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Abstract

Lumina-T2X is a nascent family of Flow-based Large Diffusion Transformers
(Flag-DiT) that establishes a unified framework for transforming noise into var-
ious modalities, such as images and videos, conditioned on text instructions. De-
spite its promising capabilities, Lumina-T2X still encounters challenges including
training instability, slow inference, and extrapolation artifacts. In this paper, we
present Lumina-Next, an improved version of Lumina-T2X, showcasing stronger
generation performance with increased training and inference efficiency. We begin
with a comprehensive analysis of the Flag-DiT architecture and identify several
suboptimal components, which we address by introducing the Next-DiT archi-
tecture with 3D RoPE and sandwich normalizations. To enable better resolution
extrapolation, we thoroughly compare different context extrapolation methods ap-
plied to text-to-image generation with 3D RoPE, and propose Frequency- and
Time-Aware Scaled RoPE tailored for diffusion transformers. Additionally, we in-
troduce a sigmoid time discretization schedule to reduce sampling steps in solving
the Flow ODE and the Context Drop method to merge redundant visual tokens for
faster network evaluation, effectively boosting the overall sampling speed. Thanks
to these improvements, Lumina-Next not only improves the quality and efficiency
of basic text-to-image generation but also demonstrates superior resolution extrap-
olation capabilities and multilingual generation using decoder-based LLMs as the
text encoder, all in a zero-shot manner. To further validate Lumina-Next as a versa-
tile generative framework, we instantiate it on diverse tasks including visual recog-
nition, multi-view, audio, music, and point cloud generation, showcasing strong
performance across these domains. By releasing all codes and model weights at
https://github.com/Alpha-VLLM/Lumina-T2X, we aim to advance the de-
velopment of next-generation generative AI capable of universal modeling.

1 Introduction

Scaling diffusion transformers has unveiled significant improvements in text-conditional image and
video generation [15, 14, 31, 35, 62]. Notably, Lumina-T2X [35] introduces flow-based large dif-
fusion transformer (Flag-DiT), which has proven to be a stable, scalable, flexible, and training-
efficient architecture for generative modeling across various data domains. For instance, the use
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𝟐𝟎𝟒𝟖×𝟐𝟎𝟒𝟖 𝟐𝟎𝟒𝟖×𝟐𝟎𝟒𝟖

Resolution Extrapolation (2K): Inka warrior with a war 
make up, medium shot, natural light, Award winning wildlife.

Resolution Extrapolation (2K): A regal swan glides 
gracefully across the surface of a tranquil lake, its snowy 

white feathers ruffled by the gentle breeze.

𝟏𝟎𝟐𝟒×𝟒𝟎𝟗𝟔
Resolution Extrapolation (Panorama): The majestic Eiffel Tower standing tall against the Parisian skyline at dusk..

Multi-view: Elegant figurine of a girl with blue hair, wearing a golden dress and headpiece.        
Audio: A dreamy and trippy instrumental jam with an easygoing and mellow single electric guitar playing a simple tune, 
accompanied by a guitar solo, echo, and effect peda.        Point Cloud: A blue chair with long red chair legs.

Figure 1: As a foundational generative framework, we demonstrate Lumina-Next’s capabilities to
generate high-resolution images, multi-view images, general audio and music, and 16K point clouds.

of advanced normalization techniques like KQ-Norm and RMSNorm enable stable mixed-precision
training when scaling Lumina-T2X to a 5B Flag-DiT with a 7B LLaMA [80]. Besides, the flow
matching framework and Rotary Position Embedding (RoPE) unlock the potential of Lumina-T2X
to generate data with arbitrary resolutions, aspect ratios, and durations during sampling. While
Lumina-T2X achieves superior visual aesthetics quality with remarkably low training resources, it
suffers from weak image-text alignment, slow inference, and extrapolation artifacts due to inade-
quate training, insufficient training data, and inappropriate context extension strategy.

To fully unleash the potential of scaling diffusion transformers for generative modeling, we present
the next generation of Lumina-T2X, Lumina-Next with improved architecture, scaled dataset, op-
timized sampling techniques, and better context extrapolation strategy, all of which make Lumina-
Next stronger and faster. Specifically, the key improvements of Lumina-Next are listed as follows:

Architecture of Next-DiT We revisit the architecture design of Flag-DiT and find suboptimal com-
ponents for scalable generative modeling in the visual domain. First, we replace the 1D RoPE with
3D RoPE to eliminate the inappropriate positional priors to model images and videos using the at-
tention mechanism. We further remove all learnable identifiers in Flag-DiT, such as [nextline]
and [nextframe], since our 3D RoPE already provides sufficient 3D positional information. Next,
we task an in-depth analysis of the instability during both training and sampling and find it stems
from the uncontrollable growth of network activations across layers. Therefore, we introduce the
sandwich normalization block [25] in attention modules, which is proven to effectively control the
activation magnitudes. Additionally, we employ the Grouped-Qurey Attention [4] to reduce com-
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putational demand especially when generating high-resolution images. The improved architecture
of Next-DiT is validated on the ImageNet-256 benchmark, demonstrating a faster convergence rate
compared to both Flag-DiT and SiT [59].

Frequency- and Time-Aware Scaled RoPE Inspired by the recent progress of context extrapola-
tion in LLMs [18, 1, 64], Lumina-T2X directly applies NTK-Aware Scaled RoPE to generate higher
resolution images thanks to the design of 1D RoPE. However, a comprehensive analysis of using 3D
RoPE for length extrapolation in the vision domain is still lacking, especially tailored for diffusion
and flow models. To bridge this gap, we first conduct a holistic comparison between existing extrap-
olation methods applied to text-to-image diffusion transformers, including Position Extrapolation,
Position Interpolation [18], and NTK-Aware Scaled RoPE [1]. We rethink the relationship between
the encoding frequency in RoPE and the generated content and propose a Frequency-Aware Scaled
RoPE, significantly reducing content repetition during extrapolation. Furthermore, considering the
difference between the auto-regressive generation of LLMs and the time-aware generation process
with fixed sequence length in diffusion models, we propose a novel Time-Aware Scaled RoPE for
diffusion transformers to generate high-resolution images with global consistency and local details.

Optimized Time Schedule with Higher-Order Solvers In contrast to various time sched-
ules [61, 74, 42] and advanced SDE/ODE solvers [53, 54, 26, 42, 81] in diffusion models, most flow
models [45, 50, 31] still adopts Euler’s method with uniform time discretization during sampling.
SiT [59] conducts a preliminary exploration of using different diffusion schedules and higher-order
ODE solvers on the ImageNet benchmark. In this work, we demonstrate that existing diffusion
schedules are not suitable for flow models and propose novel time schedules tailored for flow mod-
els to minimize discretization errors. We further combine the optimized schedules with higher-order
ODE solvers, achieving high-quality text-to-image generation samples within only 5 to 10 steps.

