
Spectral Adapter: Fine-Tuning in Spectral Space

Fangzhao Zhang
Electrical Engineering

Stanford University
zfzhao@stanford.edu

Mert Pilanci
Electrical Engineering

Stanford University
pilanci@stanford.edu

Abstract

Recent developments in Parameter-Efficient Fine-Tuning (PEFT) methods for pre-
trained deep neural networks have captured widespread interest. In this work, we
study the enhancement of current PEFT methods by incorporating the spectral
information of pretrained weight matrices into the fine-tuning procedure. We
investigate two spectral adaptation mechanisms, namely additive tuning and or-
thogonal rotation of the top singular vectors, both are done via first carrying out
Singular Value Decomposition (SVD) of pretrained weights and then fine-tuning
the top spectral space. We provide a theoretical analysis of spectral fine-tuning
and show that our approach improves the rank capacity of low-rank adapters
given a fixed trainable parameter budget. We show through extensive experiments
that the proposed fine-tuning model enables better parameter efficiency and tun-
ing performance as well as benefits multi-adapter fusion. Code is released at
https://github.com/pilancilab/spectral_adapter.

1 Introduction

Size of language and vision model undergoes a drastic explosion in recent days and results in billions
of parameters up to date. While fine-tuning has been used a lot for adapting pretrained large models to
various downstream tasks, fine-tuning tasks become increasingly hard with current size of pretrained
models due to the huge demand of computing resource. Meanwhile, exchange and storing of fine-
tuned models are also expensive given their enormous size. To alleviate these rising problems for
fine-tuning large pretrained models, a recent line of research has digged into the Parameter-Efficient
Fine-Tuning (PEFT) model family and harnessed great attention. A high-level philosophy behind
those PEFT methods is to train a reduced number of parameters compared to full fine-tuning, which
instantly saves computing resource and enables light-weight fine-tuned model exchange. Among
all PEFT methods, Low-Rank Adaptation (LoRA) [20] model is a huge success attributed to its
simplicity and effectiveness. Specifically, LoRA proposes to tune an additive trainable low-rank
matrix and brings zero inference latency after merging the adapter into pretrained model weights.
Since its emergence, numerous variants of LoRA have been developed. For instance, AdaLoRA
[65], IncreLoRA [62], and DyLoRA [54] propose to dynamically adjust LoRA rank distribution
for improving tuning efficiency, QLoRA [10] combines LoRA with model quantization to further
save computing resource, LoRA+ [16] and PrecLoRA [61] study the optimization landscape of
LoRA training, and more recent variant DoRA [32] decomposes pretrained weights into magnitude
and direction components and applies LoRA for direction tuning, see Apppendix A for a more
comprehensive review of different LoRA variants. Other PEFT methods such as Orthogonal Fine-
Tuning (OFT) proposes to multiply pretrained weights by tunable orthogonal matrices for preservation
of hypersphere energy between pretrained neurons. Though these different PEFT methods focus
on improving fine-tuning efficiency with reduced parameters, rare attention has been paid to utilize
pretrained model weights’ information beyond its magnitude in the fine-tuning procedure.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

130819 https://doi.org/10.52202/079017-4158

https://github.com/pilancilab/spectral_adapter

Figure 1: Training loss of fine-tuning Llama3 8B model with Orca Math dataset [38] and evaluation
score on GSM8K benchmark [8]. We follow experimental setup in [53], see Appendix F.1 for details.
All methods except full fine-tuning maintain approximately 0.23% trainable parameters.

Prior research in statistical machine learning such as [36] has studied the Empirical Spectral Distribu-
tion (ESD) of deep models’ weight matrices and found that the ESDs for larger model weights are
usually more structured and contain indicative information to distinguish between different training
stages. More recent work such as [4] investigates the "dark matter" effect of bottom spectral space of
model weights and recognizes its critical role in attention sink phenomenon observed in [57]. Both
work contributes to decrypting spectral information of model weights and sheds light on building
insightful understanding of the connection between weight matrices’ spectral information and model
performance. In this work, we explore further the value of model weights’ spectral pattern and unravel
its effectiveness in enhancing fine-tuning tasks. We showcase via extensive empirical observation
that integration of spectral information of pretrained model weights improves current PEFT methods’
parameter efficiency, tuning effect, and arises as a natural solution to multi-adapter fusion problems.
Moreover, the suggested fine-tuning model maintains better practicality compared to prior spectral
tuning models, which will be investigated further below.

Though any technique for weight fine-tuning can be directly applied to fine-tune singular vector
matrices of pretrained model weights, we investigate two specific forms of such extension, namely
additive tuning and orthogonal rotating the top singular vector space, which we address as Spectral
AdapterA and Spectral AdapterR respectively in later content. The spectral adaptation mechanisms
being considered are formally depicted in Section 2. As a warmup, to show that incorporating spectral
information is indeed helpful, Figure 1 displays the training loss of fine-tuning Llama3 8B model on
HuggingFace Orca Math dataset and validation score on GSM8K benchmark, from which it can be
clearly observed that Spectral AdapterA performs superior to recent variants of PEFT methods and
behaves closest to full fine-tuning, here we follow experimental setup in [53], see Appendix F.1 for
details and more investigation. In below, we first introduce the fine-tuning model being studied in
Section 2 and we then provide some theoretic insights in Section 3. After that, we detail the advantage
of our spectral adapter in enhancing fine-tuning result, improving model’s parameter efficiency, and
helping with multi-adapter fusion as well as address any concern with respect to practicality issues
in Section 4. Conclusion and future work is discussed in Section 5. For sake of page limitation,
literature review is deferred to Appendix A.

To summarize, the proposed spectral adaptation mechanism demonstrates the first attempt to fine-tune
spectral space of pretrained model weights in a parameter-efficient and storage-economic way which
improves current PEFT methods from aspects involving tuning results, parameter efficiency, and
multi-adapter fusion. We hope this work serves as a building block and motivates further and deeper
insightful investigation for exploring spectral structure of pretrained model weights, which becomes
increasingly meaningful especially in current large model regime.

2 Spectral Adapter: Incorporating Spectral Information into Fine-Tuning

Motivated by the intrinsic low-rank of weight shifts in fine-tuning procedure studied in [2], LoRA
[20] proposes to add a low-rank factorized trainable matrix to pretrained model weights and tune only
these additive parameters for downstream task adaptation, which usually injects far fewer trainable

2

130820https://doi.org/10.52202/079017-4158

Figure 2: Compared to LoRA which proposes to add low-rank trainable matrices to pretrained
weights, we study two types of spectral adapters: Spectral AdapterA considers additively tuning the
top columns of singular vector matrices and Spectral AdapterR considers orthogonally rotating the
top columns of singular vector matrices.

parameters compared to full fine-tuning and results in light-weight tuned adapters. LoRA serves as
an outstanding representative of PEFT family and is now widely-used for different fine-tuning tasks.
Inspired by the parameter efficiency of LoRA and the close connection between matrix rank and its
spectral representation, here we study two spectral fine-tuning mechanisms, both are completed via
first carrying out Singular Value Decomposition (SVD) of pretrained model weights and then fine-
tuning the top columns of singular vector matrices obtained via the SVD. More precisely, consider
a pretrained weight matrix with its spectral representation of form W = USV T , we define additive
spectral adapter as

Spectral AdapterA(W) ∶= [U1 +AU U2]S[V1 +AV V2],
and correspondingly the rotational version

Spectral AdapterR(W) ∶= [U1RU U2]S[V1RV V2],
where U1, V1 denote the top-r columns of U and V and U2, V2 denote the rest of the columns.
A = (AU ,AV) consists of trainable matrices of shape same as (U1, V1) and R = (RU ,RV) consists
of two trainable orthogonal matrices of shape r by r such that RT

URU = RT
V RV = I . As we show in

later sections, the orthogonality constraint is efficiently handled with the Cayley parameterization, see
Section 4.3 for details. The proposed fine-tuning model architecture can be visualized from Figure
2. Here Spectral AdapterA more resembles LoRA as it is of additive form while Spectral AdapterR
more resembles prior Orthogonal Fine-Tuning (OFT) method which we compare further in Section 4.
To ensure zero initialization as often done for PEFT methods, we initialize AU and AV both at zero.
For rotational spectral adapter, we initialize RU and RV as identity matrices.

