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Abstract

Online batch selection methods offer an adaptive alternative to static training data
selection by dynamically selecting data batches during training. However, existing
methods either rely on impractical reference models or simple heuristics that may
not capture true data informativeness. To address these limitations, we propose
GREedy Approximation Taylor Selection (GREATS), a principled and efficient
online batch selection method that applies greedy algorithm to optimize the data
batch quality approximated by Taylor expansion. We develop a series of techniques
to scale GREATS to large-scale model training. Extensive experiments with large
language models (LLMs) demonstrate that GREATS significantly improves training
convergence speed and generalization performance. Our codebase is publically
available at https://github.com/Jiachen-T-Wang/GREATS.

1 Introduction

Large language models (LLMs) are of paramount importance in today’s technological landscape.
However, the extensive training times, often spanning weeks or even months, pose challenges such
as prolonged development cycles and increased resource consumption. Moreover, these models are
trained on massive data collected from the open world, which can include low-quality, redundant,
and biased information. This underscores the need for effective selection of high-value training data.

Online batch selection: an adaptive variant of data selection at the batch level. Online batch
selection methods aim to improve data selection by dynamically choosing data during the training
process. At each training iteration, these methods leverage the partially trained model to determine
which data to select for the current training iteration from a sampled batch, thereby adapting to the
model’s learning progress and focusing on the most informative examples for the model’s current
state. In contrast to static data selection methods (e.g., [11, 43, 42, 45]), which select training data
only once prior to the training process, online batch selection allows for a more adaptive and dynamic
approach to data selection. By continuously updating the selection criteria based on the model’s
progress, online batch selection can identify the most relevant and informative examples at each stage
of training, potentially leading to faster convergence and better generalization performance. Moreover,
online batch selection operates on smaller batches of data, reducing the need for cumbersome data
preprocessing and enabling more efficient use of computational resources compared to static data
selection methods that process the entire dataset upfront.
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However, existing online batch selection algorithms exhibit significant limitations and have found
minimal success with LLMs. Reference-model-based batch selection methods [30, 9] rely on
additional reference models. In [30], the reference models are trained on a substantial amount of
hold-out data. This leads to considerable computational costs and reduces the amount of data available
for training the main model. [9] utilize publicly available large-scale pre-trained models that already
achieve very high performance on the targeted downstream tasks as reference models. Even if this
assumption holds true in practice, the algorithm requires a Bayesian treatment and querying the
reference models for every sample in the candidate batch at each iteration. These operations are
computationally expensive, making the approach impractical for large-scale LLM training. Reference-
model-free methods prioritize challenging samples based on metrics like high loss [28, 20] or large
gradient norm [23]. While some of these methods are computationally efficient and practical to
implement, they often rely on simple heuristics that may not capture the true informativeness or
relevance of the examples. As a result, these methods often fall short in terms of performance and
may even underperform compared to simple uniform selection in some cases. This highlights the
need for more efficient and principled online batch selection techniques that can identify the most
informative examples based on a deeper understanding of the model’s learning dynamics and the
relationships between the examples.

In this work, we propose GREedy Approximation Taylor Selection (GREATS), which addresses the
limitations of existing methods and significantly improves the convergence speed and generalization
performance of language model training. We summarize our contributions as follows.

I. Principled Formulation for Optimal Batch Selection. We introduce a principled formulation of
the online batch selection problem as a set utility function optimization task. Given a small set of
validation data from the target domain, the utility function measures the reduction in loss achieved by
updating the model with a selected subset of the training batch. Unlike previous methods that rely on
heuristics, this framework aims to directly optimize the model’s performance on the validation set,
ensuring the selection of informative and diverse examples.

II. Efficient Approximations for Scalable Batch Selection. The set function optimization formula-
tion naturally leads to a greedy algorithm that iteratively selects the most informative examples based
on their marginal contribution to the model’s performance. However, directly applying the greedy
algorithm to optimize the validation performance involves updating model with each potential candi-
date training point and checking the validation performance, which is computationally inefficient.
To tackle this challenge, we propose to leverage Taylor expansions to approximate the variation of
validation loss in one-step gradient descent. The key insight is that the impact of a training example
on the model’s validation loss can be efficiently approximated using gradient inner-products between
the training examples and the validation data. This approximation eliminates the need for expensive
model updates and validation loss evaluations for each candidate subset.

III. Online Batch Selection at the Speed of Regular Training. A direct implementation of GREATS
would require computing per-sample gradients, which is computationally expensive. To address this
challenge, we develop a novel technique called "ghost inner-product" that allows for the efficient
computation of pairwise gradient inner-products without the need to instantiate any model-sized
vectors. As gradient inner-products arise in various machine learning algorithms and applications
beyond data selection, this technique may be of independent interest.

IV. Comprehensive Evaluations. We conduct extensive experiments on various language modeling
tasks to thoroughly assess the performance of GREATS. We show that GREATS consistently speeds
up training convergence and improves generalization performance across different models, training
datasets, and evaluation datasets, even with a limited number of validation points. Furthermore, we
show that GREATS can provide benefits even in the pretraining setting, where the validation data
comes from the same domain as the training dataset. This highlights the robustness and versatility of
our approach in various learning scenarios. In addition to its performance benefits, we empirically
confirm that GREATS, equipped with the "ghost inner-product" technique, achieves a runtime
comparable to regular training. This underscores the practical feasibility of our approach.

2 Related Works

Online Batch Selection. Few studies have investigated the use of online batch selection to enhance
the training of models before the era of large language models. [28, 23, 20] examined selecting the
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"hard examples" based on their gradient norm or maximum sample loss. While some of these methods
are computationally efficient, they often depend on simple heuristics that cannot represent the true
informativeness. [30, 9] suggested using additional reference models to more accurately estimate
the importance of samples. However, recently [22] demonstrated these methods are computationally
expensive and cannot directly apply to large language models.

Static Data Selection for Large-scale Models. Recently, there has been a growing interest in
design methods to select data before training foundation models. We point the readers to [2] for a
comprehensive literature review. These works select training data only once, prior to the training
process. This is primarily motivated by efficiency concerns, as the time spent on data selection
can be amortized over a large number of training steps. However, the non-adaptive nature of this
single-step selection often results in suboptimal performance, as the selected data may not be the
most informative or diverse throughout the entire training process [40]. Moreover, these algorithms
often require extensive and complex data preprocessing steps. Some of the data selection algorithms
even require training an additional model solely for the purpose of data selection [43, 44], which
introduces additional computational costs and implementation complexity to the training pipeline.
These drawbacks emphasize the need for more efficient and adaptive data selection techniques that
can dynamically identify the most informative and relevant examples throughout the training process.

