains sub-movements: arm-
reaching along six directions, hand-grasping three objects, and wrist-twisting with two motions, and
thus 11 movements in total. Subjects perform one sub-movement per trial, and 50 trials are collected
per sub-movement. The same recordings are repeated for three sessions at one-week intervals. Both
EEG and EMG are recorded at 2,500 Hz and downsampled to 1,000 Hz. The dataset is cleaned
by removing eye-blinking artifacts and baseline wandering, and segmented into 4-second intervals,
creating 41,250 paired samples of complete movement cycles.

Dataset 3: Simulated EEG-EMG Dataset. We simulate 128-channel EEG signals and 7-channel
EMG signals for left/right motor and sensory activations from 20 subjects using EEGSourceSim

6
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[26]. Motor sources are used to simulate the corresponding EMG signals. Both EEG and EMG are
sampled at 1,000 Hz. White Gaussian noise at 5 dB is added to the EEG and EMG signals. FMCA-T
is trained on 16 subjects and tested on 4 subjects to compare FMCA-T’s spatial-level dependence
representation with the ground truth activations, as shown in Fig. 6.

Classification tasks. We conduct three classification experiments: 3-class (three main movements),
11-class (11 sub-movements), and Subj (25 subjects). We also compare inter-subject and cross-
subject classifications. Cross-subject means the test set contains only unseen subjects. Inter-subject
uses an 80-20 split of trials from all subjects for training and testing, while cross-subject uses 20
subjects for training and 5 for testing with five-fold cross-validation.

Statistical dependence baselines. We compare our proposed dependence measure with established
baselines: (1) KICA [17] and HSIC [18], which solve the generalized eigenvalue problem of two
kernel Gram matrices, using

∑
i λi for HSIC and −

∑
i log(1 − λi) for KICA; (2) MINE [14],

which optimizes the Donsker-Varadhan representation with a three-layer MLP; (3) CC: Pearson
correlation coefficient averaged over time; (4) MIR (KNN estimator [27]), which optimizes entropies
using k-nearest neighbor distances, and then computes mutual information; (5) Our method uses
density ratios for trial-level dependence and eigenvalue aggregations Tξ for random-process-level
dependence.

For the EEG-EMG dependence study, we compare with CMC, the correlation coefficient between
EEG and EMG spectra of windowed data on the alpha band of channel C4 [25]. We extend CMC by
replacing linear correlation with nonlinear measures, computing CMC-KICA and CMC-MIR.

EEG feature projector baselines. After training f θ and gω networks for dependence estimation,
with parameters fixed, we train a three-layer MLP on EEG’s eigenfunctions (f̂ θ(X)) for classification.
This is compared with baseline EEG classifiers trained from scratch: (1) Supervised: Vanilla Classifier,
with the same topology as ours but using a standard log-likelihood cost; EEG-Net [22], a specialized
network for EEG-based BCI; EEG-Conformer [28], a compact convolutional transformer for EEG
decoding and visualization; Deep4 [29], a deep ConvNet for classification using raw EEG; and
CSP-RLDA [30], using common spatial pattern (CSP) for feature extraction and regularized linear
discriminant analysis (RLDA), adapted for multi-class classification with majority voting. (2) Self-
Supervised: contrastive costs using 1-second windows from the same signal as positive pairs and
from different signals as negative pairs, including Barlow Twins [31], SimCLR [32], and VicReg [33].
Experimental and implementation details can refer to the App. C.

3.2 Main results

Robustness of FMCA-T. Fig. 3 shows the robustness of our proposed measure in the SinWav dataset,
when there are increasing levels of nonstationary noise and delays. Since EEG and EMG signals are
often damaged and distorted by environmental noise and the functional coupling occurs with time
delays, an effective measure should maintain its robustness against these factors.

(a)Gaussian Noise (b)Nonstationary Gaussian (c)Pink Noise (d)Random Delay

N
o
r
m
a
l
i
z
e
d
 
M
e
a
s
u
r
e

Figure 3: Density ratios from FMCA-T are robust to various noise types: (a) stationary white Gaussian noise,
(b) nonstationary Gaussian noise, (c) nonstationary pink noise, and (d) random delays. FMCA-T proves the most
robust estimations across all noise types and outperforms all linear and nonlinear baselines. Note that as delays
increase, estimations using CC produce negative values given the opposite phase between the paired sinusoids.

In Fig. 3, FMCA-T is first trained on noisy data pairs with all four noise types and magnitudes
(Sec. 3.1). Using the trained models, we measure the dependence between a clean sinusoid and its
noisy counterpart. A noise level of 1.0 means the noise magnitude matches the sinusoid. The delay
level determines the extent to which the clean sinusoid is shifted from its original position. A delay
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level of 1.0 shifts the sinusoid to have no intersection with the original one. FMCA-T consistently
shows invariance to noise and delays, as the dependence is determined by their frequency but not by
the noise and phase shift. MINE fails to converge and produce stable results for this dataset.