Time-Aware Context Drop To reduce the network evaluation time of each single step, we propose
dynamically merging latent tokens to reduce redundancy in attention blocks. Different from the
complex merge-and-unmerge algorithm in Token Merging [9], we employ a simple average pooling
for keys and values to aggregate similar context tokens in spatial space. Additionally, we augment
this Context Drop with time awareness to align with the dynamic sampling process of diffusion
models. The resulting Time-Aware Context Drop is validated to effectively enhance inference speed
while maintaining visual quality, achieving a 2× inference-time speed up in 1K resolution image
generation. When integrated with advanced attention inference techniques like Flash Attention [22],
our method further improves inference speed of generating ultra-high resolution images.

By composing all improvements over Lumina-T2X, we reach Lumina-Next. Our Lumina-Next,
featuring a 2B Next-DiT and Gemma-2B as text encoder, achieves better text-to-image generation
compared to Lumina-T2X with a 5B Flag-DiT and LLaMA-7B [80] as text encoder, while signif-
icantly reducing training and inference costs. Unlike previous models [67, 65, 31, 15, 14] that
rely on CLIP [66] or T5 [20], Lumina-Next demonstrates strong zero-shot multilingual ability with
LLMs as text encoder. Moreover, equipped with improved architecture and the proposed inference
techniques, Lumina-Next can achieve tuning-free 2K and few-step generation. We also show that
Lumina-Next’s framework can be easily extended to other modalities with excellent performance,
demonstrating that Lumina-Next is a unified, versatile, powerful, and efficient framework for genera-
tive modeling. All codes and checkpoints of Lumina-Next are released. We hope the reproducibility
of Lumina-Next can foster transparency and innovations in the generative AI community.

2 Improving Lumina-T2X

2.1 Architecture of Next-DiT

In Lumina-T2X [35], Flag-DiT serve as the core architecture with flow matching formulation, en-
suring training stability and scalability for larger models. In this section, we propose Next-DiT, an
improved version of Flag-DiT with the following key modifications. The comparison of detailed
architectures of Next-DiT and Flag-DiT can be found in the Appendix B.1.

Replacing 1D RoPE and Identifiers with 3D RoPE Flag-DiT replaces absolute positional embed-
ding (APE) with RoPE to enable flexibility of extrapolating to unseen resolution during training.

3

131280 https://doi.org/10.52202/079017-4172



(a) (b)
Figure 2: Visualization of attention score using (a)
1D RoPE and (b) 2D RoPE on images. We set the
central point in the image as the anchor query.

It further introduces learnable tokens includ-
ing [nextline] and [nextframe] as identi-
fiers to model images and videos with differ-
ent aspect ratios and durations. We discov-
ered that 1D RoPE is a lossy representation to
encode accurate spatial-temporal positions and
the learnable identifiers introduce additional de-
sign complexity, all of which can be simplified
to 3D RoPE without losing any information.

Specifally, Lumina-T2X encode input from dif-
ferent modalities into latent frames of shape
[H,W, T,C], where T = 1 for images, T =
numframes for videos, and T = numviews for
multi-view images. Then, 1D RoPE is applied
to the flattened 1D token sequences, which is formulated as follows given the m-th query and n-th
key qm, kn ∈ Rdhead :

q̃m = f(qm,m) = qmeimΘ, k̃n = f(kn, n) = kne
inΘ, (1)

where Θ = Diag(θ1, ..., θdhead/2) is the frequency matrix. However, 1D RoPE directly treats flattened
frame tokens as 1D language sequences, discarding the spatial and temporal relations between dif-
ferent positions. As shown in Figure 2(a), when applying 1D RoPE to the 2D images, the resulting
long-term decaying property is obviously incorrect for the 2D scenario. Inspired by recent works
that introduce 2D RoPE in the image domain [55, 32], it is natural to extend the original 1D RoPE to
3D RoPE for spatial-temporal modeling. We divide the embedding dimensions into three indepen-
dent parts and calculate positional embedding for the x-axis, y-axis, and z-axis separately. Given
then 3D coordinates of the m-th query and n-th key, the 3D RoPE is defined as:

q̃m = f(qm, tm, hm, wm) = qm[eitmΘt ∥ eihmΘh ∥ eiwmΘw ],

k̃n = f(kn, tn, hn, wn) = kn[e
itnΘt ∥ eihnΘh ∥ eiwnΘw ],

(2)

where Θt = Θh = Θw = Diag(θ1, ..., θdhead/6) is the divided frequency matrix for each axis and ∥
denotes concatenating complex vectors of different axes at the last dimension. The attention scores
with 3D RoPE are calculated by taking the real part of the standard Hermitian inner product:

Re[f(qm, tm, hm, wm)f∗(kn, tn, hn, wn)]

= Re[qmk∗ne
iΘt(tm−tn) ∥ qmk∗ne

iΘh(hm−hn) ∥ qmk∗ne
iΘw(wm−wn)],

(3)

where Re[·] denotes the real part of complex numbers and ∗ indicates complex conjugates.

With the introduction of 3D RoPE, we provide a unified and accurate spatial-temporal representa-
tion of positional encoding for different modalities, without the need to add extra learnable tokens
such as [nextline] and [nextframe] to indicate the row, column, and frame index. Our 3D
RoPE also incorporates the 2D RoPE formulation since it naturally becomes 2D RoPE when ap-
plied to images with only 1 frame. Figure 2 shows the 2D RoPE assigns high attention scores to
positions within the same row and column, which is a natural prior for images. Furthermore, our
decoupled implementation of 3D RoPE on spatial and temporal axes better unlocks the potential for
length extrapolation when combined with inference-time techniques mentioned in Section 2.2. We
demonstrate the superior zero-shot extrapolation results with arbitrary resolutions in Section 3.1.

Controling Magnititude of Network Activations To stabilize the training process when scaling
up model size and token length, Lumin-T2X replaces all LayerNorm with RMSNorm and add QK-
Norm before key-query dot product attention computation. Though effective to some extent, this
recipe is insufficient for stabilizing the training of extremely large diffusion transformers on long
sequences. A closer examination of the Flag-DiT architecture reveals the presence of long signal
paths without any normalization due to the residue structure of attention and mlp layers. We argue
that these unnormalized paths appeared in many diffusion transformer architectures [63, 15, 59]
can accumulate signal values across layers, causing uncontrollable growth of network activations,
especially in deeper layers. We validate this hypothesis by visualizing the evolution of activation
magnitudes over different depths of the text-to-image model using 500 random samples at different
timesteps, as shown in Figure 3. What’s worse, the uncontrollable network activations not only lead
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Figure 3: Sandwich normaliza-
tion effectively controls activa-
tion magnitudes over layers.

Figure 4: Discretization errors
and local curvatures grow at
the start and end of sampling.

Figure 5: Next-DiT converges
faster than SiT and Flag-DiT in
terms of FID and IS.

to an unstable training process but also deteriorate the sampling process. Particularly for resolution
extrapolation, small errors in the early layers or sampling steps are amplified in subsequent layers
or steps. These compounding errors gradually cause extremely out-of-distribution inputs for the
network, leading to failure in generated samples.

