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Abstract

Deployed machine learning systems require some mechanism to detect out-of-
distribution (OOD) inputs. Existing research mainly focuses on one type of dis-
tribution shift: detecting samples from novel classes, absent from the training
set. However, real-world systems encounter a broad variety of anomalous inputs,
and the OOD literature neglects this diversity. This work categorizes five distinct
types of distribution shifts and critically evaluates the performance of recent OOD
detection methods on each of them. We publicly release our benchmark under
the name BROAD (Benchmarking Resilience Over Anomaly Diversity). We find
that while these methods excel in detecting novel classes, their performances are
inconsistent across other types of distribution shifts. In other words, they can
only reliably detect unexpected inputs that they have been specifically designed to
expect. As a first step toward broad OOD detection, we learn a Gaussian mixture
generative model for existing detection scores, enabling an ensemble detection
approach that is more consistent and comprehensive for broad OOD detection, with
improved performances over existing methods. We release code to build BROAD
to facilitate a more comprehensive evaluation of novel OOD detectors.1.

1 Introduction

A significant challenge in deploying modern machine learning systems in real-world scenarios is
effectively handling out-of-distribution (OOD) inputs. Models are typically trained in closed-world
settings with consistent data distributions, but they inevitably encounter unexpected samples when
deployed in real-world environments. This can both degrade user experience and potentially result in
severe consequences in safety-critical applications [41, 72].

There are two primary approaches to enhancing the reliability of deployed systems: OOD robustness,
which aims to improve model accuracy on shifted data distributions [18, 21], and OOD detection [84,
13], which seeks to identify potentially problematic inputs and enable appropriate actions (e.g.,
requesting human intervention).

Robustness is often considered preferable since the system can operate with minimal disruption,
and has been investigated for various types of distribution shifts [69, 27, 30]. However, attaining

1BROAD is freely accessible under a Creative Commons Attribution 4.0 Unported License at https:
//huggingface.co/datasets/ServiceNow/PartialBROAD. Code and instructions to build the full dataset
are available at https://github.com/ServiceNow/broad. We use OpenOOD [85] for evaluations.

2Work done while at ServiceNow.

38th Conference on Neural Information Processing Systems (NeurIPS 2024) Track on Datasets and Benchmarks.
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Figure 1: An overview of BROAD: illustrating the benchmarks employed for each distribution shift
category, with ImageNet-1K serving as the in-distribution reference.

robustness can be challenging: it may be easier to raise a warning flag than to provide a “correct”
answer.

Figure 2: Score distributions of MSP, ViM, and
MDS across datasets. While all methods discrim-
inate between ImageNet and iNaturalist, their ef-
fectiveness fluctuates across the other types of dis-
tribution shifts described in Section 2.

Furthermore, robustness is not achievable when
a classification system is presented with an input
of an unknown semantic class, as none of the
known labels can be considered correct. In re-
cent years, OOD detection research has tackled
the detection of such distributions shifts, under
different terminologies motivated by subtle vari-
ations: open set recognition (OSR), anomaly
detection, novelty detection, and outlier detec-
tion (see Yang et al. [84] for a comprehensive
analysis of their differences).

Beyond novel classes, researchers investigated
the detection of adversarial attacks [2, 33] and ar-
tificially generated images [36, 53, 51], although
these distribution shifts are rarely designated as
“OOD”. Few works simultaneously detect novel
labels and adversarial attacks [45, 25], and the
broad detection of diverse types of distribution
shifts remains largely unaddressed.

In real-world scenario, any type of distribution
shift is susceptible to affect performances and
safety. While recent efforts like OpenOOD [85]
have simplified and standardized OOD detection
evaluations, their exclusive focus on a specific
type of distribution shift is susceptible to yield
detection methods that are overspecialized and
perform unreliably on out-of-distribution distri-
bution shifts, i.e., they only detect “unexpected” samples that are, in fact, expected.

These concerns are confirmed in Figure 2, which displays the distributions of maximum softmax
(MSP) [28], ViM [82], and MDS [46] scores on several shifted distributions relative to clean data
(ImageNet-1k). Although all scores effectively distinguish samples from iNaturalist [34, 78], a
common benchmark for detecting novel classes, their performance on other types of distribution
shifts is inconsistent.
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Furthermore, OOD detection methods often require tuning or even training on OOD samples [49,
46, 48], exacerbating the problem. Recent research has attempted the more challenging task of
performing detection without presuming access to such samples [56, 25, 82]. Nevertheless, they may
still be inherently specialized towards specific distribution shifts. For example, CSI [75] amplifies the
detection score by the norm of the representations. While this improves performance on samples with
novel classes (due to generally lower norm representations), it may conversely impair performance in
detecting, for instance, adversarial attacks, which may exhibit abnormally high representation norms.

The scarcity of diversity in OOD detection evaluations in previous studies may be attributed to the
perceived preference for OOD robustness when OOD samples share classes with the training set.
Nevertheless, this preference may not always be well-founded. Firstly, previous works have indicated
a potential trade-off between in-distribution accuracy and OOD robustness [77, 90], although a
consensus remains elusive [87]. On the other hand, many OOD detection systems serve as post-
processors that do not impact in-distribution performances. Additionally, there are practical scenarios
where the detection of OOD inputs proves valuable, regardless of robustness. For instance, given the
increasing prevalence of generative models [68, 64, 70], deployed systems may need to differentiate
synthetic images from authentic ones, independent of performance [51, 42]. Lastly, other types of
shifts exist where labels belong to the training set, but correct classification is undefined, rendering
robustness unattainable (see section 2.5).

Our work focuses on broad OOD detection, which we define as the simultaneous detection of OOD
samples from diverse types of distribution shifts. Our primary contributions include:

• Benchmarking Resilience Over Anomaly Diversity (BROAD), an extensive OOD detection
benchmark (relative to ImageNet) comprising twelve datasets from five types of distribution
shifts: novel classes, adversarial attacks, synthetic images, corruptions, and multi-class.

• A comprehensive benchmarking of recent OOD detection methods on BROAD.
• The development and evaluation of a generative ensemble method based on a Gaussian mix-

ture of existing detection statistics to achieve broad detection against all types of distribution
shifts, resulting in significant gains over existing methods in broad OOD detection.