Applying FMCA-T to EEG-EMG-Fusion. We confirm our primary hypothesis that the projection
space defined by EEG eigenfunctions, derived from modeling the statistical dependence between
EEG-EMG recordings, captures essential contextual factors like movements and subjects without
requiring labels. We visualize the learned eigenfunctions and density ratios in Fig. 4.

Fig. 4(a), Fig. 4(b): eigenfunctions f̂ θ. EEG’s eigenfunctions effectively capture relevant con-
textual information. After training eigenfunctions using the entire dataset, we extract a subset of
eigenfunctions that belong to a specific subject or a movement and apply t-SNE to visualize them.

Fig. 4(a) visualizes the eigenfunctions of all trials for one subject (SUB1). Each trial is color-coded
by the type of movement (MOV1∼MOV3). Notably, the eigenfunctions form nine clusters, which are
verified to correspond to the three movements recorded over three sessions. This demonstrates that
the eigenfunctions contain motion-related information. The consistent clustering patterns across all
25 subjects are detailed in the App. B.
Fig. 4(b) visualizes the eigenfunctions from a single type of movement (reaching, labeled as MOV1)
across ten different subjects (SUB1∼SUB10). Each color represents a subject. Distinct clustering
patterns are observed, showing that the eigenfunctions also contain subject information which could
be useful for participant identification.

Fig. 4(c), 4(d): density ratio ̂ρ(X,Y ). Based on the t-SNE plot for SUB1 trials, we plot the estimated
density ratio values between each EEG-EMG pair in Fig. 4(c). In Fig. 4(d), we extract the mean of
density ratios for trials in each cluster (C1∼C9), rank them from smallest to largest, and plot them
alongside the standard deviation. These figures show that the density ratios remain consistent within
each cluster (a movement during a session) while vary across different clusters. We find the highest
dependence in reaching, followed by grasping, and the lowest in twisting. Our results are consistent
with existing literature that links cortico-muscular connectivity with movement types [34, 35]. The
results are consistent across all subjects, detailed in the App. B.

Fig. 4(e)∼(h) presents the results of MINE and CMC measures for SUB1 trials. Only MINE produces
a comparable measure that shows difference across clusters, but with higher variance and instability.

Twist

Grasp
Reach

(a)TSNE, SUB1, MOV1~MOV3 (b)TSNE, MOV1, SUB1~SUB10 (c)FMCA Density Ratio

(e)MINE Measure (f)CMC Measure (g)CMC-MIR Measure (h)CMC-KICA Measure(d)FMCA Measure

Reach

Twist

Grasp

Figure 4: Visualizing eigenfunctions and density ratios in EEG-EMG fusion with FMCA-T: (a) t-SNE of
EEG’s eigenfunctions for a single subject (SUB1) show nine clusters specific to three movements (MOV1∼MOV3)
across three sessions. (b) t-SNE of EEG’s eigenfunctions for reaching movement (MOV1) across 10 subjects
(SUB1∼SUB10) shows clusters specific to subjects, where each color is a subject. (c) Density ratios and (d) their
mean and std of each cluster (C1∼ C9) demonstrate intra-cluster consistency and inter-cluster separability. (e-h)
Comparison of baseline measures, where only MINE is comparable but with higher variance and instability.

EEG’s eigenfunctions as optimal feature projector. Table 1 validates the claims in Fig. 4 with
classification accuracy comparisons. We extract EEG eigenfunctions from the training set after the
networks are trained on EEG-EMG pairs. The eigenfunctions are used to train a three-layer MLP
for classification. This classifier predicts the class of any EEG test samples using its eigenfunctions
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(output of f̂ θ), without requiring EMG samples. As detailed in the Sec. 3.1, scores for 3-class,
11-class, and subj are presented in both inter-subject and cross-subject settings.

In inter-subject 3-class classification (80-20 split across trials from 25 subjects), FMCA-T exceeds
the supervised baseline (EEGNet) by 7.2%, the classical EEG decoding method (CSP-RLDA) by
1.0%, and self-supervised methods by over 9.5%. Notably, CSP-RLDA is trained and tested on each
individual subject, with the accuracy averaged across 25 subjects, thereby representing an upper
bound for classical methods. All other methods are trained and tested on the combined subject data.
For the 11-class classification task, FMCA-T surpasses all baselines with a classification accuracy of
0.32, significantly higher than the chance level of 0.09. Since CSP-RLDA uses binary classification
with majority voting, it is computationally infeasible for 11 sub-movements classification.

In the more challenging cross-subject classification (trained on 20 subjects, tested on 5), FMCA-T
with trace loss outperforms all baselines by over 10%, achieving an accuracy of 0.54 in the 3-class
task. The highest scores from 10,000 iterations are recorded, and experiments are repeated with
five-fold validation. The superior performance of FMCA-T in the cross-subject setting suggests that
learning EEG-EMG dependence is robust against distribution shifts and nonstationary noise, which is
consistent with the observation that self-supervised methods outperform supervised ones.

Comparing FMCA-LD (log det) and FMCA-T (matrix trace), we find that trace cost has greater
stability and reduced variance. The sum of eigenvalues, especially during prolonged training, is more
stable. While both costs show similar performance at the initial training stages, FMCA-T has notably
reduced variance during the convergence stage of training.

