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Abstract

Motivated by the strategic participation of electricity producers in electricity day-
ahead market, we study the problem of online learning in repeated multi-unit uni-
form price auctions focusing on the adversarial opposing bid setting. The main
contribution of this paper is the introduction of a new modeling of the bid space.
Indeed, we prove that a learning algorithm leveraging the structure of this prob-
lem achieves a regret of Õ(K4/3T 2/3) under bandit feedback, improving over the
bound of Õ(K7/4T 3/4) previously obtained in the literature. This improved re-
gret rate is tight up to logarithmic terms. Inspired by electricity reserve markets,
we further introduce a different feedback model under which all winning bids are
revealed. This feedback interpolates between the full-information and bandit sce-
narios depending on the auctions’ results. We prove that, under this feedback, the
algorithm that we propose achieves regret Õ(K5/2

√
T ).

1 Introduction
The short-term electricity market, based on a wholesale market, is organized as an auction that de-
termines the quantity each electricity producer needs to produce and the price at which electricity is
sold. They participate, in this market by submitting prices for each kilowatt-hour they can produce.
They have the opportunity to participate strategically, submitting prices that can deviate from their
actual production cost. While several regulatory and practical constraints apply, this market is essen-
tially a multi-unit auction of identical items (Willems & Yu, 2022). These auctions are extensively
studied and utilized for resource allocation. Several pricing rules can be applied, the most common
being discriminatory pricing, uniform pricing (Ausubel et al., 2014), and Vickrey–Clarke–Groves
(VCG) auctions (Sessa et al., 2017). Although the VCG auction is known for its truthful bidding
property, it is seldom implemented due to its complexity. Instead, uniform or discriminatory pricing
are often preferred, particularly in treasury auctions (Khezr & Cumpston, 2022) and their procure-
ment variations in electricity reserve markets (Viehmann et al., 2021).

The wholesale electricity market is held every day and, structurally, the electricity producers who
participate in the mechanism remain the same for multiple years. This represents an opportunity to
study how producers can be strategic in the way they adapt to other’s bidding strategies. We there-
fore focus on the problem of online bidding in a repeated multi-unit auction. This setting allows
us to model how an agent participating multiple times to an auction with the same other partici-
pants can leverage the information he has obtained during past auctions. This family of settings,
of which a review is available in (Nedelec et al., 2022), was first investigated for learning from
the point of view of the auctioneer and was then applied to bidders learning how to bid optimally.
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Online learning in multi-unit auctions with uniform pricing (every object is sold at the same price
independently of the winner) is studied in (Branzei et al., 2024) while the case of discriminatory
pricing is studied in Galgana and Golrezaei, 2023. When the bids of all bidders are revealed after
each auction (full-information), known regret rates for uniform and discriminatory pricing are of the
same order O(

√
T ) (Branzei et al., 2024; Galgana & Golrezaei, 2023) where T is the time horizon.

When bidders only observe the number of items they win and the price (bandit feedback) the regret
upper bounds given in Galgana and Golrezaei, 2023 and Branzei et al., 2024 are of order Õ(T 2/3)

(for discriminatory pricing) and Õ(T 3/4) (for uniform pricing) suggesting that bidding multi-unit
auctions with uniform pricing is strictly harder than with discriminatory pricing. Our study shows
that this is not the case as we present an algorithm achieving regret Õ(T 2/3) with uniform pricing
therefore closing the gap between the two settings.

Auction rules A decision-maker (i.e., the bidder) repeatedly bids in a uniform pricing K-unit
auction. The single-shot version of the auction, from the perspective of any participant i whose
value of obtaining a kth-item is denoted by vi,k ∈ [0, 1], proceeds as follows.

1. Each participant submits a bid profile (bi,k)k∈[K] ∈ B, where

B = {(bk)k∈[K], such that 1 ≥ b1 ≥ b2 ≥ . . . ≥ bK ≥ 0}.

We call B the action space and we denote by b−i the bids from other participants.

2. The price per item p (bi,b−i) is set either as
• the K th highest bid (Last Accepted Bid (LAB) pricing rule),
• the (K + 1)th highest bid (First Rejected Bid (FRB) pricing rule).

3. The participant receives the items they won and pays p (bi,b−i) for each item. Since items
are identical, we call allocation xi ∈ [K] := {1, 2, ...,K} the number of items participant
i receives, formally defined as follows:

xi (bi,b−i) :=

{|{k ∈ [K] s.t. bi,k ≥ p (bi,b−i)}| for the LAB rule

|{k ∈ [K] s.t. bi,k > p (bi,b−i)}| for the FRB rule
. (1)

The focus is to design efficient learning algorithms for the decision-maker, i.e., one specific par-
ticipant i; we can therefore aggregate bids from other participants as the bid of a single adversary
β := b−i and omit the index i of the learner denoting b := bi. This setup gives rise to the quasi-
linear utility u(b,β) =

∑x(b,β)
l=1 [vl − p(b,β)].

In the remainder of this paper, we adopt the LAB pricing rule. The techniques and theoretical proofs
can be adapted from one setup to the other with little change. In the absence of specific mention of
a pricing rule, our results can be applied to both auction types. .

Repeated setting As mentioned above, this auction is not played just once, but repeated many
times (say, each day). We shall then denote a time horizon T , and assume a different auction is run
at each time step t ∈ [T ] and the objective of the bidder is to maximize their cumulative utility. Quite
naturally, the bidder should adjust their bids to the adversary’s behavior, learned from the outcomes
of the previous iterations. On the other hand, we assume that the bidder does not need to learn their
own values, i.e., the valuations (vk)k∈[K] are known to the bidder and do not change over time.

We denote by (bt)t∈[T ] and (βt)t∈[T ] respectively the sequences of bids of the player and of the
adversary, and by pt := p

(
bt,βt

)
and xt := x

(
bt,βt

)
the price and allocation at time t. The

utility of the bidder after the auction t ∈ [T ] is then defined as u(bt,βt) =
∑xt

l=1 (vl − pt). As
standard in online learning, we evaluate the performance of a learning (bidding) strategy through its
regret, defined as follows

RT = sup
b∈B

T∑
t=1

u(b,βt)− E

[
T∑

t=1

u(bt,βt)

]
, (2)

where the expectation is taken over the randomness of the algorithm generating the bids bt. Maxi-
mizing the utility of the bidder is equivalent to minimizing the regret.

2
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Feedback The bidders can improve their strategy using the information they receive after each
iteration of the auction. The type of feedback they receive represents their knowledge about the bids
of the adversary. In the literature, two common types of feedback are considered (Cesa-Bianchi
et al., 2023),

1. the bandit feedback where the bidder’s allocation xt is revealed and the price pt is only
revealed if xt > 0, and

2. the full information feedback where all the bids emitted by all participants are revealed.

Inspired by the terms of commodity electricity markets in several European countries including
Germany and France, similarly to Karaca et al., 2020, we shall introduce and study a third partial
feedback specific to multi-unit auctions,

3. the all-winner feedback: the allocation, the price, and all the winning bids are revealed to
the bidder.

Remark 1. With a uniform discretization of the bidding space B, learning to bid in multi-unit
uniform auctions can be recast as a special instance of a combinatorial bandit problem. In the
latter, the decision maker sequentially selects multiple arms out of N available, i.e., picking at each
stage an action in some admissible subset of {0, 1}N . Using off-the-shelf combinatorial bandit
algorithms, that do not leverage the relevant structure of repeated auctions, would end up in a
highly inefficient and sub-optimal procedure (see Section 2). Our approach is different; in essence,
we reduce the complex combinatorial problem by expressing the utility objective as a polynomial (in
K and T ) sum of simpler functions.

Related Work Multiple-unit auctions of indivisible identical items have been extensively studied
in their static settings. In particular, how the pricing rules (discriminatory, uniform, VCG) influence
revenue (Ausubel et al., 2014), social welfare (Birmpas et al., 2019; De Keijzer et al., 2013), or price
stability (Anderson & Holmberg, 2018). Their use in the context of electricity markets is common
and similar questions are being studied with this specific application in mind (Akbari-Dibavar et al.,
2020; Cramton & Stoft, 2006; Fabra et al., 2006; Son et al., 2004)

The repeated setting of auctions, and specifically the use of online learning procedure inspired by
Multi Armed Bandits has received lots of attention in the last decade. First studied from the point of
view of the auctioneer: Blum et al., 2004 studied maximizing auction revenue, Cesa-Bianchi et al.,
2014 and Kanoria and Nazerzadeh, 2014 specifically focused on learning reserve prices. Learning
to bid, the bidder’s problem, was considered later on, initially in single-item auctions. Second price
auctions facing either adversarial or stochastic highest opposing bids were studied in Weed et al.,
2016, and in a contextual, budget-constrained setting by Flajolet and Jaillet, 2017. Balseiro et al.,
2019 considered the first price auction with adversarial opposing bids leading to optimal regret rates
of Õ(T 2/3) in the known valuation and contextual setting.