A more thorough literature review suggests that prior work considering tuning model weights’
spectral representation (FSGAN[47], SVDiff [15]) has been proposed for alleviating overfitting
when fine-tuning different vision models. These methods only look at tuning the singular values of
flattened CNN weights and thus have fixed amount of trainable parameters. Moreover, these methods
require storing all U,S and V during training while only the diagonal vector of S is tuned, which
nearly doubles the storage requirement compared to pretraining when fine-tuning on downstream
tasks. Contrarily, we consider incorporating spectral information in generic fine-tuning procedure for
different layers (flattened CNN weights, dense linear weights, etc.) and our method enables flexible
parameter budget choices by varying values of r. Methodology-wise, we consider tuning the top-r
columns of U and V by additive and rotational tuning, both requiring only these top columns to be
stored additionally and the left part can be merged into a single weight matrix. See Section 4.4 for
more investigation on practicality of the proposed method.

3 Theoretical Insights

After introducing the model architecture of spectral adapter we consider, the main question now
remains whether tuning the spectral representation of pretrained weights is indeed an improvement
over existing PEFT methods. Before we step into our empirical observations, we first provide

3

130821 https://doi.org/10.52202/079017-4158

some theoretical insights for the proposed spectral adaptation mechanism. In this section, we show
advantage of our spectral adapter method compared to LoRA from two theoretic perspectives by
analyzing both the rank capacity of the adapters (Section 3.1) and the subspace alignment of pretrained
weight matrices (Section 3.2). Specifically, we will see that Spectral AdapterA has larger rank capacity
than LoRA adapter, which indicates the tuned weight has more adaptation freedom and thus is more
desirable. Moreover, the dominant spectral direction of pretrained weight matrix identifies more
ideal neuron alignment under the setting we consider in Section 3.2, which justifies the robustness of
tuning top singular vectors in our spectral adapter. In Appendix D, we show that Spectral AdapterA
is approximately equivalent to DoRA [32] for vector-form weights.

3.1 Adapter Rank Capacity

For any pretrained weight matrix W , suppose that the adapter is given by the parameterization fθ(W)
where θ represents trainable weights. For instance with LoRA adapter, fθ(W) =W +ABT , where
θ = {A,B} is trainable. We define the rank capacity of an adapter fθ(W) as follows:

R(fθ;W) ∶= max
θ

rank(fθ(W)) −min
θ

rank(fθ(W)),

which describes the range of matrix ranks the tuned weight can achieve given a specific adapter
form. Then, the following lemma shows that Spectral AdapterA has twice the rank capacity of LoRA
adapter under an equal number of trainable parameters.
Lemma 3.1. Suppose that W ∈ Rn×m is an arbitrary full row-rank matrix and n ≤m without loss of
generality. Consider rank-r LoRA and rank-r additive spectral adapter, which have an equal number
of trainable parameters. We have

R(LoRA;W) = r,
R(Spectral AdapterA;W) = 2r.

See Appendix B for proof. Therefore when pretrained model weight matrix is close to full row-rank,
as what has been observed in [20], Spectral AdapterA has nearly double rank capacity compared to
LoRA adapter. Furthermore, some prior work explicitly imposes low-rank constraint when training
original NNs [50, 43, 66, 22, 68, 24, 9]. Using LoRA adapter to fine-tune such pretrained model
weights would destroy their rank constraints while applying spectral adapter preserves the constraints.

Next we proceed to show that top spectral space of pretrained weight matrices is more aligned with
ideal neuron direction under a simple setting via subspace decomposition analysis of pretrained model
weights. This observation corroborates our choice of tuning top singular vectors in our proposed
spectral adaptation mechanism. Empirically, we observe that tuning top directions performs superior
to tuning bottom ones, see Appendix F.3 and F.5.1 for related experiments.

3.2 Weight Subspace Alignment

Figure 3: Top singu-
lar vector of pretrained
weight recognizes more
ideal neuron direction. Il-
lustration plot for Section
3.2.

Consider two-layer ReLU network with m hidden nodes and univariate
output. For squared loss objective, we can write out the training problem
explicitly as

min
W (1),W (2)

∥(XW (1))+W (2) − y∥22 + β(∥W (1)∥2F + ∥W (2)∥22),

where X ∈ Rn×d is the data matrix, (W (1) ∈ Rd×m,W (2) ∈ Rm) are
first and second layer weights respectively and y ∈ Rn is the label vector.
For better visualization, we take d = 3. Consider the case that all data
points lie on xy−plane, which mimics the usual observation that data
points occupy a low-dimensional manifold. Then we can decompose
each first layer neuron W

(1)
j ∈ Rd into W

(1)
j = wj1 + wj2 where wj1 ∈

R(X),wj2 ⊥ R(X). With simple algebra, for non-zero weight decay
which is often the default setting for current deep learning optimizers, one
can derive wj2 = 0 and thus W (1)

j = wj1 ∈ R(X). Therefore all optimal
neurons lie also in xy−plane. However, due to optimization errors, some
of the trained neurons might be slightly deviated from xy−plane, as illustrated in Figure 3, where ui

indicates pretrained neuron directions, though most of them lie in xy−plane, some might deviate (i.e.,
u4). u⋆ indicates the top singular vector direction of pretrained weight W (1) which here recognizes
the xy−plane orientation, and thus fine-tuning u⋆ is noiseless and is expected to be more robust.

4

130822https://doi.org/10.52202/079017-4158

4 Empirical Results: The Impact of Spectral Information
We experiment our proposed spectral adapter with fine-tuning large language models and diffusion
models and compare against various recent PEFT methods. From language model experiments,
we observe that Spectral AdapterA performs superior to various PEFT baselines and harnesses
higher scores on different benchmarks, which again verifies the effectiveness of incorporating
spectral information into the fine-tuning procedure, see Section 4.1 for details. For diffusion model
experiments, we will see that the advantage of spectral adapter comes in two-fold: Spectral AdapterA
offers a natural solution to existing problems in multi-adapter fusion procedure and Spectral AdapterR
manifests finer-grained parameter budgets as well as better parameter efficiency, see Section 4.2
and 4.3 respectively. For a fair comparison with all baselines, we use their official implementation
and follow hyperparameter setting in their original reports as long as available. See each individual
section for corresponding experimental details. All experiments are done with NVIDIA RTX A6000
GPU.

4.1 Language Model Fine-Tuning: Enhancing Fine-Tuning Results with Spectral AdapterA

For large language model experiments, we present experimental results for fine-tuning DeBERTaV3-
base model (185M) and Mistral model (7B) on GLUE and GSM8K tasks respectively. Our Spectral
AdapterA method achieves superior tuning results compared to various recent PEFT methods in most
experiments.

DeBERTaV3-base Experiment. Table 1 shows fine-tuning results of DeBERTaV3-base model on
GLUE benchmarks with various PEFT methods. For a fair comparison, we use official implemen-
tations for LoRA, DoRA, OFT and AdaLoRA in HuggingFace PEFT library, with hyperparameter
setting for LoRA [20] and AdaLoRA [65] following their original reports. We use same hyperpa-
rameter setting as LoRA for DoRA and follow the setting used in BOFT [33], a variant of OFT, for
OFT experiments. We abbreviate Spectral AdapterA as SpectralA for presentation simplicity and
we tune hyperparameters for Spectral AdapterA. See Appendix F.2 for hyperparameter details and
F.3 for loss/validation plot comparison. We fine-tune all q, k, v matrices in attention layers. Our
Spectral AdapterA achieves highest average score and best scores for most tasks with fewest trainable
parameters.

Method # Param GLUE
MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B Avg.

LoRAr=24 0.72% 88.87 95.06 87.00 65.84 91.87 91.45 81.22 90.43 86.47
DoRAr=24 0.73% 88.91 95.29 88.72 65.84 92.01 91.51 80.14 90.10 86.57
OFTr=4 0.72% 89.16 95.06 87.74 66.75 93.28 91.33 78.70 89.72 86.47
AdaLoRAr=24 1.07% 89.44 94.95 89.70 63.06 93.17 91.48 83.75 91.22 87.10
SpectralAr=24 0.72% 89.79 95.75 90.19 69.44 93.35 91.65 83.39 90.64 88.03

Table 1: Accuracy comparison of fine-tuning DeBERTaV3-base with various PEFT methods on
GLUE benchmarks. SpectralA is abbreviation for Spectral AdapterA. See Section 4.1 for experimental
details.
Mistral 7B Experiment. We experiment our Spectral AdapterA with Mistral 7B model
[23] fine-tuned for GSM8K task [8]. Since all baseline model reports include no fine-
tuning tasks with the Mistral family, we use official implementations of all baseline meth-
ods for comparison and we fix learning rate to be 2.5e − 5 for all methods following [51].