Methods (a) Inter-Subject Acc. (b) Cross-Subject Acc.
3-Class 11-Class Subj 3-Class 11-Class

Supervised
Vanilla 0.907±0.020 0.220±0.015 0.980±0.010 0.427±0.021 0.110±0.005
EEGNet 0.904±0.015 0.246±0.028 0.988±0.007 0.405±0.019 0.095±0.021
EEG-Conformer 0.949±0.001 0.268±0.001 0.976±0.002 0.415±0.002 0.105±0.001
Deep4 0.901±0.001 0.274±0.001 0.941±0.001 0.429±0.001 0.140±0.000
CSP-RLDA 0.985±0.019 / / 0.408±0.018 /

Self-Supervised
Barlow Twins 0.893±0.018 0.269±0.012 0.987±0.008 0.437±0.018 0.115±0.004
SimCLR 0.890±0.019 0.257±0.013 0.979±0.011 0.441±0.020 0.117±0.006
VicReg 0.899±0.016 0.274±0.014 0.980±0.009 0.449±0.016 0.115±0.005

EEG-EMG Dependence
FMCA-LD 0.985±0.003 0.257±0.011 0.989±0.007 0.509±0.014 0.115±0.003
FMCA-T 0.994±0.002 0.320±0.009 0.998±0.004 0.540±0.012 0.121±0.002

Table 1: Comparison
of classification accura-
cies: supervised, self-
supervised, and our EEG-
EMG dependence learn-
ing. FMCA-T’s eigen-
functions, trained with
trace cost without labels,
are optimal feature pro-
jectors for EEG. EMG is
not required for testing,
but only used for train-
ing.

Spatio-temporal dependencies - real data. We visualize the local density ratio responses of cluster
SUB3-C1 (reaching movement) in both spatial (ρ̂C,F (c)) and temporal domains (ϱ̂s,c(τ)) in Fig. 5.
The channel-level dependence is averaged across all trials and displayed in Fig. 5(a). We also
randomly select nine trials from the same cluster and visualize them in Fig. 5(b). The temporal-level
dependence for the first trial T1 in SUB3-C1 is shown in Fig. 5(c). Consistent activations are observed
in other subjects, details in the App. B.

As illustrated in Fig. 5, the localized density ratio remains stable throughout the 4-second movement,
corroborating the consistency of brain-muscle connectivity during stable states [36]. We also find
that in channel-level dependence, the density ratio activates the fronto-central (FC) areas. The
sensorimotor area is crucial for movement control, with EEG data from these regions often used to
decode motor intentions. However, motor control also relies on cognitive processes [37], especially
during movement planning, complex tasks, and collaborations [38]. Thus, the region of Brodmann
area 6, well acknowledged to playing a role in movement planning may contribute differently during
various movement tasks [39]. Our findings show that the features extracted from these fronto-central
areas play an important role in classification.

Spatio-temporal dependencies - simulated data. We implement FMCA-T on paired EEG-EMG
samples from the simulated dataset, using 16 subjects for training and 4 subjects for testing. We
compare FMCA-T’s spatial-level dependence maps for these 4 testing subjects with their ground
truth brain activations computed by the motor ROI and forward matrices, shown in Fig. 6. FMCA-T’s
spatial-level dependencies are highly similar to the ground truth activations, indicating that the learned
density ratios effectively captured the real brain activations.
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(a)Channel Dependence      
1SUB3-C1-AVG

(b)Channel Dependence 
11SUB3-C1, T1~T9

(c)Temporal Dependence 
1SUB3-C1-T1

Figure 5: Localized density ratio for real data. Topographies for SUB3, C1 (reaching session) are normalized to
the range [0, 1]. (a) displays the averaged spatial distribution of C1 across all 50 trials; (b) presents nine random
trials T1-T9 from this session. Dark red indicates prominent activations around channel FC1. (c) shows stable
temporal-level dependence over the 4-second movement.

Subject 
17

Subject 
18

FMCA-T 
Dependence 

(L)

Ground Truth
Activations

(L)

FMCA-T 
Dependence

(R)

Ground Truth
Activations

(R)

FMCA-T 
Dependence 

(L)

Ground Truth
Activations

(L)

FMCA-T 
Dependence

(R)

Ground Truth
Activations

(R)

Subject 
19

Subject 
20

Figure 6: Localized density ratio for simulated data, showing that FMCA-T’s distribution is consistent with
ground truth brain activations when evaluated on four test subjects. Topographies are normalized to the range
[0, 1]. L indicates left brain activities and R indicates right brain activities.

