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Abstract

Posterior sampling in contextual bandits with a Gaussian prior can be implemented
exactly or approximately using the Laplace approximation. The Gaussian prior is
computationally efficient but it cannot describe complex distributions. In this work,
we propose approximate posterior sampling algorithms for contextual bandits with
a diffusion model prior. The key idea is to sample from a chain of approximate
conditional posteriors, one for each stage of the reverse diffusion process, which
are obtained by the Laplace approximation. Our approximations are motivated by
posterior sampling with a Gaussian prior, and inherit its simplicity and efficiency.
They are asymptotically consistent and perform well empirically on a variety of
contextual bandit problems.

1 Introduction

A multi-armed bandit [27, 6, 30] is an online learning problem where an agent sequentially interacts
with an environment over n rounds with the goal of maximizing its rewards. In each round, it takes
an action and receives its stochastic reward. The mean rewards of the actions are unknown a priori
and must be learned. This leads to the exploration-exploitation dilemma: explore actions to learn
about them or exploit the action with the highest estimated reward. Bandits have been successfully
applied to problems where uncertainty modeling and adaptation are beneficial, such recommender
systems [32, 54, 25, 35] and hyper-parameter optimization [34].

Contextual bandits [29, 32] with linear [13, 1] and generalized linear models (GLMs) [17, 33, 2, 26]
have become popular due to the their flexibility and efficiency. The features in these models can be
hand-crafted or learned from historic data [40], and the models can be also updated incrementally
[1, 24]. While the original algorithms for linear and GLM bandits were based on upper confidence
bounds (UCBs) [13, 1, 17], Thompson sampling (TS) is more popular in practice [11, 3, 42, 44]. The
key idea in TS is to explore by sampling from the posterior distribution of model parameter θ∗. TS
uses the prior knowledge about θ∗ to speed up exploration [11, 40, 36, 9, 21, 20, 5]. When the prior
is a multivariate Gaussian, the posterior of θ∗ can be updated and sampled from efficiently [11]. This
prior has a limited expressive power, because it cannot even represent multimodal distributions. To
address this, we study posterior sampling with a diffusion prior. The main benefit of such priors is
that they can represent complex distributions and be learned from data.

We make the following contributions. First, we propose novel posterior sampling approximations
for linear models and GLMs with a diffusion model prior. The key idea is to sample from a chain of
approximate conditional posteriors, one for each stage of the reverse process, which are estimated in
a closed form. In linear models, each conditional is a product of two Gaussians, representing prior
knowledge and diffused evidence (Theorem 2). In GLMs, each conditional is obtained by a Laplace
approximation, which mixes prior knowledge and evidence (Theorem 4). Our approximations are
motivated by posterior sampling with Gaussian priors, and inherit its simplicity and efficiency. Prior
works (Section 7) sampled from the posterior using the likelihood score, and their approximations
become unstable when the score is high. We combine the likelihood with conditional priors, in each
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stage of the diffusion model, using the Laplace approximation. The resulting posterior concentrates
at a single point and can be sampled from efficiently even if the likelihood score is high. We prove
that this approximation is asymptotically consistent.

Our second contribution is in theory. We properly derive our posterior approximations (Theorems 2
and 4) and show their asymptotic consistency (Theorem 3). The key idea in the proof of Theorem 3
is that the conditional posteriors concentrate at a scaled unknown model parameter as the number
of observations increases. While this claim is asymptotic, it is an expected property of a posterior
distribution. Many prior works, such as Chung et al. [12], do not propose asymptotically consistent
approximations. All of our main results rely on a novel approximation of clean samples by scaled
diffused samples (Section 4.3). The most challenging part of the analysis is Theorem 3, where we
analyze an asymptotic behavior of a chain of T dependent random vectors.

Our last contribution is an empirical evaluation on contextual bandits. We focus on bandits because
the ability to represent all levels of uncertainty precisely is critical for exploration. Our experiments
show that a score-based method fails to do so (Section 6.2). Note that our posterior approximations
are general and not restricted to bandits.

2 Setting

We start with introducing our notation. Random variables are capitalized, except for Greek letters like
θ. We denote the marginal and conditional probabilities under probability measure p by p(X = x)
and p(X = x | Y = y), respectively. When the random variables are clear from context, we write
p(x) and p(x | y). We denote by Xn:m and xn:m a collection of random variables and their values,
respectively. For a positive integer n, we define [n] = {1, . . . , n}. The indicator function is 1{·}.
The i-th entry of vector v is vi. If the vector is already indexed, such as vj , we write vj,i. We denote
the maximum and minimum eigenvalues of matrix M ∈ Rd×d by λ1(M) and λd(M), respectively.

The posterior sampling problem can be formalized as follows. Let θ∗ ∈ Θ be an unknown model
parameter and Θ ⊆ Rd be the space of model parameters. Let h = {(ϕℓ, yℓ)}ℓ∈[N ] be the history of
N noisy observations of θ∗, where ϕℓ ∈ Rd is the feature vector for yℓ ∈ R. We assume that

yℓ = g(ϕ⊤ℓ θ∗) + εℓ , (1)

where g : R→ R is the mean function and εℓ is an independent zero-mean σ2-sub-Gaussian noise
for σ > 0. Let p(h | θ∗) be the likelihood of observations in history h under model parameter θ∗ and
p(θ∗) be its prior probability. By Bayes’ rule, the posterior distribution of θ∗ given h is

p(θ∗ | h) ∝ p(h | θ∗) p(θ∗) . (2)

We want to sample from p(· | h) efficiently when the prior distribution is represented by a diffusion
model. As a stepping stone, we review existing posterior formulas for multivariate Gaussian priors.
This motivates our solution for diffusion model priors.

2.1 Linear Model

The posterior of θ∗ in linear models can be derived as follows.
Assumption 1. Let g in (1) be an identity and εℓ ∼ N (0, σ2). Then the likelihood of h under model
parameter θ∗ is p(h | θ∗) ∝ exp[−

∑N
ℓ=1(yℓ − ϕ⊤ℓ θ∗)2/(2σ2)].

Let p(θ∗) = N (θ∗; θ0,Σ0) be the prior distribution of θ∗, where θ0 ∈ Rd and Σ0 ∈ Rd×d are the
prior mean and covariance, respectively. Then p(θ∗ | h) ∝ N (θ∗; θ̂, Σ̂) [10], where

θ̂ = Σ̂
(
Σ−1

0 θ0 + σ−2
∑N
ℓ=1 ϕℓyℓ

)
, Σ̂ =

(
Σ−1

0 + σ−2
∑N
ℓ=1 ϕℓϕ

⊤
ℓ

)−1

,

are the posterior mean and covariance, respectively. In this work, we write them equivalently as

θ̂ = Σ̂(Σ−1
0 θ0 + Σ̄−1θ̄) , Σ̂ = (Σ−1

0 + Σ̄−1)−1 , (3)

where θ̄ = σ−2Σ̄
∑N
ℓ=1 ϕℓyℓ and Σ̄−1 = σ−2

∑N
ℓ=1 ϕℓϕ

⊤
ℓ are the empirical mean and inverse of its

covariance, respectively. Therefore, the posterior of θ∗ is a product of two multivariate Gaussians:
N (θ0,Σ0) representing prior knowledge about θ∗ and N (θ̄, Σ̄) representing empirical evidence.