Therefore, we propose a simple yet effective approach that adds RMSNorm both before and after
each attention and mlp layer. The modified architecture is equivalent to using the sandwich nor-
malization [25] in transformer blocks. Importantly, both pre-norm and post-norm are placed before
the scale operation in AdaLN-Zero to prevent normalizing an all-zero tensor at the start of training,
which is caused by the zero-initialized scale parameter in AdaLN-Zero. However, after the scale
operation, the activation magnitudes still cannot be preserved. We further add a tanh gating to the
second scale prediction after post-norm to prevent extremely large modulation values from contribut-
ing to the residual branch. With all these efforts including the original QK-Norm in Flag-DiT, we
effectively control both then input and output activation magnitudes of each attention and mlp layer,
as validated in Figure 3.

Experiments on ImageNet To quantitatively assess the effects of Next-DiT with the above im-
provements, we conduct experiments on the label-conditional ImageNet-256 benchmark. We fol-
low the training setups and evaluation protocols of SiT [59] and Flag-DiT [35]. As depicted in
Figure 5, Next-DiT converges significantly faster than both Flag-DiT and SiT evaluated by FID
and Inception Score (IS). This observation confirms that the improved design of Next-DiT can en-
hance its fundamental generative capabilities. Additionally, we ablate the effectiveness of long-skip
connections[6] designed to provide shortcuts for low-level features. Unfortunately, long-skip con-
nections lead to training instability and significantly worsen the performance of Next-DiT. Therefore,
Next-DiT chooses to not incorporate long-skip connection.

2.2 Improving NTK-Aware Scaled RoPE with Frequency- and Time-Awareness

In the large language models (LLMs) community, tuning-free or few-shot tuning length extrapola-
tion is a popular focus currently and has been thoroughly analyzed, e.g., position interpolation [18],
NTK-Aware Scaled RoPE [1], YaRN [64], etc. In Lumina-T2X, due to the adoption of 1D RoPE
same as LLMs, NTK-Aware Scaled RoPE has been directly applied to achieve a certain degree of
resolution extrapolation. In Lumina-Next, we further investigate the effects of different length ex-
trapolation methods on 3D RoPE for the first time. Based on our findings, we introduce frequency-
and time-awareness grounded in NTK-Aware Scaled RoPE, resulting in novel Frequency-Aware
Scaled RoPE and Time-Aware Scaled RoPE targeted to the visual generation task. In Figure 6 (a),
we demonstrate the wavelength of each dimension of the RoPE embedding under different extrapo-
lation techniques with a toy setting of b = 5, hhead = 24, and T = H = W = 16.

Revisiting NTK-Aware Scaled RoPE 3D RoPE encodes position information of each axis using
a frequency matrix Θ = Diag(θ1, · · · , θd, · · · , θdhead/6) with θd = b−6d/dhead , where b is the rotary
base. When we want to perform a s times resolution extrapolation, the most straightforward way
is encoding unseen positions with no change of RoPE, known as Position Extrapolation. How-
ever, these unseen positions will directly confuse the model’s spatial understanding, leading to the
generation of unreasonable or repetitive content (refer to Figure 6 (c)).
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(g) Time-aware 
Scaled RoPE

(f) Frequency-aware 
Scaled RoPE

(e) NTK-aware 
Scaled RoPE

(d) Position Interpolation(c) Position Extrapolation(b) Original Resolution
(1K Inference)

(a) Wavelength of the RoPE embeddings 
under different strategies

Figure 6: (a) Toy illustration of RoPE embeddings’ wavelength with different extrapolation strate-
gies. (b)-(g) Results of different resolution extrapolation strategies of 2K generation.

In contrast, another straightforward approach, Position Interpolation [18], involves linearly rescal-
ing the frequency matrix as θinter

d = θd · s, thereby bringing all position embeddings back into the
training value domain. However, as noted by [1], this linear interpolation makes it difficult for RoPE
to distinguish between positions of tokens that are very close to each other. The same conclusion
exists in the diffusion transformer – as shown in Figure 6 (d), the global structure of the image is
maintained at the cost of losing all local details.

To address these issues, NTK-Aware Scaled RoPE [1] is proposed to achieve training-free length
extrapolation for LLMs. Particularly, it scales the rotary base as b′ = b · s and then calculates
θntk
d = b′−6d/dhead such that the lowest frequency term of RoPE is equivalent to performing position

interpolation, allowing a gradual transition from position extrapolation of high-frequency terms to
position interpolation of low-frequency ones. In Lumina-T2X [35], NTK-Aware Scaled RoPE has
been shown to seamlessly integrate with diffusion transformers to achieve resolution extrapolation to
a certain extent. However, failure cases still occur, such as the repetition issue shown in Figure 6 (e),
indicating that the model still struggles with spatial awareness during resolution extrapolation.

Frequency-Aware Scaled RoPE Rethinking the limitations of NTK-Aware Scaled RoPE, we be-
lieve that performing interpolation on the lowest frequency component is a suboptimal design. Con-
sidering that RoPE uses periodic functions with frequencies Θ to encode relative positions, many
dimensions encounter unseen repeated cycles during resolution extrapolation, which in turn causes
the model to output repetitive content. This echoes the statement of YaRN [64] that position embed-
ding should be divided into parts using wavelength as the boundary and treated differently. To solve
this problem, we first identify the dimension with the wavelength equivalent to the training sequence
length as dtarget = dhead · logb(

L
2π ), where L is the maximum training sequence length. After that, a

scaled base with frequency-awareness can be formulated by b′ = b · s
dhead
dtarget , which enable the com-

ponent at dtarget equivalent to position interpolation. Note that dtarget may not be an integer, but we
do not need to use it as an index so that we can use its exact value. Additionally, to prevent the part
where d > dtarget from being excessively interpolated, we take the larger value comparing with the
position interpolation result as θfreq

d = max(b′−6d/dhead , b−6d/dhead · s). This Frequency-Aware Scaled
RoPE further addresses the issue of content repetition, as shown in Figure 6 (f).