4 Conclusion

This paper introduces a novel approach for estimating cortico-muscular dependence through the
orthonormal decomposition of the density ratio. By treating the density ratio as a positive definite
function and learning its projection space from EEG and EMG, we unveil the relationship between
statistical dependence, contextual factors impacting connectivity, and the spatio-temporal information
shared between the brain and muscles. While our method shows promising results, challenges remain.
For example, performance drops in cross-subject classification, likely due to the limited dataset of 25
participants. Future work will focus on applying our framework to larger datasets and incorporating
additional bio-signal modalities to model a broader common space in neural data.
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A Additional Implementation Details of FMCA-T

Adaptive estimators. Since autocorrelation functions (ACF) and crosscorrelation functions (CCF)
are expectations of inner products, we prefer to compute these expectations and the cost gradient
using an adaptive filter rather than a batch of data. For any parameter θ, the partial derivative of the
cost rT (f θ, gω) := Trace(R−1

F PR−1
G P⊺) has the following form:

∂rT

∂θ
= −Trace(R−1

F

∂RF

∂θ
R−1

F PR−1
G P⊺) + Trace(R−1

F

∂P
∂θ

R−1
G P⊺)

−Trace(R−1
F PR−1

G

∂RG

∂θ
R−1

G P⊺) + Trace(R−1
F PR−1

G

∂P⊺

∂θ
).

(8)

Observe that terms needed for the gradient have two classes: terms RF ,RG,P, as well as their
inverse, and terms of the derivatives ∂RF

∂θ , ∂RG

∂θ , ∂P
∂θ . We use a smoothing window over iterations

to estimate the RF ,RG,P, and then use the estimated values of R̃F , R̃G, P̃ as the matrices and
their inverse in the cost. For derivative terms ∂RF

∂θ , ∂RG

∂θ , ∂P
∂θ , we use the derivatives of the batch. We

choose smoothing coefficient β = 0.9 across all experiments.

Important parameters. When computing the matrix inverse of ACFs (R̃F
−1 and R̃G

−1), a small
diagonal matrix scaled by a regularization parameter, ϵI , is added. This constant is important for
training stability. We choose ϵ = 10−5 across all experiments. The output dimension of the network
is chosen as K = 128, which is also the number of eigenfunctions.

Pseudo-code of the algorithm. We also explain our algorithm with pseudo-code. Algorithm 1 shows
the pseudo-code for FMCA-T with adaptive estimators and computing eigenfunctions. Algorithm 2
shows how to generate channel-level and temporal-level dependencies.

Algorithm 1: FMCA-T w/ Adaptive Estimators.

Alg. Adaptive matrix estimators
1 Input: Batch estimation A; Tracking matrix Á; Iteration i;
2 Step 1. Á← β · Á + (1-β) ·A
3 Step 2. Ã = Á/(1− βi)
4 return Tracking matrix Á; Smoothed estimation Ã

Alg. FMCA-T: Optimize matrix trace cost
5 Initialize: Neural networks {f θ, gω}
6 Initialize: Tracking matrices ŔF , ŔG , Ṕ
7 for i = 1, 2, · · · do
8 Sample a batch of signals {Xn, Yn}bs

n=1;
9 Compute the ACF and CCF {RF ,RG,P} with this batch;

10 Apply adaptive estimators, obtain {R̃F , R̃G , P̃}, and update {ŔF , ŔG, Ṕ}.
11 Estimate gradients with smoothed estimator, update networks.

end
12 return θ, ω

Alg. Retrieve eigenfunctions and density ratios
Input: Trained networks f θ and gω . Dataset {Xn, Yn}N

n=1.
13 Step 1. Obtain outputs of networks. {f θ(Xn), gθ(Yn)}.
14 Step 2. Re-estimate RF , RG, P using these outputs.

15 Step 3. Normalization for orthonormality: f θ = R− 1
2

F f θ, gω = R− 1
2

G gω

16 Step 4. Compute SVD: P = E[f θ(X)gω
⊺(X)] = US

1
2 V

17 Step 5. Normalization for invariance: f̂ θ = U⊺f θ, ĝω = V ⊺gω

18 Step 6. Construct the density ratio: ρ̂ = f̂ θ
⊺S

1
2 ĝω ≈ ρ.

19 return Eigenfunctions f̂ θ, ĝω , eigenvalues S = diag(λ1, · · · , λK), density ratio ρ̂
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Algorithm 2: Generate channel-level and temporal-level dependencies.

Alg. Generate temporal and channel features:
1 Input: Trained network f θ for EEG, consisting of a temporal network FT N and a

channel network FCN ; An arbitrary EEG trial X
2 Step 1. Apply FT N to each channel: Zc = FT N (X(c)), c = 1, · · · , C
3 Step 2. Apply FCN to all channel features: ZF = FCN ([Z1, · · · , ZC ]⊺)
4 Step 3. Extract internal features of FCN : Zc,1, · · · ,Zc,S from S convolution blocks
5 return Temporal features Zc,s, channel features Zc, global features ZF

Alg. Generate channel-level dependencies
6 Input: Temporal, channel, global features from the dataset
7 foreach channel c do
8 Compute ACF and CCF for global and channel features, ZF and Zc

9 Use ACF and CCF to compute density ratio ρ̂C,F (c) with normalization
end

Alg. Generate temporal-level dependencies:
10 foreach channel c and layer s do
11 Compute ACF and CCF for temporal features between two layers, Zc,s,Zc,s+1
12 Use ACF and CCF to compute density ratio ρ̂s−1,s,c(τ1, τ2) between two layers.