Section 2 introduces BROAD while Section 3 presents studied methods and our generative ensemble
method based on Gaussian mixtures. In Section 4, we evaluate different methods against each
distribution shift. Section 5 provides a synopsis of related work, and we conclude in Section 6.

2 Distribution Shift Types in BROAD

In this study, we employ ImageNet-1K [15] as our in-distribution. While previous detection studies
have frequently used CIFAR [44], SVHN [62], and LSUN [88] as detection benchmarks, recent work
has highlighted the limitations of these benchmarks, citing their simplicity, and has called for the
exploration of detection in larger-scale settings [29]. Consequently, ImageNet has emerged as the
most popular choice for in-distribution.

Our benchmark, BROAD, encompasses five distinct types of distribution shifts, each represented by
one to four corresponding datasets, as summarized in Figure 1. This selection, while not exhaustive,
is substantially more diverse than traditional benchmarks, and provides a more realistic range of the
unexpected inputs that can be plausibly encountered.

2.1 Novel Classes

The introduction of novel classes represents the most prevalent type of distribution shift in the study
of OOD detection. In this scenario, the test distribution contains samples from classes not present in
the training set, rendering accurate prediction unfeasible.

For this particular setting, we employ three widely used benchmarks: iNaturalist [34, 78], ImageNet-
O [31], and OpenImage-O [82, 43].

2.2 Adversarial Perturbations

Adversarial perturbations are examined using two well-established attack methods: Projected Gradi-
ent Descent (PGD)[57] and AutoAttack[12]. Each attack is generated with an L∞ norm perturbation
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budget constrained to ϵ = 0.05, with PGD employing 40 steps. In its default configuration, Au-
toAttack constitutes four independently computed threat models for each image; from these, we
selected the one resulting in the highest confidence misclassification. A summary of the models’
predictive performance when subjected to each adversarial scheme can be found in Table 1. The
relative detection difficulty of white-box versus black-box attacks remains an open question. Although
white-box attacks are anticipated to introduce more pronounced perturbations to the model’s feature
space, black-box attacks might push the features further away from the in-distribution samples. To
elucidate this distinction and provide a more comprehensive understanding of detection performance,
we generate two sets of attacks using both PGD and AutoAttack: one targeting a ResNet50 [26] and
the other a Vision Transformer (ViT) [19]. Evaluation is performed on both models, thereby ensuring
the inclusion of two black-box and two white-box variants for each attack.

Table 1: Prediction accuracy of the two eval-
uated models across the range of perturbation
settings examined in our study.

Model Clean Acc. White-box Black-box
PGD AA PGD AA

RN50 74.2% 39.3% 28.2% 68.0% 43.3%
ViT 85.3% 0.4% 50.8% 77.1% 65.8%

Common practice in the field focuses on the de-
tection of successful attacks. However, identifying
failed attempts could be advantageous for security
reasons. To cater to this possibility, we appraise
detection methods in two distinct scenarios: the
standard Distribution Shift Detection (DSD), which
aims to identify any adversarial perturbation irre-
spective of model predictions, and Error Detection
(ED), which differentiates solely between success-
fully perturbed samples (those initially correctly
predicted by the model but subsequently misclassified following adversarial perturbation) and their
corresponding original images.

2.3 Synthetic Images

This category of distribution shift encompasses images generated by computer algorithms. Given the
rapid development of generative models, we anticipate a growing prevalence of such samples. To
emulate this shift, we curated two datasets: one derived from a conditional BigGAN model [7], and
another inspired by stable diffusion techniques [70].

In the case of BigGAN, we employed publicly available models2 trained on ImageNet-1k and
generated 25 images for each class. For our stable diffusion dataset, we utilized open-source text-
conditional image generative models3. To generate images reminiscent of the ImageNet dataset, each
ImageNet class was queried using the following template:

High quality image of a {class_name}.

This procedure was repeated 25 times for each class within the ImageNet-1k label set. Given that a
single ImageNet class may have multiple descriptive identifiers, we selected one at random each time.

2.4 Corruptions

The term corruptions refers to images that have undergone a range of perceptual perturbations.
To simulate this type of distribution shift, we employ four distinct corruptions from ImageNet-
C [27]: defocus blur, Gaussian noise, snow, and brightness. All corruptions were implemented at
the maximum intensity (5 out of 5) to simulate challenging scenarios where OOD robustness is
difficult, thus highlighting the importance of effective detection. Analogous to the approach taken
with adversarial perturbations, we implement two distinct evaluation scenarios: Distribution Shift
Detection (DSD), aiming to identify corrupted images irrespective of model predictions, and Error
Detection (ED), discriminating between incorrectly classified OOD samples and correctly classified
in-distribution samples, thus focusing solely on errors introduced by the distribution shift.

2.5 Multiple Labels

In this study, we propose CoComageNet, a new benchmark for a type of distribution shift that, to the
best of our knowledge, has not been previously investigated within the context of Out-of-Distribution

2https://github.com/lukemelas/pytorch-pretrained-gans
3https://huggingface.co/stabilityai/stable-diffusion-2
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Table 2: Distribution shift detection AUC for Visual Transformer and ResNet-50 across different
types of distribution shifts.

Novel classes Adv. Attacks Synthetic Corruptions Multi-labels Average
ViT RN50 ViT RN50 ViT RN50 ViT RN50 ViT RN50 ViT RN50