Time-aware Scaled RoPE Observing Figure 6, we can conclude that: (1) while position inter-
polation confuses local details, it effectively ensures a reasonable global structure, and (2) while
NTK-Aware Scaled RoPE has content repetition, it retains good local details. By combining these
observations with the time-conditioned feature of diffusion models, we can achieve a more targeted
resolution extrapolation approach. A common understanding of diffusion models is that they first
restore global concepts before local details [19]. This motivates us to design a time-aware strategy
to benefit from different approaches at different denoising steps – using position interpolation in
the early stages of denoising to ensure the overall structure and gradually shifting to NTK-Aware
Scaled RoPE to preserve local details. This echoes DemoFusion’s [29] strategy of gradually re-
ducing global guidance over the denoising process, allowing the model to focus on adding local
details. Specifically, the previously proposed Frequency-Aware Scaled RoPE is naturally adapt-
able to this progressive shift. When dtarget = 1, it is equivalent to position interpolation; when
dtarget = dhead, it is equivalent to NTK-Aware Scaled RoPE. Therefore, we design a coefficient dt
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Figure 7: Comparison of few-step generation using different time schedules with Euler’s method.

that varies with time t in the most direct way, making the frequency base time-conditioned, i.e.,

b′t = b · s
dhead
dt , where dt = (dhead− 1) · t+1. Then the time-aware frequency base can be expressed

as θtime
d,t = max(b′

−6d/dhead
t , b−6d/dhead · s). This Time-Aware Scaled RoPE makes globally consistent

high-detail resolution extrapolation possible, as shown in Figure 6 (g). In the following experiments
on resolution extrapolation, we use Time-Aware Scaled RoPE for the best tuning-free performance.

2.3 Improving Sampling Efficiency with Fewer and Faster Steps

Different from one-step generative models, the sampling of diffusion and flow models involves an
iterative denoising process. The overall time complexity of sampling can be written as N×T , which
is controlled by the number of function evaluations N and the inference time of a single function
evaluation T . Therefore, to improve the efficiency during inference, we propose corresponding
strategies for each factor to reduce N and T respectively.

Fewer Sampling Steps with Optimized Time Schedule and Higher-Order Solvers Both dif-
fusion models and flow-based models numerically solve an SDE or ODE within the interval
[tmin, tmax] during sampling. A common approach is to discretize the continuous time interval
into multiple sub-intervals and use Euler’s method with O(h2) discretization error with respect to
step size h or other advanced solvers. Given a constant budget of N sampling steps, the time dis-
cretization strategy {t0, t1, ..., tN}, or time schedule, determines the grid of timesteps on which the
network is evaluated. The resulting accumulated truncation errors can greatly impact the quality of
generated samples, especially when N is small. Various time schedules have been explored for dif-
fusion models, such as Cosine [61], Linear [74], and EDM [42]. However, most flow-based models
still adopt the simplest uniform time intervals and first-order Euler’s method for sampling, resulting
in poor-quality images in low-resource scenarios, as shown in Figure 7.

Therefore, we provide a detailed analysis of truncation errors at different timesteps using Euler’s
method to solve the Flow ODE for text-to-image generation. We begin by setting the anchor sam-
pling steps, N = 50, with uniform intervals for evaluation. For each timestep ti, the sample pro-
duced by one-step Euler’s method is defined as x̂ti+1

= xti +(ti+1−ti)vθ(xti , ti). To approximate
the local truncation error τti at time ti, we estimate the ground truth sample xti+1

by running a large
number of Euler steps from ti to ti+1 with uniform intervals and compute the discretization error
as τti = xti+1

− x̂ti+1
. In addition, since the flow model builds linear interpolation between noise

and data and predicts the constant velocity field, it is natural to use the curvature to describe local
errors on the trajectory, i.e., the straighter the trajectory, the smaller the discretization error. Fol-
lowing [60], we compute the second-order derivative to estimate the local curvature of each step as
κti = xti − (xti+1 + xti−1) × 0.5. The average L2-norm of discretization error τti and curvature
κti are visualized in Figure 4. Our analysis reveals that discretization errors are much larger when t
is near pure noise (t = 0) and are relatively larger near clean data (t = 1), compared to intermediate
timesteps. This observation contradicts the findings in diffusion models, where EDM [42] discover
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the discretization errors monotonically increase as samples get closer to clean data. Hence, diffusion
schedules like EDM are not ideal for flow-based models.

To optimize the time schedules for sampling, we propose two parametric functions to map t ∈ [0, 1]:

RATIONAL t′ =
t

σ − t+ σt
, SIGMOID t′ =

{
1

1+exp(−α(t−µ)) if t < µ

1− 1
1+exp(β(t−µ)) if t ≥ µ

. (4)

These time schedules are tailored for flow-based models. The first, a rational function parametrized
by σ, maps all timesteps to smaller values, minimizing the discretization errors near pure noise. This
schedule reduces to the uniform time schedule when σ = 1 and is also used in prior works [35, 31,
38] for high-resolution image generation. The second schedule, a piecewise sigmoid-like function,
ensures that the step sizes at the start and end of sampling are larger than those at intermediate steps.
The central point is controlled by µ, while the weights on lower and higher timesteps are adjusted by
α and β, respectively. As shown in Figure 7, both rational and sigmoid schedules improve few-step
sampling performance compared to all-black or all-white images generated by the uniform schedule.
This highlights the importance of the early stage of sampling in creating the main subject in the
image. The sigmoid schedule generates images with better details and is adopted for the remainder
of this paper with µ = 0.6, α = 6, and β = 20.

Notably, this optimized schedule requires no extra computation but a free launch for fast sampling
using our flow model. It is also compatible with advanced solvers applicable to flow models, which
can unleash its full potential. However, limited work has explored the use of higher-order solvers
for solving the Flow ODE. Unlike the Probability Flow ODE [75] in diffusion models, which has a
semi-linear structure, the Flow ODE derived from the continuity equation is in a simpler form of ẋ =
vθ(xt, t). This simplicity allows for the direct use of existing higher-order ODE solvers, such as the
traditional explicit Runge-Kutta (RK) methods in the form of xt = xs +

∫ t

s
vθ(xτ , τ)dτ , where the

n-th order solver ensembles n intermediate steps between [s, t] to reduce the approximation errors.
During sampling, explicit RK family solvers also need to specify the timesteps {t0, t1, ..., tN} in
advance and adopt the uniform intervals as default. Thus, our improved schedules, such as the
rational or sigmoid schedule, can be directly applied to these higher-order solvers. Algorithm B.1
illustrates the pseudocode for combining the midpoint method and sigmoid schedule for sampling.

Faster Network Evaluation with Time-Aware Context Drop After reducing the denoising steps
during sampling, our next goal is to optimize the network evaluation time T for each single step,
which is constrained by the quadratic complexity of attention blocks. Among various inference-
time acceleration methods, Token Merging (ToMe) [9] is a simple yet effective approach that merges
similarly visual tokens to reduce redundancy in attention blocks, thereby speeding up inference for
image classification. Although ToMe has been successfully applied to diffusion U-Net [10, 73], we
find that a straightforward application of ToMe to Next-DiT, a purely transformer-based diffusion
model, completely fails to produce satisfactory images. We hypothesize that performing the original
token merging in all transformer layers across all diffusion steps is clearly unsuitable for the task of
generative modeling with diffusion transformers.