First mentioned in Feng et al., 2018 for unit demand, multiple unit auctions as online learning
problems only recently started to be considered as their own topic of interest. Discriminatory pricing
and uniform pricing respectively studied in Galgana and Golrezaei, 2023 and Branzei et al., 2024
can be learned with Õ(

√
T ) in the full-information setting. Under bandit feedback, the former

achieves Õ(KT 2/3) regret rates in discriminatory pricing and the latter Õ(K7/4T 3/4) regret rates
with uniform pricing. Compared to single unit auctions, the combinatorial nature of the action
space in K-unit auctions makes it a harder learning problem. Branzei et al., 2024 makes use of
a cautiously designed equivalent action space represented as a Directed Acyclic Graph (DAG) to
address the combinatorial limitation and to design an algorithm guaranteeing the aforementioned
regret bounds.

The effects of specific feedback on the ability to achieve lower regret rates have also raised some
interest. Feng et al., 2018 studied the effects of ”Win Only” feedback in a more general auction set-
ting. More recently, Cesa-Bianchi et al., 2023 focused on feedback transparency. They characterize
gaps in the regret rates that can be achieved depending on the amount of feedback received, getting
three separate rates O(

√
T ), O(T 2/3) and Ω(T ) depending on the feedback considered. The work

of Karaca et al., 2020, similarly to the all-winner feedback, studied partial feedback, which lie in
between bandit and full-information, motivated by electricity market auctions.

3
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Contribution We introduce a novel representation of the action space that overcomes the com-
binatorial complexity introduced by the multiplicity of the bids in K-unit auction. Inspired by the
properties of the equivalent action space used by Branzei et al., 2024, we introduce bid-gaps, to
further decompose the utility into a sum of independent functions. This decomposition leads to im-
proved regret rates of Õ(K4/3T 2/3) under bandit feedback, compared to the known upper bound
of Õ(K7/4T 3/4). These improved bounds match, in terms of T , the rates Õ(KT 2/3) achievable
in discriminatory pricing. We notice a reduction to simpler auctions which bear an Ω(T 2/3) lower
bound on the regret, answering the open question of the optimal rates dependency in T in the bandit
setting. Motivated by the terms of bid revelation in electricity reserve markets in several European
countries including Germany and France, a novel feedback structure is considered, which lies in
between bandit feedback and full information. This feedback, which we call all-winner, reveals all
the winning bids of the action. We propose an algorithm that achieves a Õ(K5/2

√
T ) regret, almost

matching the regret rates under full information up to a factor K, while the lower bound of Ω(K
√
T )

proved by Branzei et al., 2024 for the full-information feedback, naturally extend to this setting. We
summarize our results in Table 1 below.

Feedback Literature This work Lower bound

Full information Õ(K3/2
√
T ) Õ(K3/2

√
T ) Ω(K

√
T )

All winner Õ(K5/2
√
T ) Ω(K

√
T )

Bandit Õ(K7/4T 3/4) Õ(K4/3T 2/3) Ω(T 2/3)⋆

Table 1: Regret Rates in multi-unit uniform price auction. ⋆ holds in the LAB pricing rule setting

2 Action space
We first motivate the new cautiously designed action space, and provide intuitions on how it is
constructed and its main properties. We then formalize its definition.

Motivation for an alternative representation Usual techniques such as uniform discretization
of the action space as in (Feng et al., 2018) might lead to consider the subset of non-increasing
sequences on this discretization, denoted by Bϵ ⊂

{
0, ϵ, 2ϵ, ..., (⌊ 1ϵ ⌋ − 1)ϵ, ⌊ 1ϵ ⌋ϵ

}K
. Without loss

of generality, we shall assume in the following that 1/ϵ is an integer. The main downside of this
representation is that the size of Bϵ is exponential and thus, without any further properties of the
problem leveraged, this would lead to arbitrarily bad regret rates Õ(T

K+1
K+2 ) in bandit setting. Even

though we can restrict the available action to reasonable ones (ie undominated strategies 6) this isn’t
enough to achieve improved rates in general.

Branzei et al., 2024 proposed a Directed Acyclic Graph (DAG) equivalent of the action space Bϵ

to overcome this combinatorial limitation. They use the decomposition of the utility into a sum of
independent functions, depending only on pairs of consecutive bids (the edges in their graphs), to
reduce the combinatorial complexity to only 2 (instead of K), and thus achieved an Õ(K7/4T 3/4)
regret bound under bandit feedback. Motivated by the breakthrough enabled by such a representa-
tion of the action space, we consider a new equivalent action space Hϵ, introduced in Equation 5.
This new action space allows to leverage more precisely the regularity of the utility with respect to
the bidder’s choice of bids, which in turn leads to improved regret bounds under bandit feedback,
presented in Theorem 1.

2.1 Action space tailored to the outcomes
We now provide intuitions on the utility regularity that will be leveraged. We start by observing that,
for a given auction, the price is either set by one of the bidder’s bid or by a bid from the adversary.

Assume that the bidder bids (b1, ..., bK) ∈ Bϵ, and that the price is bk for some k ∈ [K]. Then,
we claim that many bid profiles would have led to the same outcome. Indeed, any bid profile (from
the bidder) with the same kth bid bk, leads to the same outcome. In the alternative case, where the
adversary sets the price, if the bidder wins k items (i.e., the K − k adversary’s bid βt

K−k sets the
price), then any bid profile satisfying bk ≥ βt

K−k ≥ bk+1 leads to the same outcome.

4
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Notice that in the two aforementioned cases of regularities of the utility, all bids b ∈ Bϵ which
would lead to the same outcome share one of the following properties: for a specific k and j,

• in the first case : bk = jϵ,
• in the second case : bk ≥ (j + 1)ϵ ≥ βt

K−k ≥ jϵ ≥ bk+1.

For simplicity, we shall assume that the bids of the decision-maker belong to the ϵ-discretization,
i.e., (b1, ..., bK) ∈ Bϵ while the bids of the adversary do not belong to it, in order to avoid ties2. We
denote this set B\ϵ, the set of non-increasing sequences of [0, 1]K without values in

[
1
ϵ

]
.

We, introduce an alternative description of the bidding space Bϵ whose structure closely matches
the aforementioned regularities’ in order to improve the bidder’s strategy. It leverages new binary
variables indicating which of the aforementioned properties a bid b ∈ Bϵ has, they are defined as
follows: for any k ∈ [K] and j ∈

[
1
ϵ

]
,

hk,j(b) = 1 {bk = jϵ} (3)
hk+ 1

2 ,j
(b) = 1 {bk ≥ (j + 1)ϵ > jϵ ≥ bk+1} . (4)

Let K =
{
1, 3

2 , 2, ...,K − 1, 2K−1
2K ,K

}
and Jϵ =

[
1
ϵ

]
. For any b ∈ Bϵ, we define the pseudo-bid

hb to be the list of these binary variable hk,j with k, j ∈ K × J , such that hk,j(b) = 1, ordered in
lexicographic order, increasingly in k and decreasingly in j. We naturally define Hϵ the pseudo-bid
space generated by the bid space Bϵ :

Hϵ = {hb|b ∈ Bϵ} (5)

Lemma 1. For each pseudo-bid h ∈ Hϵ, there exists a unique b ∈ Bϵ such that h = hb. This
therefore defines a bijective mapping between Hϵ and Bϵ.

Proof. From the expression of Hϵ in (5), it is clear that the mapping b 7→ hb , is surjective.
Let h ∈ Hϵ, there exists b = {b1, ..., bK} ∈ Bϵ such that h = hb. Let jk ∈ Jϵ such that bk = jkϵ,
for all k ∈ [K], we have hk,jk ∈ h. If there exists another bid b̃ = {b̃1, ..., b̃K} ∈ Bϵ such that
h = hb̃, for all k ∈ [K], hk,jk(b̃) = 1.Therefore (3) yields b̃k = jkϵ = bk for all k ∈ [K]. This
proves unicity and therefore that the mapping is bijective.