Online Domain Reweighting. Recent work has explored online methods for dynamically re-
weighting domains during language model pre-training. Compared with online batch selection, this
approach operates at a coarser granularity by focusing on data source-level selection rather than
individual examples, and typically updates domain weights less frequently. Similar to this work,
[12] uses a gradient-based influence estimation to update domain weights. [3] uses training loss as a
reward signal to adapt domain sampling probabilities. This has been recently refined by [21] through
a scaling law-based method.

3 Background

In this section, we introduce the setup of online batch selection and the concept of a utility function.
We then discuss the limitations of existing scoring and top-k paradigm in the literature.

Set-up of online batch selection. Given a training dataset Dtr = {zi}Ni=1, a deep learning model
is usually being trained to minimize the training loss

∑N
i=1 ℓ(w, zi) via an iterative optimization

procedure such as stochastic gradient descent (SGD). Starting with an initial model w0, during an
iteration t, a batch S of the training points is being used, and update the model parameters from wt to
wt+1 via wt+1 := wt − ηt

∑
z∈S ∇ℓ(wt, z) where ηt is the learning rate at iteration t.1 A complete

run of neural network training thus consists of model checkpoints {w0, w1, . . . , wT }. In the setting
of online batch selection, a large batch Bt = {z1, . . . , zB} is being sampled from the training set Dtr
at training iteration t. An online batch selection algorithm aims to select the most valuable subset
B̂t from Bt. It can be naturally formulated as an optimization problem, where the objective is to
maximize the utility of the selected B̂t for model update. Here, we describe the existing online batch
selection algorithms through the concept of a utility function.

Utility Function. At training iteration t, a utility function U (t) maps an input training data batch S
to a score indicating the utility of this batch for the model update at iteration t. Specifically, for a
given utility function U , the task of online batch selection over a candidate batch Bt is to identify the
subset B̂t ⊆ Bt that optimizes:

B̂(k)t = argmax
S⊆Bt,|S|=k

U (t)(S) (1)

where k is a fixed budget of sample number k < |Bt| used to update the model. Since U (t) is a set
function, solving Equation (1) presents significant challenges, as it may require evaluating the utility
U (t)(S) for a large number of subsets S ⊆ Bt. Existing online batch selection methods circumvent
this issue through "Scoring and Top-k Paradigm", which compute an importance score ϕz for each
data point z ∈ Bt and then selecting the subset of data points with the highest importance scores. For
example, [28, 20] use the individual loss on the training data point ϕz = ℓ(wt, z) as the importance

1Here we incorporate the normalization term |S| into the learning rate ηt for notational simplicity.
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score. [23] use the individual gradient norm ϕz = ∥∇ℓ(wt, z)∥ as the importance score. [30, 9]
leverage a reference model and use the "reducible loss" as the importance score. The use of importance
scores for online batch selection essentially defines the utility function U (t)(S) =

∑
i∈S ϕi(U) and

conjectures that the sum of individual data points’ importance scores is a reliable indicator of a
dataset S’s utility, hoping for a positive correlation with the model wt’s performance at the (t+ 1)-th
step after updating on S. Consequently, existing online batch selection strategies aim to maximize∑

i∈S ϕi(U) by selecting the top-k data points with the highest importance scores.

Limitations of Scoring and Top-k Paradigm. Most scoring mechanisms for estimating the value
of an individual data point z ∈ Bt result in similar data receiving similar scores. However, in the
context of online batch selection, diversity is crucial. Consequently, a subset B̂t consisting of the
top-K valued data points may lack diversity. In particular, duplicate points might be scored equally
high and be incorrectly assumed to doubly improve the model, though this is likely not the case. The
primary issue with this top-K methodology is that it ignores the interactions among the selected data
points. When a data point is selected, the importance scores of the remaining data points will
usually change. For instance, the values of data points similar to the selected ones will typically
decrease, while the values of data points that are very different from the selected ones will increase.

4 Optimizing Utility in Online Batch Selection via Greedy Algorithms

4.1 A Principled Utility Function for Online Batch Selection.

The performance of a model is typically measured through a set of validation points {z(val)}. For a
given validation data point z(val), an ideal utility function at a single iteration t is the reduction in
validation loss:

U (t)(S; z(val)) := ℓ(wt, z
(val))− ℓ(w̃t+1(S), z

(val)) (2)

where w̃t+1(S) := wt−ηt
∑

z∈S ∇ℓ(wt, z) and S ⊆ Bt is the subset of the batch selected for model
update. While this is a principled choice for an optimization objective in online batch selection,
optimizing U (t) is computationally expensive, as it involves evaluating model updates with respect to
combinatorially many subsets S ⊆ Bt (a total of

(|Bt|
k

)
subsets).

Vanilla Greedy Algorithm. To address the challenge of evaluating the objective function for
numerous subsets, the greedy optimization algorithm is widely used due to its effectiveness in set
function optimization. The greedy algorithm iteratively selects the element that provides the largest
marginal gain to the utility function, given the previously selected elements. Mathematically, when a
utility function U (t) is given, the greedy algorithm selects data points z ∈ Bt one at a time. At each
selection round, the algorithm selects the data point z∗ = argmaxz∈Bt\B̂t

U (t)(B̂t∪{z})−U (t)(B̂t).
This process continues until k data points have been added to B̂t. The greedy algorithm is known
to provide near-optimal solutions for monotone submodular set functions, with a famous (1− 1/e)-
approximation guarantee [31]. The greedy algorithm only requires O(k|Bt|) evaluations of U (t), a
significant improvement over the

(|Bt|
k

)
evaluations required by the brute-force method.

However, optimizing U (t) using the greedy algorithm is still not practical for online batch selection.
Each evaluation of the utility function U (t)(S) in (2) involves computing aggregated gradients,
updating the model, and calculating the validation loss, which can significantly increase the per-
iteration cost of training. Since online batch selection algorithms run alongside the model training,
these costs cannot be amortized across training runs as they would be with static dataset selection.
This makes the greedy algorithm infeasible for real-time online batch selection.