To bridge this gap, we propose Time-Aware Context Drop, an optimized method to drop redun-
dant visual tokens during inference for Next-DiT. First, the original bipartite soft matching in ToMe
not only introduces additional complexity but also contradicts the design of 3D RoPE in Next-DiT.
Therefore, we replace this complex token partitioning strategy in ToMe with a simple average pool-
ing for downsampling, aligning with the spatial prior introduced in 3D RoPE. Similar to [73], we
find that applying the merge-and-unmerge operation to all queries, keys, and values greatly under-
mines the quality of generated images as this strategy is designed for visual recognition. To preserve
the complete visual content, we only perform average pooling on keys and values for downsampling.
Finally, considering the time-awareness in diffusion models, we perform token dropping for all lay-
ers at t = 0 to enhance efficiency and gradually transform to no token dropping at t = 1 to maintain
visual quality. The Context Drop without time-awareness is similar to the key-value (KV) token
compression in PixArt-Σ [14], which merges KV tokens in spatial space using 2 × 2 convolution
to reduce complexity. However, unlike their fine-tuning methods, Context Drop is a training-free
technique with an adaptive compression rate that aligns with the diffusion time schedule. In Ap-
pendix C.1, We demonstrate samples generated by our methods, which reduce inference time while
achieving comparable visual quality.
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Figure 8: Comparison of 4× resolution extrapolation.

3 Lumina-Next by Composing Everything

By composing all improvements, we finally reached Lumina-Next, a powerful generative framework
for various modalities with improved efficiency. We first instantiate Lumina-Next for text-to-image
generation, which is stronger and faster than Lumina-T2X. Besides, compared with SDXL and
PixArt-α, it demonstrates preliminary supports of multilingual prompts (refer to Appendix C.2),
better visual quality with smaller sampling steps, and more flexibility at synthesizing images with
any resolution. After this, we further verified that the Lumina-Next framework also exhibits excel-
lent performance in any-resolution recognition (refer to Appendix D) and multi-view images, music,
audio, point clouds generation (refer to Appendix E).

3.1 Flexible Resolution Extrapolation

Failure of SDXL and PixArt-α SDXL [65] and PixArt-α [15] are representative methods of
U-Net and transformer-based diffusion models, respectively. Despite their ability to generate im-
pressive images, they fail to produce images beyond the training resolution, resulting in repetitive
and unreasonable content at higher resolutions, as shown in Figure 8. This is because the receptive
field of U-Net and the absolute position embedding of transformers are significantly biased towards
the training resolution or sequence length.

Comparison with Tuning-free Resolution Extrapolation Methods Due to the enormous cost
of directly training high-resolution (greater than 2K) generative models, researchers have sought to
enable pre-trained diffusion models to infer beyond the training resolution in a tuning-free manner.
MultiDiffusion [7] is the first attempt to generate high-resolution panoramas via sampling over-
lapped sliding windows at the original resolution. DemoFusion [29] further utilizes the generated
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Figure 9: Comparison of few-step generation using second-order ODE solvers.

results at training resolution as global guidance, achieving object-oriented high-resolution image
generation. Meanwhile, ScaleCrafter [37] adopts dilated convolution to achieve resolution extrapo-
lation tiled for U-Net based diffusion models (e.g., SDXL [65]).

In Figure 8, we compare Lumina-Next with the methods above on the 2K generation task. We can
conclude that MultiDiffusion, proposed for panorama generation, lacks global awareness, leading
to the issue of repetitive content still being present. DemoFusion and ScaleCrafter work well, but
DemoFusion requires multiple runs, resulting in a non-negligible inference budget, and ScaleCrafter
is built upon dilated convolution, which is unsuitable for modern transformer-based diffusion mod-
els. In contrast, Lumina-Next inherently supports a direct resolution extrapolation with the carefully
designed Next-DiT architecture and frequency- and time-aware scaled RoPE at inference time, of-
fering a more fundamental solution in the era of diffusion transformer.

On the Importance of Next-DiT for Resolution Extrapolation Regarding Figure 8, we partic-
ularly emphasize that Lumina-Next’s 2K extrapolation performance significantly surpasses that of
Lumina-T2X. In addition to the newly proposed time-aware scaled RoPE, we attribute this to the ad-
vanced design of Next-DiT: (1) 3D RoPE enables independent modelling of the t, h, w dimensions,
decoupling extrapolation in three dimensions so that they do not affect each other, and (2) sandwich
norm stabilizes the output magnitude of each transformer block, reducing the model’s sensitivity to
sequence length. Composing them together, Lumina-Next possesses excellent resolution extrapola-
tion capabilities without the need for any special inference algorithms like DemoFusion [29].

3.2 Few-Step Text-to-Image Generation

We demonstrate how our improved sampling schedules together with higher-order ODE solvers can
significantly boost the sampling efficiency for flow models. Specifically, we employ the midpoint
solver, a second-order Runge-Kutta method, combined with our sigmoid schedule following Algo-
rithm B.1. For comparison, we choose open-source text-to-image models, including SDXL [65]
and PixArt-α [15] equipped with DPM-Solver [53, 54]. Figure 9 shows Lumina-Next using the
midpoint solver significantly improves the sample quality in 10-20 number of function evaluations
(NFEs), consistently achieving better conditional sampling performance compared to PixArt-αand
SDXL using DPM-Solver. Switching to higher-order solvers can further enhance few-step sampling
performance with the cost of linearly increasing NFEs, presenting a speed-quality trade-off.

4 Conclusion
In this paper, we introduce Lumina-Next, which successfully addressed the limitations of its pre-
decessor, Lumina-T2X. With the improved Next-DiT architecture, context extrapolation together,
and fast sampling techniques tailored for our flow-based diffusion transformers, Lumina-Next show-
cases strong generation capabilities, such as generating high-quality images significantly larger than
its training resolution and multilingual text-to-image generation. Remarkably, these results are all
produced in a training-free manner and outperform previous methods including SDXL and PixArt-α.
We extend Lumina-Next’s versatility to other modalities, such as multiviews, audio, music, and point
clouds, with minimal modifications, achieving superior results across these diverse applications.
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Figure 10: Architecture details of Flag-DiT and Next-DiT.

A Broader Impacts and Limitations

A.1 Broader Impacts

In this work, we propose a fundamental framework for generative modeling. On the positive side,
the open-source of our code and checkpoints will foster transparency as well as innovations in the
generative AI field. On the negative side, our text-to-image generation model, for example, may be
used to generate images with potential biases and malicious information, similar to any generative
AI tool. However, we have designed and used a filtering pipeline to filter out all malicious content
in the training dataset.