2
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Algorithm 1 IRLS: Iteratively reweighted least squares.
1: Input: Prior parameters θ0 and Σ0, history of observations h = {(ϕℓ, yℓ)}ℓ∈[N ]

2: Initialize θ̂ ∈ Rd
3: repeat
4: for stage ℓ = 1, . . . , N do
5: zℓ ← ϕ⊤ℓ θ̂ + (yℓ − g(ϕ⊤ℓ θ̂))/ġ(ϕ⊤ℓ θ̂)

6: Σ̂←
(
Σ−1

0 +
∑N
ℓ=1 ġ(ϕ

⊤
ℓ θ̂)ϕℓϕ

⊤
ℓ

)−1

7: θ̂ ← Σ̂
(
Σ−1

0 θ0 +
∑N
ℓ=1 ġ(ϕ

⊤
ℓ θ̂)ϕℓzℓ

)
8: until θ̂ converges

9: Output: Posterior mean θ̂ and covariance Σ̂

2.2 Generalized Linear Model

Generalized linear models (GLMs) [37] extend linear models (Section 2.1) to non-linear monotone
mean functions g in (1). For instance, in logistic regression, g(u) = 1/(1 + exp[−u]) is a sigmoid.
The likelihood of observations in GLMs has the following form [26].

Assumption 2. Let h = {(ϕℓ, yℓ)}ℓ∈[N ] be a history of N observations under mean function g and

the corresponding noise. Then log p(h | θ∗) ∝
∑N
ℓ=1 yℓϕ

⊤
ℓ θ∗ − b(ϕ⊤ℓ θ∗) + c(yℓ), where c is a real

function and b is a function whose derivative is the mean function, ḃ = g.

The posterior distribution of θ∗ in GLMs does not have a closed form in general [10]. Therefore, it is
often approximated by the Laplace approximation. Let the prior distribution of the model parameter
be p(θ∗) = N (θ∗; θ0,Σ0), as in Section 2.1. Then the Laplace approximation isN (θ̂, Σ̂), where θ̂ is
the maximum a posteriori (MAP) estimate of θ∗ and Σ̂ is the corresponding covariance. Note that the
Laplace approximation can be applied to non-Gaussian priors.

The MAP estimate θ̂ can be obtained by iteratively reweighted least squares (IRLS) [52], which we
present in Algorithm 1. IRLS is a Newton-type algorithm that computes θ̂ iteratively (lines 6 and
7). It converges to the optimal solution due to the strong convexity of the problem. The solution has
a similar structure to (3). That is, N (θ̂, Σ̂) is a product of two multivariate Gaussians, representing
prior knowledge about θ∗ and empirical evidence. The new quantities in GLMs are the derivative of
the mean function ġ and pseudo-observations zℓ (line 5), which play the role of observations yℓ in
Section 2.1.

2.3 Towards Diffusion Model Priors

The assumption that p(θ∗) = N (θ∗; θ0,Σ0) is limiting, for instance because it precludes multimodal
priors. We relax it by representing p(θ∗) by a diffusion model, which we call a diffusion model prior.
We propose efficient posterior sampling approximations for this prior, where the prior and empirical
evidence are mixed similarly to (3) and IRLS. We review diffusion models next.

3 Diffusion Models

Diffusion models [46, 19] are generative models trained by diffusing samples from unknown and
hard to represent distributions. They can be viewed in multiple ways [49]. We adopt the probabilistic
formulation and presentation of Ho et al. [19]. A diffusion model is a graphical model with T stages
indexed by t ∈ [T ]. Each stage t is associated with a latent variable St ∈ Rd. A sample from the
model is represented by an observed variable S0 ∈ Rd. We visualize a diffusion model in Figure 1.
In the forward process, a clean sample s0 is diffused through a sequence of variables S1, . . . , ST .
This process is used to learn the reverse process, where the clean sample s0 is generated through a
sequence of variables ST , . . . , S0. To sample s0 from the posterior (Section 4), we add a random
variable H that represents partial information about s0. We introduce forward and reverse diffusion

3
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Forward process (probability measure q) Reverse process (probability measure p)
ST ← ST−1 ← · · · ← S1 ← S0 ST → ST−1 → · · · → S1 → S0 → H

Figure 1: Graphical models of the forward and reverse processes in the diffusion model. The variable
H represents partial information about S0.

processes next. Learning of the reverse process is described in Appendix B. While this is a critical
component of diffusion models, it is not necessary to introduce our posterior approximations.

Forward process. In the forward process, a clean sample s0 is diffused through a chain of latent
variables S1, . . . ST (Figure 1). We denote the probability measure under this process by q and define
its joint probability distribution as

q(s1:T | s0) =
∏T
t=1 q(st | st−1) , ∀t ∈ [T ] : q(st | st−1) = N (st;

√
αtst−1, βtId) , (4)

where q(st | st−1) is the conditional density of mapping a less diffused st−1 to a more diffused st.
The diffusion rate is set by parameters αt ∈ (0, 1) and βt = 1− αt. The forward process is sampled
from as follows. First, a clean sample s0 is chosen. Then St ∼ q(· | st−1) are sampled, from t = 1
to t = T .

Reverse process. In the reverse process, a clean sample s0 is generated through a chain of variables
ST , . . . , S0 (Figure 1). We denote the probability measure under this process by p and define its joint
probability distribution as

p(s0:T ) = p(sT )

T∏
t=1

p(st−1 | st) , (5)

p(sT ) = N (sT ;0d, Id) , ∀t ∈ [T ] : p(st−1 | st) = N (st−1;µt(st),Σt) ,

where p(st−1 | st) is the conditional density of mapping a more diffused st to a less diffused st−1.
The function µt predicts the mean of St−1 | st and is learned (Appendix B). As in Ho et al. [19], we
keep the covariance fixed at Σt = β̃tId, where β̃t =

1−ᾱt−1

1−ᾱt
βt and ᾱt =

∏t
ℓ=1 αℓ. This is known

as a stable diffusion. We make this assumption only to simplify exposition. All our derivations in
Section 4 hold when Σt is learned, for instance as in Bao et al. [8].

This process is called reverse because it is learned by reversing the forward process. The reverse
process is sampled from as follows. First, an initial diffused sample ST ∼ p is sampled. After that,
St−1 ∼ p(· | st) are sampled, from t = T to t = 1.

4 Posterior Sampling

This section is organized as follows. In Section 4.1, we show how to sample from a chain of random
variables conditioned on observations. In Sections 4.2 and 4.4, we specialize this to the observation
models in Section 2.

4.1 Chain Model Posterior

Let h = {(ϕℓ, yℓ)}ℓ∈[N ] denote a history of N observations (Section 2) and H be the corresponding
random variable. In this section, we assume that h is fixed. The Markovian structure of the reverse
process (Figure 1) implies that the joint probability distribution conditioned on h factors as

p(s0:T | h) = p(sT | h)
T∏
t=1

p(st−1 | st, h) .