4.2 An Efficient Greedy Algorithm for Utility Optimization without Utility Evaluation

Here, we develop an efficient approximation for the marginal gain of a data point z ∈ Bt \ B̂t to the
utility of the already selected subset B̂t. For notational simplicity, we denote g(zi) := ∇ℓ(wt, zi) for
all zi ∈ Bt. Given that the learning rate ηt in model training is typically small, a lower-order Taylor
expansion often provides an accurate approximation for the change in loss during a single gradient
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Algorithm 1 GREedy Approximation Taylor Selection (GREATS)
1: Input:

• HessianApprox: approximation method for Hessian matrix.
2: Initialize model w0.
3: for t = 0, . . . , T − 1 do
4: Sampled a random batch Bt from Dtr.
5: Initialize the importance score ϕz ← ηtg(z) · g(z(val)) for every z ∈ Bt.
6: Initialize the selected batch B̂t ← {}.
7: for r = 1, . . . , k do
8: z∗ ← argmaxz∈Bt\B̂t

ϕz .

9: Add z∗ into B̂t.
10: if HessianApprox = "exact" then
11: Update the importance score ϕz ← ϕz − η2t g(z)H(z(val))g(z∗) for z ∈ Bt \ B̂t.
12: else if HessianApprox = "identity" then
13: Update the importance score ϕz ← ϕz − η2t g(z) · g(z∗) for z ∈ Bt \ B̂t.
14: Take one step of gradient update on the selected batch B̂t and obtain wt+1.

update, with approximation errors of O(η2t ) for first-order approximations.

U (t)(zi|B̂t) := U (t)(B̂t ∪ {zi})− U (t)(B̂t)
= ℓ(w̃t+1(B̂t), z(val))− ℓ(w̃t+1(B̂t ∪ {zi}), z(val))
= ℓ(w̃t+1(B̂t), z(val))− ℓ(w̃t+1(B̂t)− ηtg(zi), z

(val))

≈ ηtg(zi) · ∇ℓ(w̃t+1(B̂t), z(val)) (3)

Interpretation. The first-order approximation of the marginal gain U (t)(zi|B̂t) computes the inner-
product between (1) the gradient of the individual training loss with respect to the original model
wt, and (2) the gradient of the validation loss with respect to the "virtual model" w̃t+1(B̂t), i.e., wt

updated with the existing selected batch. The inner-product represents the direct influence of zi on
the validation loss at the "virtual model" w̃t+1(B̂t). The gradient g(zi) is computed with respect to wt

instead of w̃t+1(B̂t) because the model update process is performed using the gradients with respect
to wt. The approximation in (3) essentially estimates the improvement in validation loss by including
zi in the model update, assuming that B̂t is already guaranteed to be included.

However, the computation of∇ℓ(w̃t+1(B̂t), z(val)) still requires obtaining the updated model param-
eter w̃t+1(B̂t) and performing additional backpropagations to compute the validation gradient, which
again incurs significant computational overhead. To efficiently approximate it, we use another Taylor
expansion as follows:

∇ℓ
(
w̃t+1(B̂t), z(val)

)
= ∇ℓ(wt − ηt

∑
z∈B̂t

g(z), z
(val)) ≈ g(z(val)) − ηtH(z(val))

∑
z∈B̂t

g(z)

where the Hessian matrix H(z(val)) := ∇2ℓ(wt, z
(val)), and g(z(val)) := ∇ℓ(wt, z

(val)). Plugging this
approximation back into (3), we have

U (t)(zi|B̂t) ≈ ηtg(zi) · g(z(val))︸ ︷︷ ︸
Importance score of zi

− η2t g(zi)H(z(val))

∑
z∈B̂t

g(z)︸ ︷︷ ︸
Correction of importance from already selected points

(4)

Interpretation. The first gradient inner-product ηtg(zi) · g(z(val)) coincides with the TracIN score
proposed in [33] as a measure for a data point’s importance. It captures the alignment between the
gradient of the training loss for zi and the gradient of the validation loss, indicating how much the
update based on zi would contribute to the reduction of the validation loss with respect to the original
model wt. The second term −η2t g(zi)H(z(val))

∑
z∈B̂t

g(z) is a correction term for zi’s original

importance after picking B̂t. It penalizes the similarity between zi and the data points in B̂t, as
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measured by the Hessian-weighted inner-product of their gradients. Intuitively, if the gradient of zi is
similar to the gradients of the data points in B̂t, the correction term will be large, reducing the overall
marginal gain of adding zi to the selected subset. This encourages the selection of diverse data points
that provide complementary information to the model update.

Algorithm. Using the approximation from (4), we develop a new algorithm that approximates
the vanilla greedy algorithm. Initially, each data point z ∈ Bt is assigned an importance score ϕz

initialized as ϕz = ηtg(z) · g(z(val)), which approximates the marginal gain of adding z to an empty
set, i.e., U (t)(zi | {}) = U (t)({zi}). The algorithm begins by selecting the data point with the
highest importance score, z∗1 = argmaxz∈Bt

ϕz . After selecting a data point z∗ for model update,
the importance scores for the remaining data points are adjusted by −η2t g(zi)H(z(val))g(z∗). This
adjustment approximates the marginal gain of adding each remaining data point to the set containing
z∗, i.e., U (t)(zi | {z∗}). The algorithm iteratively selects the data point with the highest adjusted
importance score and updates the scores for the remaining points until k data points have been
selected. As we can see, this iterative process closely mimics the behavior of the vanilla greedy
algorithm while not requiring any actual evaluation of U (t), allowing for a computationally tractable
approximation of the greedy algorithm in the context of online batch selection. The pseudocode for
the proposed algorithm is detailed in Algorithm 1.

Figure 1: (a) We show the correla-
tion between the ground-truth model valida-
tion loss change in one gradient update it-
eration U (t)(S; z(val)) := ℓ(wt, z

(val)) −
ℓ(w̃t+1(S), z

(val)) and the first-order Taylor ap-
proximation

∑
z∈S ηtg(z) · g(z(val)). (b) We

show the correlation between U (t)(S; z(val)) and
the first-order approximation corrected by the
Hessian interaction

∑
z∈S ηtg(z) · g(z(val)) −∑

z,z′∈S η2t g(z)H(z(val))g(z′).