Method #Param GSM8K
Pre-Trained − 37.91 ± 1.34
LoRAr=8 0.16% 44.81 ± 1.37
DoRAr=8 0.17% 43.82 ± 1.37

SpectralAr=8 0.16% 49.73 ± 1.38
Table 2: Accuracy comparison of fine-tuning Mis-
tral 7B model with different PEFT methods on
GSM8K benchmark. See Section 4.1 for experi-
mental details.

We take r = 8 for LoRA, DoRA and Spectral
AdapterA to maintain approximately same num-
ber of trainable parameters for all methods. Ta-
ble 2 presents the accuracy comparison where
SpectralA stands for Spectral AdapterA. From
the result, we observe that our Spectral AdapterA
scores higher than both LoRA and DoRA by a
large margin and increases the pretrained model
baseline significantly, which verifies the effective-
ness of the proposed spectral adaptation mecha-
nism. See Appendix F.4 for more about experi-
mental details. Note for a different learning rate, DoRA performs better than LoRA while still worse
than our method, see also Appendix F.4 for details.

5

130823 https://doi.org/10.52202/079017-4158

4.2 Diffusion Model Fusion: Improving Multi-Object Fine-Tuning with Spectral AdapterA

Figure 4: Distributing different concept tunings along different spectral space helps with identity
preservation in multi-adapter fusion, see Section 4.2 for details.

Multi-adapter fusion is a current bottleneck in diffusion model fine-tuning tasks with LoRA adapters.
Simply adding different LoRA adapters tuned for distinct objects will result in problems involving
identity loss and concept binding [12]. To tackle this toughness, different methods emerge such as
Gradient Fusion [12] and Orthogonal Adaptation [42]. Specifically, Orthogonal Adaptation method
proposes to fix LoRA parameter B to have orthogonal basis and train A solely. Experiments there
show that merging LoRA weights with such orthogonal basis helps preserving individual object
characteristics compared to its non-orthogonal counterpart. In Orthogonal Adaptation [42], the
authors maintain B by manually keeping large orthogonal matrices for different layer sizes and
sample r columns from corresponding orthogonal matrix to form B for each LoRA adapter. With
knowledge from random matrix theory, such sampled matrices are likely to have orthogonal basis.

Notably, our Spectral AdapterA naturally operates on orthogonal singular vectors and thus introduces
an elegant solution to multi-adapter fusion problems by distributing different concept tunings along
different columns of singular vector matrices, which maps to wireless communications where the
signals are distributed over non-overlapping frequencies. A subtlety here lies in the choice of column
space for different fine-tuning tasks: (1) Sample-based methods can be adopted if data privacy
is considered and different tuning tasks are done independently. In Appendix F.5, we show that
tuning top columns manifests better generation quality compared to both tuning bottom columns
and sampling random orthogonal basis as what has been done in Orthogonal Adaptation [42]. Thus
there is a trade-off between high-quality generation and concept collapsing, i.e., sampling from top
singular vectors is more encouraged while column overlapping between concepts happens more
often compared to sampling from the whole set. (2) On the other hand, if fine-tuning tasks are not
isolated and can collaborate on the column scheduling, then more deliberate tuning scheduling can be
adopted, for example in a two-concept tuning task with r = 4, the first concept can allocate first to
fourth columns and the second concept then claims fifth to eighth columns. Figure 4 demonstrates
steps for the same method for three-concept tuning task. Since we expect fine-tuned weights to stay
close to original weights, though both row space and column space are tuned in spectral adapter, this
adaptation mechanism approximates orthogonal-basis tuning for different objects and thus we expect
it helps improving identity preservation for multi-adapter fusion. In this section, we investigate this
effect via extensive diffusion model experiments.

Our experiments follow [42] and build on [12] which studies multi-LoRA fusion. We experiment with
multi-object tuning and face generation tasks. Due to space limitation, we present some multi-object
tuning results below and we leave the rest to Appendix F.5. For all tasks, we compare against
baselines including Gradient Fusion [12], Orthogonal Adaptation [42], and FedAvg [37]. We start
with a simple review for these baseline methods.

Baseline Review

To merge different LoRA adapters, say we have a set of LoRA parameters {∆θ1, . . . ,∆θn} where
∆θi = AiB

T
i and pretrained parameter θ0, FedAvg [37] proposes to merge them in to a single

parameter by taking a weighted average as θmerged = θ0 +∑i λi∆θi, where λi is the weight attached
to parameter ∆θi and is usually taken to satisfy ∑i λi = 1, i.e., θmerged is a convex combination of
individual adapters. Gradient Fusion [12] instead considers solving an auxiliary optimization problem
of form θmerged = argminθ∑n

i=1 ∥(θ0 +∆θi)Xi − θXi∥2F where Xi represents the input activation of
the i-th concept. Orthogonal Adaptation [42] follows FedAvg method and replaces original LoRA

6

130824https://doi.org/10.52202/079017-4158

Figure 5: Generation results of Chilloutmix diffusion model [1] with different fused adapters tuned
on three custom animal concepts. See Section 4.2 for details.

parameters with orthogonal-based LoRA adapters. For our method, to merge different spectral
adapters, let θ0 = U0S0V

T
0 denote the spectral representation of pretrained model weight. Given

a set of spectral adapters {(Ui, Vi), . . . , (Un, Vn)} with zero-padding to make the shape the same
as (U0, V0), we follow FedAvg and compute θmerged = (U0 + ∑i λiUi)S0(V0 + ∑i λiVi)T . In the
following experiments, we take λi = 1/n as in [42] for all FedAvg, Orthogonal Adaptation, and our
Spectral AdapterA fusion. Notably, all FedAvg, Orthogonal Adaptation, and our Spectral AdapterA
fusion can be done approximately instantly while Gradient Fusion usually takes around 10 ∼ 15
minutes for solving its auxiliary optimization problems for all concept adapters.

Multi-Object Generation

We follow default training setting in [12] and fine-tune the Chilloutmix diffusion model [1] on
three custom animal concepts, see original animals in "reference" in Figure 5. For better spatial
alignment, we adopt T2I-Adapter [39] with sketch condition and we set guidance equal to one, see
also "reference" in Figure 5 for the sketch condition being used. LoRA rank r = 8 is adopted. For
baseline comparisons, we use original code for Gradient Fusion [12] and Orthogonal Adaptation
[42]. We adapt code of Gradient Fusion for FedAvg method since there is no official implementation
available. Custom animal name is replaced with special token <Vanimal> for fine-tuning. For our
Spectral AdapterA, we follow the method depicted in Figure 4 and tune first, second, and third
top eighth columns of singular vector matrices for different animal concepts. Figure 5 shows the
generation results with different methods for selected prompts. Notably, baseline methods sometimes
fail to capture the custom animal concepts while Spectral AdapterA recognizes all custom animals
and generates visually satisfactory images. For better measurement, we also compute the alignment
scores for each generated image with both reference images and prompt texts. It can be witnessed
that our method achieves better alignment scores compared to baselines. See Appendix F.7 for details
on alignment score computation.

4.3 Diffusion Model Expressiveness: Improving Parameter Efficiency with Spectral AdapterR

Spectral AdapterR is closely connected to prior Orthogonal Fine-Tuning (OFT) [45] method which
proposes to multiply the pretrained model weights by trainable orthogonal matrices in the fine-
tuning procedure. Motivation behind OFT is to preserve hyperspherical energy which characterizes
the pairwise neuron relationship on the unit hypersphere. Unlike OFT which orthogonally rotates
neurons, Spectral AdapterR multiplies the top-r columns of singular vector space U and V by
orthogonal trainable matrices. For our implementation, several options are available for maintaining
a trainable orthogonal matrix such as adding an orthogonality penalty in the objective function
considered in [65] or via Cayley parameterization considered in [45]. We follow [45] and adopt
Cayley parameterization which is supported by Pytorch [44]. Specifically, the orthogonal matrix R is
constructed via R = (I +Q)(I −Q)−1 with a skew-symmetric matrix Q maintained as (A −AT)/2

7

130825 https://doi.org/10.52202/079017-4158

where A is our trainable parameter. Compared to adding an auxiliary orthogonality penalty, this
parametrization is exact and thus the SVD form is preserved after tuning with Spectral AdapterR and
can be adopted directly for subsequent fine-tuning tasks, which we state formally as a lemma below:

Lemma 4.1. With the Cayley parametrization, Spectral AdapterR is an exact rotation operation
and thus preserves the structure of the SVD of the fine-tuned weight. Subsequent fine-tunings can be
applied consequently without recomputing the SVD each time.