Therefore, p(s0:T | h) can be sampled from efficiently by first sampling from p(sT | h) and then
from T conditional distributions p(st−1 | st, h). We derive these next.
Lemma 1. Let p be a probability measure over the reverse process (Figure 1). Then

p(sT | h) ∝
∫
s0
p(h | s0) p(s0 | sT ) ds0 p(sT ) ,

∀t ∈ [T ] \ {1} : p(st−1 | st, h) ∝
∫
s0
p(h | s0) p(s0 | st−1) ds0 p(st−1 | st) ,

p(s0 | s1, h) ∝ p(h | s0) p(s0 | s1) .

4
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Algorithm 2 LaplaceDPS: Laplace posterior sampling with a diffusion model prior.
1: Input: Diffusion model parameters (µt,Σt)t∈[T ], history of observations h

2: Initial sample ST ∼ N (µ̂T+1(h), Σ̂T+1(h))
3: for stage t = T, . . . , 1 do
4: St−1 ∼ N (µ̂t(St, h), Σ̂t(h))

5: Output: Posterior sample S0

Proof. The claim is proved in Appendix A.1.

4.2 Linear Model Posterior

Now we specialize Lemma 1 to the diffusion model prior (Section 3) and linear models (Section 2.1).
The prior distribution is the reverse process in (5),

p(sT ) = N (sT ;0d, Id) , ∀t ∈ [T ] : p(st−1 | st) = N (st−1;µt(st),Σt) .

The term p(h | s0) is the likelihood of observations in Assumption 1. The main challenge in using
the lemma is that the conditional densities of clean samples p(s0 | ST ) and p(s0 | st) are complex
[12]. To get around this, we make an additional assumption, which is discussed in Section 4.3.
Theorem 2. Let p be a probability measure over the reverse process (Figure 1). Let θ̄ and Σ̄−1 be
defined as in (3). Suppose that∫

s0
p(h | s0) p(s0 | st) ds0 ∝ p(h | st/

√
ᾱt) (6)

holds for all t ∈ [T ]. Then p(sT | h) ∝ N (sT ; µ̂T+1(h), Σ̂T+1(h)), where

µ̂T+1(h) = Σ̂T+1(h)(Id 0d︸ ︷︷ ︸
Prior

+Σ̄−1θ̄/
√
ᾱT︸ ︷︷ ︸

Evidence

) , Σ̂T+1(h) = ( Id︸︷︷︸
Prior

+Σ̄−1/ᾱT︸ ︷︷ ︸
Evidence

)−1 . (7)

For t ∈ [T ], we have p(st−1 | st, h) ∝ N (st−1; µ̂t(st, h), Σ̂t(h)), where

µ̂t(st, h) = Σ̂t(h)(Σ
−1
t µt(st)︸ ︷︷ ︸

Prior

+Σ̄−1θ̄/
√
ᾱt−1︸ ︷︷ ︸

Evidence

) , Σ̂t(h) = (Σ−1
t︸︷︷︸

Prior

+Σ̄−1/ᾱt−1︸ ︷︷ ︸
Evidence

)−1 . (8)

Proof. The proof is in Appendix A.2. It has four steps. First, we fix stage t and apply approximation
(6). Second, we rewrite the likelihood as in (3). Third, we reparameterize it as a function of st. At
the end, we combine the likelihood with the Gaussian prior using Lemma 6 in Appendix A.5.

The algorithm that samples from the posterior distribution in Theorem 2 is presented in Algorithm 2.
We call it Laplace diffusion posterior sampling (LaplaceDPS) because its generalization to GLMs
uses the Laplace approximation. LaplaceDPS samples from a chain of products of two distributions:
one distribution represents the pre-trained diffusion model and does not depend on history h, and the
other represents the history h. The sampling is implemented as follows. The initial variable ST is
sampled conditioned on h (line 2) from the distribution in (7). This distribution is a product of the
h-independent prior N (0d, Id) and the h-dependent distribution of the diffused evidence up to stage
T , N (

√
ᾱT θ̄, ᾱT Σ̄). Then, for any t ∈ [T ], St−1 is sampled conditioned on st and evidence h (line

4) from the distribution in (8). This distribution is a product of the h-independent conditional prior
N (µt(st),Σt), from the pre-trained model, and the h-dependent distribution of the diffused evidence
up to stage t − 1, N (

√
ᾱt−1θ̄, ᾱt−1Σ̄). The last variable S0 is the clean sample. When compared

to Section 2, the prior and evidence are mixed conditionally in a T -stage chain. This increases the
computational cost T times, as discussed in Section 8.

4.3 Key Approximation in Theorem 2

Now we motivate our assumption in (6). Simply put, we assume that s0 = st/
√
ᾱt, where s0 is a

clean sample and st is the corresponding diffused sample in stage t. This is motivated by the forward
process, which relates st and s0 as st =

√
ᾱts0 +

√
1− ᾱtεt, where εt ∼ N (0d, Id) is a standard

5
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Algorithm 3 Contextual Thompson sampling.
1: for round k = 1, . . . , n do
2: Sample θ̃k ∼ p(· | hk), where p(· | hk) is the posterior distribution in (2)
3: Take action ak ← argmax a∈A r(xk, a; θ̃k) and observe reward yk

Gaussian noise [19]. After rearranging, we get s0 = (st −
√
1− ᾱtεt)/

√
ᾱt, and therefore s0 can

be viewed as a random variable with mean st/
√
ᾱt. The consequence of (6) is that the likelihood

becomes a function of st, which yields a closed form when multiplied by the conditional prior, also a
function of st. Our approximation can be also viewed as the Tweedie’s formula in Chung et al. [12]
where the score component is neglected.

Our approximation has several notable properties. First,
√

(1− ᾱt)/ᾱt → 0 as t→ 1. Therefore,
it becomes more precise in later stages of the reverse process. Second, in the absence of evidence
h, the approximation vanishes, and all posterior distributions in Theorem 2 reduce to the priors in
(5). Finally, as the number of observations increases, sampling from the posterior in Theorem 2 is
asymptotically consistent.

Theorem 3. Fix θ∗ ∈ Rd. Let θ̃ ← LaplaceDPS((µt,Σt)t∈[T ], h), where h = {(ϕℓ, yℓ)}ℓ∈[N ] is a
history of N observations. Suppose that λd(Σ̄−1)→∞ as N →∞, where Σ̄ is defined in (3). Then

P
(
limN→∞ ∥θ̃ − θ∗∥2 = 0

)
= 1.

Proof. The proof is in Appendix A.3. The key idea is that the conditional posteriors in (7) and (8)
concentrate at a scaled unknown model parameter θ∗ as the number of observations increases, which
we formalize as λd(Σ̄−1)→∞.

The bound in Theorem 3 can be interpreted as follows. The sampled parameter θ̃ approaches the true
unknown parameter θ∗ as the number of observations N increases. To guarantee that the posterior
shrinks uniformly in all directions, we assume that the number of observations in all directions grows
linearly with N . This is akin to assuming that λd(Σ̄−1) = Ω(N). This lower bound can be attained
in linear models by getting observations according to the D-optimal design [39].

4.4 GLM Posterior

The Laplace approximation in GLMs (Section 2.2) naturally generalizes the exact posterior distribu-
tion in linear models (Section 2.1). We generalize Theorem 2 to GLMs along the same lines.