Validity of Taylor Approximation. We evalu-
ate the fidelity of using Taylor expansion to ap-
proximate U (t). Following the experimental set-
tings from our GPT2 experiments detailed in Ap-
pendix B, we sample different batch subsets S
and evaluate U (t)(S) at the 3500th training itera-
tion. Figure 1 illustrates the correlation between
actual and predicted validation loss changes in
a single gradient update step. Panel (a) shows
the correlation when using only the first-order
term (the sum of training gradients’ dot prod-
ucts with the validation point) for loss change
approximation. Panel (b) demonstrates the im-
proved correlation when incorporating both the
first-order term and the Hessian interaction term.
The enhanced correlation coefficient with the in-
clusion of the Hessian term indicates that our ap-
proximations effectively capture the actual loss
dynamics, with the second-order term providing
substantial improvement in predictive accuracy.

4.3 The Ghost Inner-Product Technique

Implementation Challenges of Algorithm 1. Although Algorithm 1 eliminates the need for explicit
utility evaluations and relies solely on gradient and Hessian information, its efficient implementation
remains a challenge. The initial importance scores ηtg(z) · g(z(val)) require computing the inner-
products between the gradients of each z ∈ Bt and the validation point z(val). Directly implementing
this would involve calculating the individual gradients for every data point in Bt. This cannot leverage
the parallel processing capabilities of GPUs and would require running backpropagation |Bt| times
with a mini-batch size of 1, resulting in a significantly higher per-iteration runtime cost compared
to regular training. Furthermore, the correction term −η2t g(z)H(z(val))g(z∗) requires computing the
gradient-Hessian-gradient product for each pair of z, z′ ∈ Bt. Even if we approximate the Hessian
as the identity matrix (H(z(val)) ≈ I), calculating the pairwise g(z) · g(z′) still necessitates either
storing all individual gradient vectors {g(z)} or recomputing g(z) during each round of greedy
selection. Both the memory and computational demands of these approaches are impractical for
training large-scale models.

Efficient Computation of ALL Initial Importance Scores. To address the challenge of computing
the gradient inner-products between all z ∈ Bt and z(val), we propose a novel technique called
"ghost inner-product", which is inspired by the "ghost clipping" technique from the differential
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privacy literature [5, 6]. The key idea behind "ghost inner-product" is to avoid explicitly computing
individual gradient vectors, thereby improving the efficiency of the algorithm. To illustrate this
technique, consider a simple linear layer s = aW, where W ∈ Rd1×d2 is the weight matrix,
a = (a(1), . . . , a(B))⊺ ∈ RB×d1 is the mini-batch input, and s = (s(1), . . . , s(B))⊺ ∈ RB×d2 is the
output (i.e., the pre-activation tensor). Let ℓ(i) denote the individual loss on zi. By applying the chain
rule, we can express the gradient of an individual loss ℓ(i) := ℓ(w, zi) with respect to W as

∂ℓ(i)

∂W
=

∂ℓ(i)

∂s(i)
∂s(i)

∂W
=

∂ℓ

∂s(i)
a(i) (5)

where ℓ :=
∑B

j=1 ℓ
(j) is the aggregated loss. Note that the output gradient ∂ℓ

∂s(i) is readily available
during the backpropagation pass. To efficiently compute the gradient inner-product between a
validation point and each training point, we include the validation data z(val) together in the batch
for backpropagation. That is, we take the backpropagation on

∑B
j=1 ℓ

(j) + ℓ(z
(val)). Hence, for each

training-validation pair (zi, z(val)), we have the gradient inner-product

∂ℓ(i)

∂W
⊙ ∂ℓ(z

(val))

∂W
=

((
∂ℓ

∂s(i)

)⊺(
∂ℓ

∂s(z(val))

))((
a(i)
)⊺

a(z(val))
)

By using the "ghost inner-product" technique, we can compute the result without explicitly forming
any full gradient vectors. Consequently, computing the gradient inner-product between every pair
of training and validation points requires only one backpropagation, which is significantly more
efficient than the direct method that would require > |Bt| backpropagations. We note that the "ghost
inner-product" technique can be applied to various types of layers beyond linear layers. Similar
decompositions as in Equation (5) have been studied in the differential privacy literature [36, 5, 26],
enabling the extension of this technique to other layer types. Extension on LoRA is in Appendix A.

Efficient Approximation of Importance Correction. The importance correction term
g(z)H(z(val))g(z∗) poses computational challenges due to the involvement of the Hessian matrix. A
straightforward approximation is to assume H(z(val)) ≈ I, simplifying the problem to computing
the gradient inner-product g(z) · g(z∗). This approximation has been widely used in the literature,
particularly in the context of second-order optimization methods and meta-learning [29, 13, 32]. The
key motivation behind this approximation is that the Hessian matrix is often diagonally dominant,
especially when the model is close to a local minimum [4]. By assuming H(z(val)) ≈ I, the importance
correction term simplifies to ϕz−η2t g(z) ·g(z∗). We can then apply the ghost inner-product technique
previously developed for computing pairwise gradient inner-products. This allows us to efficiently
compute the importance correction term without explicitly forming the individual gradient vectors or
the Hessian-vector products.

Merging Batch Selection and Gradient Update in One Backpropagation. Utilizing the techniques
developed in this section, we can calculate or approximate all importance scores and correction
terms in a single backpropagation pass, without the need to materialize any model-sized vectors.
Although computing the gradient of the aggregated training loss

∑
zi∈Bt

ℓ(i) for the training batch is
necessary for parameter updates, an additional backpropagation pass is not required. By retaining
the activations and output gradients from the previous backpropagation, we can efficiently compute
this gradient without incurring the cost of another pass (see Appendix A.3 for details). Consequently,
the process of training with batch selection introduces minimal additional runtime overhead. This
approach provides substantial benefits over the direct method of materializing per-sample model-sized
gradients, making it more feasible for real-world applications.

5 Experiments

In this section, we first evaluate the performance of GREATS against several baselines on a diverse
set of models, training datasets, and validation set configurations. We then empirically examine its
computational efficiency when implemented with "ghost inner-product" technique from Section 4.3.