See Appendix C for the proof of above lemma. Unlike LoRA which requires number of trainable
parameters to scale with weight size, when tuning top-r columns of U an V , Spectral AdapterR only
requires two trainable matrices of size r × r and thus can be more parameter-efficient especially for
large pretrained weight. For common weight size such as W ∈ R1024×1024, LoRA with only r = 1
introduces same number of trainable parameters as Spectral AdapterR with r = 32. For a thorough
analysis on parameter efficiency improvement brought by Spectral AdapterR, we here also compare
with different variants of LoRA which are proposed for trainable parameter savings. We review all
baselines in detail below.

Baseline Review

We compare our Spectral AdapterR with LoRA [20], SVDiff [15], LiDB [48], OFT [45], and
VeRA [25]. Though the other methods are proposed for vision model tuning, VeRA is originally
proposed for LLM tuning and we extend it here to diffusion model tuning due to its parameter
efficiency. Consider a pretrained weight W ∈ Rn×n, SVDiff originally proposes to tune all singular
values of flattened CNN weights, here we extend it to tune all singular values of text encoder and
U-Net weights for our comparison, thus trainable parameter attached to W will be of size n and
is nonadjustable. LiDB stands for Lightweight Dreambooth and proposes to cut down trainable
parameter budget by introducing auxiliary frozen matrix Aaux ∈ Rn×a and Baux ∈ Rb×n, then it mimics
LoRA but uses AauxABTBaux in replace of ABT with trainable (A ∈ Ra×r,B ∈ Rb×r). Thus with
a, b < n, LiDB requires (a + b)r < 2nr trainable parameters. In below, we use a = 50, b = 100
as default in [48]. OFT multiplies the weight matrix by a trainable orthogonal matrix via Cayley
parametrization discussed above, thus its complete version requires n2 trainable parameters. For
parameter efficiency, OFT proposes to use block-diagonal trainable matrix with all diagonal blocks
being orthogonal. Thus with r diagonal blocks, the number of trainable parameter will be r × (n/r)2.

Method Granularity #Param Auxiliary Param
LoRA / ∞ 2nr ∝ n no
SVDiff / 1 n∝ n no
LiDB / ∞ (a + b)r ∝ r yes
OFT / # factors of n 1 (n/r)2 ∝ n

r
no

VeRA / ∞ n + r ∝ n yes
Spectral AdapterR , n 2r2 ∝ r no
1 Ceiling operation is ignored for this count.

Table 3: Baseline methods comparison for parameter effi-
ciency. Granularity indicates number of trainable parameter
budgets available. See Section 4.3 for details.

Further reduction of trainable parame-
ter is achieved via sharing the diagonal
blocks, which demands only (n/r)2
parameters. In below comparison, we
use this shared block-diagonal version
for best parameter efficiency of OFT.
VeRA proposes to use ΛaAΛbB

T in
replace of ABT where Λa and Λb are
diagonal matrices of size n × n and
r × r respectively. Thus the total num-
ber of trainable parameters by VeRA
is (n + r) ∝ n. Table 3 compares dif-
ferent properties across all methods, where n represents weight size and r represents rank for all
methods except for OFT, where r denotes number of diagonal blocks.

Parameter Efficiency

We fine-tune the Chilloumix diffusion model [1] with various PEFT methods on custom vase concept
and present the generation results for prompt "a <Vvase>" in Figure 6 for various trainable parameter
budgets, where grey dash denotes that the corresponding parameter budget is unobtainable with
a given adapter no matter how the hyperparameter is chosen and empty entry without grey dash

8

130826https://doi.org/10.52202/079017-4158

Figure 6: Generation results for prompt “a <Vvase> on a table” after fine-tuning Chilloutmix diffusion
model [1] on custom vase images with different PEFT methods. See Section 4.3 for details.

represents that there is a way to achieve the corresponding parameter budget though the generation
result is skipped for better visualization. We follow default LoRA implementation in [12] for LoRA
baseline and adjust it for all other methods. From Figure 6, it can be observed that LoRA, OFT, and
LiDB start to generate vase close to custom vase with at least 200k trainable parameters. SVDiff
and VeRA are unable to generate ideal vase images even if scaled to large parameter budget. On
the contrary, Spectral AdapterR starts to recognize the custom vase concept with only 20k trainable
parameters and has finer-grained parameter choices compared to other methods, i.e., notably Spectral
AdapterR can have as few as 1k parameters while other methods start with at least tens of thousands of
trainable parameters. In a word, Spectral AdapterR enjoys finer-grained parameter budget choices and
manifests better visual quality with fewer parameters, thus achieves enhanced parameter efficiency
compared to various other PEFT methods.

Figure 7 below presents generation results of Chilloutmix diffusion model [1] tuned on custom chair
concept with different methods under various parameter budgets. The prompt used is "a yellow
<Vchair>". See "reference" in Figure 7 for original chair images. From the generation results, it can
be observed that LoRA generates reasonable chairs for all rank r = 1,2,3 though it already induces
273k parameters even if rank is set to 1. OFT and VeRA start to recognize custom chair with > 100k
parameters. SVDiff has a single fixed trainable parameter budget of size around 100k. LiDB forms a

Figure 7: Generation results for prompt “a yellow <Vchair>” after fine-tuning Chilloutmix diffusion
model [1] on custom chair images with different PEFT methods. SpectralR is abbreviation for
Spectral AdapterR. See Section 4.3 for details.

competitive candidate and generates satisfactory images with smallest trainable parameter budget
among all baseline methods. However, our Spectral AdapterR still generates images better aligned to

9

130827 https://doi.org/10.52202/079017-4158

reference images with as few as 20k trainable parameters and has finer-grained parameter budget
choices compared to LiDB. See Appendix F.6 for hyperparameter setting and Appendix F.7 for
alignment score computation details.

4.4 Final Note: A Closer Look at SVD Cost

Figure 8: Runtime and GPU storage cost plot. See
Section 4.4 for details.

To alleviate the concerns with respect to
online training cost and show that our pro-
posed method is very practical, we provide
runtime and GPU storage cost bar plot in
Figure 8, which shows runtime and GPU
storage cost for LoRA and for our Spec-
tral AdapterA when used for fine-tuning
diffusion model in Section 4.2 and Mistral
7B model in Section 4.1. Here we adopt
rank r = 8 for both LoRA and Spectral
AdapterA. It can be observed that our Spec-
tral AdapterA introduces negligible run-
time and storage overhead for current large

model size. Modern numerical tools such as randomized SVD [13] can also be exploited for further
runtime reduction and the SVD procedure can be parallelized when multiple machines are available.
See Appendix E for further investigation.

5 Conclusion and Limitations

In this work, we investigate the incorporation of spectral information of pretrained model weights
into current PEFT models by introducing a spectral adaptation mechanism which updates only the
top singular vectors of pretrained weights. We investigate the additive and rotational variants of
such spectral adaptation mechanism. Theoretically, we show the motivation of tuning top singular
vectors by comparing the rank capacity of different fine-tuning models and carrying out weight
decomposition of pretrained model layers. Empirically, we verify the superiority of our proposed
spectral adaptation method compared to various recent PEFT methods from different aspects via
extensive experiments. To our best knowledge, this is the first work considering incorporating spectral
information as a practical generic paradigm for fine-tuning tasks and enhances fine-tuning results,
parameter efficiency, as well as benefits multi-adapter fusion of existing PEFT methods. For future
work, fine-tuning spectral representation of different components, i.e., only the attention layer, of
current large models is also worth studying. Other PEFT methods such as AdaLoRA [65] can also be
dynamically combined with spectral adaptation.

A limitation of the current work remains in the choice of tuning top spectral space. Though its
validity has been theoretically verified under simple settings, further investigation on tuning different
columns of singular vector matrices is critical to understanding the role of spectral information in
fine-tuning procedure. Besides, fine-tuning spectral representation of different components, i.e., only
the attention layer, of current large models is also worth studying. Moreover, the time consumption
of singular value decomposition procedure increases as model grows larger and thus faster singular
value decomposition method also benefits.

10

130828https://doi.org/10.52202/079017-4158

6 Acknowledgements

This work was supported in part by the National Science Foundation (NSF) under Grant DMS-
2134248; in part by the NSF CAREER Award under Grant CCF-2236829; in part by the U.S. Army
Research Office Early Career Award under Grant W911NF-21-1-0242; and in part by the Office of
Naval Research under Grant N00014-24-1-2164.

References
[1] Chilloutmix diffusion model. https://civitai.com/models/6424/chilloutmix.

[2] A. Aghajanyan, L. Zettlemoyer, and S. Gupta. Intrinsic dimensionality explains the effectiveness
of language model fine-tuning, 2020.

[3] A. Asai, M. Salehi, M. E. Peters, and H. Hajishirzi. Attempt: Parameter-efficient multi-task
tuning via attentional mixtures of soft prompts, 2022.