The following characterization of the pseudo-bid space directly follows from Lemma 1.
Corollary 1. Given a bid b = (bi)i∈[K] ∈ Bϵ and the pseudo-bid hb ∈ Hϵ, we have the following:
for all k, j ∈ [K]× Jϵ,

bk = jϵ ⇐⇒ hk,j ∈ hb (6)
bk ≥ (j + 1)ϵ > jϵ ≥ bk+1 ⇐⇒ hk+ 1

2 ,j
∈ hb (7)

To provide further intuition, Figure 1a and Figure 1b show how two corresponding bids might be
represented in Bϵ and Hϵ. The bids (6) are represented by circles, while the bid-gaps (7) are ellipses.

2.2 Utility decomposition
Leveraging the new action space, we define the utility, price, and allocation function on Hϵ resulting
from the bijective map with Bϵ. Let h ∈ Hϵ and b ∈ Bϵ the unique element of Bϵ such that h = hb.
For all β ∈ B\ϵ, we define the utility as uH(hb,β) := u(b,β), the price xH(hb,β) := x(b,β)
and the allocation pH(hb,β) := p(b,β)

The following additional set notation, which matches a binary variable hk,j to its corresponding
price range, allows for unified descriptions :

Pϵ(hk,j) :=
{jϵ} if k is an integer

(jϵ, (j + 1)ϵ) if k is half integer , (8)

We now explicitly show how the pseudo-bid space is well suited to capture the regularity of the
outcomes of the auction (and therefore of the utility) mentioned above. To be more precise, the

2This assumption comes without loss of generality, since e.g. adding uniform noise with extremely small
variance to the bidder’s bid prevent ties a.s., see Lemma 8 in subsection A.3

5
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⌊
1
ϵ

⌋
ϵ

ϵ

2ϵ

b1 b2 bK

(a) Bids in Bϵ

⌊
1
ϵ

⌋
ϵ

ϵ

2ϵ

h1,5 h2,3 hK,2
h 2K−1

2
,2h 3

2
,4, h 3

2
,3

(b) Bids and corresponding bid-gaps in B(Pϵ)

Figure 1: Graph representation of action spaces Bϵ (Branzei et al., 2024) and B(Pϵ) (this paper)

following Lemma 2 states that within a pseudo-bid profile h, a pseudo-bid hk,j can be credited for
the outcome: any other pseudo-bid profile containing this pseudo bid would have lead to the same
outcome.

Lemma 2. Let β ∈ B\ϵ and (k, j) ∈ K × Jϵ. There exists C ∈ {0, 1}, such that for all h ∈ Hϵ

with hk,j ∈ h,
1{pH(h,β) ∈ Pϵ(hk,j)} ∩ {xH(h,β) = ⌊k⌋} = C (9)

and if C = 1, pH(h,β) is also constant on {h ∈ Hϵ : hk,j ∈ h}

Proof. Let b ∈ Bϵ such that hk,j ∈ hb. If k is integer, then Corollary 1 yields bk = jϵ, hence we
get 1{pH(h,β) = jϵ} ∩ {xH(h,β) = k} = 1{βK−k > jϵ = bk > βK−k+1} which only depends
on k, j and β. If k is half-integer, then Corollary 1 yields bk+1 < jϵ < (j + 1)ϵ < bk, hence we
get 1{pH(h,β) = Pϵ(hk,j)} ∩ {xH(h,β) = k} = 1{jϵ < βK−k < (j + 1)ϵ} which also only
depends on k, j and β. It is straightforward to see that when the indicator function takes value one,
the price is constant with value jϵ for the integer case and βK−k in the half integer case.

Lemma 2 allows us to exhibit a key property of the utility on the pseudo-bid space: it can be decom-
posed into a sum of sub-utilities (defined in Equation 11), each of which only depends on one of the
components of h.

Lemma 3. Let h ∈ Hϵ and β ∈ B\ϵ. The utility of the bidder rewrites as a sum of sub-utilities:

uH(h,β) =
∑

hk,j∈h

w(hk,j ,β), with (10)

w(hk,j ,β) := 1 {{pH(h,β) ∈ Pϵ(hk,j)} ∩ {xH(h,β) = ⌊k⌋}}
⌊k⌋∑
l=1

(vl − pH(h,β)). (11)

Proof of Lemma 3. x(h,β) = 0 implies that u as defined in Equation (10) is zero, as expected. For
the case where x(h,β) > 0, we use that the indicator functions in Equation 11 correspond to disjoint
events. Thus, there exists a unique pair (k, j) ∈ K ×Jϵ such that w(hk,j ,β) > 0, furthermore, this
sub-utility w(hk,j ,β) matches the utility u(h,β). This concludes the proof.

While the expression of these indicators in Equation (11) involves the full action h, Lemma 2 shows
that they only depend either on the associated bid hk,j . Furthermore, notice that within a given
h ∈ Hϵ, the events corresponding to each hk,j ∈ h are disjoints and therefore only one can be
realized. As a result there is at most one h ∈ h with positive sub-utility, we denote it h⋆(h,β).

6
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3 Learning algorithms and guarantees
We first present two algorithms and estimators of the utility corresponding to the different feedback
settings. We then state the regret rate achieved by these algorithms when used with the introduced
estimator, depending on the setting considered, as well as a lower bound on the regret in the bandit
setting. To simplify notations, we shall further introduce ut

H(.) := uH(.,βt) and wt(.) := w(.,βt).

3.1 Algorithm for online learning in K-unit uniform auction
The regret minimizing algorithm combines two separate procedures,

• An exponential weight update, detailed in Algorithm 1, which creates and updates the
weights for each bid and bid-gap at each time step, akin to an EXP3 type algorithm (but
non-normalized) (Cesa-Bianchi and Lugosi, 2006,Lattimore and Szepesvári, 2020).

• A sampling procedure, tailored to our action space, described in Algorithm 2, that re-
normalizes the weights into a probability distribution by using a weight-pushing method,
and uses an efficient procedure to sample an action. (Takimoto and Warmuth, 2002).

Because of the combinatorial structure of the problem, using directly the exponential weight algo-
rithm would be highly inefficient, with a complexity of order O( 1

ϵK
) to store weights and compute

probabilities directly on the action space. The second auxiliary sampling algorithm gets rid off this
complexity burden.

Algorithm 1’s pseudo-code details the exponential weight algorithm used as a building block of
the no-regret procedure. It computes weights for each pseudo-bid based on the corresponding sub-
utilities, or their estimated values. These weights are used to sample a pseudo-bid sequence h ∈ Hϵ.

Algorithm 1: Component based exponential weighting
Input: time horizon T , parameters ε > 0 and η > 0
Output: actions for each time step

(
h1,h2, . . . ,hT−1,hT

)
∈ (Hϵ)

T .
Initialize: for (k, j) ∈ K × Jϵ, set Q0(hk,j) = 1
for t = 1, 2, . . . , T do

Sample ht using the sampling procedure of Algorithm 2, with input parameters Qt−1;
Receive the utility ut = u(ht,βt) and the feedback. Based on this feedback, define

vt =

 wt = w(.,βt) in the full-information feedback, see (11)
ŵt with bandit feedback, see (19)
w̄t with all-winner feedback, see (20)

;

Update the weights based on the weights vt :
for (k, j) ∈ K × Jϵ do

Qt(hk,j) = Qt−1(hk,j) exp
(
ηvt(hk,j)

)
(12)

Algorithm 2 is a sampling procedure and uses a weight-pushing technique (Takimoto and Warmuth,
2002) to efficiently sample pseudo-bids and compute weights and probabilities on Hϵ. It is exploit-
ing the lexicographical ordering of the pseudo bid (increasingly in k and decreasingly in j) which
creates a graph-like structure, as illustrated in Figure 1b. It is indeed possible to sample an element
of Hϵ by repeatedly sampling the next binary variable conditionally on the previous one. To ex-
plicit this graph-like structure, we define s(.) the successor function, which given a pseudo-bid hk,j

provides the set of possible next element of an action. For k ∈ [K − 1], j ∈ Jϵ \ {0},

s(hk+1/2,j) :=
{
hk+1/2,j−1, hk+1,j

}
(13)

s(hk,j) :=
{
hk+1/2,j−1, hk+1,j

}
(14)

s(hk,0) := {hk+1,0} (15)