Theorem 4. Let p be a probability measure over the reverse process (Figure 1). Suppose that (6)
holds for all t ∈ [T ]. Then p(sT | h) ∝ N (sT ; µ̂T+1(h), Σ̂T+1(h)), where

µ̂T+1(h) =
√
ᾱT θ̇T+1 , Σ̂T+1(h) = ᾱT Σ̇T+1 , θ̇T+1, Σ̇T+1 ← IRLS(0d, Id/ᾱT , h) .

For t ∈ [T ], we have p(st−1 | st, h) ∝ N (st−1; µ̂t(st, h), Σ̂t(h)), where

µ̂t(st, h) =
√
ᾱt−1θ̇t , Σ̂t(h) = ᾱt−1Σ̇t , θ̇t, Σ̇t ← IRLS(µt(st)/

√
ᾱt−1,Σt/ᾱt−1, h) .

Proof. The proof is in Appendix A.4. It has four steps. First, we fix stage t and apply approximation
(6). Second, we reparameterize the prior, from a function of st to a function of st/

√
ᾱt. Third, we

combine the likelihood with the prior using the Laplace approximation. Finally, we repameterize the
posterior, from a function of st/

√
ᾱt to a function of st.

Similarly to Theorem 2, the distributions in Theorem 4 mix evidence with the diffusion model prior.
However, this is done implicitly in IRLS. The posterior can be sampled from using LaplaceDPS,
where the mean and covariances would be taken from Theorem 4. Note that Theorem 2 is a special
case of Theorem 4 where the mean function g is an identity.

6
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5 Application to Contextual Bandits

Now we apply our posterior sampling approximations (Section 4) to contextual bandits. A contextual
bandit [29, 32] is a classic model for sequential decision making under uncertainty where the agent
takes actions conditioned on context. We denote the action set by A and the context set by X . The
mean reward for taking action a ∈ A in context x ∈ X is r(x, a; θ∗), where r : X ×A×Θ→ R is
a reward function and θ∗ ∈ Θ is a model parameter (Section 2). The agent interacts with the bandit
for n rounds indexed by k ∈ [n]. In round k, it observes a context xk ∈ X , takes an action ak ∈ A,
and observes its stochastic reward yk = r(xk, ak; θ∗) + εk with independent noise εk. We assume
that the noise is zero-mean σ2-sub-Gaussian for σ > 0. The objective of the agent is to maximize
its cumulative reward in n rounds, or equivalently to minimize its cumulative regret. We define the
n-round regret as

R(n) =
∑n
k=1 E [r(xk, ak,∗; θ∗)− r(xk, ak; θ∗)] , (9)

where ak,∗ = argmax a∈A r(xk, a; θ∗) is the optimal action in round k.

Arguably the most popular method for solving contextual bandit problems is Thompson sampling
[50, 11, 3]. The key idea in TS is to use the posterior distribution of θ∗ to explore. This is done as
follows. In round k, the model parameter is drawn from the posterior in (2), θ̃k ∼ p(· | hk), where hk
is the history of all interactions up to round k. After that, the agent takes the action with the highest
mean reward under θ̃k. The pseudo-code of this algorithm is given in Algorithm 3.

A linear bandit [13] has a linear reward function r(x, a; θ∗) = ϕ(x, a)⊤θ∗, where ϕ : X ×A → Rd
is a feature extractor. The feature extractor can be non-linear in x and a. Therefore, linear bandits
can be applied to non-linear functions of x and a. The feature extractor can be either learned [40] or
hand-crafted. We denote the feature vector of the action in round k by ϕk = ϕ(xk, ak). Therefore,
the history of interactions up to round k is hk = {(ϕℓ, yℓ)}ℓ∈[k−1]. When the prior distribution is a
Gaussian, p(θ∗) = N (θ∗; θ0,Σ0), the posterior in round k is a Gaussian in (3) for h = hk. When the
prior is a diffusion model, we propose sampling from the posterior using

θ̃k ← LaplaceDPS((µt,Σt)t∈[T ], hk) , (10)

where µ̂t and Σ̂t in LaplaceDPS are computed as in Theorem 2. We call this algorithm DiffTS.

A generalized linear bandit [17, 24, 33, 26] is an extension of linear bandits to generalized linear
models (Section 2.2). When p(θ∗) = N (θ∗; θ0,Σ0), the Laplace approximation to the posterior is a
Gaussian (Section 2.2). When the prior is a diffusion model, we propose posterior sampling using
(10), where µ̂t and Σ̂t in LaplaceDPS are computed as in Theorem 4.

6 Experiments

We conduct three experiments: synthetic problems in 2 dimensions (Section 6.2 and Appendix C.1),
a recommender system (Section 6.3), and a classification problem (Appendix C.2). In addition, we
conduct an ablation study in Appendix C.3, where we vary the number of training samples for the
diffusion prior and the number of diffusion stages T .

6.1 Experimental Setup

We have four baselines. Three baselines are variants of contextual Thompson sampling [11, 3]: with
an uninformative Gaussian prior (TS), a learned Gaussian prior (TunedTS), and a learned Gaussian
mixture prior (MixTS) [22]. The last baseline is diffusion posterior sampling (DPS) of Chung et al.
[12]. We implement all TS baselines as described in Section 5. The uninformative prior is N (0d, Id).
MixTS is used only in linear bandit experiments because the logistic regression variant does not exist.
The TS baselines are chosen to cover various levels of prior information. Our implementation of DPS
is described in Appendix D. We also experimented with frequentist baselines, such as LinUCB [1]
and the ε-greedy policy. They performed worse than TS and thus we do not report them.

Each experiment is set up as follows. First, the prior distribution of θ∗ is specified: it can be synthetic
or estimated from real-world data. Second, we learn this distribution from 10 000 samples from it. In
DiffTS and DPS, we follow Appendix B. The number of stages is T = 100 and the diffusion factor

7

130469 https://doi.org/10.52202/079017-4146



−4 −3 −2 −1 0 1 2 3 4
−4
−3
−2
−1

0
1
2
3
4

Tr
ue

 a
nd

 d
iff

us
io

n 
pr

io
rs

Problem cross

0 50 100 150 200
Round n

0

5

10

15

20

25

Re
gr

et

Problem cross

TS
TunedTS
MixTS
DPS
DiffTS

−4 −3 −2 −1 0 1 2 3 4
−4
−3
−2
−1

0
1
2
3
4

Tr
ue

 a
nd

 d
iff

us
io

n 
pr

io
rs

Problem rays

0 50 100 150 200
Round n

0

5

10

15

20

25

Re
gr

et

Problem rays

TS
TunedTS
MixTS
DPS
DiffTS

−4 −3 −2 −1 0 1 2 3 4
−4
−3
−2
−1

0
1
2
3
4

Tr
ue

 a
nd

 d
iff

us
io

n 
pr

io
rs

Problem triangles

0 50 100 150 200
Round n

0

5

10

15

20

25

Re
gr

et

Problem triangles

TS
TunedTS
MixTS
DPS
DiffTS

Figure 2: Evaluation of DiffTS on three synthetic problems. The first row shows samples from the
true (blue) and diffusion model (red) priors. The second row shows the regret of DiffTS and the
baselines as a function of round n.

is αt = 0.97. Since 0.97100 ≈ 0.05, most of the information in the training samples is diffused. The
regressor in Appendix B is a 2-layer neural network with ReLU activations. In TunedTS, we fit the
mean and covariance using maximum likelihood estimation. In MixTS, we fit the Gaussian mixture
using SCIKIT-LEARN. All algorithms are evaluated on θ∗ sampled from the true prior. The regret is
computed as defined in (9). All error bars are standard errors of the estimates.