[4] N. Cancedda. Spectral filters, dark signals, and attention sinks, 2024.

[5] A. Chavan, Z. Liu, D. Gupta, E. Xing, and Z. Shen. One-for-all: Generalized lora for parameter-
efficient fine-tuning, 2023.

[6] Y. Chen, D. Hazarika, M. Namazifar, Y. Liu, D. Jin, and D. Hakkani-Tur. Empowering
parameter-efficient transfer learning by recognizing the kernel structure in self-attention. arXiv
preprint arXiv:2205.03720, 2022.

[7] A. Chronopoulou, M. E. Peters, A. Fraser, and J. Dodge. Adaptersoup: Weight averaging to
improve generalization of pretrained language models, 2023.

[8] K. Cobbe, V. Kosaraju, M. Bavarian, M. Chen, H. Jun, L. Kaiser, M. Plappert, J. Tworek,
J. Hilton, R. Nakano, C. Hesse, and J. Schulman. Training verifiers to solve math word
problems, 2021.

[9] M. Denil, B. Shakibi, L. Dinh, M. Ranzato, and N. de Freitas. Predicting parameters in deep
learning, 2014.

[10] T. Dettmers, A. Pagnoni, A. Holtzman, and L. Zettlemoyer. Qlora: Efficient finetuning of
quantized llms, 2023.

[11] A. Edalati, M. Tahaei, I. Kobyzev, V. P. Nia, J. J. Clark, and M. Rezagholizadeh. Krona:
Parameter efficient tuning with kronecker adapter, 2022.

[12] Y. Gu, X. Wang, J. Z. Wu, Y. Shi, C. Yunpeng, Z. Fan, W. Xiao, R. Zhao, S. Chang, W. Wu, Y. Ge,
S. Ying, and M. Z. Shou. Mix-of-show: Decentralized low-rank adaptation for multi-concept
customization of diffusion models. arXiv preprint arXiv:2305.18292, 2023.

[13] N. Halko, P.-G. Martinsson, and J. A. Tropp. Finding structure with randomness: Probabilistic
algorithms for constructing approximate matrix decompositions, 2010.

[14] K. Hambardzumyan, H. Khachatrian, and J. May. Warp: Word-level adversarial reprogramming,
2021.

[15] L. Han, Y. Li, H. Zhang, P. Milanfar, D. Metaxas, and F. Yang. Svdiff: Compact parameter
space for diffusion fine-tuning, 2023.

[16] S. Hayou, N. Ghosh, and B. Yu. Lora+: Efficient low rank adaptation of large models, 2024.

[17] J. He, C. Zhou, X. Ma, T. Berg-Kirkpatrick, and G. Neubig. Towards a unified view of
parameter-efficient transfer learning, 2022.

[18] S. He, R.-Z. Fan, L. Ding, L. Shen, T. Zhou, and D. Tao. Mera: Merging pretrained adapters for
few-shot learning. arXiv preprint arXiv:2308.15982, 2023.

[19] N. Houlsby, A. Giurgiu, S. Jastrzebski, B. Morrone, Q. de Laroussilhe, A. Gesmundo, M. At-
tariyan, and S. Gelly. Parameter-efficient transfer learning for nlp, 2019.

11

130829 https://doi.org/10.52202/079017-4158

[20] E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, and W. Chen. Lora:
Low-rank adaptation of large language models, 2021.

[21] C. Huang, Q. Liu, B. Y. Lin, T. Pang, C. Du, and M. Lin. Lorahub: Efficient cross-task
generalization via dynamic lora composition, 2024.

[22] M. Jaderberg, A. Vedaldi, and A. Zisserman. Speeding up convolutional neural networks with
low rank expansions. arXiv preprint arXiv:1405.3866, 2014.

[23] A. Q. Jiang, A. Sablayrolles, A. Mensch, C. Bamford, D. S. Chaplot, D. de las Casas, F. Bressand,
G. Lengyel, G. Lample, L. Saulnier, L. R. Lavaud, M.-A. Lachaux, P. Stock, T. L. Scao, T. Lavril,
T. Wang, T. Lacroix, and W. E. Sayed. Mistral 7b, 2023.

[24] M. Khodak, N. Tenenholtz, L. Mackey, and N. Fusi. Initialization and regularization of
factorized neural layers, 2022.

[25] D. J. Kopiczko, T. Blankevoort, and Y. M. Asano. Vera: Vector-based random matrix adaptation,
2024.

[26] T. Lei, J. Bai, S. Brahma, J. Ainslie, K. Lee, Y. Zhou, N. Du, V. Zhao, Y. Wu, B. Li, et al.
Conditional adapters: Parameter-efficient transfer learning with fast inference. Advances in
Neural Information Processing Systems, 36, 2024.

[27] B. Lester, R. Al-Rfou, and N. Constant. The power of scale for parameter-efficient prompt
tuning, 2021.

[28] X. L. Li and P. Liang. Prefix-tuning: Optimizing continuous prompts for generation, 2021.

[29] Y. Li, Y. Yu, C. Liang, P. He, N. Karampatziakis, W. Chen, and T. Zhao. Loftq: Lora-fine-
tuning-aware quantization for large language models, 2023.

[30] Z. Lin, A. Madotto, and P. Fung. Exploring versatile generative language model via parameter-
efficient transfer learning. arXiv preprint arXiv:2004.03829, 2020.

[31] Q. Liu, X. Wu, X. Zhao, Y. Zhu, D. Xu, F. Tian, and Y. Zheng. Moelora: An moe-based
parameter efficient fine-tuning method for multi-task medical applications, 2023.

[32] S.-Y. Liu, C.-Y. Wang, H. Yin, P. Molchanov, Y.-C. F. Wang, K.-T. Cheng, and M.-H. Chen.
Dora: Weight-decomposed low-rank adaptation, 2024.

[33] W. Liu, Z. Qiu, Y. Feng, Y. Xiu, Y. Xue, L. Yu, H. Feng, Z. Liu, J. Heo, S. Peng, Y. Wen, M. J.
Black, A. Weller, and B. Schölkopf. Parameter-efficient orthogonal finetuning via butterfly
factorization, 2023.

[34] X. Liu, Y. Zheng, Z. Du, M. Ding, Y. Qian, Z. Yang, and J. Tang. Gpt understands, too, 2023.

[35] R. K. Mahabadi, S. Ruder, M. Dehghani, and J. Henderson. Parameter-efficient multi-task
fine-tuning for transformers via shared hypernetworks, 2021.

[36] C. H. Martin and M. W. Mahoney. Implicit self-regularization in deep neural networks: Evidence
from random matrix theory and implications for learning, 2018.

[37] H. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas. Communication-
efficient learning of deep networks from decentralized data, 2023.

[38] A. Mitra, H. Khanpour, C. Rosset, and A. Awadallah. Orca-math: Unlocking the potential of
slms in grade school math, 2024.

[39] C. Mou, X. Wang, L. Xie, Y. Wu, J. Zhang, Z. Qi, Y. Shan, and X. Qie. T2i-adapter: Learning
adapters to dig out more controllable ability for text-to-image diffusion models, 2023.

[40] mrm8488. Lora finetune deberta-v3 huggingface blog, 2021. Available at
https://huggingface.co/mrm8488/deberta-v3-small-finetuned-mnli/commits/main.

[41] J. Pfeiffer, A. Kamath, A. Rücklé, K. Cho, and I. Gurevych. Adapterfusion: Non-destructive
task composition for transfer learning. arXiv preprint arXiv:2005.00247, 2020.

12

130830https://doi.org/10.52202/079017-4158

[42] R. Po, G. Yang, K. Aberman, and G. Wetzstein. Orthogonal adaptation for modular customiza-
tion of diffusion models, 2023.

[43] D. Povey, G. Cheng, Y. Wang, K. Li, H. Xu, M. A. Yarmohammadi, and S. Khudanpur. Semi-
orthogonal low-rank matrix factorization for deep neural networks. In Interspeech, 2018.

[44] pytorch group. Pytorch orthogonal parameterization method implementation, 2023.

[45] Z. Qiu, W. Liu, H. Feng, Y. Xue, Y. Feng, Z. Liu, D. Zhang, A. Weller, and B. Schölkopf.
Controlling text-to-image diffusion by orthogonal finetuning, 2023.

[46] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell,
P. Mishkin, J. Clark, G. Krueger, and I. Sutskever. Learning transferable visual models from
natural language supervision, 2021.

[47] E. Robb, W.-S. Chu, A. Kumar, and J.-B. Huang. Few-shot adaptation of generative adversarial
networks, 2020.