As well as the following, which serves as the stopping condition of the sampling:

∀j ∈ Jϵ, s(hK,j) := ∅ (16)

7

130243 https://doi.org/10.52202/079017-4138



Algorithm 2: Selection of the bids by a weight-pushing algorithm
Input: Weights Q for every bids or bid-gap (hk,j)(k,j)∈K×Jϵ

;
Output: bid vector h ∈ Hϵ;
Initialize :k ← K − 1

2 . For all j ∈ Jϵ, Γ(hK,j)← 1;
while k ≥ 1 do

for j ∈ Jϵ do
Γ(hk,j)←

∑
h∈s(hk,j)

Γ(h)Q(h)

k ← k − 1
2

Γ0 ←
∑

j∈[ 1ϵ ]
Q(h1,j)Γ(h1,j);

Sample h according to the probabilities:
∀j ∈ Jϵ,P(h = h1,j) = Q(h1,j)

Γ(h1,j)
Γ0

;
h← {h};
while s(h) ̸= ∅ do

sample h+ ∈ s(h), the next element of the sequence h, with probability:
P(h+ = h′|h) = Q(h′)Γ(h

′)
Γ(h) for all h′ ∈ s(h);

h← h ∪ {h+};
h← h+;

The combination of Algorithm 1 and Algorithm 2 leads to the following probabilities, typical of an
exponential weight algorithm, on Hϵ. For h ∈ Hϵ,

Pt(h) =
exp

(∑t
n=0 ηu

n
H(h)

)
∑

a∈Hϵ
exp

(∑t
n=0 ηu

n
H(a)

) (17)

as shown in Appendix B, in Equation 29.

Estimators With partial feedback (either bandits or all-winner), the bidder does not gather enough
information to compute all of the sub-utilities, and it can only do it for a subset of pseudo-bids.They
must therefore resort, as it is standard in multi-armed bandit literature, to estimators that should
leverage all the information available. Under bandit feedback, only sub-utilities of binary variables
which belong to the action played at time t can be computed.- On the other hand, under all-winner
feedback, the richer feedback allows to compute sub-utilities for a bigger set of binary variables h,
we denote it A and define it in Lemma 4.
Lemma 4. With the all-winner feedback, the bidder can compute from its feedback the sub-utilities
of any pseudo bid in A(ht,βt), defined as:

A(ht,βt) :=
{
hk,j , (k, j) ∈ K × Jϵ

∣∣ s.t. {k > xt} or {k = xtand jϵ ≥ pt}
}

(18)

Where xt := xH(ht,βt) and pt = pH(ht,βt).

The formal proof of Lemma 4 is in Appendix C.

As noted above, within a given pseudo-bid h, only one sub-utility can be non-zero. We there-
fore also define the set of binary variables with non-zero sub-utilities A⋆(h

t,βt) := {hk,j ∈
A(ht,βt)|w(hk,j ,β

t) > 0}.
We can now formally introduce the estimators used by the no-regret procedure.
Definition 3.1 (Estimators). Let ht ∈ Hϵ be the action played by the learner, and βt ∈ B\ϵ the bids
of the adversary at time t,. For any bid or bid-gap h, we define the sub-utility estimators:

Bandit feedback ŵt(h) = 1(h = ht
⋆)
wt(h)−K

Pt(h)
, (19)

All-winner feedback w̄t(h) = 1
(
h ∈ At

⋆(h
t)
) wt(h)−K

P
f t∼Bt

(h ∈ At
⋆(f

t))
(20)
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where ht
⋆ := h⋆(h

t,βt) is the sub/pseudo-bid played at time t that has non-zero sub-utility, Bt is
the probability distribution on Hϵ as in (17) and Pt(h) :=

∑
h∈Hϵ:h∈h Pt(h)

Naturally, estimation of the utility of any action h ∈ Hϵ is done with a simple summation, over
h ∈ h, of these estimates.

3.2 Regret Analysis
Combining Algorithm 1 and the sampling Algorithm 2, we recover the regret guarantees obtained by
(Branzei et al., 2024, Theorem 2) in the same setting for the full-information feedback. We provide
a formal statement and proof of this result in the Appendix B, in Theorem 3. We now analyze the
performance of the learning procedure for the two other types of feedback.

Theorem 1. In the repeated K-unit auction with uniform pricing guarantees and under bandit
feedback, Algorithm 1 incurs a regret of at most O

(
K4/3T 2/3 log (T )

)
For any time horizon T ,

with the choices of ϵ =
(
K
T

)1/3
and η = K−1/3T−2/3

√
log
(
T
K

)
/3.

Proof sketch. The aforementioned regret bounds are proved by using a similar analysis as the one
in Lattimore and Szepesvári, 2020 to obtain regret bounds of EXP3 algorithm in the adversarial
bandits case. We apply this analysis to the discretized action space Hϵ and bound the additional
cost of using a discretization separately. Then we choose a discretization size ϵ to minimize the total
regret.

The improvement over known regret bounds in Branzei et al., 2024 results from the decomposition of
the utility into sub-utilities. Since these sub-utilities only depend on one bid or bid-gap, the variance
of the estimators (cf Lemma 9) only depend on the possible number of bids or bid-gaps ( of order
1
ϵ ) not the number of bid profiles ( of order 1

ϵK
). This is akin to why combinatorial bandits under

semi-bandit feedback (Audibert et al., 2014) achieve better regret than under bandit-feedback.

Theorem 2. For any time horizon T , using Algorithm 1 in the repeated K-unit auction with uniform
pricing guarantees, under all-winner feedback, a regret of at most O

(
K5/2

√
T log(T )

)
with η =

K−1T−1/2 and ϵ = K3/2T 1/2.

Proof sketch. The proof of these bounds in the all-winner feedback follows closely the analysis used
for the bandit feedback. Better bounds are achieved in comparison to the bandit’s feedback thanks
to the lower variance of the estimator defined in (10), proved in Lemma 10. Intuitively, this comes
from the ability to observe the realized utility more often, allowed by the richer feedback. We exhibit
this by using tools used in bandits with graph feedback (Alon et al., 2017).

Regret lower bound We provide a matching lower bound on the regret of any online learning
algorithm (Lemma 5), in the bandit feedback setting, by extending a result from (Balseiro et al.,
2019) in the context of single price auctions. This partially answers an open question raised by
Branzei et al., 2024 regarding the achievable learning rate in the bandit setting for the problem that
we consider.

Lemma 5. Any online learning procedure must incur Ω(T 2/3) regret in multi-unit uniform auction
with the Last Accepted Bid rule under bandit feedback Bid pricing rule.

This stems from the fact that against an adversary that only plays bids with value 1 except for its last
bid, the auction is essentially a first-price auction.

Proof. We extend the lower bound on the regret of the first price auction in Balseiro et al., 2019.
At time t, let βt = {1, 1, ..., 1, ht} be the bid of the adversary, let the valuation of the learner
be v = (1, 0, .., 0) and denote bt = (bt1, ..., b

t
k) ∈ B the learner’s bid. We only consider

sensible bids, such that bti > 0 ⇐⇒ i = 1, because they are dominating strategies. The
learner’s utility is u(h,β) = 1 {bt1 > ht} (1− bt1), and the bandits feedback, (xt,1 {xt > 0} pt) is
: (1 {bt1 > ht} ,1 {bt1 > ht} bt1) which coincides with both the utility and the bandits feedback of
the first price auction with value 1.

This specific instance of the repeated K-unit auction therefore coincides with the repeated first price
auction with opposing bid ht at time t, which can be any instance of the first price auction. Therefore
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if no learning algorithm can guarantee better regret thanO(T 2/3) in the latter problem, no algorithm
can guarantee better regret than O(T 2/3) in the former.