6.2 Synthetic Experiment

The first experiment is on three synthetic problems. Each problem is a linear bandit (Section 5) with
K = 100 actions in d = 2 dimensions. The reward noise is σ = 1. The feature vectors of actions are
sampled uniformly at random from a unit ball. The prior distributions of θ∗ are shown in Figure 2.
The first is a mixture of two Gaussians and the last can be approximated well by a mixture of two
Gaussians. We implement MixTS with two mixture components. Therefore, it can represent the first
prior exactly and approximate the last one well.

Our results are reported in Figure 2. We observe two main trends. First, samples from the diffusion
prior closely resemble those from the true prior. In such cases, DiffTS is expected to perform well
and even outperforms MixTS, because it has a better representation of the prior. We observe this in
all problems. Second, DPS diverges as the number of rounds increases. This is because DPS uses an
approximation based on the likelihood score (Section 7), which is unstable when the score is high.
This happens despite our best efforts to tune DPS (Appendix D). We report results on another three
synthetic problems in Appendix C.1.

DiffTS should be T times more computationally costly than TS with a Gaussian prior (Section 4.2).
We observe this empirically. As an example, the average cost of 100 runs of DiffTS on any problem
in Figure 2 is 12 seconds. The average cost of TS is 0.1 seconds. The computation and accuracy can
be traded off, and we investigate this in Appendix C.3. In the cross problem, we vary the number of
diffusion stages from T = 1 to T = 300. We observe that the computational cost is linear in T and
the regret drops quickly from 26 at T = 1 to 15 at T = 50.

6.3 MovieLens Experiment

In the second experiment, we learn to recommend an item to randomly arriving users. The problem
is simulated using the MovieLens 1M dataset [28], with one million ratings for 3 706 movies from
6 040 users. We subtract the mean rating from all ratings and complete the sparse rating matrix M by
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Figure 3: Evaluation of DiffTS on the MovieLens dataset: (a) shows samples from the true (blue)
and diffusion model (red) priors, (b) shows regret in the linear bandit, and (c) shows regret in the
logistic bandit.

alternating least squares [14] with rank d = 5. The learned factorization is M = UV ⊤. The i-th row
of U , denoted by Ui, represents user i. The j-th row of V , denoted by Vj , represents movie j. We
use movie embeddings Vj as model parameters and user embeddings Ui as features of the actions.
The movies are items.

We experiment with both linear and logistic bandits. In both, an item is initially chosen randomly
from Vj and K = 10 actions are chosen randomly from Ui in each round. In the linear bandit, the
mean reward of item j for user i is U⊤

i Vj . The reward noise is σ = 0.75, and we estimate it from
data. In the logistic bandit, the mean reward is g(U⊤

i Vj), where g is a sigmoid.

Our MovieLens results are reported in Figure 3 and we observe similar trends to Section 6.2. First,
samples from the diffusion prior closely resemble those from the true prior (Figure 3a). Since the
problem is higher dimensional, we visualize the overlap using UMAP [45]. Second, DiffTS has a
lower regret than all baselines, in both linear (Figure 3b) and logistic (Figure 3c) bandits. Finally,
MixTS barely outperforms TunedTS. We observe this trend consistently in higher dimensions, and
this motivated our work on online learning with more complex priors.

7 Related Work

We start with reviewing related works on bandits with diffusion models. Hsieh et al. [23] proposed
Thompson sampling with a diffusion model prior for K-armed bandits. There are multiple technical
differences from our work. First, the diffusion model in Hsieh et al. [23] is over scalars representing
individual arms. Our model is over vectors representing model parameters, and thus can be applied
to contextual bandits. Second, the approximations are different. In stage t, Hsieh et al. [23] sample
from two distributions: the conditional prior and the distribution of the diffused empirical mean up
to stage t. Then they take a weighted sum of the samples. We sample only once, from the posterior
distribution that combines the conditional prior in stage t and likelihood. Therefore, the method of
Hsieh et al. [23] can be viewed as a non-contextual variant of our method, where posterior sampling
is done by weighting samples from the prior and empirical distributions. Finally, Hsieh et al. [23] do
not analyze their approximation.

Aouali [4] proposed and analyzed contextual bandits with a linear diffusion model prior: µt(st) in
(5) is linear in st and q(s0) is a Gaussian. Therefore, this model is a linear Gaussian model and not a
general diffusion model, as in our work.

The closest related work on posterior sampling in diffusion models is DPS of Chung et al. [12]. The
key idea in DPS is to sample from the posterior distribution using the likelihood score ∇ log p(h | θ),
where p(h | θ) is the likelihood (Assumptions 1 and 2). Note that∇ log p(h | θ) grows linearly in N
because the history h in p(h | θ) involves N terms. Therefore, DPS becomes unstable as N →∞.
We show it empirically in Section 6.2 and discuss the implementation of DPS in Appendix D, which
was tuned to improve its stability.

Many other posterior sampling methods for diffusion models have been proposed recently: a sequen-
tial Monte Carlo approximation for the conditional reverse process [53], a variant of DPS with an
uninformative prior [38], a pseudo-inverse approximation to the likelihood of evidence [48], and
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posterior sampling in latent diffusion models [41]. All of these methods rely on the likelihood score
∇ log p(h | θ) and thus become unstable as the number of observations N increases. Our posterior
approximations do not have this issue because they are based on the product of prior and evidence
distributions (Theorems 2 and 4), and thus gradient-free. They work well across different levels of
uncertainty (Section 6) and do not require tuning.

We note that posterior sampling is a special form of inference-time guidance in diffusion models.
Other approaches are conditional pre-training [15], a constraint in the reverse process [18], refining
the null-space content [51], solving an optimization problem that pushes the reverse process towards
evidence [47], and aligning the reverse process with the prompt [7].

8 Conclusions

We propose posterior sampling approximations for diffusion models priors. These approximations
are contextual, and can be implemented efficiently in linear models and GLMs. We analyze them and
evaluate them empirically on contextual bandit problems. Our method has two main limitations.

Computational cost. The cost of posterior sampling in LaplaceDPS with T stages is about T times
higher than that of posterior sampling with a Gaussian prior (Section 2). We validate it empirically in
Section 6.2. We plot the sampling time as a function of T in Figure 6c (Appendix C.3).

Learning cost and hyper-parameter tuning. In all experiments, the number of diffusion stages is
T = 100 and the diffusion rate is set such that most of the signal diffuses. The regressor is a 2-layer
neural network and we learn it from 10 000 samples from the prior. These settings resulted in stable
performance in all our experiments (Section 6). However, they clearly impact the performance. We
plot the regret as a function of the number of training samples in Figure 6a and as a function of T in
Figure 6b. When T or the number of training samples is small, DiffTS performs very similarly to
posterior sampling with a Gaussian prior. In summary, there is no benefit in these cases.