[48] N. Ruiz, Y. Li, V. Jampani, W. Wei, T. Hou, Y. Pritch, N. Wadhwa, M. Rubinstein, and
K. Aberman. Hyperdreambooth: Hypernetworks for fast personalization of text-to-image
models, 2023.

[49] A. Rücklé, G. Geigle, M. Glockner, T. Beck, J. Pfeiffer, N. Reimers, and I. Gurevych. Adapter-
drop: On the efficiency of adapters in transformers, 2021.

[50] T. N. Sainath, B. Kingsbury, V. Sindhwani, E. Arisoy, and B. Ramabhadran. Low-rank matrix
factorization for deep neural network training with high-dimensional output targets. In 2013
IEEE International Conference on Acoustics, Speech and Signal Processing, pages 6655–6659,
2013.

[51] H. Skogström. Lora finetune mistral 7b valohai blog, 2024. https://valohai.com/blog/finetune-
mistral/.

[52] A. Tang, L. Shen, Y. Luo, Y. Zhan, H. Hu, B. Du, Y. Chen, and D. Tao. Parameter efficient
multi-task model fusion with partial linearization, 2023.

[53] K. Turgutlu. Answer.ai qdora report, 2024. https://www.answer.ai/posts/2024-04-26-fsdp-qdora-
llama3.html.

[54] M. Valipour, M. Rezagholizadeh, I. Kobyzev, and A. Ghodsi. Dylora: Parameter efficient tuning
of pre-trained models using dynamic search-free low-rank adaptation, 2023.

[55] T. Vu, B. Lester, N. Constant, R. Al-Rfou, and D. Cer. Spot: Better frozen model adaptation
through soft prompt transfer. arXiv preprint arXiv:2110.07904, 2021.

[56] Z. Wang, R. Panda, L. Karlinsky, R. Feris, H. Sun, and Y. Kim. Multitask prompt tuning enables
parameter-efficient transfer learning, 2023.

[57] G. Xiao, Y. Tian, B. Chen, S. Han, and M. Lewis. Efficient streaming language models with
attention sinks, 2024.

[58] L. Xu, H. Xie, S.-Z. J. Qin, X. Tao, and F. L. Wang. Parameter-efficient fine-tuning methods for
pretrained language models: A critical review and assessment, 2023.

[59] Y. Xu, L. Xie, X. Gu, X. Chen, H. Chang, H. Zhang, Z. Chen, X. Zhang, and Q. Tian. Qa-lora:
Quantization-aware low-rank adaptation of large language models, 2023.

[60] A. X. Yang, M. Robeyns, X. Wang, and L. Aitchison. Bayesian low-rank adaptation for large
language models, 2024.

[61] F. Zhang and M. Pilanci. Riemannian preconditioned lora for fine-tuning foundation models,
2024.

[62] F. F. Zhang, L. Li, J.-C. Chen, Z. Jiang, B. Wang, and Y. Qian. Increlora: Incremental parameter
allocation method for parameter-efficient fine-tuning. ArXiv, abs/2308.12043, 2023.

13

130831 https://doi.org/10.52202/079017-4158

[63] L. Zhang, L. Zhang, S. Shi, X. Chu, and B. Li. Lora-fa: Memory-efficient low-rank adaptation
for large language models fine-tuning, 2023.

[64] M. Zhang, H. Chen, C. Shen, Z. Yang, L. Ou, X. Yu, and B. Zhuang. Loraprune: Pruning meets
low-rank parameter-efficient fine-tuning, 2023.

[65] Q. Zhang, M. Chen, A. Bukharin, N. Karampatziakis, P. He, Y. Cheng, W. Chen, and T. Zhao.
Adalora: Adaptive budget allocation for parameter-efficient fine-tuning, 2023.

[66] Y. Zhang, E. Chuangsuwanich, and J. Glass. Extracting deep neural network bottleneck features
using low-rank matrix factorization. In 2014 IEEE international conference on acoustics, speech
and signal processing (ICASSP), pages 185–189. IEEE, 2014.

[67] H. Zhao, H. Tan, and H. Mei. Tiny-attention adapter: Contexts are more important than the
number of parameters, 2022.

[68] Y. Zhao, J. Li, and Y. Gong. Low-rank plus diagonal adaptation for deep neural networks. In
2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
pages 5005–5009. IEEE, 2016.

[69] Y. Zhu, J. Feng, C. Zhao, M. Wang, and L. Li. Counter-interference adapter for multilingual
machine translation, 2021.

[70] B. Zi, X. Qi, L. Wang, J. Wang, K.-F. Wong, and L. Zhang. Delta-lora: Fine-tuning high-rank
parameters with the delta of low-rank matrices, 2023.

14

130832https://doi.org/10.52202/079017-4158

Appendix

A Prior Work

Here we provide an overview of recent PEFT methods. Dating back to 2019, Houlsby et al. [19]
develop the idea of parameter-efficient fine-tuning and introduce Adapter model, which injects
trainable components between pretrained model layers, though the number of trainable parameters
has been reduced due to the small size of adapters, this method incurs inference latency and is thus
not desirable. Later improvement of Adapter fine-tuning focuses on improving inference latency
[49, 26], fusing multiple adapters [7, 41, 18], modifying adapter model architecture [67], introducing
parallelism [17, 69], and creating task-specific and layer-specific adapter [35, 30]. Another line
of fine-tuning is prompt-tuning [27] which usually adds the trainable components into the prompt.
Variants of prompt-tuning involve WARP [14], prefix-tuning [28], P-tuning [34], and ATTEMPT
[3] which consider injecting different forms of trainable components. Multitask prompt-tuning is
considered in [55, 56].

The more relevant PEFT methods to our spectral adaptation mechanism involves LoRA [20] and OFT
[45], which inspires our Spectral AdapterA and Spectral AdapterR respectively. LoRA originates
from the observation that model fine-tuning is intrinsically low-rank [2]. Variants of LoRA involve
different methods proposing dynamic allocation of LoRA rank budgets [54, 62, 65, 6]. LoRA has
been combined with model pruning [64] and quantization [10, 59, 29]. Some other variants further
cut down the trainable parameter budget or activation storage by modifying LoRA model [25, 11, 63].
DoRA [32] fixes LoRA’s low-rank limitation by decomposing pretrained model weights and isolating
their magnitudes. Laplace-LoRA [60] incorporates Bayesian inference into LoRA parameters to
improve calibration. LoRAHub [21], MOELoRA [31], and L-LoRA [52] consider multitask LoRA.
Delta-LoRA [70] updates pretrained weights simultaneously from information of LoRA parameters.
GLoRA [5] generalizes LoRA by introducing a prompt module. Another line of variants focuses
on analyzing the optimization scheme of LoRA model [61, 16]. OFT studies the multiplicative
fine-tuning and its variant BOFT [33] improves OFT by utilizing butterfly parametrization for better
information delivery efficiency. [58] offers a comprehensive review of recent development of PEFT
methods.

B Rank Capacity Proof

Proof. Consider weight matrix W ∈ Rn×m with n ≤ m of full row rank. For LoRA parameter
A ∈ Rm×r,B ∈ Rn×r with n ≥ r, final weight matrix W +ABT has rank in [n − r, n]. With Spectral
AdapterA parameters AS ∈ Rm×r,BS ∈ Rn×r where n ≥ 2r. Let Xr denote the first r columns of
any matrix X and X−r denote the rest columns, final weight matrix ((Ur +AS)Sr(Vr +BS)T) +
U−rS−rV

T
−r has rank in [n−2r, n]. Therefore,R(LoRA;W) = r andR(Spectral AdapterA;W) =

2r can be derived trivially.

C Cayley Parameterization Proof

Proof. With any trainable square matrix A, we set Q = (A − AT)/2 and thus Q = −QT and Q
is skew-symmetric thereby. Now we show that for any skew-symmetric Q, (I +Q)(I −Q)−1 is
orthogonal. Let O = (I +Q)(I −Q)−1, then

OTO = ((I +Q)(I −Q)−1)T (I +Q)(I −Q)−1

= (I −QT)−1(I +QT)(I +Q)(I −Q)−1

by Q skew-symmetric,

= (I +Q)−1(I −Q)(I +Q)(I −Q)−1

since (I −Q) and (I +Q) have same eigen-basis and are commutable,
= I,

which shows that the Cayley parametrization is exact and no re-SVD is needed for orthogonality
preservation.