CADET min 20.91 66.79 67.12 62.4 59.82 55.65 79.67 87.15 54.24 56.88 56.35 65.77
ODIN 91.73 73.58 52.29 54.44 62.74 61.49 79.68 88.52 70.75 64.46 71.44 68.5
MAX LOGITS 95.25 73.67 59.73 59.62 66.08 57.65 83.60 90.87 71.63 62.79 75.26 68.92
LOGITS NORM 51.93 52.62 37.39 51.82 38.25 59.47 39.99 82.81 36.32 48.05 40.78 58.95
MSP 90.56 67.25 58.45 61.17 64.78 55.59 78.62 86.71 71.93 67.52 72.87 67.65
MDSf 53.35 63.52 67.73 55.04 54.92 56.18 31.47 76.52 63.43 36.81 54.18 57.61
MDSl 97.38 72.32 74.75 68.91 68.98 55.41 83.29 75.24 63.41 38.92 77.56 62.16
MDSall 89.17 72.66 85.64 71.49 72.45 60.89 95.55 89.42 26.06 30.01 73.77 64.89
REACT 95.47 79.70 60.71 61.46 66.03 54.24 83.67 89.82 71.79 63.91 75.53 69.83
GRADNORM 90.85 75.53 65.17 56.52 72.19 65.57 85.00 89.39 69.59 54.45 76.56 68.29
EBO 95.52 73.8 59.72 59.59 65.91 57.72 83.83 91.14 71.27 61.55 75.25 68.76
Dα 91.27 67.95 58.62 61.44 64.95 55.65 81.57 87.43 72.49 67.15 73.78 67.92
DICE 55.7 74.45 78.29 58.76 77.84 59.43 86.67 91.38 61.23 59.97 71.95 68.8
VIM 95.76 81.55 56.85 62.91 61.01 53.26 79.79 87.00 68.45 49.01 72.37 66.75
ASH 95.52 73.89 59.72 69.61 65.91 57.94 83.83 91.13 71.27 61.65 75.25 70.84
SHE 90.98 76.71 72.15 68.37 67.19 63.87 82.38 89.79 60.92 60.91 74.72 71.93
RELATION 93.61 76.06 68.77 67.55 65.67 57.58 79.95 87.80 64.79 59.49 74.56 69.70
ENS-V (ours) 94.97 79.42 82.67 74.85 78.45 60.55 92.76 91.08 73.27 53.78 84.42 71.93
ENS-R (ours) 95.00 80.42 80.79 75.21 76.56 62.38 92.17 90.56 74.79 60.79 83.86 73.87
ENS-F (ours) 95.08 79.16 79.05 69.32 75.02 59.89 91.57 91.59 72.55 61.41 82.65 72.27

(OOD) detection. We specifically focus on multiple labels samples, which consist of at least two
distinct classes from the training set occupying a substantial portion of the image.

Consider a classifier trained to differentiate dogs from cats; the label of an image featuring a dog
next to a cat is ambiguous, and classifying it as either dog or cat is erroneous. In safety-critical
applications, this issue could result in unpredictable outcomes and requires precautionary measures,
such as human intervention. For example, a system tasked with identifying dangerous objects could
misclassify an image featuring both a knife and a hat as safe by identifying the image as a hat.

The CoComageNet benchmark is constructed as a subset of the CoCo dataset [50], specifically, the
2017 training images. We identify 17 CoCo classes that have equivalent counterparts in ImageNet
(please refer to appendix A for a comprehensive list of the selected CoCo classes and their ImageNet
equivalents). We then filter the CoCo images to include only those containing at least two different
classes among the selected 17. We calculate the total area occupied by each selected class and order
the filtered images based on the portion of the image occupied by the second-largest class. The top
2000 images based on this metric constitute CoComageNet. By design, each image in CoComageNet
contains at least two distinct ImageNet classes occupying substantial areas.

Although CoComageNet was developed to study the detection of multiple label images, it also
exhibits other less easily characterized shifts, such as differences in the properties of ImageNet and
CoCo images, and the fact that CoComageNet comprises only 17 of the 1000 ImageNet classes. To
isolate the effect of multiple labels, we also construct CoComageNet-mono, a similar subset of CoCo
that contains only one of the selected ImageNet classes (see appendix A for details).

As shown in appendix A, detection performances for all baselines on CoComageNet-mono are near
random, demonstrating that detection of CoComageNet is primarily driven by the presence of multiple
labels. Finally, to reduce the impact of considering only a subset of ImageNet classes, we evaluate
detection methods using in-distribution ImageNet samples from the selected classes only.

3 Detection Methods

In this study, our focus is predominantly on methods that do not require training or fine-tuning using
OOD samples. This consideration closely aligns with real-world applications where OOD samples
are typically not known a priori. Additionally, the practice of fine-tuning or training on specific types
of distribution shifts heightens the risk of overfitting them.

Evaluated Methods: We assess the broad OOD detection capabilities of a large number of methods in-
cluding ASH [17], SHE [91], RELATION [40], REACT [74], VIM [82], GRADNORM [35], EBO [52],
DICE [73], DOCTOR [24], CADET [25], ODIN [49], and Mahalanobis Distance (MDS) [46]. Fur-
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Figure 3: Covariance matrices of detection scores in-distribution for ViT (left) and ResNet-50 (right).

thermore, we explore three statistics widely applied in post-hoc OOD detection: maximum softmax
probabilities (MSP), maximum of logits, and logit norm.

In the case of CADET, we solely utilize the intra-similarity score min with five transformations to
minimize computational demands. For DOCTOR, we employ Dα in the Totally Black Box (TBB)
setting, disregarding Dβ as it is functionally equivalent to MSP in the TBB setting when rescaling
the detection threshold is accounted for (resulting in identical AUC scores). ODIN typically depends
on the fine-tuning of the perturbation budget ϵ and temperature T on OOD samples. To bypass this
requirement, we use default values of ϵ = 0.0014 and T = 1000. These default parameters, having
been tuned on a variety of datasets and models, have demonstrated robust generalization capabilities.
Nevertheless, it should be noted that the choice of these values, despite being considered reasonable,
does represent a caveat, as they were initially determined by tuning OOD detection of novel classes.

In its standard form, the Mahalanobis detection method computes the layer-wise Mahalanobis
distance, followed by training a logistic regressor on OOD samples to facilitate detection based on a
weighted average of these distances. To eliminate the need for training on OOD samples, we consider
three statistics derived from Mahalanobis distances: the Mahalanobis distance on the output of the
first layer block (MDSf), the Mahalanobis distance on the output of the last layer (MDSl), and the
Mahalanobis distance on the output of all layers averaged with equal weights (MDSall). For the
Vision Transformer (ViT), we focus on MDS on the class token, disregarding patch tokens.

Generative Modeling for Detection: Consider X as a data distribution with a support set denoted as
X , and let h : X → Rd be a map that extracts features from a predetermined neural network. The
function h(x) can be defined arbitrarily; for instance, it could be the logits that the network computes
on a transformation of a sample x, or the concatenation of outputs from different layers, among other
possibilities. However, generative modeling in the input space (i.e., when h is the identity function)
is generally difficult due to the exceedingly high dimensionality and intricate structure of the data.

To avoid modeling the density in the high dimensional input space, we can use as proxy the density
px∼X (h(x)) in the latent space h(X ). A generative model of h is tasked with learning the distribution
px∼X (h(x)), using a training set (xi)i≤N that comprises independently sampled instances from X ,
and the log-density of the generative model can then directly be used as detection score.