Future work. We develop novel posterior approximations rather than bounding their regret. This is
because the existing approximations are unstable and may diverge in the online setting (Sections 6.2
and 7). We believe that a proper regret analysis of DiffTS is possible and would require bounding
two errors. The first error arises because the reverse process does not reverse the forward process
exactly (Appendix B). The second error arises because our posterior distributions are approximate
(Section 4.3). One possibility is to start with prior works that already showed the utility of complex
priors. For instance, Russo and Van Roy [43] proved a O(

√
ΓH(A∗)n) regret bound for a linear

bandit, where Γ is the maximum ratio of regret to information gain and H(A∗) is the entropy of the
distribution of the optimal action under the prior. This bound holds for any prior and says that a lower
entropy H(A∗), which corresponds to more informative priors, yields a lower regret.

We also believe that our ideas can be extended beyond GLMs. The key idea in Section 4.4 is to use
the Laplace approximation of the likelihood. This approximation can be computed exactly in GLMs.
More generally though, it is a good approximation whenever the likelihood can be approximated well
by a single Gaussian distribution. By the central limit theorem, under appropriate assumptions, this is
expected for any observation model when the number of observations is large.
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A Proofs and Supporting Lemmas

This section contains proofs of our main claims and supporting lemmas.

A.1 Proof of Lemma 1

All derivations are based on basic rules of probability and the chain structure in Figure 1, and are
exact. From Figure 1, the joint probability distribution conditioned on H = h factors as

p(s0:T | h) = p(sT | h)
T∏
t=1

p(st−1 | st:T , h) = p(sT | h)
T∏
t=1

p(st−1 | st, h) .

We use that p(st−1 | st:T , h) = p(st−1 | st, h) in the last equality. We consider two cases.

Derivation of p(st−1 | st, h). By Bayes’ rule, we get

p(st−1 | st, h) =
p(h | st−1, st) p(st−1 | st)

p(h | st)
∝ p(h | st−1) p(st−1 | st) .

In the last step, we use that p(h | st) is a constant, since st and h are fixed, and that p(h | st−1, st) =
p(h | st−1). Note that the last term p(st−1 | st) is the conditional prior distribution. When t > 1, the
first term can be expressed as

p(h | st−1) =

∫
s0

p(h, s0 | st−1) ds0 =

∫
s0

p(h | s0, st−1) p(s0 | st−1) ds0

=

∫
s0

p(h | s0) p(s0 | st−1) ds0 .

In the last equality, we use that our graphical model is a chain (Figure 1), and thus p(h | s0, st−1) =
p(h | s0). Finally, we chain all identities and get that

p(st−1 | st, h) ∝
∫
s0

p(h | s0) p(s0 | st−1) ds0 p(st−1 | st) . (11)

Derivation of p(sT | h). By Bayes’ rule, we get

p(sT | h) =
p(h | sT ) p(sT )

p(h)
∝ p(h | sT ) p(sT ) .

In the last step, we use that p(h) is a constant, since h is fixed. The first term can be rewritten as

p(h | sT ) =
∫
s0

p(h, s0 | sT ) ds0 =

∫
s0

p(h | s0, sT ) p(s0 | sT ) ds0

=

∫
s0

p(h | s0) p(s0 | sT ) ds0 .

Finally, we chain all identities and get that

p(sT | h) ∝
∫
s0

p(h | s0) p(s0 | sT ) ds0 p(sT ) . (12)

This completes the derivations.

A.2 Proof of Theorem 2

This proof has two parts.

Derivation of p(st−1 | st, h). From (6) and Assumption 1, it follows that∫
s0

p(h | s0) p(s0 | st−1) ds0 ∝ p(h | st−1/
√
ᾱt−1) ∝ N (st−1/

√
ᾱt−1; θ̄, Σ̄)

∝ N (st−1;
√
ᾱt−1θ̄, ᾱt−1Σ̄) .
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The last step treats ᾱt−1 and Σ̄ as constants, because the forward process and evidence h are fixed.
Now we apply Lemma 6 to distributions

p(st−1 | st) = N (st−1;µt(st),Σt) , N (st−1;
√
ᾱt−1θ̄, ᾱt−1Σ̄) ,

and get that

p(st−1 | st, h) ∝ N (st−1; µ̂t(st, h), Σ̂t(h)) ,

where µ̂t(st, h) and Σ̂t(h) are defined in the claim. This is a product of two Gaussians: the prior
with mean µt(st) and covariance Σt, and the evidence with mean

√
ᾱt−1θ̄ and covariance ᾱt−1Σ̄.

Derivation of p(sT | h). Analogously to the derivation of p(st−1 | st, h), we establish that∫
s0

p(h | s0) p(s0 | sT ) ds0 ∝ N (sT ;
√
ᾱT θ̄, ᾱT Σ̄) .

Then we apply Lemma 6 to distributions

p(sT ) = N (sT ;0d, Id) , N (sT ;
√
ᾱT θ̄, ᾱT Σ̄) ,

and get that

p(sT | h) ∝ N (sT ; µ̂T+1(h), Σ̂T+1(h)) ,

where µ̂T+1(h) and Σ̂T+1(h) are defined in the claim. This is a product of two Gaussians: the prior
with mean 0d and covariance Id, and the evidence with mean

√
ᾱT θ̄ and covariance ᾱT Σ̄.

A.3 Proof of Theorem 3

We start with the triangle inequality

∥θ̃ − θ∗∥2 = ∥θ̃ − θ̄ + θ̄ − θ∗∥2 ≤ ∥θ̃ − θ̄∥2 + ∥θ̄ − θ∗∥2 ,

where we introduce θ̄ from Section 2.1. Now we bound each term on the right-hand side.

Upper bound on ∥θ̃ − θ̄∥2. This part of the proof is based on analyzing the asymptotic behavior of
the conditional densities in Theorem 2.

As a first step, note that ST ∼ N (µ̂T+1(h), Σ̂T+1(h)), where

µ̂T+1(h) = Σ̂T+1(h)(Id 0d + Σ̄−1θ̄/
√
ᾱT ) , Σ̂T+1(h) = (Id + Σ̄−1/ᾱT )

−1 .

Since λd(Σ̄−1)→∞, we get

Σ̂T+1(h)→ ᾱT Σ̄ , µ̂T+1(h)→
√
ᾱT θ̄ .

Moreover, λd(Σ̄−1)→∞ implies λ1(Σ̄)→ 0, and thus limN→∞ ∥ST −
√
ᾱT θ̄∥2 = 0.

The same argument can be applied inductively to later stages of the reverse process. Specifically, for
any t ∈ [T ], St−1 ∼ N (µ̂t(St, h), Σ̂t(h)), where

µ̂t(St, h) = Σ̂t(h)(Σ
−1
t µt(St) + Σ̄−1θ̄/

√
ᾱt−1) , Σ̂t(h) = (Σ−1

t + Σ̄−1/ᾱt−1)
−1 .

Since λd(Σ̄−1)→∞ and St →
√
ᾱtθ̄ by induction, we get

Σ̂t(h)→ ᾱt−1Σ̄ , µ̂t(St, h)→
√
ᾱt−1θ̄ .