A.2 Limiations

In this work, we demonstrate the superior high-resolution and multilingual text-to-image generation
capabilities of Lumina-Next compared to open-source models like SDXL and PixArt-α. However,
our text-to-image generation model still fall short of state-of-the-art closed-source models like Mid-
journey and DALLE 3 in terms of text-image alignment and visual aesthetics. A notable gap lies
in the size of text-image pairs used for multi-stage training. Although we expand the size of our
training dataset to 20 million, it remains considerably smaller than the datsets used by these closed-
source models. In addition, fine-tuning models with human preference data using techniques like
Direct Preference Optimization is also important to improve image quality. We plan to address these
challenges in future research.
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Algorithm 1 Few-step sampling using midpoint method and optimized schedule
procedure MIDPOINTSAMPLER(vθ(x, t), ti∈{0,··· ,N})

sample x0 ∼ N (0, I)
for i ∈ {0, · · · , N − 1} do

∆t← ti+1 − ti ▷ Adaptive step size
di ← vθ(xi, ti) ▷ Evaluate dx/dt at (x, ti)
(x̃i+1, ti+1)← (xi +

∆t
2 di, t+

∆t
2 ) ▷ Additional evaluation point

di+1 ← vθ(x̃i+1, ti+1) ▷ Evaluate dx/dt at (x̃i+1, ti+1)
xi+1 ← xi +∆tdi+1 ▷ Second order step from ti to ti+1

end for
return xN

end procedure

B Additional Details Lumina-Next

B.1 Illustration of Next-DiT’s Architecture Improvements

In Figure 10, we illustrate the structural difference between Flag-DiT and Next-DiT. The main im-
provements include 3D RoPE, sandwich normalization, group-query attention, etc. Specifically, We
leverage grouped-query attention [4] in transformer blocks, which is an interpolation between multi-
head and multi-query attention to improve inference speed as well as reduce memory consumption.
For instance, our 2B model divides 32 query heads into 8 groups, resulting in 8 shared key-value
heads. This modification reduces the parameter size while achieving similar performance compared
to the original multi-head attention.

B.2 Sampling with Optimized Schedule and Higher-Order ODE Solver

In the main text, we propose two optimized time schedules and combine them with higher-order
ODE solvers for few-step sampling. Algorithm B.1 illustrates the pseudocode for using the midpoint
method with the optimized schedule.

B.3 Improved Image-Text Pairs

Lumina-T2I constructs 14M high-aesthetic synthetic text-image pairs as the training dataset. While
the limited data size leads to fast convergence, these data only cover a small proportion of real image
distribution, which contains diverse contents and styles. Besides, the quality of text captions in this
dataset is imbalanced, consisting of incomplete or inaccurate image descriptions. As pointed out in
recent works [8, 14], improving the diversity and overall quality of text prompts can greatly boost
text-image alignment. Therefore, it is important to re-examine the construction of training datasets.

LAION Augmented High-Quality Images We first expand the size of our training dataset from
14M to 20M using an additional 6M text-image pairs from the LAION [69] dataset. To efficiently
filter high-quality images from large-scale internet datasets, we employ a two-stage data filtering
pipeline:

In the first stage, we aim to obtain a coarse-grained candidate pool from massive images. Specif-
ically, we first filter out all images with resolutions lower than 512 × 512. Then, we further filter
out images with low aesthetic scores (< 5.5), high watermark probabilities (> 0.5), and high unsafe
probabilities (> 0.5). With these filtering thresholds, we construct an image pool with approximately
30 million items. In the second stage, we introduce the overall image quality rank as a fine-grained
filtering metric to further obtain a subset with superior overall quality. Concretely, we rank the 30
million coarse-filtered images based on aesthetic score, watermark probability, and safety probabil-
ity, respectively. Then we sum the three types of ranks into an overall image quality rank, and the
top-ranking 6 million images are selected to form our final high-quality image dataset. Upon manual
evaluation, the 6 million image data filtered by our two-stage pipeline exhibit high resolution, high
aesthetic appeal, and minimal probabilities of watermarking and unsafe content.
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Mixture of Captioners

GPT-4VBLIP2
a cup of coffee and a piece of cake on a table

Sharegpt4v
In the tranquil setting of a park, a wooden picnic 
table serves as the stage for a simple yet inviting 
scene. On the table, a slice of chocolate cake rests 
on a white plate, its rich, dark color contrasting 
with the plate's pristine whiteness. A silver fork 
lies next to the cake, ready to dive into the sweet 
treat. 

Beside the cake, a white cup cradles a hot beverage, 
steam gently rising from it, hinting at the warmth 
within. A spoon rests on the saucer, its polished 
surface reflecting the soft light of the day.

A black bag is casually placed on the table, its 
contents unknown but its presence adding to the 
charm of the scene. A book lies open nearby, its 
pages whispering tales of adventure and knowledge.

The table is set against a backdrop of lush greenery, 
with trees standing tall and proud, their leaves 
rustling softly in the breeze. A path meanders 
through the trees in the background, inviting 
onlookers to take a leisurely stroll and enjoy the 
serene

Cogvlm
A slice of chocolate cake with a rich, moist texture 
sits on a white plate, accompanied by a cup of hot 
chocolate and a spoon, all resting on a wooden table 
with a book and a black bag. The setting is outdoors, 
under a clear sky, suggesting a leisurely day in a 
tranquil outdoor cafe.

LLaVA-next
The image captures a tranquil outdoor setting, likely a café or a picnic area. The main focus is a wooden table, which is adorned with a variety of items, each telling a story of its own.
On the table, there's a white plate holding a slice of cake. The cake appears to be a rich, dark brown color, suggesting it might be a chocolate cake. The slice is neatly cut, revealing the
moist interior.
Beside the cake, there's a cup of coffee. The coffee is a light brown color, indicating it might be a latte or a cappuccino. The cup is white, which contrasts nicely with the darker color of 
the coffee.
Next to the coffee cup, there's a black bag. The bag is closed, and it's not clear what's inside. It could be a purse, a laptop bag, or a camera bag.
In the background, there's a green umbrella. The umbrella is closed and leaning against the wall, ready to provide shade on a sunny day.
The table is set on a wooden deck, which is surrounded by lush greenery. The deck is made of wooden planks, adding to the rustic charm of the setting.
Overall, the image paints a picture of a peaceful moment, perhaps during a break from work or a leisurely afternoon spent enjoying a slice of cake and a cup of coffee in the company 
of nature.

SPHINX-X
The image features a wooden dining table 
with a variety of items on it. There is a
partially eaten slice of cake on a plate, 
accompanied by a cup of coffee. A knife is 
placed next to the cake, and a spoon is also 
present on the table. 

In addition to the food and utensils, there 
are several books scattered around the 
table, indicating a relaxed and comfortable 
atmosphere. A backpack can be seen on the 
table, suggesting that someone might have 
brought these items to enjoy a meal or a 
break.