A significant number of detection methods devise heuristic scores on h with the aim of maximizing
detection performances on specific benchmarks, while often arbitrarily discarding information that
could potentially be beneficial for other distribution shifts. In contrast, generative models learn an
estimator of the likelihood of h(x) without discarding any information. Their detection performances
are only constrained by the information extracted by h and, naturally, their proficiency in learning
its distribution. This inherent characteristic makes generative models particularly suitable for broad
Out-of-Distribution (OOD) detection. By learning the comprehensive distribution of h, these models
negate the bias associated with engineering detection scores against specific distribution shifts.

Gaussian Mixtures Ensembling: Gaussian Mixture Models (GMMs) are a versatile tool for learning
a distribution of the form x ∼

∑n
i πiN (µi,Σi), where n is the number of components, π, µ and Σ

are the parameters of the GMM and are learned with the Expectation-Maximization (EM) algorithm.
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GMM-based generative modeling of neural network behaviors to facilitate detection has been pre-
viously reported [9]. Methods that are based on the Mahalanobis distance bear similarity to this
approach insofar as the layer-wise Mahalanobis score can be interpreted as the likelihood of the layer
output for class-dependent Gaussian distributions, which are learned from the training set.

Despite these advantages, such methods encounter the formidable challenge of learning generative
models of the network’s high dimensional representation space, a task made more difficult due to
the curse of dimensionality. In response to this challenge, we propose the learning of a Gaussian
mixture of the scores computed by existing OOD detection methods. While this approach still
relies on heuristic scores, it presents an ensemble method that is able to amalgamate their respective
information, while maintaining the dimension of its underlying variables at a significantly low level.
As a result, it achieves a favorable tradeoff between the generative modeling of high dimensional
feature spaces and the heuristic construction of one-dimensional detection scores.

In addition to integrating their detection capabilities, this approach is adept at identifying atypical
realizations of the underlying scores, even in situations where the marginal likelihood of each score
is high, but their joint likelihood is low.

To make our method as general as possible, we do not assume access to OOD samples to select
which scores to use as variables of our GMM. We present in Figure 3 the covariance matrices of
the different scores on a held-out validation set of ImageNet. To minimize redundancy, we avoid
picking multiple scores that are highly correlated on clean validation data. To decide between highly
correlated scores, we opt for the ones with highest in-distribution error detection performance (see first
two columns of Table 8). Moreover, we discard logit norm and MDSf due to their near-random error
detection performance in-distribution. Given that score correlation varies between ViTs and ResNets,
as evidenced in Figure 3, we derive two distinct sets of scores. We also propose a computationally
efficient alternative based on methods with minimal overhead costs:

Ens-V (ViT) = {GRADNORM, ODIN, MDSall, MDSl, CADET, DICE, MSP, MAX LOGITS},

Ens-R (ResNet) = {GRADNORM, ODIN, MDSall, MDSl, CADET, REACT, VIM, Dα},

Ens-F (Fast) = {MSP, MAX LOGITS, MDSall, MDSl, EBO}.

We train the GMM on the correctly-classified samples of a held-out validation set of 45,000 samples.
This is essential as misclassified samples may produce atypical values of the underlying scores
despite being in-distribution, which is demonstrated by the high in-distribution error detection AUC
of selected scores. Finally, we train the GMM for a number of components n ∈ {1, 2, 5, 10, 20} and
select n = 10 which maximizes the in-distribution error detection performances (see appendix C).

4 Evaluation

We assess performance using the widely accepted area under the curve (AUC) metric for two distinct
pretrained models: ResNet-50 (RN50) and Vision Transformer (ViT). While it is standard to also
report other metrics such as FPR@95 and AUPR, we find these metrics to be redundant with AUC
and omit them for clarity. All evaluations are conducted on a single A100 GPU, with the inference
time normalized by the cost of a forward pass (cf. App. B).

Our empirical results in the Distribution Shift Detection (DSD) setting, which aims to detect any
OOD sample, are presented in Table 2. Results for the error detection setting, where the objective is to
detect misclassified OOD samples against correctly classified in-distribution samples, are exhibited in
Appendix D (Table 8). The results for each distribution shift type are averaged over the corresponding
benchmark. Detailed performances and model accuracy for each dataset are offered in Appendix D
(where applicable). In the error detection setting, we conduct evaluations against adversarial attacks,
corruptions, and in-distribution. The latter pertains to predicting classification errors on authentic
ImageNet inputs. Please note that error detection is inapplicable to novel classes and multi-labels
where correct classifications are undefined, and we do not consider error detection on synthetic
images as it lacks clear motivation.

Existing methods: A striking observation is the inconsistency of recent detection methods in the
broad OOD setting. Methods that excel on adversarial attacks tend to underperform on multi-
label detection, and vice versa. Each of the baselines exhibits subpar performance on at least one
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distribution shift, and almost all of them are Pareto-optimal. This underscores the necessity for
broader OOD detection evaluations to inform the design of future methods.

We observe that while detection performances are generally superior when utilizing a ViT backbone,
a finding consistent with previous studies [82], the difference is method-dependent. For instance,
MDSl ranks as the best baseline on ViT (when averaged over distribution shift types), but it is the
third-worst with a ResNet-50.

We further observe that many methods significantly outperform a random choice in the detection of
synthetic images, regardless of the generation methods used (see Appendix D). This suggests that
despite recent advancements in generative models, the task remains feasible.

Interestingly, the performance of various methods relative to others is remarkably consistent between
the DSD and error detection settings, applicable to both adversarial attacks and corruptions. This
consistency implies a strong correlation between efficiently detecting OOD samples and detecting
errors induced by distribution shifts, suggesting that there may not be a need to compromise one
objective for the other.

Ensemble: Our ensemble method surpasses all baselines when averaged over distribution shift
types, evident in both the DSD and error detection settings, and consistent across both ViT and
ResNet-50 backbones. With the exception of error detection with ResNet-50, where Doctor-alpha
yields comparable results, our ensemble method consistently demonstrates significant improvements
over the best-performing baselines. Specifically, in the DSD setting, ENS-V and ENS-R secure
improvements of 6.86% and 4.04% for ViT and ResNet-50, respectively.