Moreover, λd(Σ̄−1)→∞ implies λ1(Σ̄)→ 0, and thus limN→∞ ∥St−1 −
√
ᾱt−1θ̄∥2 = 0 for any

t ∈ [T ]. In the last stage, t = 1, ᾱ0 = 1, and S0 = θ̃. Therefore,

lim
N→∞

∥St−1 −
√
ᾱt−1θ̄∥2 = lim

N→∞
∥θ̃ − θ̄∥2 = 0 .

Upper bound on ∥θ̄ − θ∗∥2. This part of the proof uses the definition of θ̄ in Section 2.1 and that
εℓ ∼ N (0, σ2) is independent noise. By definition,

θ̄ − θ∗ = σ−2Σ̄

N∑
ℓ=1

ϕℓyℓ − θ∗ = σ−2Σ̄

N∑
ℓ=1

ϕℓ(ϕ
⊤
ℓ θ∗ + εℓ)− θ∗ = σ−2Σ̄

N∑
ℓ=1

ϕℓεℓ .
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Since εℓ is independent zero-mean Gaussian noise with variance σ2, θ̄ − θ∗ is a Gaussian random
variable with mean 0d and covariance

cov

[
σ−2Σ̄

N∑
ℓ=1

ϕℓεℓ

]
= σ−4Σ̄

(
N∑
ℓ=1

ϕℓvar [εℓ]ϕ
⊤
ℓ

)
Σ̄ = Σ̄

∑N
ℓ=1 ϕℓϕ

⊤
ℓ

σ2
Σ̄ = Σ̄ .

Since λd(Σ̄−1)→∞ implies λ1(Σ̄)→ 0, we get

lim
N→∞

∥θ̄ − θ∗∥2 = 0 .

This completes the proof.

A.4 Proof of Theorem 4

This proof has two parts.

Derivation of p(st−1 | st, h). From (6), we have∫
s0

p(h | s0) p(s0 | st−1) ds0 ∝ p(h | st−1/
√
ᾱt−1) .

Since p(st−1 | st) is a Gaussian, we have

p(st−1 | st) = N (st−1;µt(st),Σt) ∝ N (γst−1; γµt(st), γ
2Σt)

for γ = 1/
√
ᾱt−1. Then by the Laplace approximation,

p(h | γst−1)N (γst−1; γµt(st), γ
2Σt) ∝ N (γst−1; θ̇t, Σ̇t) ∝ N (st−1; θ̇t/γ, Σ̇t/γ

2) ,

where θ̇t, Σ̇t ← IRLS(γµt(st), γ
2Σt, h).

Derivation of p(sT | h). Analogously to the derivation of p(st−1 | st, h), we establish that∫
s0

p(h | s0) p(s0 | sT ) ds0 ∝ p(h | sT /
√
ᾱT ) .

Then by the Laplace approximation for γ = 1/
√
ᾱT , we get

p(h | γsT )N (sT ;0d, Id) ∝ N (sT ; θ̇T+1/γ, Σ̇T+1/γ
2) ,

where θ̇T+1, Σ̇T+1 ← IRLS(0d, γ
2Id, h).

A.5 Supporting Lemmas

We state and prove our supplementary lemmas next.
Lemma 5. Let p(x) = N (x;µ1,Σ1) and q(x) = N (x;µ2,Σ2), where µ1, µ2 ∈ Rd and Σ1,Σ2 ∈
Rd×d. Then

d(p, q) =
1

2

(
(µ2 − µ1)

⊤Σ−1
2 (µ2 − µ1) + tr(Σ−1

2 Σ1)− log
det(Σ1)

det(Σ2)
− d
)
.

Moreover, when Σ1 = Σ2,

d(p, q) =
1

2
(µ2 − µ1)

⊤Σ−1
2 (µ2 − µ1) .

Proof. The proof follows from the definitions of KL divergence and multivariate Gaussians.

Lemma 6. Fix µ1 ∈ Rd, Σ1 ⪰ 0, µ2 ∈ Rd, and Σ2 ⪰ 0. Then

N (x;µ1,Σ1)N (x;µ2,Σ2) ∝ N (x;µ,Σ) ,

where

µ = Σ(Σ−1
1 µ1 +Σ−1

2 µ2) , Σ = (Σ−1
1 +Σ−1

2 )−1 .

16

130478https://doi.org/10.52202/079017-4146



Proof. This is a classic result, which is proved as

N (x;µ1,Σ1)N (x;µ2,Σ2) ∝ exp

[
−1

2
((x− µ1)

⊤Σ−1
1 (x− µ1) + (x− µ2)

⊤Σ−1
2 (x− µ2))

]
∝ exp

[
−1

2
(x⊤Σ−1

1 x− 2x⊤Σ−1
1 µ1 + x⊤Σ−1

2 x− 2x⊤Σ−1
2 µ2)

]
= exp

[
−1

2
(x⊤Σ−1x− 2x⊤Σ−1Σ(Σ−1

1 µ1 +Σ−1
2 µ2))

]
∝ exp

[
−1

2
(x− µ)⊤Σ−1(x− µ)

]
∝ N (x;µ,Σ) .

The neglected factors depend on constants µ1, µ2, Σ1, and Σ2. This completes the proof.

B Learning the Reverse Process

One property of our model is that q(sT ) ≈ N (sT ;0d, Id) when T is sufficiently large [19]. Since
ST has the same distribution in the reverse process p, p can be learned from the forward process q by
simply reversing it. This is done as follows. Using the definition of the forward process in (4), Ho
et al. [19] showed that

q(st−1 | st, s0) = N (st−1; µ̃t(st, s0), β̃tId) (13)

holds for any s0 and st, where

µ̃t(st, s0) =

√
ᾱt−1βt
1− ᾱt

s0 +

√
αt(1− ᾱt−1)

1− ᾱt
st , β̃t =

1− ᾱt−1

1− ᾱt
βt , ᾱt =

t∏
ℓ=1

αℓ . (14)

Therefore, the latent variable in stage t− 1, St−1, is easy to sample when st and s0 are known. To
estimate s0, which is unknown when sampling from the reverse process, we use the forward process
again. In particular, (4) implies that st =

√
ᾱts0 +

√
1− ᾱtεt, where εt ∼ N (0d, Id) is a standard

Gaussian noise. This identity can be rearranged as

s0 =
1√
ᾱt

(st −
√
1− ᾱtεt) .

To obtain εt, which is unknown when sampling from p, we learn to regress it from st [19].

The regressor is learned as follows. Let εt(·;ψ) be a regressor of εt parameterized by ψ andD = {s0}
be a dataset of training examples. We sample s0 uniformly at random from D and then solve

ψt = argmin
ψ

Eq
[
∥εt − εt(St;ψ)∥22

]
(15)

per stage. The expectation is approximated by sampled s0. Note that we slightly depart from Ho et al.
[19]. Since each regressor has its own parameters, the original optimization problem over T stages
decomposes into T subproblems.

C Additional Experiments

This section contains four additional experiments.

C.1 Additional Synthetic Problems

In Section 6.2, we show results for three hand-selected problems out of six. We report results on the
other three problems in Figure 4. We observe the same trends as in Section 6.2.