5.1 Experimental Setup

Model-Training-Evaluation Pairs. We examine multiple combinations of models, training datasets,
and evaluation datasets to evaluate our proposed GREATS algorithm, as shown in Table 1. Specifically,
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Table 1: Combination of models, training datasets, and evaluation datasets

Task Model Training Dataset Evaluation Dataset Number of validation data

Fine-tuning LLAMA-2-7B [38] LESS [43] MMLU [17] 5
Fine-tuning MISTRAL-7B [19] LESS [43] TYDIQA [7] 10
Fine-tuning LLAMA-3-8B [1] ALPACA [37] SAMSUM [14] 16
Pretraining GPT-SMALL [34] OPENWEBTEXT [15] OPENWEBTEXT [15] 16

Figure 2: Comparison of the validation and test perplexity dynamics during training for different
online batch selection methods on MMLU. We select sociology and US foreign policy subjects.

we fine-tune three large language models (LLMs): LLAMA-2-7B [38], MISTRAL-7B [19], and
LLAMA-3-8B [1] using LESS training data [43] and the ALPACA dataset [37]. For evaluation,
we employ the MMLU [17], TYDIQA [7], and SAMSUM [14] datasets (deferred to Appendix C).
Additionally, we conduct a pretraining experiment using the GPT-SMALL model [34]. For both
training and evaluation, we use the OPENWEBTEXT dataset [15]. In all experiments, we limited the
validation data to be small (i.e., ≤ 16) to mimic practical scenarios where training directly on them is
impossible.

Baselines. We compare our algorithm with regular training and a variety of online batch selection
algorithms: (1) MaxLoss [28], which selects training data points with the highest loss values. (2)
GradNorm [23], which prioritizes training data points with the highest gradient norms. (3) Reference
model-based method (RHOLoss), for which we implement the RHO-Loss algorithm from [30] as
a representative baseline. Given computational constraints, we use Llama-3.1-8B-Instruct [10]
as the reference model, paired with Llama2-7B as the target model.2 (4) Distance-based method
(SBERT), which selects training batches based on their semantic similarity to validation data using
Sentence-BERT embeddings [35].

Training Details. For all batch selection methods, we select 50% of the batch data for gradient
updates during each step. In contrast, the regular training baseline performs updates on the entire
batch, utilizing twice as much data as the batch selection methods. In the main paper, we show the
results of setting the batch size to 4 for MMLU and TYDIQA, 16 for SAMSUM and OPENWEBTEXT.
Additional training details and ablation studies are provided in Appendix B.

5.2 Performance Evaluation

In this section, we present and discuss the comparison between GREATS and the baseline algorithms
in model training performance across different models, training, and evaluation datasets. We evaluate
the performance on both the validation set (being used for batch selection in GREATS) and a test set
that is drawn from the same domain of the evaluation datasets.

GREATS significantly speeds up training convergence. In Figure 2 and 4, we show the dy-
namics of perplexity on the validation and test datasets. As we can see from Figure 2 and
Figure 4, across all settings, the GREATS algorithm achieves a significantly faster reduction in
test perplexity compared to all of the baselines and often achieves better overall performance.

2We note that while larger pretrained models could serve as reference models, their computational costs
increase substantially, particularly due to the need for repeated queries at each training iteration. Furthermore, in
specialized domains, general-purpose pretrained models may exhibit suboptimal performance, necessitating
fine-tuning on substantial holdout datasets. This additional requirement becomes impractical when computational
efficiency and data availability are crucial considerations. We thank the anonymous NeurIPS reviewer for their
helpful suggestion regarding the reference model selection in our comparisons.
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Figure 3: (a)-(b): Impact of the number of validation data points on the performance of GREATS.
(c)-(d): Comparison of the validation and test perplexity dynamics during GPT2 pretraining for
different online batch selection methods.

Method MMLU (AVG.) Soc. Pol. Alg. Anat. Astr. Eth. Clin. Bio. Chem. TYDIQA
Regular 50.4% 62% 60% 40% 52% 48% 52% 54% 48% 38% 54.3%
GradNorm 50.4% 62% 62% 38% 50% 48% 54% 52% 50% 38% 53.4%
MaxLoss 50.8% 64% 58% 40% 52% 46% 54% 54% 50% 40% 54.7%
Ours 54.2% 68% 64% 44% 56% 52% 56% 54% 50% 44% 55.0%

Table 2: Accuracy on MMLU (9 subjects) and TYDIQA test set for online batch selection methods.

Figure 4: Comparison of the validation and test
perplexity dynamics during training for different
online batch selection methods on TYDIQA.

These results demonstrate the robust effec-
tiveness of our approach in improving model
convergence speed and generalization perfor-
mance across various settings. We note that the
validation-free approaches such as GradNorm
and MaxLoss may lead to the selection of low-
quality data. While it is generally considered
that data points with high training loss or large
gradients are important to learning, there is an-
other possibility that the data points that achieve
these properties are corrupted data which is not
learnable.

GREATS improves performance on downstream tasks. While perplexity is a direct measure of
the performance of NLP models, it is not very interpretable, and the performance is often evaluated in
terms of downstream tasks. In Table 2, we show the test accuracy on 9 (randomly selected) subjects
from MMLU and TYDIQA. As we can see, GREATS consistently outperforms or at least achieves
the same accuracy as the baselines. Notably, we observe at least a 3.4% improvement in the average
performance of the 9 MMLU subjects compared to all baselines.

GREATS is robust to the number of validation points. In Figure 3 (a)-(b), we conduct an ablation
study to evaluate the impact of the number of validation points used for GREATS algorithm. As we
can see, even with just 2 validation examples, the test perplexity on the MMLU dataset is consistently
lower than that of regular training. This robustness may be attributed to the relatively rare format
of the validation corpus, which allows GREATS to effectively select examples from the batch that
can help learn the particular format. Even if such a selection may overfit the specific validation
examples, the selected batch can still improve the performance on the test examples, demonstrating
the effectiveness of the GREATS algorithm in adapting to the characteristics of the validation set.