While the ensemble detection rarely surpasses the best baselines for a specific distribution shift type,
it delivers more consistent performances across types, which accounts for its superior averaged AUC.
This finding endorses the viability of our approach for broad OOD detection.

Despite the notable computational overhead for ENS-V and ENS-R (up to 13.92× the cost of a
forward pass for ENS-V with ResNet-50, as detailed in Appendix B), the inference of ENS-F atop a
forward pass only adds a modest 19% to 25% overhead, thus striking a reasonable balance between
cost and performance.

Interestingly, ENS-F trails only slightly in terms of performance in the DSD setting. In the error
detection setting, ENS-F unexpectedly delivers the best results for both ViT and ResNet.

5 Related Work

In this work, we study the detection of out-of-distribution (OOD) samples with a broad definition
of OOD, encompassing various types of distribution shifts. Our work intersects with the literature
in OOD detection, adversarial detection, and synthetic image detection. We also provide a brief
overview of uncertainty quantification methods that can be leveraged to detect errors induced by
distribution shifts.

Label-based OOD detection has been extensively studied in recent years under different settings:
anomaly detection [8, 66, 71], novelty detection [60, 67], open set recognition [58, 22, 6], and outlier
detection [80, 32, 3]. Most existing methods can be categorized as either density-based [47, 38],
reconstruction-based [16, 86], classification-based [81, 79] or distance-based [89, 76]. Methods
can further be divided based on whether they require pre-processing of the input, specific training
schemes, external data or can be used a post-processors on any trained model. See Yang et al. [84]
for a complete survey.

Adversarial detection is the task of detecting adversarially perturbed inputs. Most existing methods
require access to adversarial samples [2, 93, 54, 61, 55, 4, 59], with some exceptions [33, 5, 25].
Since adversarial training does not transfer well across attacks [37], adversarial detection methods
that assume access to adversarial samples are also unlikely to generalize well. Unfortunately, Carlini
and Wagner [10] have shown that recent detection methods can be defeated by adapting the attack’s
loss function. Thus, attacks targeted against the detector typically remain undetected. However,
adversarial attacks transfer remarkably well across models [11, 23], which makes deployed systems
vulnerable even when the attacker does not have access to the underlying model. Detectors thus make
systems more robust by requiring targeted attack designs.
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Synthetic image detection is the detection of images that have been artificially generated. Following
the rapid increase in generative models’ performances and popularity [68, 64, 70], many works
have addressed the task of discriminating synthetic images from genuine ones [51]. They are
generally divided between image artifact detection [51, 14, 92] and data-drive approaches [83]. Since
generative models aim at learning the genuine distribution, their shortcomings only permit detection.
As generative models improve, synthetic images may become indistinguishable from genuine ones.

Uncertainty quantification (UQ) for deep learning aims to improve the estimation of neural network
confidences. Neural networks tend to be overconfident even on samples far from the training
distribution [63]. By better estimating the confidence in the network’s predictions, uncertainty
quantification can help detect errors induced by distribution shifts. See Abdar et al. [1], Kabir et al.
[39], Ning and You [65] for overviews of UQ in deep learning.

Detection of multiple types of distribution shifts has been addressed by relatively few prior works.
The closest work in the literature is probably Guille-Escuret et al. [25] and Lee et al. [46] which aims
at simultaneously detecting novel classes and adversarial samples. In comparison, this work evaluates
detection methods on five different types of distribution shifts. To the best of our knowledge, it is the
first time that such broad OOD detection is studied in the literature.

6 Conclusion
We have evaluated recent OOD detection methods on BROAD, a novel diversified benchmark we
introduced spanning 5 different distribution shift types, and found their performances unreliable. Due
to the literature focusing on specific distribution shifts, existing methods often fail to detect samples
of certain out-of-distribution shifts.

We encourage future work to consider more varied types of OOD samples for their detection
evaluations, so that future methods will not see their success limited to unexpected inputs that are
expected. Moreover, while setting ImageNet as an in-distribution can yield insights on a large class of
models and applications, future work should consider additional in-distributions to expand BROAD’s
coverage, including different modalities such as text and audio.
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A CoComageNet

Table 3: CoCo and ImageNet classes used for CoComageNet and CoComageNet-mono.
CoCo ImageNet
ID Name ID Name
24 Zebra n02391049 Zebra
27 Backpack n02769748 Backpack, back pack, knapsack, packsack, rucksack, haversack
28 Umbrella n04507155 Umbrella
35 Skis n04228054 Ski
38 Kite n01608432 Kite
47 Cup n07930864 Cup
52 Banana n07753592 Banana
55 Orange n07747607 Orange
56 Broccoli n07714990 Broccoli
59 Pizza n07873807 Pizza, pizza pie
73 Laptop n03642806 Laptop, laptop computer
74 Mouse n03793489 Mouse, computer mouse
75 Remote n04074963 Remote control, remote
78 Microwave n03761084 Microwave, microwave oven
80 Toaster n04442312 Toaster
82 Refrigerator n04070727 Refrigerator, icebox
86 Vase n04522168 Vase

Table 4: Detection AUC of ResNet-50 and ViT for
different detection scores against CoComageNet and
CoComageNet-mono

CoComageNet CoComageNet-mono
ViT RN-50 ViT RN-50

CADet min 54.24 56.88 52.24 50.8
ODIN 70.75 64.46 55.27 53.72
Max logits 71.63 62.79 56.15 53.32
Logit norm 36.32 48.05 51.03 55.26
MSP 71.93 67.52 53.16 53.32
MDSf 63.43 36.81 61.38 48.45
MDSl 63.41 38.92 58.32 50.97
MDSall 26.06 30.01 46.66 47.06
ReAct 71.79 63.91 57.81 58.73
GradNorm 69.59 54.45 56.34 53.43
EBO 71.27 61.55 56.65 53.31
Dα 72.49 67.15 53.41 53.08
Dice 61.23 59.97 57.35 53.00
ViM 68.45 49.01 57.06 54.54
ASH 71.27 61.65 56.65 53.32
SHE 60.92 60.91 53.55 53.77
Relation 64.79 59.49 52.26 49.91
Ens-V (us) 73.22 61.29 59.21 59.06
Ens-R (us) 74.79 61.01 60.29 56.75
Ens-F (us) 72.65 61.42 58.92 58.34

We here provide additional information re-
lated to the CoComageNet and CoComageNet-
mono datasets, together referred to as CoCo-
mageNet.