end
13 Initialize ϱ̂S,c(τ) = ρ̂C,F (c); Initialize each ϱ̂s,c(τ) to have length Ts.
14 for s = S − 1, · · · , 1 do
15 For every Zs(τ), find elements in layer s+ 1 that are mapped from it (set Is)
16 Aggregate density ratios ϱ̂s,c(τ1) =

∑
τ2∈Is

ϱ̂s+1,c(τ2)ρ̂s,s+1,c(τ1, τ2),
end

17 return Channel dependence ρ̂C,F and spatio-temporal dependence ϱ̂s,c(τ) that can be
applied to any arbitrary EEG trial X .
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B Additional Experiments

Visualization of EEG’s eigenfunctions. Building on Fig. 4 from the main paper, we further present
results for the visualization of EEG’s eigenfunctions on all 25 participants. In Fig. 7, each trial is
color-coded by the estimated density ratios for all participants (SUB1 to SUB25). In Fig. 8, each trial
is color-coded by the label of their movements.

It can be observed that for each participant, the t-SNE projections form individual clusters, each
corresponding to one of the three main movements during a session. The density ratios are highly
similar within each cluster (intra-cluster) while varying across clusters (inter-cluster). This indicates
that using density ratio as a dependence measure effectively captures each movement individually.

FMCA-T Density Ratio, SUB1∼SUB25

Figure 7: t-SNE visualization of eigenfunctions from all trials of 25 participants, color-coded by
their corresponding density ratios. Each subplot represents one participant. The density ratios for the
three movements (reaching, grasping, and twisting) show consistent values: reaching is the lowest,
grasping is in the middle, and twisting is the highest. For cluster labels, refer to Fig. 8.
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TSNE, SUB1∼SUB25, MOV1∼MOV3

Figure 8: t-SNE visualization of all trials from 25 participants, color-coded by the type of movement:
reaching (green), grasping (blue), and twisting (red). Each participant has distinct clusters, with each
cluster corresponding to one of the three types of movements observed during the sessions.

From the figure, we observe that the reaching movement consistently has the lowest dependence,
twisting the highest, and grasping falling in between. This pattern matches the differences and com-
plexity of different movement tasks [34, 35]. This variability reflects the differences in connectivity
between the brain and target muscles, which is the basis of movement recognition and measurement
by using CMC [40].

Mean and variance of density ratios in clusters. Same as in Fig. 4 in the main paper, we extract the
nine clusters shown in the t-SNE projections (Fig. 8) and compute the mean and standard deviation
of the density ratios for each cluster (C1∼C9). This process is repeated for all 25 participants
(SUB1∼SUB25), with results shown in Fig. 9. The results further demonstrate the effectiveness of
using density ratio as a dependence measure, as the density ratios are similar within each cluster but
vary across different clusters (movements and sessions).

Participant identification. Similar to Fig. 4 in the main paper, where we visualize the projected EEG
eigenfunctions from 10 subjects during the reaching movement, we extend this analysis to include all
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three movements: reaching, grasping, and twisting. The projections shown in Fig. 9 illustrate that
participant information is consistently contained in the projection space of the eigenfunctions across
all movements, not just limited to reaching.

FMCA Density Ratio Variability, SUB1∼SUB25

Figure 9: Similar to Fig. 4, we extract the density ratios of each cluster for the subject, corresponding to one
movement and one session, rank their means, and plot them along with their standard deviations. It can be seen
that for each subject, the density ratio value for each cluster is different, indicating that our measures provide a
unique measurement for each movement of the subject. This figure is extended from Fig. 4 and shows that this
observation applies to all participants.

TSNE, REACH, GRASP, TWIST, SUB1∼SUB10

Figure 10: t-SNE projection of trials from ten participants. Subplots from left to right show the projected EEG
eigenfunctions from reaching, grasping, and twisting movements, respectively. In all movements, participant-
specific information is consistently captured in the clusters of the EEG’s eigenfunctions.
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Temporal-level dependence. Extending the analysis in Fig. 5 of the main paper, where the temporal-
level dependence was shown for a single subject, we randomly select another seven trials from subject
SUB3’s reaching movement (C1) and visualize the temporal-level dependence in Fig. 11. We also
plot the average temporal dependence across all trials in Fig. 11h. We find consistent activations of
fronto-central (FC) channel during the 4-second movement in each trial. When we compare each
trial’s result with the averaged one, still we observe that the activation patterns are highly similar.
This indicates that our dependence measure captures information that is consistent and generalizable
across subjects.