4 Conclusion
We provided the first no-regret algorithm achieving optimal rates in T for the K-unit uniform auc-
tion under bandit, full information, and all winner feedback. The techniques and theoretical tools
presented can be applied to obtain similar regret guarantees in the adversarial bid setting with ran-
dom valuation, under the assumption that the valuation and opposing bids are independent. An
interesting open question is whether similar rates can be achieved in a contextual setting (when val-
uations changing at each round are observed before each play). The obtained regret rates match the
ones obtained in the discriminatory price auction, a commonly compared auction mechanism, up
to a factor O(K 1

3 ). This raises the question of whether this gap can be closed or if a lower bound
showing a separation in achievable regret rates exists.
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A Problem-specific simplifications
This section focuses on characterizing undominated strategies and showing that when a learner plays
on an ϵ-discretization of the bid interval [0, 1] assuming ties never occur is without loss of generality.

A.1 Dominated strategies
Since the scale of the bid space is a deciding factor in the rates of regret we obtain, it is useful to
analyze the utility functions of the learner. Indeed, for the learning procedure, it can be useful, to
restrict ourselves from the start to bids which can potentially be optimal. We show next that, under
certain condition on the values of the learner, we can restrict the bid space B.
Lemma 6. Let {v1, v2, ..., vk} be the valuations of the learner. Then for any bids b = {b1, ..., bK} ∈
B such that there exists i ∈ [K], bi > vi, there exists b̃ a non-increasing sequence of [0, v1] ×
[0, v2]× ...× [0, vK ] such that :

∀β ∈ B, u(b̃,β) ≥ u(b,β)

Proof. Let {v1, v2, ..., vk} be the valuations of the learner. Let b = {b1, ..., bK} ∈ B a bid such
that there exists i ∈ [K], bi > vi. We define b̃ as follows:

∀i ∈ [K], b̃i = min(vi, bi)

Let β ∈ B be the bids of the adversary. As a max, p(.) is increasing in its arguments hence

p(b̃,β) ≤ p(b,β). (21)

There are two possible cases : Either the allocation remains the same x(b̃,β) = x(b,β), or it
decreases x(b̃,β) ≤ x(b,β) (decreasing bids cannot result in a increased allocation).

If the allocation remains the same, then (21) implies u(b̃,β) ≥ u(b,β).

If the allocation decreases, the items obtained when bidding b but not obtained when bidding b̃
necessarily corresponds to bids which have been lowered (other bids remain higher than the price).
Let j ∈ [K] such that bj is one of these bids, since the item used to be won bj ≥ p(b,β). Since it is
not won by the learner playing b̃, we have b̃j ≤ p(b̃,β). Hence vj ≤ p(b,β).

Since this is the case for all items j won under b and not under bidding p(b,β), u(b̃,β) ≥ u(b,β).

It is therefore always the case that
u(b̃,β) ≥ u(b,β) (22)

Since it is true for all β ∈ B, this concludes the proof.

A consequence of Lemma 6 is that we can restrict our learning procedure to non-increasing sequence
of [0, v1]× [0, v2]× ...× [0, vK ].

In the following of the paper for simplicity we use B as the bidding space. This covers the worst
case which corresponds to the case when for all i ∈ [K], vi = 1.

A.2 Discretization error
To use online learning techniques in our instance of multi-unit uniform price auction, we use a
discretization Bϵ of the bid space B which is continuous. We bound here the added regret incurred
because of this discretization, that is the additional regret suffered when comparing the best action
in hindsight of Bϵ to the best of B.
Definition A.1 (Discretized regret). Let (bt)t∈[T ] ∈ BT

ϵ be the action played at time t ∈ [T ],
against the opposing bids

(
βt
)
t∈[T ]

∈ BT . The discretized regret is defined as follows:

RT,ϵ = max
b∈Bϵ

T∑
t=1

u(b,βt)− E

[
T∑

t=1

u(bt,βt)

]
. (23)

We bound the cost of this discretization as follows :
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Lemma 7. Let (bt)t∈[T ] ∈ BT
ϵ be the action played at time t ∈ [T ], against the opposing bids(

βt
)
t∈[T ]

∈ BT . With RT,ϵ the dicretized regret and RT the regret, we have the following inequal-
ity:

RT ≤ RT,ϵ +KTϵ .

Proof of Lemma 7. Let
(
βt
)
t∈[T ]

∈
(
[0, 1]K

)T
the adversary bids played up to time T .

Let (bt)t∈[T ] ∈ BT
ϵ .

RT = sup
b∈B

T∑
t=1

u(b,βt)− E

[
T∑

t=1

u(bt,βt)

]

= sup
b∈B

T∑
t=1

u(b,βt)− sup
b∈Bϵ

T∑
t=1

u(b,βt) + sup
b∈Bϵ

T∑
t=1

u(b,βt)− E

[
T∑

t=1

u(bt,βt)

]

= sup
b∈B

T∑
t=1

u(b,βt)− max
b∈Bϵ

T∑
t=1

u(b,βt) +RT,ϵ .

Let µ > 0, there exists bopt ∈ B such that
∑T

t=1 u(bopt,β
t) + µ ≥ sup

b∈B

∑T
t=1 u(b,β

t).

We define its closest discretized bid from above

bopt,ϵ :=




bopt,i if bopt,i
ϵ ∈ N

1 if bopt,i >
⌊
1
ϵ

⌋
ϵ⌈

bopt,i
ϵ

⌉
ϵ else


i∈[K]

. (24)

Since max(.) cannot increase more than its arguments and ∀i ∈ [K], bopt,ϵ,i ≤ bopt,i + ϵ,

∀t ∈ [T ], p(bopt,ϵ,β
t) ≤ p(bopt,β

t) + ϵ , (25)

and since ∀i ∈ [K], bopt,ϵ,i ≥ bopt,i,

∀t ∈ [T ], x(bopt,ϵ,β
t) ≥ x(bopt,β

t) (26)

therefore,

T∑
t=1

u(bopt,ϵ,β
t) ≥

T∑
t=1

u(bopt,β
t)−KTϵ ≥ sup

b∈B

T∑
t=1

u(b,βt)−KTϵ− µ .

Hence

RT = sup
b∈B

T∑
t=1

u(b,βt)− max
b∈Bϵ

T∑
t=1

u(b,βt) +RT,ϵ

≤ sup
b∈B

T∑
t=1

u(b,βt)−
T∑

t=1

u(bopt,ϵ,β
t) +RT,ϵ

≤ KTϵ+ µ+RT,ϵ.

Since the previous inequality is true for any µ > 0, we get

RT ≤ KTϵ+RT,ϵ.
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A.3 Avoiding ties
In the latter analysis, we assume that ties never occur. We show here how this assumption, for our
regret analysis, is equivalent to using a small perturbation of the bids of the learner. Let δ ∈ (0, ϵ)
and X ∼ U [0, δ] the random perturbation of the bids of the learner. We define BX

ϵ the set of non-
increasing sequences of {X, ϵ+X, 2ϵ+X, ..., 1− ϵ+X}K , the set in which the perturbed bids of
learners take value.

This perturbation of the discretized set we use as bid space for the learner comes at no costs in terms
of added regrets. The previous Lemma 7 can straightforwardly be applied to the perturbed set BX

ϵ ,
as the key reason for the additional regret is the discretization step ϵ, which remains unchanged here.

Lemma 8. Let βT ∈ BT be the bid of the adversary up to time T , for any bid sequence of the
learner bT ∈ BX×T

ϵ , there is almost surely never a tie.

Proof. Let βT ∈ BT ,and for all t ∈ T denote βt = {βt
1, ..., β

t
K}. For any bid sequence bT ∈

BX×T
ϵ , a necessary condition for ties to occur is that there exists (t, j) ∈ [T ] × [K] such that

βt
j ∈ {ϵ+X, 2ϵ+X, ..., 1− ϵ+X}. This is almost surely never the case, as it is the probability

of X to belong to a finite set.

Remark 2. For the sake of regret bounds, since we almost surely don’t have any tie, the assumption
that the adversary plays bids in B\ϵ is without loss of generality.

B Appendix: Regret analysis
B.1 Full-information regret rates

Theorem 3. In the full information feedback setting, Algorithm 1 coincides with the Hedge algo-

rithm with parameter η on Hϵ. It ensures a regret of at most O
(√

K3T log (T )
)

by taking ϵ =
√

K
T

and η =

√
log( T

K )
2KT .