Table 3 lists the classes used for CoCo-
mageNet with their corresponding IDs and
names for both CoCo and ImageNet. These
classes were automatically selected by finding
matches between CoCo names and ImageNet
IDs understood as WordNet synsets [20]. Only
exact matches were considered; hyponyms
and hypernyms were excluded. While one
could argue for more classes to be added to
this list, we believe that those present on this
list are “safe”.

CoComageNet, introduced in section 2.5,
aims to induce a distribution shift due to the
presence of multiple classes. However, it is
also affected by the distributional variations
between ImageNet and CoCo, such as differ-
ent angles, distances, brightness, etc.

To alleviate this issue, we introduce the sis-
ter dataset CoComageNet-mono by selecting
2000 different images from the same CoCo
2017 training dataset. Disregarding any “Per-
son” CoCo label, we only keep the images
whose labels belong to a single CoCo class,
and only if that class is one of the 17 listed in
table 3. For example, the photograph of a person holding several bananas satisfies these conditions
(disregarding the person, the labels are all in the same “banana” class) while one with a cat next to
a banana does not (even though “cat” is not listed in table 3, it is a CoCo class). For classes with
less than 157 images left, we add all these images to CoComageNet-mono. For the other classes, we
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Table 5: Normalized inference time.
ViT RN-50

Forward 1.00 1.00
Cadet min 5.04 5.15
Odin 3.22 2.94
max logit 1.01 1.00
logit norm 1.01 1.00
MSP 1.01 1.00
MDSf 1.23 1.17
MDSl 1.23 1.17
MDSall 1.23 1.17
ReAct 1.11 1.06
GradNorm 2.28 3.86
EBO 1.01 1.03
Dα 1.01 1.06
Dice 1.03 1.09
ViM 3.64 2.03
ASH 1.03 1.05
SHE 1.03 1.00
Relation 1.01 1.03
Ens-V (us) 11.53 13.92
Ens-R (us) 10.25 10.92
Ens-F (us) 1.25 1.19

sort the images of each class according to the proportion of the image taken by that class, and add to
CoComageNet-mono the top 157 by that metric (top 158 for the two most populated classes), for a
total of 2000 images.

Table 4 shows the detection performances of all baselines and our method against CoComageNet
and CoComageNet-mono. Detection performances on CoComageNet-mono are generally close to
50% (corresponding to random guess) which shows that the distribution shift between ImageNet and
CoCo has limited influence on the detection scores of our baselines. In comparison, detection scores
are generally significantly further from 50% on CoComageNet, showing it is indeed the presence of
multiple classes that drives detection in the case of CoComageNet.

B Computation time

Table 5 presents the computation time of each method, normalized by the cost of a forward pass.
Note that when normal inference is needed to compute the score, its computation time is included in
the inference time. Therefore, running Ens-S on top of classification only has an additional overhead
of 25% for ViT and 19% for ResNet.

C Number of components

We present in Table 6 and Table 7 the in-distribution error detection AUCs that were used to pick the
number of components n of the Gaussian mixture. We observe that the number of components has
a low impact on performances, and that in-distribution error detection AUC has a clear correlation
with broad OOD detection performances, making it an adequate metric to determine the number of
components.

D Complete results

In this section, we present the error detection AUC in Table 8. Moreover, we provide in Table 9 to
Table 15 the detection AUC of all methods against each dataset separately, both in the DSD and the
error detection setting.
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Table 6: In-distribution error detection AUC and OOD detection AUC averaged over distribution
shift types, for a ResNet-50 using Ensemble-ResNet and using n Gaussian components.

n In-dist error detection Avg OOD detection
1 74.99 71.85
2 76.02 73.08
5 77.13 73.51
10 77.24 73.46
20 75.16 71.44

Table 7: In-distribution error detection AUC and OOD detection AUC averaged over distribution
shift types, for a ViT using Ensemble-ViT and using n Gaussian components.

n In-dist error detection Avg OOD detection
1 82.41 82.91
2 82.34 83.20
5 82.59 83.61
10 82.61 83.66
20 82.19 81.80

Table 8: Error detection AUC for Visual Transformer and ResNet-50.

In-distribution Adv. Attacks Corruptions Average
ViT RN50 ViT RN50 ViT RN50 ViT RN50

CADET min 54.63 56.50 70.02 67.85 81.55 90.11 68.73 71.49
ODIN 75.02 75.79 56.98 62.96 90.83 95.02 74.28 77.92
MAX LOGIT 80.64 77.55 67.67 68.37 95.55 96.84 81.29 80.92
LOGIT NORM 36.83 50.11 34.05 55.94 33.65 84.37 34.84 63.47
MSP 89.16 86.31 70.29 74.04 95.75 95.93 85.07 85.43
MDSf 48.23 51.25 68.18 56.66 30.70 76.47 49.04 61.46
MDSl 74.92 55.53 82.98 72.39 96.39 75.85 84.76 67.92
MDSall 54.93 54.69 89.44 74.65 99.1 89.90 81.16 73.08
REACT 77.18 73.28 68.00 69.32 94.81 95.01 80.00 79.20
GRADNORM 68.01 58.07 70.92 62.49 94.00 92.73 77.64 71.10
EBO 78.35 76.02 66.63 67.63 95.01 96.61 80.00 80.09
Dα 89.00 86.50 70.37 73.97 95.96 96.26 85.11 85.58
DICE 56.91 70.00 80.6 65.71 89.13 95.53 75.55 77.08
VIM 75.72 73.74 63.37 69.83 91.64 93.03 76.91 78.87
ASH 78.35 77.42 66.63 78.06 95.01 96.74 80.00 82.94
SHE 78.96 67.03 83.54 75.02 95.7 94.20 86.07 78.75
RELATION 76.91 74.21 79.1 76.28 94.18 95.00 83.40 81.83
ENS-V (ours) 82.61 72.81 89.52 80.47 98.27 94.73 90.13 82.67
ENS-R (ours) 83.69 77.24 88.17 83.79 97.84 95.92 89.90 85.65
ENS-F (ours) 85.84 79.20 88.72 82.60 98.41 96.49 90.99 86.10
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Table 9: AUC for OOD detection in DSD setting for ResNet on novel classes datasets.
iNat OI-O INet-O