(a) SUB3, C1, T1 (b) SUB3, C1, T2

(c) SUB3, C1, T3 (d) SUB3, C1, T4

(e) SUB3, C1, T5 (f) SUB3, C1, T6

(g) SUB3, C1, T7 (h) SUB3, C1, Averaged

Figure 11: Temporal-level dependence for nine trials from SUB3’s reaching movement, confirming
consistent activation of the frontal brain region and stable temporal dependence over the movement.
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Channel-level dependence. Similar to Fig. 5 of the main paper, we also quantify the channel-level
statistical dependence from other subjects, not just SUB3. We randomly select clusters from subjects
and visualize the results in Fig. 12. We find a consistent pattern across subjects that the FC channels
are activated most strongly. It can also be observed that within each cluster (each subplot), channel
activations are highly similar across trials. This indicates that our dependence measure robustly
captures the cortical-muscular connectivity of the same movement.

(a) SUB6, C1 (b) SUB13, C9 (c) SUB17, C8

(d) SUB17, C4 (e) SUB6, C1 (f) SUB24, C2

Figure 12: Channel-level dependence for visualizing activation patterns. We find that there are strong
activations around the FC area across subjects, not just SUB3. We show that multiple clusters from various
subjects demonstrate similar activation channels in the FC area. This suggests that these channels are overall the
most important to classifying movements and contribute the most to connectivity.

Learning curve comparison. We show the smoothness of the training stage of FMCA-T, comparing
its learning curve with the learning curve of MINE when applied both on EEG-EMG-Fusion. As
shown in Fig. 13, FMCA-T demonstrates superior stability, whereas MINE suffers from greater
instability even when smoothing windows are applied to estimate the gradient of the variational cost
in the Donsker-Varadhan representation.

(a) MINE (b) FMCA-T (c) Eigenfunction Classifiers

Figure 13: Comparison of learning curves on EEG-EMG-Fusion dataset. MINE: Variational cost; FMCA-
T: Matrix trace cost; Eigenfunction Classifiers: Training errors. MINE suffers from high noise even when
smoothing windows are applied to estimate the gradient of the variational cost. MINE is unable to produce
stable and comparable results on SinWav. The classifier of eigenfunctions is trained separately from the rest of
the networks.
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Temporal-level dependence on SinWav. We analyze the temporal activations of the learned
dependence measure on SinWav by visualizing its localized density ratios. This is performed by
computing the density ratios between adjacent layers of feature projectors. The layer-wise density
ratios are then aggregated for visualization. We find that the localized density ratios exhibit higher
activations at the hills and valleys, and correctly capture the period and phase of the sinusoids when
there is an increasing delay between the two sinusoids (Fig. 14). As shown in Fig. 15, when Gaussian
noise with a standard deviation equal to 1.0 is added to the clean sinusoidal signal (signal-to-noise
ratio less than 0 dB), the density ratio can still correctly identify the hills and valleys. This indicates
that our proposed dependence measure is robust to random noise and delay by filtering out trivial
factors like noise while focusing on the primary signals.
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Delay level 0.0 Delay level 0.5 Delay level 1.0

Figure 14: Visualization of localized density ratios for samples from SinWav under three delay levels.
The first row shows localized density ratios based on the eigenfunctions of the input (clean) signal
and the second row shows the localized density ratios based on the eigenfunctions of the delayed
signal. The density ratio successfully captures the period and phase of the two signals.

Noise level 0.0 Noise level 0.5 Noise level 1.0
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Figure 15: Visualization of localized density ratios for samples from SinWav under three noisy levels.
The first row shows localized density ratios based on the eigenfunctions of the input (clean) signal
and the second row shows the localized density ratios based on the eigenfunctions of the noisy signal
(Gaussian noise). The localized density ratio successfully captures the period and phase of the noisy
signals even when the noise level reaches 1.0, where the signal-to-noise ratio is less than 0 dB.
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C Implementation Details

This section includes details of data preprocessing, implementation of baselines, network struc-
tures, and training configurations. Our code is available at https://github.com/bohu615/
corticomuscular-eigen-encoder.

C.1 EEG and EMG preprocessing

We performed standard preprocessing procedures for the 60-channel EEG signals, including 1)
Down-sampling from 2500 Hz to 1000 Hz, 2) Band-pass filtering at 1-48 Hz, 3) Removal of signal
artefacts with independent component analysis (ICA), and 4) Segmenting EEG at 0-4s of the onset
of the movement cue for each trial. 7-channel EMG signals were preprocessed according to the
following procedure: 1) Down-sampling from 2500 Hz to 1000 Hz, 2) High-pass filtering at 5 Hz, 3)
Baseline correction, and 4) Segmenting EMG at 0-4s of the onset of the movement cue for each trial.
The raw dataset (http://gigadb.org/dataset/100788) is distributed under a CC0 license.

C.2 Baseline implementations

CMC baselines. Cortico-muscular coherence (CMC) measures the linear synchronization between
sensorimotor rhythms (present in EEG) and muscular activities (reflected in EMG) to analyze
brain-muscle coupling. Given N trials, for each i-th EEG channel X1:T (n, i) and j-th EMG chan-
nel Y1:T (n, j), signals are filtered using a Butterworth filter and segmented into X̂t:t+τ (n, i) and
Ŷt:t+τ (n, j). Coherence is computed as the correlation coefficient (cc) between the spectral densities
of the windows, cc(FXt:t+τ , FYt:t+τ ), averaged over t to t+ τ .