GREATS also improves LLM pretraining. In Figure 3 (c)-(d), we evaluate the performance
of GREATS on pretraining GPT-SMALL on OPENWEBTEXT. Due to computational resource
constraints, we omit the baselines of GradNorm and MaxLoss, as they have been shown to be
ineffective in all other experiments. As we can see, even for model pretraining, GREATS provides
an improvement in test performance, although the improvement is marginal compared to the gains
observed in the fine-tuning experiments. This marginal improvement can be attributed to the fact that
the validation data used in this experiment is also drawn from the same distribution as the training
set, i.e., OPENWEBTEXT. As a result, the selected batches may not provide as much additional
information or diversity as in the case of fine-tuning, where the validation data often comes from a
different distribution or focuses on specific tasks. Nevertheless, the consistent improvement in test
performance suggests that GREATS can still identify informative examples that contribute to better
model generalization, even in the pretraining setting.

9

131205 https://doi.org/10.52202/079017-4169



5.3 Runtime Comparison

We compare the runtime efficiency of GREATS algorithm with "ghost inner-product" technique
against GREATS implemented directly by calculating per-sample gradients. The runtime is measured
by training GPT-SMALL on OPENWEBTEXT. Additionally, we compare against GradNorm’s direct
implementation using per-sample gradients, as it is the most similar algorithm to GREATS and allows
for a fair comparison.

Throughput
Regular Training 76.2
GREATS (ghost) 71.3
GREATS (direct) 4.2

GradNorm (direct) 6.8

Table 3: Efficiency com-
parison of different imple-
mentations of GREATS. We
use throughput-# training data
points being processed per
second-as the efficiency metric.

GREATS with "ghost inner-product" achieves runtime close to
regular training. As shown in Table 3, the runtime of GREATS
using our efficient approximation techniques is comparable to that
of regular training, with only a slight increase in runtime due to pair-
wise inner-product operations (but almost negligible compared with
model backpropagation). This demonstrates the effectiveness of
our approximation methods in reducing the computational overhead
associated with online batch selection. On the other hand, the direct
implementation of GREATS, which requires computing per-sample
gradients, exhibits a significant runtime increase compared to both
regular training and our efficient GREATS implementation. The
direct approach is significantly slower than regular training (almost
20 times slower), making it impractical for real-world applications.
The runtime of GradNorm with direct per-sample gradient computation falls between our efficient
GREATS implementation and the direct GREATS implementation. This is because GradNorm does
not need to compute the per-sample gradients from the validation set, which reduces its computa-
tional overhead compared to the direct GREATS implementation. However, GradNorm still incurs a
significant runtime increase compared to regular training due to the per-sample gradient calculation
for the training batch. We remark that the "ghost norm" technique from differential privacy literature
[16, 25, 5, 6], which is similar to "ghost inner-product", can be used to improve the runtime of
GradNorm, potentially bringing it closer to regular training.

6 Conclusion and Limitations

In this work, we introduced GREATS, a novel online batch selection algorithm designed to enhance
the efficiency and effectiveness of training large language models. Here, we briefly summarize the
limitations of this work.

I. Availability of validation data. One potential limitation of GREATS is that it requires the
validation data to be available before training. We stress that there are many scenarios where
the validation data is naturally available before training such as fine-tuning or domain adaptation.
Developing a validation-free variant of GREATS is an interesting future work.

II. Extension to Adam. The ghost inner-product technique developed in this work is specifically
tailored for Stochastic Gradient Descent (SGD). It is not directly extendable to other popular optimiz-
ers like Adam due to their normalization terms. Nonetheless, using SGD as a proxy for Adam has
proved to be effective in our experiment. Extending our ghost inner-product technique to Adam and
similar optimizers remains an exciting direction for future research.

III. Memory constraint for large batch sizes. In scenarios where GPU memory constraints prevent
adding validation data to the training batch for backpropagation, we can easily extend our "ghost"
techniques by using gradient accumulation. However, this may increase runtime due to additional
backpropagation steps for validation data, it maintains the feasibility of our techniques under memory
constraints. Improving computational efficiency for large batch sizes remains an important direction
for future research.

IV. Perplexity may not be an ideal objective. In this work, the utility function is being defined as
the validation loss. While GREATS achieves promising results overall in terms of test perplexity, we
note that perplexity may not reflect the performance in downstream tasks. While GREATS usually
achieves higher performance on the downstream task, the improvement is often minor. Directly
optimizing in terms of the downstream performances is another important future work.
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A Ghost Inner-Product

Notation Review. Consider a linear layer s = aW, where W ∈ Rd1×d2 is the weight matrix,
a = (a(1), . . . , a(B))⊺ is the mini-batch input, and s = (s(1), . . . , s(B))⊺ is the layer output (i.e., the
pre-activation tensor). For non-sequential data, a ∈ RB×d1 , s ∈ RB×d2 . For sequential data with
sequence length T , a ∈ RB×d1×T , s ∈ RB×d2×T . Let ℓ(i) := ℓ(w, zi) denote the current model’s
individual loss on zi, and we denote ℓ :=

∑B
j=1 ℓ

(j) the aggregated loss over the full data batch

{zj}Bj=1. For notation convenience, we denote individual output derivative b(i) :=
(

∂ℓ(i)

∂s(i)

)⊺
.

A.1 Ghost Inner-Product for Linear Layers

Non-sequential data. For non-sequential data, we can decompose the gradient of an individual loss
ℓ(i) with respect to W as

∂ℓ(i)

∂W
=

∂ℓ(i)

∂s(i)
∂s(i)

∂W
=

∂ℓ

∂s(i)
∂s(i)

∂W
= a(i)

(
∂ℓ

∂s(i)

)⊺

= a(i) ⊗ b(i) (6)

where the second equality is because ℓ(j) does not depend on s(i) for j ̸= i, and the third equality is
due to the linear transformation s = aW. An important observation is that the individual’s output
gradient b(i) is readily available during the backpropagation with respect to the aggregated loss ℓ.

Say we are interested in computing the gradient inner-product ∂ℓ(1)

∂W ⊙ ∂ℓ(2)

∂W between two data points
z1, z2 in the same batch in the backpropagation. For non-sequential data, we have each a(i) ∈ Rd1×1

and b(i) ∈ R1×d2 . By (6), we have

∂ℓ(1)

∂W
⊙ ∂ℓ(2)

∂W
=
(

a(1) ⊗ b(1)
)
⊙
(

a(2) ⊗ b(2)
)
=
(

b(1) ⊙ b(2)
)(

a(1) ⊙ a(2)
)

(7)

where the second equality is due to the mixed product property. (7) is particularly interesting because
it shows that we can compute the inner-product between ∂ℓ(1)

∂W and ∂ℓ(2)

∂W without actually instantiating

the huge gradient vector ∂ℓ(1)

∂W or ∂ℓ(2)

∂W . We can first take the dot products (i.e., inner-product for
vectors) for a(1) ⊙ a(2) and b(1) ⊙ b(2), then multiply the results together. Moreover, all of the
materials a(1), a(2),b(1),b(2) that are required for computation are all already available during the
backpropagation with respect to ℓ. Hence, with just a single backpropagation, we can efficiently
compute the gradient inner-product between every pair of the data points within the batch.