Role 1: Concise elements:
* Outdoor wooden table
* Piece of cake on a white plate
* Cappuccino in a white cup with 
saucer
* Fork and spoon
* Sugar packet
* Mobile phone
* Wallet
* Black camera bag
* Sunglasses
* Leaflets
* Wood-chip ground
* Outdoor chairs
* Trees
* Outdoor umbrellas

Role 2: Detailed description of nine regions:
left: In the left section, there is a wooden table surface with a corner of a white plate 
visible, displaying a piece of cake. A black camera bag sits to the left of the plate, and 
behind it, partially out of the frame, are outdoor chairs and trees, suggesting a garden 
or café setting.
right: The right section shows a white cup of cappuccino on a saucer placed on the 
right side of the wooden table, next to which is a mobile phone, a wallet, and a pair of 
sunglasses. In the blurred background, outdoor chairs and umbrellas indicate a public 
outdoor space.
upper: This section captures the upper part of the scene with leaflets and a sugar 
packet lying on the table, alongside a black camera bag. The background includes 
outdoor umbrellas and foliage.
lower: The lower section includes the front of the table where a piece of cake on a 
white plate is visible along with silverware. Just below the table's edge, the ground is 
covered in wood chips.
central: The central area of the image has a piece of cake on a white plate, a cup of 
cappuccino on a saucer, a mobile phone, and a wallet placed on a wooden table. A sugar 
packet lies near the cup.
top-left: The top-left includes a corner of a black camera bag and leaflets on the 
wooden table, with green trees and white outdoor umbrellas in the soft-focus 
background.
top-right: This area shows a white cup of cappuccino on a saucer, a mobile phone, and a 
pair of sunglasses. The background softly blurs into the colors of chairs and umbrellas.
bottom-left: The bottom-left section displays a piece of cake on a white plate, with 
silverware on the side. The wooden table surface and wood-chip ground are also visible.
bottom-right: In the bottom-right, there is a close-up view of the white saucer with a 
cappuccino cup, alongside a mobile phone and a wallet, set upon the wooden table. Below 
the table is the wood-chip ground.

Role 3: Detailed description of the whole image:
The image captures a personal moment during a daytime outing at an outdoor café or garden. The focus is on a wooden table 
which holds the remnants of a casual meal or snack: a piece of cake on a white plate with a fork and a spoon, and a 
cappuccino in a white cup and saucer. Personal items including a mobile phone, wallet, sunglasses, and a black camera bag are
scattered on the table. Leaflets, possibly menus or flyers, and a single sugar packet lie next to the camera bag. The 
background, although out of focus, indicates a leisurely environment with other tables, chairs, and umbrellas suggesting 
other patrons in the vicinity. Trees provide a natural backdrop to the setting. The ground is covered with wood chips, 
further reinforcing the casual, rustic ambiance of the place. The light and shadows suggest it is a bright, sunny day, 
perfect for enjoying an outdoor setting.

Role 4: Concise description of 
the whole image:
An outdoor café scene featuring a 
casual snack of cake and 
cappuccino on a wooden table, 
surrounded by personal items, with 
a blurred background of trees, 
chairs, and umbrellas.

Figure 11: Illustration of mixture-of-captioners.
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Figure 12: (a) Qualitative results of 2K images generated by Lumina-Next with and without context
drop. (b) Comparison of inference speed between different settings using 50 Euler steps.

Mixture-of-Captioners Although PixArt-σ [14] and DALLE-3 [8] highlight the importance of
improving the quality of text descriptions, they only leverage a single captioner to enhance caption
accuracy. As illustrated in Figure 11, we compare captions generated from open-sourced Vision-
Language Models (VLMs) such as BLIP2 [44], LLaVa [48], SPHINX [34], and Share-GPT4V [17].
We observe different VLMs describe different information of the given image in different styles at
different visual granularities. Moreover, these generated captions are complementary to each other
since none of them achieves 100% captioning accuracy without any hallucination. Motivated by this
observation, we propose a novel Mixture-of-Captioners (MoC) approach which employs multiple
pretrained VLMs to generate mutual complementary captions. Besides, we collect a high-quality
and high-resolution dataset consisting of 100K images and leverage GPT-4V to perform multi-facet
holistic descriptions over these high-resolution images, depicted in Figure 11. After re-captioning
using our proposed MoC, each image is paired with a caption pool with multiple descriptions from
various models. During the training stage, we randomly sample one caption from collected MoC
caption pools. This also resembles a kind of data augmentation that enhances model robustness
during inference with all types of user inputs.
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Modern Standard Arabic : 
برج طوكيو، أوكيو-إي بجودة فائقة 

فترة إيدو ،

Russian :  
Токийская башня, 

высококачественное 
Укиё-э, период Эдо

Chinese :  东京塔，
最优质的浮世绘，

江户时代

Japanese :  東京タワー、

最高品質の浮世絵、

江戸時代

Korean :  도쿄 타워, 
최고 품질의 우키요에, 

에도 시대

Vietnamese :  Tháp Tokyo, 
chất lượng Ukiyo-e tốt nhất, 

thời kỳ Edo

Ukrainian :  Токійська вежа, 
найякісніше Укійо-е, 

період Едо

Thai :  โตเกียวทาวเวอร์, 
ยูคิโยะเอะคุณภาพดีที่สุด, 

สมัยเอโดะ

Persian (Iranian) :  
برج توکیو، اوکیو-اِ با بالاترین

کیفیت، دوره ادو 

Polish :  Wieża Tokijska, 
najwyższa jakość Ukiyo-e, 

okres Edo

Marathi :  टोक्यो टॉवर, 
उत्कृ ष्ट गुणवत्ता उकियो-ए, 

एदो कालावधी

Kurdish :  Qulˊlayê Tokyo, 
Ukrîyo-e bi bilindî başi, 

Dema Edo

Turkish :  Tokyo Kulesi, 
en kaliteli Ukiyo-e, 

Edo dönemi

English :  Tokyo Tower, 
finest quality Ukiyo-e, 

Edo period
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Figure 13: Results of multilingual text-to-image generation by Lumina-Next, SDXL, and PixArt-α.

C More Text to Image Generation Results

C.1 Results of Time-Aware Context Drop

As shown in Figure 12 (a), Next-DiT using the proposed Time-Aware Context Drop with a 75%
downsampling ratio generates comparable and even better 2K images compared to the baseline. The
inference time comparison in Figure 12 (b) highlights that our Context Drop can further enhance
inference speed when combined with advanced inference techniques for transformers, such as Flash
Attention [22], which is more significant for higher-resolution image generation. Notably, our Con-
text Drop is similar to masked attention or dilated convolution, which has been proven to be the
key of resolution extrapolation in diffusion U-Net [37, 40]. Hence, this high-level resemblance in
our diffusion transformer architecture may explain why Context Drop can reduce repetitive and un-
reasonable artifacts in high-resolution image generation, presenting an interesting avenue for future
research.