It can be seen that cc is the correlation coefficients between two variables. We replace this linear
measure by nonlinear measures, such as measures from KICA and mutual information estimated by
KNN (MIR), producing CMC-KICA and CMC-MIR.

MINE implementation [14]. We adapt MINE with the same topology as ours but operating on the
joint space of EEG and EMG X × Y , producing a one-dimensional output. We find that using a
a sigmoid activation function stabilizes training. MINE computes hθ(X ,Y ) for samples from the
joint distribution and hθ(X ′,Y ′) for samples from respective marginal distributions, and minimizes
the variational cost minθ E[hθ(X ,Y )]− logE[ehθ(X′,Y ′)+10−5]. The network is optimized by a
Adam optimizer with a learning rate of 10−4, β1 = 0.5, and β2 = 0.9. MINE’s trial-level solution
follows the Donsker-Varadhan representation: log ρ(X,Y ) + γ, where γ can be any constant.

KICA and HSIC [17, 18]. KICA and HSIC are implemented in the following steps. First, individual
Gram matrices RX and RY are estimated for given Gaussian kernel K(Xi, Xj) = N (Xi −Xj ; δ)
with δ the standard deviation. Then, we construct the normalization matrix N i,j and normalize the
two Gram matrices as R̂X = NRXN and R̂Y = NRY N . For KICA-KGV, matrices A and B
are constructed:

A =
[
A1 0
0 A2

]
, A1 = R̂X R̂Y , A2 = R̂Y R̂X ,

B =
[
B1 0
0 B2

]
, B1 = (R̂X + ϵI )(R̂X + ϵI ), B2 = (R̂Y + ϵI )(R̂Y + ϵI ),

(9)

Then, solve the generalized eigenvalue problem for KICA Avi = σiBvi, where i = 1, · · · , 2N . This
generalized eigenproblem generates 2N eigenvalues that are symmetric over the real line. Only N
positive eigenvalues of them are used to compute the measure, obtaining KICA’s Kernel Generalized
Variance (KGV) measure. For HSIC, we construct matrix C :

C = B− 1
2

1 A1B2
− 1

2 , (10)

and solve the eigenvalue problem Cvi = σivi, where i = 1, · · · , N . Compute THSIC = Trace(C).
HSIC’s measure is named the Normalized Cross-Covariance Operator (NOCCO). Hyperparameters
are set as kernel size δ = 0.1 and regularization constant ϵ = 0.1.
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Self-Supervised baselines: Self-Supervised Learning (SSL) methods are also implemented to com-
pare the classification performance, including Barlow Twins [31], SimCLR [32], and VICReg [33].
We mainly use their cost functions. SSL experiments use a window size of 1, 000 with windows
from the same trial as positive pairs, and windows from different trials as negative pairs. The cost,
hyper-parameters, and implementations follow the Lightly package [41].

EEGNet [22]. EEGNet is a convolutional neural network commonly used for EEG signal classifica-
tion. After random search hyperparameter optimization, we find optimal performance with settings
close to the original paper’s recommendations. Validation set is split from the training set to enable
early stopping regularization. As in the original paper, we use the Adam optimizer with a learning
rate of 0.0001 and a decay factor of 0.1 every 20 epochs. We train and test EEGNet on the same
train-test splits as the proposed algorithm for all inter-subject and cross-subject experiments.

CSP-RLDA [30]. Common Spatial Pattern (CSP) has been proven to effectively discriminate two
classes of EEG by constructing optimal spatial filters. We use CSP to extract features and Regularized
Linear Discriminant Analysis (RLDA) as a classifier. If class sample volumes are unbalanced, the
CSP-based classifier may be biased towards the larger sample volume category. Thus particularly for
CSP, one participant with one wrist-twisting session with bad EEG quality was discarded from the
analysis. We use two pairs of CSP filters and extract four feature dimensions. CSP is trained and
tested in both inter-subject and cross-subject settings. To achieve three-class classification with CSP,
three classifiers are trained for each pair of the three classes, and a voting strategy determines the
results.

C.3 Network structures

The structure of the temporal network is illustrated in Table 2, which consists of four convolutional
blocks and max pooling. Each of these blocks and max pooling are treated as a layer for computing
localized density ratio responses. We apply the temporal network to each channel of the signal,
obtaining Z1,9,Z2,9, · · · ,ZC,9, where the total number of channels is C = 60 for EEG and C = 7
for EMG and 9 indicates the ninth layer. The output of the temporal network for each channel is a
vector with dimension K = 128. In the paper, we use the localized density ratios of Zc,6 to visualize
the temporal resolution.

The channel network is a three-layer MLP that takes [Z1,9,Z2,9, · · · ,ZC,9]⊺ (dimension of K × C)
as input and also produces an output of dimension K = 128. Each layer uses BN and ReLU with
2, 000 units per layer. The classifier used for eigenfunctions is also a three-layer MLP with 500 units
per layer.