Sequential data. For sequential data, we have each a(i) ∈ Rd1×T and b(i) ∈ RT×d2 . We can
similarly decompose the gradient of an individual loss ℓ(i) with respect to W as follows:

∂ℓ(i)

∂W
=

∂ℓ(i)

∂s(i)
∂s(i)

∂W
=

∂ℓ

∂s(i)
∂s(i)

∂W
= a(i)

(
∂ℓ

∂s(i)

)⊺

=

T∑
t=1

a(i)t ⊗ b(i)
t (8)
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By (8), we have

∂ℓ(1)

∂W
⊙ ∂ℓ(2)

∂W
=

(
T∑

t=1

a(1)
t ⊗ b(1)

t

)
⊙

(
T∑

t=1

a(2)t ⊗ b(2)
t

)

=

T∑
t1=1

T∑
t2=1

(
a(1)t1 ⊗ b(1)

t1

)
⊙
(

a(2)t2 ⊗ b(2)
t2

)

=

T∑
t1=1

T∑
t2=1

d1∑
j=1

d2∑
k=1

[
a(1)t1,j

b(1)
t1,k

] [
a(2)t2,j

b(2)
t2,k

]

=

T∑
t1=1

T∑
t2=1

 d1∑
j=1

a(1)
t1,j

a(2)t2,j

( d2∑
k=1

b(1)
t1,k

b(2)
t2,k

)

=

T∑
t1=1

T∑
t2=1

(a(1)t1 )⊤a(2)
t2 b(1)

t1 (b(2)
t2 )⊤

=
((

a(1)
)⊤ a(2)

)
⊙
(

b(1)
(
b(2)

)⊤)
Hence, comparing with directly computing per-sample gradients, if 2T 2 < d1d2, it is more memory-

efficient to first multiply the matrices of
(

b(1)
)(

b(2)
)⊺

and
(
a(1)
)⊺ a(2), then take the inner product

between the two T × T matrices. If 2T 2 ≥ d1d2, then we can first take the outer products a(1)⊗ b(1)

and a(2) ⊗ b(2), then take their inner product. In either case, we only need a single backpropagation
to compute the gradient inner-product between every pair of the data points within the batch, similar
to the case of non-sequential data.

Concurrent with this work, we also apply the ghost inner-product technique for efficient data attribu-
tion [39].

A.2 Ghost Inner-Product for LoRA

LoRA. For a linear layer W, LoRA (Low-Rank Adaptation) [18] introduces additional trainable
parameters to adapt the model effectively while maintaining computational efficiency. Specifically,
the original weight matrix W is modified as W′ = W + AB, where A ∈ Rd1×r and B ∈ Rr×d2 are
new low-rank matrices with r ≪ min(d1, d2). This adaptation allows for significant modifications of
the layer’s behavior through a low-rank update, which adds a minimal number of parameters to the
model compared to the original number in W. Here, we show how to compute ghost inner-product
for LoRA.

The gradient of LoRA layer A can be computed as

∂ℓ

∂A
=

∂ℓ

∂W′
∂W′

∂A
=

(
∂ℓ

∂s
∂s
∂W′

)
B⊺ = (a⊗ b)B⊺

and the gradient of LoRA layer B can be computed as

∂ℓ

∂B
=

∂ℓ

∂W′
∂W′

∂B
= A⊺ (a⊗ b)

Non-sequential data. For non-sequential data, the inner-product between two gradients on A can be
written as
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∂ℓ(1)

∂A
· ∂ℓ

(2)

∂A
=

d1∑
j=1

r∑
k=1

((
a(1) ⊗ b(1)

)
B⊺
)
jk
·
((

a(2) ⊗ b(2)
)

B⊺
)
jk

=

d1∑
j=1

r∑
k=1

(
a(1)
j

d2∑
i=1

b(1)
i B⊺

ik

)(
a(2)
j

d2∑
i=1

b(2)
i B⊺

ik

)

=

d1∑
j=1

(
a(1)j a(2)

j

) r∑
k=1

(
d2∑
i=1

b(1)
i B⊺

ik

)(
d2∑
i=1
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Similarly, we have
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∂B
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r∑
k=1
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))
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·
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a(2) ⊗ b(2)
))

jk
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d2∑
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jia

(1)
i b(1)

k

)(
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A⊺
jia

(2)
i b(2)

k

)

=

r∑
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(
b(1)
k b(2)

k

) d1∑
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(
d2∑
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jia

(1)
i

)(
d2∑
i=1

A⊺
jia

(2)
i

)

=
(

b(1) ∗ b(2)
)((

A⊺a(1)
)
∗
(

A⊺a(2)
))

Sequential data. We now consider the setting of sequential data with sequence length T . In this case,
we have a = (a(1), . . . , a(B))⊺ ∈ RB×d1×T and b = (b(1), . . . ,b(B))⊺ ∈ RB×T×d2 .
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∂A
· ∂ℓ

(2)
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ti
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B⊺
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t,. B⊺
,.k

)(
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,.k
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=
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r∑
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,.k
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,.k
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=
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)⊺ (
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)
·
(
D(1)
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)⊺
where in the second-to-the-last step we denote D

(2)
tk := b(2)

t,. B⊺
,.k.

A.3 Merging Batch Selection and Gradient Update in One Backpropagation

By utilizing the ghost inner-product technique developed in this paper, we can calculate or ap-
proximate all importance scores and correction terms in a single backpropagation pass, without
materializing any model-sized vectors. To compute the gradient inner-product between each training
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point zi ∈ Bt and the validation data z(val), we propose including z(val) in the backpropagation along
with the training batch. Specifically, we can backpropagate with respect to

∑
zi∈Bt

ℓ(i) + ℓ(z
(val)).