15

130833 https://doi.org/10.52202/079017-4158

D Connection to DoRA

In DoRA [32], the authors observe that plain LoRA method tends to either increase or decrease
the magnitude and direction updates proportionally and thus lacks ability to make slight direction
change together with large magnitude change, to come across this limitation, the authors propose to
decompose pretrained model weights into magnitude and direction and update them separately. The
magnitude is replaced with a trainable scalar and the direction is updated with original LoRA method.
Experiments in [32] show that such decomposition helps improve effectiveness of LoRA significantly.
Here we show that our Spectral AdapterA is closely connected to the weight decomposition trick used
in DoRA when pretrained model weight is of vector form. We note that in DoRA, after the weight
decomposition, each column becomes unit-length while in Spectral AdapterA, we also operates on
matrices with unit-length columns. Specifically, consider a pretrained model weight w0 ∈ Rn×1, then
DoRA becomes

w = w w0 + ba
∥w0 + ba∥2

,

where w is a trainable scalar initialized at ∥w0∥2. b and a are trainable parameters of size n × 1 and
1 × 1 respectively, with ba = 0 at initialization. Comparably, Spectral AdapterA becomes

w = (w0

∥w0∥2
+ a′)∥w0∥2(1 + b′),

with trainable vector a′ ∈ Rn×1 and trainable scalar b′ both initialized at zero. We can thus equivalently
view ∥w0∥2(1 + b′) as a single trainable scalar initialized at ∥w0∥2, which then plays the role of
magnitude adapter as w in DoRA. a′ is adopted for directional adaptation since it directly operates
on the normalized base vector.

E Cost Investigation (More Detailed)

Here we address the potential concern about the overhead of our proposed spectral adaptation
mechanism. Firstly, we note that spectral adapter introduces similar number of trainable parameters
and can be merged into original model weights, thus it is lightweight for sharing and introduces
no additional inference latency, which preserves the strengths of additive fine-tuning methods.
Therefore, the major overhead concern exists in the runtime and GPU storage overhead during online
training. Note our method involves only matrix multiplication in the forward procedure and thus
should run as quick as LoRA. Though the SVD procedure can bring additional runtime overhead,
it needs to be done only once for a single model and can be reused for later fine-tuning on various
downstream tasks. Besides, modern numerical tools such as randomized SVD [13] can also be
exploited and the SVD procedure can be parallelized when multiple machines are available. As for
GPU storage, unlike SVDiff [15] where all SVD components are required for training procedure thus
introducing significant GPU storage burden, our method requires only the top spectral space to be
stored additionally and consumes similar GPU storage to LoRA for relatively small tuning ranks
(which is usually the case).

F Supplemental Materials for Experiments

F.1 Experimental Setup for Figure 1

For Figure 1 experiments, we follow QDoRA [53] experimental setup for fine-tuning Llama3 8B
model, where all k_proj, q_proj, v_proj, up_proj, down_proj, and gate_proj weights are tuned. We
adopt the same data processing method and train on 10K Orca Math data (shuffled) as in [53]. We
fix learning rate as 1e − 5 for all methods as in QDoRA and train for one epoch with batch size 8.
r = 8 is adopted for LoRA, DoRA, AdaLoRA, and Spectral AdapterA while for OFT, we set number
of diagonal blocks to be 800 to maintain similar amount of trainable parameters. LoRA alpha is set
to be 16 following DoRA [32] convention and AdaLoRA hyperparameter is set following what has
been used for MNLI benchmark in the original AdaLoRA report [65] with regularization set to 1e− 3
which we find works better. For evaluation, we test on GSM8K [8] benchmark for exact matching.
For more comparisons, Figure 9 provides training loss for smaller rank r = 4 (oft_r = 1600) and
larger rank r = 64 (oft_r = 95). All settings are the same except that LoRA alpha is always kept as

16

130834https://doi.org/10.52202/079017-4158

Figure 9: More experiments with Llama3 8B model with different number of trainable parameters. In
the left plot, the training loss of LoRA and DoRA overlaps. See Appendix F.1 for details.

twice as rank number. From Figure 9 we can observe that though increasing trainable parameters
closes the gap between different tuning methods, our spectral adapter method is always superior to
other PEFT methods and stays closest to full fine-tuning.

F.2 Hyperparameter Setting for DeBERTaV3-base Experiment (Section 4.1)

Dataset learning rate batch size #epochs optimizer weight decay
MNLI 1e − 4 32 1 AdamW 0.01
RTE 3e − 4 32 10 AdamW 0.01

QNLI 1e − 4 32 1 AdamW 0.01
MRPC 7e − 4 32 13 AdamW 0.01
QQP 1e − 4 32 10 AdamW 0.01
SST-2 1e − 4 32 5 AdamW 0.01
CoLA 3e − 4 32 8 AdamW 0.01
STS-B 5e − 4 32 30 AdamW 0.01

Table 4: Hyperparameters for DeBERTaV3-base model fine-tuning with Spectral AdapterA in Section
4.1

Table 4 shows the hyperparameter setting for our Spectral AdapterA used for fine-tuning DeBERTaV3-
base model in Section 4.1. We set number of diagonal blocks to be 4 and enable block sharing for
OFT to maintain similar amount of trainable parameters.

F.3 More About DeBERTaV3-base Experiment

Left plot in Figure 10 presents the training loss and validation score comparisons of LoRA, SVDiff
and our Spectral AdapterA for fine-tuning DeBERTaV3-base model on CoLA benchmark. We set
learning rates for both LoRA and Spectral AdapterA as what has been used in popular public blog
[40] for LoRA fine-tuning with DeBERTaV3-base model, which is not tuned in favor of our method.
For SVDiff, since it is originally proposed for vision model tuning, we extend it to this experiment
by tuning all singular values of pretrained weights. We find the same learning rate leads to poor
fine-tuning results with SVDiff, we thus pick the best learning rate among [1e − 3,1e − 4,1e − 5]
according to validation performance and set learning rate to be 1e − 3. We use r = 8 for LoRA
and Spectral AdapterA. From Figure 10, it can be observed that Spectral AdapterA achieves better
training and validation performance compared to both LoRA and SVDiff.

Interestingly, in LoRA [20], the authors provide a correlation analysis between the LoRA additive
component △W = ABT and original pretrained weight matrix W (see Section H.3 in [20]), and
they find that the additive component does not contain the top singular directions of W . The authors
therefore conclude that the learned LoRA component amplifies "task-specific" directions which
are not emphasized in the pretrained weight matrix. Naively, this seems to suggest that tuning top
singular subspace of pretrained weights is not ideal and one should identify the desired "task-specific"
directions to improve LoRA. Here we show that this is not the case and fine-tuning top directions
provides a significant improvement to LoRA. In the right plot of Figure 10 above, we experiment

17

130835 https://doi.org/10.52202/079017-4158

Figure 10: Left plot presents training loss and validation results for fine-tuning DeBERTaV3-base
model with LoRA, SVDiff, and Spectral AdapterA on CoLA benchmark. Right plot compares the
same statistics between LoRA and spectral adapter with top ranks and bottom ranks tuned respectively.

tuning the top eighth rank and the bottom eighth rank of singular vector space in our Spectral
AdapterA, which we present as "Spectral Top" and "Spectral Bottom" respectively. Remarkably,
"Spectral Top" converges faster and scores higher than LoRA, which is then superior to "Spectral
Bottom". This result unravels the fact that tuning different part of spectral space brings different
tuning effect and tuning the top columns of singular vector space improves LoRA tuning significantly.
See Section 3 for more theoretic insights.

F.4 Hyperparameter Setting for Mistral 7B Experiment (Section 4.1)

Method lr lora alpha batch size #epochs lora dropout weight decay
LoRA 2.5e − 5 16 4 2 0.05 0.01
DoRA 2.5e − 5 16 4 2 0.05 0.01

Spectral AdapterA 2.5e − 5 - 4 2 - 0.01

Table 5: Hyperparameters for Mistral 7B model fine-tuning task in Section 4.1

Table 5 shows training hyperparameter setting for fine-tuning Mistral 7B model in Section 4.1. We
train with bfloat16 precision and fine-tune all q_proj, k_proj, v_proj, o_proj, and gate_proj weights.
We evaluate with lm-evaluation-harness [47]. Table 6 shows accuracy comparison of different tuning
methods with learning rate 1e − 5. Our Spectral AdapterA still exceeds both LoRA and DoRA.

F.5 Supplemental Materials for Multi-Adapter Fusion Experiment (Section 4.2)

F.5.1 Comparison of Single Object Generation

We present more experimental results to show that Spectral AdapterA with top ranks tuned behaves
at least as good as LoRA with same parameter budget and is better than Orthogonal Adaptation [42],
which is likely due to that Orthogonal Adaptation fixes LoRA parameter B and thus has limited
expressiveness. We also show that tuning bottom ranks in spectral adapter behaves worse than all
other methods. Figure 11 shows generation results for custom toy concept tuning, where Orthogonal
Adaptation and Spectral AdapterA (bottom) generate inaccurate happy-face octopus, sad-face octopus,
and green tortoise. Figure 12 shows generation results for custom animal concept tuning, where
Orthogonal Adaptation and Spectral AdapterA (bottom) sometimes miss first dog concept.