Layer In Ch. Out Ch. Kernel Size Padding Output
Conv, BN, ReLu 1 32 11 5 Zc,1
Maxpool 32 32 4 - Zc,2
Conv, BN, ReLu 32 64 11 5 Zc,3
Maxpool 64 64 4 - Zc,4
Conv, BN, ReLu 64 128 11 5 Zc,5
Maxpool 128 128 4 - Zc,6
Conv, BN, ReLu 128 256 11 5 Zc,7
Maxpool 256 256 4 - Zc,8
Linear BN, ReLu 256 × 15 1024 - -
Linear BN, ReLu 1024 512 - - -
Linear, Sigmoid 512 K - - Zc,9

Table 2: Architecture of Temporal Network.

C.4 Training configurations

SinWav experiments were conducted on an NVIDIA GeForce RTX 3090. EEG-EMG-Fusion
experiments were conducted on an NVIDIA GeForce A5000. Both SinWav and EEG-EMG-Fusion
used an Adam optimizer with β1 = 0.5 and β2 = 0.9 for network optimization.
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D Limitation

We demonstrate the effectiveness of using FMCA to learn the dependence between EEG and EMG
signals and have shown that the learned eigenfunctions embed subject and movement information
after optimization. We conducted the experiments on a public EEG and EMG dataset, which only
contains 11 discrete upper extremity movements from 25 subjects. What we leave in the future is to
use the meaningful eigenfunctions for regression tasks, i.e., continuously predicting the kinematics
and contraction forces during the movement. Another limitation of the study is that we did not include
patients’ data due to a dearth of such large datasets that collect patients’ multi-modal bio-signals. We
hope that the promise offered by using our dependence measurement to evaluate cortico-muscular
connectivity will further stimulate experimental research in this direction. Last, from a technical
point of view, we only used convolutional neural networks with a concatenated MLP as the backbone
of our networks in this study. Although we suppose that a CNN model is sufficient for the current
scope as the temporal information is processed with CNN and spatial information can be leveraged
by the final MLP projection layer, more advanced network structures, such as the attention in the
transformer, could be potentially useful when aiming for more complex tasks.

E Broader Impact

This paper proposes to use the statistical dependence between the densities of neural data to evaluate
cortico-muscular connectivity. Compared with the traditional method (CMC) that computes the linear
correlation between EEG and EMG spectra, our measurement shows less variance within movement
and subject while is more distinguishable across movements and subjects. This helps in exploring the
neural information pathways from the brain to the muscle, which could further be used in the field of
patient rehabilitation. Moreover, the learned eigenfunctions can be used as “common information”
decoders, for example to decode movement and subject, and are more robust to distribution shift
when tested on unseen subjects. This could be very useful for developing brain-machine interfaces
under inter-subject conditions.

All datasets in this paper are publicly available and are not associated with any privacy or security
concerns. Usages of the datasets strictly follow the corresponding licenses.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: In the abstract and introduction, we claim that 1) learning the dependence
between EEG and EMG signals by using FMCA produces a robust dependence measure
of cortico-muscular connectivity, 2) the learned eigenfunctions embed rich information of
movement and subject, and 3) the temporal and spatial dependence can be visualised by
computing the localized density ratios. The claims are well justified in the Sec. 2 with
theoretical support and experimentally demonstrated in the Sec. 3.2, where we show that our
dependence measure is more consistent than other dependence measurements and classifiers
fed with EEG eigenfunctions outperform other baseline methods. We also show temporal
and channel activations that indicate the temporal and spatial distribution of the density ratio
in the Sec. 3.2.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: See Conclusion and App. D for discussions on limitations of this study.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We provide the proof in the Sec. 2.1 to demonstrate the eigenfunctions
decomposed from the density ratio form a linear span. in the Sec. 2.2, we provide proof to
derive the matrix trace cost.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We describe matrix trace cost in detail in the Sec. 2.2, which is the critical com-
ponent to reproduce our work. Network structures and training configurations are described
in the App. C. Pseudocodes for the algorithms are provided in the App. A. We include an
anonymous link (see App. C) that provides the source codes with all implementation details
and implementation of baselines.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We include an anonymous link (see App. C) that provides the source codes
with all implementation details and implementation of baselines. Details of data preparation
are provided in the App. C.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Details of experimental settings are provided in the App. C.
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7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We run experiments for five times and report the average value with standard
deviation. See Table 1, Figure 3, Figure 4 in the main text and App. B for more details.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: See App. C for information on computer resources.

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: See App. E for discussion on broader impacts of the work.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We used one public EEG and EMG dataset in this study. We cited the original
paper and provided the URL and the license of the asset in the App. C.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We used one toy dataset that generates pairs of sinusoids for a preliminary
study. We do not regard this toy dataset as a new asset. However, we described the details of
the dataset in the Sec. 3.1 and provided the codes via the link in the Appendix.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: We used one public EEG and EMG dataset in this study. We have acknowl-
edged the secondary use of this public human dataset and included the IRB approval of the
original public dataset (approved by the Institutional Review Board at Korea University,
1040548-KU-IRB-17-181-A-2) in the manuscript.
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