CADet min 88.08 74.41 37.88
ODIN 91.19 88.26 41.28
Max logits 91.17 89.14 40.69
Logits norm 55.98 66.19 35.68
MSP 88.34 84.85 28.55
MDSf 63.14 61.70 65.71
MDSl 63.18 69.32 84.45
MDSall 61.42 72.81 83.74
ReAct 96.39 90.33 52.37
GradNorm 93.90 84.79 47.9
EBO 90.63 89.03 41.75
Dα 89.43 85.84 28.57
Dice 92.50 88.25 42.61
ViM 88.15 88.05 68.45
ASH 90.53 88.95 42.19
SHE 91.69 86.11 52.34
Relation 87.09 84.39 56.69
Ens-V (us) 85.50 81.96 70.81
Ens-R (us) 89.40 86.11 65.74
Ens-F (us) 88.06 86.64 62.79

Table 10: AUC for OOD detection in DSD setting for ResNet on synthetic datasets.
Biggan diffusion

Accuracy % 88.61 47.38
CADet min 63.18 48.12
ODIN 44.46 78.51
Max logits 42.14 73.15
Logits norm 59.73 59.21
MSP 41.37 69.81
MDSf 38.25 74.11
MDSl 38.95 71.86
MDSall 40.65 81.12
ReAct 34.83 73.64
GradNorm 75.65 55.49
EBO 42.35 73.08
Dα 41.11 70.18
Dice 51.23 67.63
ViM 32.46 74.06
ASH 42.69 73.18
SHE 63.74 64.00
Relation 47.29 67.87
Ens-V (us) 46.19 74.91
Ens-R (us) 47.73 77.02
Ens-F (us) 41.75 78.03
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Table 11: AUC for OOD detection in DSD setting for ResNet on corruptions datasets.
defocus blur Gaussian noise snow brightness

Accuracy % 15.04 5.68 15.58 55.64
CADet min 96.17 95.24 86.47 70.70
ODIN 97.17 99.01 89.22 68.66
Max logits 96.54 97.65 93.76 75.53
Logits norm 87.48 90.37 86.04 67.36
MSP 94.05 94.88 87.57 70.32
MDSf 46.35 98.34 88.67 72.70
MDSl 68.85 96.44 78.72 56.96
MDSall 92.87 99.52 91.28 73.99
ReAct 94.88 97.01 94.09 73.31
GradNorm 98.02 96.97 90.06 72.51
EBO 96.62 97.86 94.29 75.78
Dα 94.66 95.66 88.61 70.80
Dice 97.81 98.08 93.47 76.16
ViM 83.9 97.11 94.19 72.80
ASH 96.58 97.82 94.24 75.86
SHE 97.63 97.19 90.81 73.53
Relation 95.08 96.39 90.64 69.10
Ens-V (us) 97.39 99.68 94.62 72.64
Ens-R (us) 97.04 99.57 93.58 72.04
Ens-F (us) 98.13 99.41 94.96 73.84

Table 12: AUC for OOD detection in DSD setting for ResNet on adversarial attacks dataset. PGD
ResNet denotes PGD computed against ResNet (hence white box), and PGD ViT against a separate
ViT model (hence black box).

PGD ResNet AA ResNet PGD ViT AA ViT
Accuracy % 2.2 25.8 68.12 43.2
CADet min 45.37 71.11 64.86 68.25
ODIN 12.91 79.70 54.98 70.18
Max logits 18.54 84.50 59.42 76.01
Logits norm 13.47 70.21 58.31 65.30
MSP 30.82 82.23 58.02 73.59
MDSf 71.17 55.59 44.73 48.67
MDSl 88.19 74.36 46.81 66.26
MDSall 86.00 81.05 46.83 72.07
ReAct 33.02 82.62 55.62 74.56
GradNorm 15.62 77.67 63.52 69.25
EBO 18.52 84.46 59.42 75.97
Dα 30.62 82.90 58.13 74.11
Dice 16.55 82.78 61.34 74.35
Vim 39.40 82.85 54.30 75.10
ASH 57.67 84.71 59.89 76.18
SHE 56.06 82.25 62.41 72.77
Relation 59.25 82.50 55.41 73.04
Ens-V (us) 91.56 81.12 54.91 71.81
Ens-R (us) 89.19 82.88 55.28 73.48
Ens-F (us) 66.86 83.38 54.13 72.89
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Table 13: AUC in error detection setting for ResNet.

In-Dist Adv. Attacks Corruptions
PGD RN AA RN PGD ViT AA ViT blur noise snow bright.

CADet min 56.50 46.09 79.56 68.22 77.52 97.3 96.16 89.08 77.91
ODIN 75.79 15.23 90.02 60.53 86.05 99.05 99.68 94.42 86.91
Max logits 77.55 21.99 94.58 65.26 91.63 98.9 99.10 97.66 91.68
Logits norm 50.11 13.94 76.73 59.98 73.11 88.88 90.96 87.52 70.13
MSP 86.31 38.06 94.06 71.87 92.16 98.34 97.97 94.65 92.76
MDSf 51.25 71.44 54.82 45.66 54.72 46.12 98.44 88.89 72.44
MDSl 55.53 88.45 80.97 46.25 73.87 68.74 96.35 79.15 59.14
MDSall 54.69 85.67 85.00 47.96 79.96 93.14 99.54 91.67 75.23
ReAct 73.28 37.80 92.24 58.27 88.95 97.25 98.28 97.05 87.46
GradNorm 58.07 16.41 86.52 67.03 79.99 98.85 97.84 93.01 81.21
EBO 76.02 21.82 94.12 63.70 90.86 98.76 99.08 97.68 90.93
Dα 86.20 37.90 94.42 71.05 92.52 98.56 98.3 95.16 93.00
Dice 70.00 19.15 91.50 65.13 87.05 98.94 98.84 96.19 88.13
ViM 73.74 43.99 92.62 54.47 88.23 89.90 98.52 97.13 86.58
ASH 77.42 63.02 94.51 63.66 91.04 98.82 99.12 97.78 91.25
SHE 67.03 58.92 91.11 65.54 84.50 98.85 98.27 94.39 85.28
Relation 74.21 63.96 93.58 59.02 88.57 98.33 98.39 96.11 87.18
Ens-V(us) 72.81 80.72 86.67 72.03 82.44 98.40 99.80 96.59 84.12
Ens-R (us) 77.24 78.62 90.66 78.41 87.48 99.26 99.68 97.20 87.52
Ens-F (us) 79.20 73.25 90.45 79.09 87.61 99.28 99.73 97.68 89.26