Proof of Theorem 3. In order to leverage classical results on the exponential weight algorithm in the
expert setting, we aim to show that the combination of our algorithms leads to a probability update
rule of the form:

Pt(h) =
Pt−1(h) exp (ηut(h))∑
j∈Hϵ

Pt−1(j) exp ηut(j)
. (27)

Let h be bid profile in Hϵ, we denote hi its ith element (ith element of the sequence) and len(h) the
length of the sequence h. Given the sampling Algorithm 2, we have by telescoping and the product
of conditional probabilities

Pt(h) =
∏

i∈[1,len(h)]

Pt(hi|hi−1)

=
∏

i∈[1,len(h)]

Qt(hi)
Γt(hi)

Γt(hi−1)

=

∏
i∈[1,len(h)] Q

t(hi)

Γt
0

=

∏
i∈[1,len(h)] Q

t−1(hi) exp (ηw
t(hi))

Γt
0

=
exp (ηut(h))

Γt
0

∏
i∈[1,len(h)]

Pt−1(hi|hi−1)
Γt−1(hi−1)

Γt−1(hi)
.

Pt(h) =
Γt−1
0

Γt
0

exp
(
ηut(h)

)
Pt−1(h) , (28)

where we used the probability update rule (12).
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We can prove that Γt
0 =

∑
h∈Hϵ

∏
i∈[1,len(h)]

Qt(hi). An induction on k ∈
[
max
h∈Hϵ

len(h)
]

, where we

denote h:k the k first component of the sequence h:

Γt
0 =

∑
h:k:h∈Hϵ

 ∏
i∈[1,min{k,len(h)}]

Qt(hi)

Γt(hmin{k,len(h)})

This is true for k = 1 from the definition (2) of Γt
0.

For k ≥ 1,

Γt
0 =

∑
h:k:h∈Hϵ

 ∏
i∈[1,min{k,len(h)}]

Qt(hi)

Γt(hmin{k,len(h)})

=
∑

h:k:h∈Hϵ

 ∏
i∈[1,min{k,len(h)}]

Qt(hi)

 ∑
h∈s(hk)

Qt(h)Γt(h)

=
∑

h:k+1:h∈Hϵ

 ∏
i∈[1,min{k+1,len(h)}]

Qt(hi)

Γt(hmin{k+1,len(h)}) ,

where we used the fact that the function successor s(.) provides all possible next element of sequence
h.

We then simplify Γt−1
0

Γt
0

:

Γt
0 =

∑
h∈Hϵ

∏
i∈[1,len(h)]

Qt(hi)

=
∑
h∈Hϵ

∏
i∈[1,len(h)]

Qt−1(hi) exp
(
ηut(hi)

)
=
∑
h∈Hϵ

exp
(
ηut(h)

) ∏
i∈[1,len(h)]

Pt−1(hi|hi−1)
Γt−1(hi−1)

Γt−1(hi)

= Γt−1
0

∑
h∈Hϵ

exp
(
ηut(h)

)
Pt−1(h) .

We can therefore write

Pt(h) =
Pt−1(h) exp (ηut(h))∑
l∈Hϵ

Pt−1(l) exp ηut(l)
. (29)

This is the update rule of the Hedge algorithm on the action space Hϵ. Therefore using Theorem 2.2
of Cesa-Bianchi and Lugosi, 2006, restated in the Appendix 4 leads to the following regret bound:

RT,ϵ ≤
log (|Bϵ|)

η
+

ηTK2

8
(30)

≤
log
(
1/ϵK

)
η

+
ηTK2

8
,

where, to bound log (|Bϵ|) in (30), we used the fact that the action space Hϵ is in bijection with
the original discretized bid space : K non-increasing elements of {1, 2, . . . , ⌊ 1ϵ ⌋}, which cardinal is
trivially smaller than 1

ϵK
.

Taking η =

√
log( 1

ϵ )
KT , we obtain

RT,ϵ ≤
9

8

√
TK3 log

(
1

ϵ

)
.
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Finally, using lemma 7,

RT ≤ RT,ϵ +KTϵ

≤ 9

8

√
TK3 log

(
1

ϵ

)
+KTϵ

≤ 9

8

√
TK3

(
log

(√
T

K

)
+ 1

)
,

with ϵ =
√

K
T .

B.2 Partial feedback regret rates

B.2.1 Bandit feedback

To prove the regret rates in the bandit feedback settings, we use Lemma 9 which bounds the neces-
sary quantity for the standard EXP3 analysis.

Lemma 9 (Bandit feedback estimator). The estimator ût(h) defined by (19) has the following prop-
erties:

• The estimator ût(h) has a fixed bias −K:

E
[
ût(h)

]
= ut(h)−K .

• The square of the estimator can be upper bounded as follows:

∑
h∈Hϵ

Pt(h)E
[
ût(h)2

]
≤ 4K2 max

(
K2,

1

ϵ

)
.

Since the estimator has a constant bias for every action, one can use it in the problem similarly to an
unbiased estimator.

Proof of Lemma 9. Let h be a bid or a bid-gap, then

E
[
ût(h)

]
=
∑

ht∈Hϵ

Pt(ht)
∑
h∈h

ŵt(h)

=
∑

ht∈Hϵ

Pt(ht)
∑
h∈h

1(h = ht
⋆)
wt(h)−K

Pt(h)

=
∑

ht∈Hϵ

Pt(ht)
wt(ht

⋆(h))−K

Pt(ht
⋆(h))

1(ht
⋆(h) = ht

⋆)

=
wt(ht

⋆(h))−K

Pt(ht
⋆(h))

∑
ht∈Hϵ:ht

⋆(h)∈ht

Pt(ht)

= wt(ht
⋆(h))−K = ut(h)−K .

16

130252https://doi.org/10.52202/079017-4138



∑
h∈Hϵ

Pt(h)E
[
ût(h)2

]
= E

[ ∑
h∈Hϵ

Pt(h)ût(h)2

]
(31)

=
∑

ht∈Hϵ

Pt(ht)
∑
h∈Hϵ

Pt(h)

(
wt(ht

⋆(h))−K

Pt(ht
⋆(h))

)2

1(ht
⋆(h) = ht

⋆) (32)

=
∑

ht∈Hϵ

Pt(ht)

(
wt(ht

⋆)−K

Pt(ht
⋆)

)2 ∑
h∈Hϵ:ht

⋆∈h

Pt(h) (33)

=
∑

ht∈Hϵ

Pt(ht)
(wt(ht

⋆)−K)
2

Pt(ht
⋆)

(34)

≤ K2
∑

ht
⋆∈Ot

∑
ht∈Hϵ:ht

⋆∈ht Pt(ht)

Pt(ht
⋆)

(35)

≤ K2
∑

ht
⋆∈Ot

1 (36)

≤ (K)2|Ot| , (37)

where

Ot =

{
ht
⋆(h)

∣∣∣∣h ∈ Hϵ

}
.

There only remains to upper bound |Ot|.
For any p ∈ [0, 1] we denote for this proof j(p) = ⌊pϵ ⌋, which is the value j such that p ∈ [jϵ, jϵ+ϵ).
Let h ∈ Hϵ, notice that ht

⋆(h,β
t) ∈ {bxt(h,βt),j(p(h,βt)), bxt(h,βt)+ 1

2 ,j(p(h,β
t))} which directly

results from the decomposition formula 10. To upper bound |Ot| we will therefore upper bound the
different values the pair

(
xt( . ,β

t), p( . ,βt)
)

can take.

Since the learner plays bids in Hϵ (or equivalently Bϵ), p(.,βt) can only take either the value of one
of the components in β or one of the bids of its first argument.
Because βt is a vector of size K we can write that:

∣∣{p(h,βt),h ∈ Hϵ}
∣∣ ≤ K + ⌊ 1ϵ ⌋.

Furthermore, because units are either attributed to the player or the adversary, we can write K −∣∣{βt
i > pt( . ,β

t)}
∣∣ ≥ xt( . ,β

t) ≥ K −
∣∣{βt

i ≥ pt( . ,β
t)}
∣∣. The two cardinals can only differ

if the price is set by an adversary bid because the no ties assumption implies almost surely for all
i ∈ [K], βt

i /∈
[
1
ϵ

]
.

Therefore each possible value of pt( . ,βt) only correspond to one value of xt( . ,β
t), except for

the K values set by the adversary, where xt( . ,β
t) can at most take K values.