C.2 MNIST Experiment

The next experiment is on the MNIST dataset [31]. We start with learning an MLP-based multi-way
classifier for digits and extract their d = 8 dimensional embeddings. These are used as features in
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Figure 4: Evaluation of DiffTS on another three synthetic problems. The first row shows samples
from the true (blue) and diffusion model (red) priors. The second row shows the regret of DiffTS
and the baselines as a function of round n.
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Figure 5: Evaluation of DiffTS on the MNIST dataset: (a) shows samples from the true (blue) and
diffusion model (red) priors, (b) shows regret in the linear bandit, and (c) shows regret in the logistic
bandit.

our experiment. We generate a distribution over model parameters θ∗ as follows: (1) we choose a
random positive label, assign it reward 1, and assign reward −1 to all other labels; (2) we subsample
a random dataset of size 20, with 50% positive and 50% negative labels; (3) we train a linear model,
which gives us a single θ∗. We repeat this 10 000 times and get a distribution over θ∗.

We consider both linear and logistic bandits. In both, the model parameter θ∗ is initially sampled
from the prior. In each round, K = 10 random actions are chosen randomly from all digits. In the
linear bandit, the mean reward for a digit with embedding x is x⊤θ∗ and the reward noise is σ = 1.
In the logistic bandit, the mean reward is g(x⊤θ∗), where g is a sigmoid.

Our MNIST results are reported in Figure 5. We observe again that DiffTS has a lower regret than
all baselines, because the learned prior captures the underlying distribution of θ∗ well. We note that
both the prior and diffusion prior distributions exhibit a strong cluster structure (Figure 5a), where
each cluster represents one label.

C.3 Ablation Studies

We conduct three ablation studies on the cross problem in Figure 2.

In all experiments, the number of samples for training diffusion priors was 10 000. In Figure 6a, we
vary it from 100 to 10 000. We observe that the regret decreases as the number of samples increases,
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Figure 6: An ablation study of DiffTS on the cross problem: (a) we vary the number of samples for
training the diffusion prior and report regret, (b) we vary the number of diffusion stages T and report
regret, and (c) we vary the number of diffusion stages T and report computation time.
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Figure 7: Evaluation on Gaussian mixture variants of the synthetic problems in Figure 2. The first
row shows samples from the true (blue) and diffusion model (red) priors. The second row shows the
earth mover’s distance of DiffTS and baseline posteriors from the true posterior as a function of
sample size n.

due to learning a better prior approximation. The trend stabilizes around 3 000 training samples. We
conclude that the quality of the learned prior approximation has a major impact on regret.

In all experiments, the number of diffusion stages was T = 100. In Figure 6b, we vary it from 1 to
300 and observe its impact on regret. While the regret at T = 1 is high, it decreases quickly as T
increases. It stabilizes around T = 100, which we used in our experiments. In Figure 6c, we vary T
from 1 to 300 and observe its effect on the computation time of posterior sampling. The time is linear
in T , as suggested in Section 4.2. The main contributor is the neural network regressor.

C.4 Non-Bandit Evaluation

We use Gaussian mixture variants of the synthetic problems in Figure 2 for our non-bandit evaluation.
The action in round k is chosen uniformly at random (not adaptively). Since the priors are Gaussian
mixtures, the true posterior distribution can be computed in a closed form using MixTS and we can
measure the distance of posterior approximations from it. We use the earth mover’s distance (EMD)
between posterior samples from the true posterior and its approximation. We also considered the KL
divergence. However, we could not apply it because the posteriors of DiffTS and DPS do not have
analytical forms.
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Algorithm 4 DPS of Chung et al. [12].
1: Input: Model parameters σ̃t and ζt

2: Initial sample ST ∼ N (0d, Id)
3: for stage t = T, . . . , 1 do
4: Ŝ ← − εt(St;ψt)

1−ᾱt

5: Ŝ0 ← 1√
ᾱt
(St + (1− ᾱt)Ŝ)

6: Z ∼ N (0d, Id)

7: St−1 ←
√
ᾱt−1βt

1−ᾱt
Ŝ0 +

√
αt(1−ᾱt−1)

1−ᾱt
St + σ̃tZ − ζt∇

∑N
ℓ=1(yℓ − ϕ⊤ℓ Ŝ0)

2

8: Output: Posterior sample S0

We evaluate all methods from Figure 2. In addition, we implement a sequential Monte Carlo (SMC)
sampler [16]. The initial particles are sampled uniformly at random from the prior. At each round,
the particles are perturbed by a Gaussian noise. The standard deviation of the noise is initialized as a
fraction of the observation noise and decays over time, as the posterior concentrates. The particles
are weighted according to the likelihood of the observation in the round. Finally, we use normalized
likelihood weights to resample the particles. The number of particles is 3 000 and we tune SMC to
get good posterior approximations. The computational cost of SMC is comparable to DiffTS.

Our results are reported in Figure 7. We observe that DiffTS approximations are comparable to
MixTS, which has an exact posterior in this setting. The second best performing method is SMC.
Its approximations worsen as the sample size n increases. DPS approximations also get worse as n
increases, which caused instability in Figure 2.

D Implementation of Chung et al. [12]

In our experiments, we compare to diffusion posterior sampling (DPS) with a Gaussian observation
noise (Algorithm 1 in Chung et al. [12]). Our implementation is presented in Algorithm 4. The score
is Ŝ = −εt(St;ψt)/(1− ᾱt), where εt(St;ψt) is a regression estimate of the forward process noise

εt in Appendix B. We set σ̃t =
√
β̃t, which is the same amount of noise as in our reverse process

(Section 3). The term

∇
N∑
ℓ=1

(yℓ − ϕ⊤ℓ Ŝ0)
2

is the gradient of the negative log-likelihood with respect to St.

As discussed in Appendices C.2 and D.1 of Chung et al. [12], ζt in DPS needs to be tuned for good
performance. This is because∇

∑N
ℓ=1(yℓ − ϕ⊤ℓ Ŝ0)

2 grows with the number of observations, which
causes instability. We also observed this in our experiments (Section 6.2). To make DPS work well,
we follow Chung et al. [12] and set

ζt =
1√∑N

ℓ=1(yℓ − ϕ⊤ℓ Ŝ0)2
.

While this significantly improves the performance of DPS, it does not prevent failures. The funda-
mental problem is that gradient-based optimization is sensitive to the step size, especially when the
optimized function is steep. Note that LaplaceDPS does not have any such hyper-parameter.
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction clearly state all contributions. The introduction
also points to where those contributions are made.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The increase in computational cost is discussed in Section 4.2 and shown
empirically in Section 6.2. We also conduct an ablation study in Appendix C.3, where we
show how the regret of DiffTS scales with the number of samples used for pre-training the
prior and the number of stages in the diffusion model prior.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: The main claims are stated and discussed in Section 4. Their proofs are in
Appendix A.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We also include code to reproduce the synthetic results in Figures 2 and 4.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We include code to reproduce the synthetic results in Figures 2 and 4.
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parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The experiments are described to a sufficient level to be reproducible. To make
sure, we include code to reproduce the synthetic results in Figures 2 and 4.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: All plots in the paper have error bars.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
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Answer: [No]
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image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper does not pose such a risk.
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