Table 14: AUC for OOD detection in DSD setting for ViT.
iNat OI-O INet-O PGD-R AA-R PGD-V AA-V Biggan diff blur noise snow bright

Acc % - - - 77.00 65.22 0.46 50.66 86.28 55.77 42.09 42.85 56.82 76.12
CADet 8.30 24.83 29.61 63.06 77.29 60.64 67.48 68.72 50.92 98.12 72.45 78.37 69.72
ODIN 97.05 93.85 84.28 57.76 72.44 11.92 67.02 49.19 76.28 87.23 93.96 76.72 60.81
Max logits 98.65 97.06 90.04 63.68 76.44 24.82 73.96 54.87 77.28 94.24 90.97 83.20 66.00
logits norm 50.84 51.70 53.24 41.58 39.26 31.18 37.52 42.61 33.89 41.62 41.91 35.54 40.89
MSP 96.39 92.99 82.31 61.61 71.99 26.64 73.57 54.81 74.74 88.83 85.71 77.11 62.82
MDSf 66.73 53.68 39.63 68.59 77.31 68.76 56.24 49.04 60.79 40.95 62.54 07.00 15.39
MDSl 99.63 98.22 94.28 68.59 76.34 78.54 75.54 53.61 84.35 82.32 97.22 85.07 68.56
MDSall 90.37 89.88 87.25 80.06 91.74 78.49 92.26 54.09 90.81 99.74 99.99 96.14 86.31
ReAct 98.67 97.12 90.62 64.09 75.22 29.99 73.52 54.95 77.10 93.62 90.95 83.23 66.87
GradNorm 97.35 94.53 80.68 67.47 84.36 35.00 73.83 73.79 70.59 99.00 88.32 83.17 69.50
EBO 98.69 97.26 90.61 63.68 76.5 25.20 73.48 54.8 77.02 94.54 91.20 83.48 66.11
Dα 97.03 93.76 83.02 61.74 72.30 26.67 73.77 54.81 75.08 89.41 96.29 77.58 62.99
Dice 51.43 63.67 51.99 83.91 89.67 62.91 76.68 86.29 69.39 96.56 80.85 87.12 82.13
ViM 98.88 97.07 91.33 61.36 69.30 26.72 70.00 46.87 75.15 82.01 91.90 81.50 63.75
ASH 98.69 97.26 90.61 63.68 76.51 25.20 73.48 54.80 77.02 94.54 91.20 83.48 66.11
SHE 91.54 92.55 88.84 64.31 77.68 71.49 75.12 57.32 77.05 92.74 89.08 82.07 65.63
Relation 96.95 95.27 88.62 62.43 73.83 65.76 73.06 55.35 75.99 89.27 87.83 79.32 63.38
Ens-V(us) 99.00 96.28 89.64 75.48 92.23 73.67 89.28 71.27 85.62 99.89 99.99 92.11 79.06
Ens-R (us) 98.90 96.59 89.50 71.47 90.74 72.37 88.58 68.38 84.74 99.86 99.99 91.40 77.41
Ens-F (us) 98.42 96.55 90.27 73.46 90.33 64.72 87.70 64.37 85.66 99.33 99.97 90.87 76.11
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Table 15: AUC in error detection setting for ViT.

In-Dist Adv. Attacks Corruptions
PGD-R AA-R PGD-V AA-V blur noise snow brightness

CADet min 49.73 63.59 83.42 60.59 72.46 98.75 75.98 80.88 70.60
ODIN 75.02 60.76 85.12 13.26 68.76 95.20 98.41 89.54 80.18
Max logits 80.64 71.08 91.30 27.84 80.47 99.03 98.07 95.95 89.13
Logits norm 36.83 41.91 34.12 29.06 31.12 39.59 38.48 27.87 28.65
MSP 89.16 77.15 92.01 30.80 81.19 98.29 97.28 95.46 91.95
MDSf 48.23 67.86 81.36 68.65 54.84 40.29 61.60 06.84 14.08
MDSl 74.92 75.46 88.62 82.28 85.57 91.23 99.45 95.25 99.64
MDSall 54.93 83.08 95.24 81.01 98.42 99.80 99.99 96.92 99.68
ReAct 77.18 69.62 89.09 33.15 80.12 98.56 97.56 95.26 87.87
GradNorm 68.01 72.49 93.74 37.21 80.24 99.79 96.48 94.31 85.42
EBO 78.35 68.77 90.13 28.07 79.54 98.90 97.82 95.48 87.82
Dα 89.00 76.97 92.31 30.82 81.37 98.49 97.54 95.74 92.05
Dice 50.09 85.18 93.85 63.02 80.35 97.61 85.60 89.82 83.47
ViM 75.72 65.66 82.18 29.50 76.14 90.59 97.81 93.58 84.59
ASH 78.35 68.77 90.13 28.06 79.54 98.90 97.82 95.48 87.82
SHE 78.96 76.44 93.13 76.35 88.22 98.88 97.64 96.19 90.09
Relation 76.91 71.08 90.38 70.55 84.39 97.97 97.21 94.58 86.96
Ens-V(us) 82.61 92.73 96.22 74.58 94.54 99.99 100.00 98.64 94.46
Ens-R (us) 83.69 90.15 95.39 73.09 94.06 99.99 100.00 98.15 93.23
Ens-F (us) 85.84 93.42 96.54 70.43 94.47 99.97 100.00 98.78 94.88
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instance, the narrow focus on ImageNet as in-distribution is mentioned in the last
paragraph of conclusion, the overhead of ensembling existing methods is discussed
(and mitigated) at the end of section 4, the focus on post-hoc methods is acknowledged
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reliable. We see no potential negative social impacts.

(d) Have you read the ethics review guidelines and ensured that your paper conforms
to them?[Yes] Our submission conforms in every respect with the NeurIPS Code of
Ethics. Note that the license information relative to the datasets included in BROAD are
available on the dataset page, which is removed during the review process to preserve
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2. If you are including theoretical results...
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theoretical results.
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of section 3 and of the GMM at the end of section 3. Furthermore, the process of
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(c) Did you include the estimated hourly wage paid to participants and the total amount
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