Therefore

2

(
K2 +

⌊
1

ϵ

⌋)
≥ 2

∣∣{(xt(h,β
t), p(h,βt)

)
,h ∈ Hϵ}

∣∣ (38)

≥ 2
∣∣{(xt(h,β

t), j
(
p(h,βt)

))
,h ∈ Hϵ}

∣∣ (39)

≥
∣∣Ot
∣∣ , (40)

which leads to the needed upper bounds

We now restate Theorem 1 and then provide proof of the corresponding regret guarantees.
Theorem 1. In the repeated K-unit auction with uniform pricing guarantees and under bandit
feedback, Algorithm 1 incurs a regret of at most O

(
K4/3T 2/3 log (T )

)
. For any time horizon T ,

with the choices of ϵ =
(
K
T

)1/3
and η = K−1/3T−2/3

√
log
(
T
K

)
/3.
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Proof of Theorem 1. For T ∈ N, we denote (ht)t∈[T ] ∈ HT
ϵ the actions played at each time-steps,

generated by Algorithm 1.
We can first notice that, by conducting the same analysis as in B.1 up to Equation (29), we obtain:

Pt(h) =
Pt−1(h) exp (ηû

t(h))∑
l∈Hϵ

Pt−1(l) exp ηût(l)
, (41)

which by simple induction allows us to obtain:

Pt(h) =
exp

(∑t
j=1 ηû

j(h)
)

∑
l∈Hϵ

exp
(∑t

j=1 ηû
j(l)
) . (42)

We can now proceed to the regret analysis.
For any action h ∈ Hϵ, we define :

RT,h =

T∑
t=1

ut(h)− E

[
T∑

t=1

ut(ht)

]
,

which is the expected regret relative to playing h in all the rounds.

We have, because of Lemma 9, E
[∑T

t=1 û
t(h)

]
=
∑T

t=1 u
t(ht)−KT

and Et−1 [u
t(ht)] =

∑
h∈B Pt(h)ut(h) =

∑
h∈B Pt(h)Et−1 [û

t(h)] +K.

Therefore

RT,h = E

[
T∑

t=1

ût(h)

]
− E

[
T∑

t=1

∑
h∈Hϵ

Pt(h)ût(h)

]
. (43)

We denote Wn =
∑

h∈Hϵ
exp(η

∑n
t=1 û

t(h)).

Then we have for any h ∈ Hϵ,

exp

(
η

T∑
t=1

ût(h)

)
≤
∑
h∈Hϵ

exp(η

T∑
t=1

ût(h)) = WT = W0

T∏
t=1

Wt

Wt−1
.

We can then upper bound the terms of the product as follows :

Wt

Wt−1
≤
∑
h∈Hϵ

exp

(
η
t−1∑
l=1

ûl(h)

)
Wt−1

exp
(
ηût(h)

)
≤
∑
h∈Hϵ

Pt(h) exp
(
ηût(h)

)
,

where the second inequality comes from 42.

We can then further bound this term using the inequalities

∀ x ≤ 1, exp(x) ≤ 1 + x+ x2 and ∀x ∈ R, 1 + x ≤ exp(x) .

This gives

Wt

Wt−1
≤ 1 + η

∑
h∈Hϵ

Pt(h)ût(h) + η2
∑
h∈Hϵ

Pt(h)ût(h)2 (44)

≤ exp

(
η
∑
h∈Hϵ

Pt(h)ût(h) + η2
∑
h∈Hϵ

Pt(h)ût(h)2

)
. (45)
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This in turn yields

exp

(
η

T∑
t=1

ût(h)

)
≤W0

T∏
t=1

exp

(
η
∑
h∈Hϵ

Pt(h)ût(h) + η2
∑
h∈Hϵ

Pt(h)ût(h)2

)
(46)

≤W0 exp

(
η

T∑
t=1

∑
h∈Hϵ

Pt(h)ût(h) + η2
T∑

t=1

∑
h∈Hϵ

Pt(h)ût(h)2

)
, (47)

where by applying the log, simplifying, and taking the expectation we get
T∑

t=1

ût(h)−
T∑

t=1

∑
h∈B

Pt(h)ût(h) ≤ log(W0)

η
+ η

T∑
t=1

∑
h∈Hϵ

Pt(h)ût(h)2 (48)

E

[
T∑

t=1

ût(h)−
T∑

t=1

∑
h∈Hϵ

Pt(h)ût(h)

]
≤ log(W0)

η
+ ηE

[
T∑

t=1

∑
h∈Hϵ

Pt(h)ût(h)2

]
(49)

RT,h ≤
log(W0)

η
+ ηE

[
T∑

t=1

∑
h∈B

Pt(h)ût(h)2

]
. (50)

We recognize the expression of the regret from (43). Because it is true for all h ∈ Hϵ, we can take
the maximum and notice : RT,ϵ = maxh∈Hϵ

RT,h. Noticing that W0 = |Hϵ| ≤
(
1
ϵ

)K
and using

Lemma 9 concludes the bound on the discritzed regret as follows:

RT,ϵ ≤
log |Hϵ|

η
+ η

T∑
t=1

∑
h∈Hϵ

Pt(h)E
[
ût(h)2

]
(51)

≤ K
log
(
1
ϵ

)
η

+ η4K2T
1

ϵ
(52)

≤ 5K

√
KT

ϵ
log

(
1

ϵ

)
, (53)

with η =
√

ϵ
KT log

(
1
ϵ

)
Then using Lemma 7, we can bound the regret:

RT = RT,disc +KTϵ (54)

≤ 5K3/2

√
T

ϵ
log

(
1

ϵ

)
+KTϵ (55)

≤ 5K4/3T 2/3

(
1 +

1

3
log

(
T

K

))
, (56)

with the specific choice of ϵ =
(
K
T

)1/3
.

B.2.2 All-winner feedback
As in the bandit feedback, to prove the regret rates, we use Lemma 10 which bounds the necessary
quantity for the standard EXP3 analysis.
Lemma 10. The estimator ūt(h), defined by (20) has the following properties:

• The estimator ūt(h) has a fixed bias −K:

E
[
ūt(h)

]
= ut(h)−K . (57)

• The square of the estimator verifies:∑
h∈Hϵ

Pt(h)E
[
ūt(h)2

]
≤ 8K4 log(2) . (58)
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Proof of Lemma 10. This proof is mostly based on the following careful computations.

E
[
ūt(h)

]
=
∑
ht∈B

Pt(ht)
∑
h∈h

w̄t(h)

=
∑

ht∈Hϵ

Pt(ht)
∑

hk,j∈h

1
(
h ∈ At

⋆(h
t)
) wt(h)−K

P
lt∼Bt

(h ∈ At
⋆(l

t))
(59)

=
∑

ht∈Hϵ

Pt(ht)
wt(ht

⋆(h))−K

P
lt∼Bt

(ht
⋆(h) ∈ At

⋆(l
t))

1(ht
⋆(h) ∈ At

⋆(h
t))

=
wt(ht

⋆(h))−K

P
lt∼Bt

(ht
⋆(h) ∈ At

⋆(l
t))

∑
ht∈Hϵ:ht

⋆(h)∈At
⋆(h

t)

Pt(ht)

= wt(ht
⋆(h))−K = ut(h)−K .

∑
h∈Hϵ

Pt(h)E
[
ût(h)2

]
= E

[ ∑
h∈Hϵ

Pt(h)ût(h)2

]

=
∑
h∈Hϵ

Pt(h)
∑

ht∈Hϵ

Pt(ht)

 ut(ht
⋆(h))−K

P
lt∼Bt

(ht
⋆(h) ∈ At

⋆(l
t))

2

1(ht
⋆(h) ∈ At

⋆(h
t))

=
∑
h∈Hϵ

Pt(h)

 ut(ht
⋆(h))−K

P
lt∼Bt

(ht
⋆(h) ∈ At

⋆(l
t))

2 ∑
ht∈Hϵ:ht

⋆(h)∈At
⋆(h

t)

Pt(ht)

=
∑
h∈Hϵ

Pt(h)
(ut(ht

⋆(h))−K)
2

P
lt∼Bt

(ht
⋆(h) ∈ At

⋆(l
t))

≤ K2
∑
h∈Hϵ

Pt(h)

P
lt∼Bt

(ht
⋆(h) ∈ At

⋆(l
t))

≤ K2
∑

ht
⋆∈Ot

Pt(ht
⋆)

P
lt∼Bt

(ht
⋆ ∈ At

⋆(l
t))

≤ K2
∑

ht
⋆∈Ot

Pt(ht
⋆)∑

a∈Ot:ht
⋆∈At

⋆(a)
Pt(a)

(60)

≤ K28K log

(
2

1

ϵ2KαK

)
≤ 8K4 log

(
2

ϵ

)
.