After performing GREATS and selecting B̂t, it may seem necessary to backpropagate with respect to∑
zi∈B̂t

ℓ(i) to compute the gradient for the parameter update. However, this is not required. We can

simply reuse the output gradient ∂ℓ(i)

∂s(i) from the original backpropagation and aggregate the gradients
for all selected data points. This technique, referred to as the "book-keeping trick," is adapted from
[6].
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B Details of Experimental Setup

Training Dataset. In our experiments, we use three training datasets: LESS [43], ALPACA [37][CC-
BY-NC 4.0], and OPENWEBTEXT [15][CC0]. Specifically, LESS is a combination of four instruction
tuning datasets: FLAN V2 [27], COT [41], DOLLY [8], and OPENASSISTANT [24]. The LESS
dataset comprises 270k data points, from which we randomly select 5% for training. Alpaca is an
instruction-following dataset containing 52k data points. OPENWEBTEXT is a recreation of the
WEBTEXT[34] corpus, containing approximately 8 million documents.

Evaluation Dataset. To evaluate our GREATS, we consider four datasets: MMLU [17], TYDIQA [7],
SAMSUM [14], and OPENWEBTEXT [15]. Specifically, MMLU consists of multiple-choice ques-
tions covering 57 subjects, including math, computer science, US history, and more. In Table 2, we
report accuracy for nine selected subjects: Sociology, US Foreign Policy, Abstract Algebra, Anatomy,
Astronomy, Business Ethics, Clinical Knowledge, College Biology, and College Chemistry. TYDIQA
is a multilingual question-answering dataset including 11 diverse languages. In our evaluation, we
randomly select 500 test data to compute the perplexity and F1 score. The task is to extract the answer
to a query from a given passage. SAMSUM is a dialog dataset with the task of summarizing a given
dialogue between humans.

More Training Details. For the experiment results shown in the main paper, the training hyperpa-
rameters are shown below:

1. Finetuning LLAMA-2-7B to MMLU: We finetune LLAMA-2-7B on 5% of the LESS
dataset, setting the LoRA rank to 128, LoRA α to 1.0, and dropout to 0.1. The learning rate
is set to 2e-5.3

2. Finetuning MISTRAL-7B to TYDIQA: We finetune MISTRAL-7B on 40% of the LESS
dataset, setting the LoRA rank to 128, LoRA α to 1.0, and dropout to 0.1. The learning rate
is set to 1e-5.

3. Finetuning LLAMA-3-8B to SAMSUM: We finetune LLAMA-3-8B on the ALPACA dataset
using Torchtune4, setting the LoRA rank to 8, LoRA α to 0.1, and the learning rate to
2e-5.

4. Pretraining GPT-SMALL to OPENWEBTEXT: We pretrain the GPT-SMALL model with a
learning rate of 6e-4 and a batch size of 16.5

More Evaluation Details. To evaluate the accuracy of MMLU and TYDIQA, we follow the LESS
paper’s approach, using few-shot in-context learning demonstrations. Specifically, we measure the
5-shot accuracy for the MMLU dataset and the 1-shot macro-averaged F1 score for TYDIQA. We
also provide examples of evaluation data in Figure 5,6, 7, and 8.

Example of MMLU

Question: The shift from “civil religion” to “common religion” means that:
(A) the increasing bureaucracy of the state has made religion only a marginal part of our lives,
(B) despite the weakening of traditional authority, our everyday lives and ’common sense’ remain shaped by
religious beliefs and values
(C) religious participation in collective worship may have declined, but people still practise their faiths in
private
(D) people are much more likely to discuss their religious beliefs in public, informal settings
Answer: B

Figure 5: Example of MMLU

3Codebase for task 1 and task 2: https://github.com/princeton-nlp/LESS
4Codebase for task 3: https://github.com/pytorch/torchtune
5Codebase for task 4: https://github.com/karpathy/nanoGPT
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Example of TYDIQA

Passage: Home Box Office (HBO) is an American premium cable and satellite television network that is
owned by the namesake unit Home Box Office, Inc., a division of AT&T’s WarnerMedia. The program which
featured on the network consists primarily of theatrically released motion pictures and original television
shows, along with made-for-cable movies, documentaries and occasional comedy and concert specials.
Question: Who owns HBO?
Answer: Home Box Office

Figure 6: Example of TYDIQA

Example of SAMSUM

Dialog:
O’Neill: Is everything ok?
O’Neill: I didn’t hear back from you O’Neill: <file_gif>
Ted: Hey
Ted: I have been really busy today
Ted: Sorry..
Ted: Yes everything is fine ;)
Ted: I’ll send you a photo later on :)
O’Neill: Great!!
Answer: O’Neill is worried about not having heard from Ted. Ted is fine and is going to send a photo later.

Figure 7: Example of SAMSUM

Example of OPENWEBTEXT

Text:
A magazine supplement with an image of Adolf Hitler and the title ’The Unreadable Book’ is pictured in
Berlin. No law bans “Mei...

Figure 8: Example of OPENWEBTEXT

C Additional Experiment Results

Figure 9: Experimental results on SAMSUM, where we leveraged ALPACA as the training data. Our
GREATS method significantly outperforms other approaches.

Figure 10: Similar to Figure 2, instead, we use a batch size of 4 and a learning rate of 4e-5.
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Figure 11: Similar to Figure 2, instead, we use a batch size of 32 and a learning rate of 2e-5.

Figure 12: Similar to Figure 2, instead, we use a batch size of 32 and a learning rate of 4e-5.
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D Broader Impacts

We expect our work to have a positive societal impact. We developed a novel method to facilitate the
training process of large language models.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our main contribution claimed in the introduction is developing an efficient
online batch selection algorithm which is detailed in Section 4.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: In Section 6, we discussed the limitation of this work.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: The paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: In Appendix B, we include all information required for reproducing our
experiment results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [No]

Justification: We will release the code repo for this work at the time of publishing. We
provided the link to the Github repo that we built upon in Appendix B.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: In Appendix B, we include all information required for reproducing our
experiment results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Due to the computationally expensive nature, for data selection experiments
we only take 1 training run, and for most of the other experiments we take the results from
the average of 3 runs.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: In Appendix B, we include all information required for reproducing our
experiment results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: we have reviewed the ethics requirement.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discussed the broader impacts in Appendix D.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: all information is mentioned in Appendix B.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: the paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [No]
Justification: the paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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