Method #Param GSM8K
Pre-Trained − 38.82
LoRAr=8 0.16% 43.29 ± 1.36
DoRAr=8 0.17% 43.52 ± 1.37

SpectralAr=8 0.16% 46.47 ± 1.37
Table 6: Supplemental experiments of fine-tuning Mistral 7B model with different PEFT methods
with a different learning rate on GSM8K benchmark. See Section F.4 for experimental details.

18

130836https://doi.org/10.52202/079017-4158

Figure 11: Generation results for single toy concept tuning with LoRA, Orthogonal Adaptation, and
Spectral AdapterA with top and bottom ranks tuned respectively.

19

130837 https://doi.org/10.52202/079017-4158

Figure 12: Generation results for single animal concept tuning with LoRA, Orthogonal Adaptation,
and Spectral AdapterA with top and bottom ranks tuned respectively.

F.5.2 More Multi-Adapter Fusion Generation Results

Here we present more results for multi-adapter fusion generation. Figure 13 shows generation
results for multi-object generation for custom toy concepts and Figure 14 presents generation
results for multi-character generation for three computer scientists. See below for experimental details.

Multi-Object Generation. As in Section 4.2, we fine-tune Chilloutmix diffusion model
[1] on four custom toy concepts, see "reference" in Figure 13 for original toy images. We use r = 8
for all methods and tune first, second, third, and fourth top eighth columns of singular vector space of
pretrained weights for first, second, third, and fourth toys in our Spectral AdapterA. We follow all
default experimental settings in [12] and tune all embedding layer, U-Net, and text-encoder. For
better spatial alignment, we employ T2I-Adapter with sketch condition listed in "reference" in Figure
13. We randomly select three scenes and prompt fused-adapters for the results, see "prompts" in
Figure 13 for individual prompt being used. From Figure 13, it can be observed that FedAvg and
Orthogonal Adaptation generate unsatisfactory happy-face octopus and green tortoise toys. On the
contrary, our spectral adapter generates high-quality images similar to Gradient Fusion while saving
much more time.

Multi-Character Generation. We also experiment fine-tuning Chilloutmix diffusion model [1]

20

130838https://doi.org/10.52202/079017-4158

Figure 13: Generation results of Chilloutmix diffusion model [1] tuned on four custom toy concepts
with different fused adapters. See Appendix F.5.2 for details.

with photos of three computer scientists Yoshua Bengio, Yann LeCun, and Geoffrey Hinton. As in
multi-object generation, we use r = 8 for all methods and tune first, second, and third top eighth
columns of singular vector space of pretrained weights for Bengio, Lecun, and Hinton in our Spectral
AdapterA. We use T2I-Adapter [39] with keypose condition. See "reference" in Figure 14 for
scientists’ photos and keypose condition being used. Figure 14 shows generation results for prompt
"<Vbengio> and <Vlecun> and <Vhinton>, standing near a lake, 4K, high quality, high resolution" with
different fused adapters, from which it can be observed that our spectral adapter generates picture of
most consistent styles across characters and renders all scientists’ faces clearly.

Figure 14: Generation results of Chilloutmix diffusion model [1] tuned on photos of three computer
scientists with different fused adapters. See Appendix F.5.2 for details.

F.6 Supplemental Materials for Parameter Efficiency Experiment (Section 4.3)

Method text encoder lr unet lr
LoRA 1e − 5 1e − 4

VeRA (r = 1) 1e − 3 1e − 4
VeRA (r = 1024,4096) 5e − 3 1e − 4

OFTA 1e − 5 1e − 4
LiDB 5e − 4 1e − 4

SVDiff 1e − 3 1e − 4
Table 7: Hyperparameters for baseline methods for diffusion model fine-tuning task in Section 4.3

In this section, we present more tuning results with various parameter budgets for parameter efficiency
experiment studied in Section 4.3, see Section 4.3 for baseline method explanation. Table 7 shows the
learning rates used for each baseline method and Table 8 shows learning rates used for our method,
the rest experimental settings are default as in [12].

21

130839 https://doi.org/10.52202/079017-4158

Method vase chair table
text unet text unet text unet

Spectral AdapterR (r = 2,40) 1e − 3 1e − 2 1e − 2 1e − 2 1e − 3 1e − 2
Spectral AdapterR (r = 4) 5e − 3 5e − 3 1e − 3 1e − 2
Spectral AdapterR (r = 8) 5e − 4 5e − 2 1e − 3 1e − 2 1e − 3 1e − 2

Spectral AdapterR (r = 16) 1e − 2 1e − 3 1e − 3 1e − 2
Spectral AdapterR (r = 24) 1e − 4 1e − 2 1e − 3 1e − 3 1e − 4 1e − 2
Spectral AdapterR (r = 32) 1e − 4 5e − 2

Table 8: Hyperparameters for Spectral AdapterR for diffusion model fine-tuning task in Section 4.3

Figure 15: Generation results for prompt “a <Vtable>” after fine-tuning Chilloutmix diffusion model
[1] on custom table images with different PEFT methods. SpectralR is abbreviation for Spectral
AdapterR. See Appendix F.6 for details.

Figure 15 shows generation results of Chilloutmix diffusion model [1] fine-tuned on custom table
concept with different methods under various parameter budgets. The prompt used is “a <Vtable>”.
LoRA generates acceptable images for all rank r = 1,2,3 though it starts with 273k parameters even
if rank is set to 1. OFT generates desirable images only for parameter budget > 400k. VeRA and
LiDB start to generate reasonable images with > 300k trainable parameters and SVDiff has only a
single fixed parameter budget. Meanwhile, our Spectral AdapterR recognizes the shape of custom
table with as few as 6k parameters and produces ideal images since 100k parameters. See Appendix
F.7 for alignment score computation details.

F.7 Alignment Score Computation

For better quantitative measurement, we compute alignment scores for our Figure 5,6,7,15 results.
Specifically, we first compute CLIP [46] embedding for all generated/reference images and prompt
texts, then we compute the cosine similarity between generated images’ embedding and reference
images’ embedding to serve as their alignment score. Likewise, text score stands for cosine similarity
between generated images’ embeddings and their corresponding prompt texts’ embeddings. Intuition
here is that if an image is close to another image (or text), their CLIP vectors are expected to stay
close as well. For Figure 5 alignment score computation, we crop each generated image vertically
into three columns, then we compute their alignment scores to each corresponding reference animal,
we finally take the mean of these three scores. For Figure 6, 7, 15 scores, we compute average score
over three random trials, with each trial consisting of 8 generated images.

22

130840https://doi.org/10.52202/079017-4158

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The introduction and abstract state that we study spectral fine-tuning mech-
anism which helps current PEFT from various perspectives. Our model in Section 2 and
experimental results in Section 4 properly address all the points.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Section 5 discusses limitation of the current work.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

23

130841 https://doi.org/10.52202/079017-4158

Answer: [Yes]
Justification: See Appendix B and C for proof of Lemma 3.1 and 4.1 respectively.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Experimental details are included in each subsection (or appendix) of cor-
responding experiments. For example, Table 4 provides all hyperparameter settings for
DeBERTaV3-base experiment in Section 4.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

24

130842https://doi.org/10.52202/079017-4158

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: Code has been made public at https://github.com/pilancilab/
spectral_adapter.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: See Section 4 and corresponding appendix sections in Appendix F for experi-
mental details.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: See Table 2 and 6.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

25

130843 https://doi.org/10.52202/079017-4158

https://github.com/pilancilab/spectral_adapter
https://github.com/pilancilab/spectral_adapter
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We mention "all experiments are done with NVIDIA RTX A6000 GPU" at
the end of first paragraph in Section 4. Moreover, in Section 4.4, we specifically plot the
memory and time of execution of some experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethic.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: Though large language/diffusion models might be used to generate fake
profiles/images, our proposed fine-tuning model does not introduce additional societal
impacts.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.

26

130844https://doi.org/10.52202/079017-4158

https://neurips.cc/public/EthicsGuidelines

• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All related work has been cited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

27

130845 https://doi.org/10.52202/079017-4158

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: See Section 2 for model architecture details. Supplemental code is submitted
in an anonymous way.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

28

130846https://doi.org/10.52202/079017-4158

paperswithcode.com/datasets

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

29

130847 https://doi.org/10.52202/079017-4158