Taking α = 1
K .

Where to bound (60), we use lemma 11 from Alon et al., 2017, restated in the Appendix.

We define a graph over the elements of Ot, such that each element o1 has an incoming edge from
the other elements o2 such that o1 ∈ At

⋆(o2). This graph matches (60) to the expression lemma 11
allows to bound.

It only remains to determine the independence number of this graph. First notice that, for each value
of k + 1

2 only one bid-gaps with this first index can belong to Ot. Indeed, otherwise, since there
exists a bid-profile h such that both belong to it, ht

⋆(h) would have two values, which is impossible
because only one bid or bid-gap per bid profile can have non-zero sub-utility.

Then notice that for two bids in Ot, with the same first index k an integer values, the observed set
of the lowest one necessarily contains the other. This naturally arises from the definition of At.
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These two observations ensure that, in an independent set of this graph, there is at most one element
having each index k ∈ {1, 3

2 , 2, ...
2K−1
2K ,K}. This ensures the independence number of this is at

most 2K. Which using the lemma 11 from Alon et al., 2017, completes the proof.

We restate the regret guarantees in the all-winner feedback before the proof.
Theorem 2. For any time horizon T , using Algorithm 1 in the repeated K-unit auction with uniform
pricing guarantees, under all-winner feedback, a regret of at most O

(
K5/2

√
T log(T )

)
with η =

K−1T−1/2 and ϵ = K3/2T 1/2.

Proof of Theorem 2. The proof of this theorem is identical to the one of theorem 1, with only the
need to replace ût by ūt up to the point where we bound the regret in equation 51. The proof
completes as follows. The discretized regret can be bounded as in B.2.1:

RT,disc ≤
log |Hϵ|

η
+ η

T∑
t=1

∑
h∈Hϵ

Pt(h)E
[
ūt(h)2

]
(61)

≤ K
log
(
1
ϵ

)
η

+ η8K4T log

(
2

ϵ

)
(62)

≤ K5/2
√
T

(
8 log(2) + 9 log

(
1

ϵ

))
, (63)

with η = 1
K

√
T

.

Then using Lemma 7, we can bound the regret:

RT = RT,disc +KTϵ (64)

≤ K5/2
√
T

(
8 log(2) + 9 log

(
1

ϵ

))
+KTϵ (65)

≤ K5/2
√
T

(
1 + 8 log(2) +

9

2
log

(
T

K3

))
, (66)

with ϵ =
√

K3

T

C Proof of technical lemmas
Lemma 4. With the all-winner feedback, the bidder can compute from its feedback the sub-utilities
of any pseudo bid in A(ht,βt), defined as:

A(ht,βt) :=
{
hk,j , (k, j) ∈ K × Jϵ

∣∣ s.t. {k > xt} or {k = xtand jϵ ≥ pt}
}

(18)

Where xt := xH(ht,βt) and pt = pH(ht,βt).

Proof of Lemma 4. Let t ∈ [T ],ht and βt be the action of the player and the adversary at time t.
Let bt be the corresponding bid to the pseudo-bid ht. Under the all-winner feedback, all winning
bids are revealed, hence the feedback reveals to the learner the K − x(bt,βt) biggest bids of the
adversary : (βi)i≤K−x(bt,βt). Furthermore, since the price is known, the learner can deduce from
the rules of the auction that for all i ≥ K − x(bt,βt) :

βi ≤ p(bt,βt). (67)

For any value k, j ∈ K × Jϵ such that hk,j ∈ A(h,β), let’s show that we can evaluate the corre-
sponding sub-utilities.

We first look at the ability of the learner to evaluate the indicator functions in the sub-utilities defined
in Lemma 3, for hk,j ∈ A(ht,βt).

For the integer values of k, we can rewrite the indicator function of the sub-utilities, as follows :
1{pH(h,β) = jϵ} ∩ {xH(h,β) = k} = 1{βK−k > jϵ > βK−k+1}. When K − k + 1 ≤
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K−x(bt,βt) this can be evaluated for any value of j, because the adversary bids are known. When
K − k = K − x(bt,βt), the indicator function can still be evaluated if jϵ > p(bt,βt) using (67).

For the half-integer values of k, we can rewrite the indicator function of the sub-utilities Lemma 2 as
follows : 1{pH(h,β) ∈ (jϵ, (j+1)ϵ)}∩{xH(h,β) = k−1/2} = 1{jϵ < βK−k+1/2 < (j+1)ϵ}.
Therefore, when K − k + 1/2 ≤ K − x(bt,βt) this indicator function can be evaluated. Hence
when k ≥ x+ 1/2, and that regardless of the value of j.

Therefore, it is always possible for the learner to evaluate the indicator function.

Evaluating the remaining term of the sub-utilities
∑⌊k⌋

l=1 vl−pH(h,β) is more straightforward since
it only needs to be done when the indicator function takes value 1.

For the integer values of k, if the indicator function takes value 1, then pH(h,β) = jϵ, therefore the
remaining term is known.

For the half-integer values of k, if the transformed indicator function takes value 1, then the price is
set by βK−k+1/2, therefore, the remaining term is also known.

This concludes the proof as the full sub-utilities can always be evaluated on A(h,β).

D Restated results from the literature
D.1 Exponential weight forecaster
In this problem of learning under expert advice, they are N expert and at each time t ∈ [N ],
the learner chooses a probability to play each expert (yti)i∈[N ] ∈ Y and nature reveals the losses
(lti)i∈[N ] ∈ [0, L]N .

Rn =

n∑
t=1

N∑
i=1

yti l
t
i − min

i∈[N ]

(
n∑

t=1

lti

)
.

Theorem 4 (Theorem 2.2 Cesa-Bianchi and Lugosi, 2006). Assume that the losses l take values in
[0, L]. For any n and η > 0, and for all y1, . . . , yn ∈ Y , the regret of the exponentially weighted
average forecaster satisfies

Rn ≤
logN

η
+

nL2η

8
.

In particular, with η =
√
8 lnN/n, the upper bound becomes

√
(n/2) lnN .

This theorem, besides the changes in notations, is a slight variation from the original formulation
as it allows for losses greater than 1. The resulting L2 term in the upper bound is a well known
extension and the steps to prove this extension to scaled losses are provided in the original work by
Cesa-Bianchi and Lugosi, 2006.

D.2 Lemma graph feedback
The following lemma is restated from Alon et al., 2017.
Lemma 11. Let G = (V,E) be a directed graph with |V | = K, in which each node i ∈ V is
assigned a positive weight wi. Assume that

∑
i∈V wi ≤ 1, and that wi ≥ ϵ for all i ∈ V for some

constant 0 < ϵ < 1
2 . Then ∑

i∈V

wi

wi +
∑

j∈N in(i) wj
≤ 4α ln

4K

αϵ
,

where α = α(G) is the independence number of G.

D.3 First price auction lower bound
We restate Theorem 10 from (Balseiro et al., 2019) :
Theorem 5 (Lower Bound for Learning to Bid). Any algorithm must incur Ω(T 2/3) regret for the
learning to bid in first-price auctions problem, even if the value of the bidder is fixed (i.e., there is
only one context).
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made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
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Justification: While the full set of assumption is presented as part of the problem setting in
the Introduction 1, proofs of the theorems are provided in the appendix B.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theo-

rems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?
Answer: [NA] .
Justification: The paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear

how to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer:[NA]
Justification: The paper does not include experiments.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/

guides/CodeSubmissionPolicy) for more details.
• While we encourage the release of code and data, we understand that this might not

be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [NA] .
Justification: The paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of

detail that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?
Answer: [NA] .
Justification: The paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer ”Yes” if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-

ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA] .

Justification: The paper does not include experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This is a theoretical paper, its result are not tied to a specific field. While
it might be the basis for further research into applying learning in auction, which would
allow for participant in auction to better adapt to others strategies, it is unclear what societal
impact this might have and how fit for practical use the techniques develloped here are.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: The paper does not use existing assets.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the pack-

age should be provided. For popular datasets, paperswithcode.com/datasets has cu-
rated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.
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