C.2 Results of Zero-shot Multilingual Generation

Previous T2I models, such as Imagen [67], PixArt-α [15] and Stable Diffusion [31, 65], utilized
CLIP and T5 as text encoder for generating high aesthetics images. Such choices took advantage
of pretrained text encoders or multimodal aligned text encoders as good representations for text-
conditional image synthesis. However, employing T5 and CLIP as text embedding shows limited
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In the sky above, a giant,  whimsical 
cloud  shaped like the 😊  emoji casts
 a soft, golden light over the scene

👧 with 🌹 in the ❄️ ☃️ with 🌹 in the ❄️ A small 🍎 and 🍊 with 
😁 emoji in the Sahara desert 👽🤖👹👻 🐔 playing 🏀 🐶 wearing 😎  flying on 🌈

Pi
xA

rt
-

L
um

in
a-
N
ex
t

SD
X
L

Figure 14: Results of text-to-image generation with emojis by Lumina-Next, SDXL, and PixArt-α.

effectiveness in handling multilingual prompts. Different from those approaches, the Lumina series
adopts decoder-only LLMs as text encoders. For instance, Lumina-T2X uses a 7 billion LLaMa as
text encoder, while Lumina-Next employs the smaller Gemma-2B to decrease GPU memory costs
and increase training throughput. Remarkably, both LLaMa-7B and Gemma-2B endow Lumina T2I
models with the ability to understand multilingual prompts in a zero-shot manner, despite being
primarily pretrained on English-only corpora. As shown in Figure 13, our T2I models not only
accurately interpret multilingual prompts but also generate images with cultural nuances and show
a preliminary ability to understand emojis, even though it was mainly trained with English-only
image-text pairs. Compared to SDXL and PixArt-α, which use CLIP and T5, there is a significant
improvement in the understanding of multilingual prompts. We argue that decoder-only LLMs with
strong language understanding abilities better align multilingual semantics than the encoder-decoder
architecture of T5 or the multimodal alignment of CLIP text embeddings. To further explore the re-
lationships between multilingual generation abilities and text encoders, we train Lumina-Next with
different open-source LLMs, including Gemma-2B, Qwen-1.8B [5], and InternLM-7B [12]. As
demonstrated in Figure 15, Lumina-Next with Qwen-1.8B and InternLM-7B showcase significantly
better text-image alignment compared to Gemma-2B when using diverse Chinese prompts as inputs.
Remarkably, Lumina-Next with Qwen-1.8B and InternLM-7B accurately captured the meanings and
emotions of classic Chinese poems, reflecting these nuances in the generated images. This observa-
tion corresponds with the stronger multilingual abilities in Qwen-1.8B and InternLM-7B. Therefore,
we argue that using more advanced LLMs as text encoders enhances text-to-image generation per-
formance.

C.3 Resolution Extrapolation with Any Aspect-ratio

In Figure 16, we further compare the panorama (1024 × 4096 images) generation performance
of the proposed Lumina-Next with MultiDiffusion [7] and DemoFusion [29] to highlight its any
aspect ratio extrapolation ability. We found that although panorama generation is one of the primary
goals of MultiDiffusion, its “copy-paste” inference scheme easily leads to unreasonable content.
DemoFusion adopts a progressive upscaling strategy, limiting its ability to generate arbitrary aspect
ratios by the base model – in extreme aspect ratio scenarios, it also fails to produce satisfactory
content. In contrast, Lumina-Next perfectly maintains the ability to generate at any aspect ratio
under the training resolution, even when performing 4× resolution extrapolation.

C.4 Generation with Long Prompt

Lumina-Next can handle image generation with long prompts. We give examples in Figure 17. As
seen, with long prompts as inputs, Lumina-Next can produce high-quality images that strictly follow
the details in the prompt. This ability remains when using other languages such as Chinese.
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大漠孤烟直，
长河落日圆

孤舟蓑笠翁 两只黄鹂鸣翠柳 秋风起兮白云飞，
草木黄落兮雁南归

一个安静的乡村木屋，
木屋旁是绚丽的花园，
背景是一片青翠的山坡

一颗古老的橡树，
树干粗壮，

树枝向四周延展，
地面上覆盖着

厚厚的落叶

一只海龟在热带

海底缓慢游动，
周围是五彩斑斓

的珊瑚和鱼群

Figure 15: Results of multilingual text-to-image generation using different LLMs as text encoders.
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Figure 16: Results of 4× resolution extrapolation with extreme aspect ratio.

D Any Resolution Recognition with Lumina-Next

Lumina-Next is not only a generative modeling framework for generating images with various res-
olutions but also a framework for recognizing images at any resolution. As illustrated in Figure 18,
our Next-DiT can be seamlessly adapted into a robust backbone for image representation learning.
By incorporating the sandwich normalization and 2D RoPE design into our architecture, Next-DiT
achieves superior performance and faster convergence while maintaining computational efficiency
compared to the original vision transformer in image recognition tasks. Furthermore, Next-DiT
overcomes the limitations of previous vision transformers in processing images of varying resolu-
tions, demonstrating remarkable generalization capabilities to handle input images with arbitrary
resolutions and aspect ratios.

D.1 Pipelines

The unified framework of Lumina-Next for image generation and understanding at any resolution
is depicted in Figure 18. Specifically, we introduce a learnable gate factor in the attention module,
thereby avoiding the incorporation of time embeddings and label embeddings in image recogni-
tion tasks. We apply global average pooling (GAP) to all image tokens to obtain the class token,
which is then fed into the classification head implemented by an MLP network. By integrating 2D
RoPE during attention computation and incorporating RMSNorm before and after each attention
and MLP layer, our Next-DiT architecture exhibits enhanced resolution extrapolation capabilities.
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在广袤无垠的沙漠中，夜幕降临时，天际被无数璀璨的星星点缀

得如同一幅银色的华丽锦缎。月亮将温柔的月光洒在金黄色的沙

丘上，投射出柔和的光影。顽强的树挺立在沙丘之间，静静地伫

立在这寂静的夜色中。一个孤独的旅人缓缓行走，仿佛在追寻着

星辰的指引。

一间布置典雅的复古书房，墙上挂满了古老的书画、陈旧的地图

和稀有的收藏品。红木书架上摆放着各类珍贵的典籍，书脊泛着

岁月的光泽。一张大书桌镇坐在房间中央，上面放着一本打开的

古书，旁边是一支装饰精美的鹅毛笔和一个古董墨水瓶。昏黄的

台灯发出柔和的光芒，映照在桌上的黄铜地球仪上。窗外的晚霞

透过厚重的窗帘洒进屋内，给整个房间增添了一抹温暖的色彩。

A grand, medieval castle perched atop a rocky cliff, overlooking
a vast, undulating landscape of forests and meadows. The 
castle's imposing stone towers and turrets rise majestically 
against a backdrop of a brilliant blue sky. A drawbridge spans a 
deep, mist-filled moat, and banners flap in the gentle breeze, 
displaying regal coats of arms.

A serene, coastal fishing village nestled along a rocky shoreline. 
Quaint, colorful houses with terracotta roofs line the narrow, 
cobblestone streets. Fishing boats bob gently in the harbor, their 
nets drying in the sea breeze. Seagulls circle overhead as the 
sun casts a golden glow over the calm, turquoise waters.

An elderly man sits comfortably in a cozy library, reading a 
thick, leather-bound book. He's wearing a grey cardigan over a 
white shirt, with round spectacles perched on his nose. His 
white hair is neatly combed back. Behind him, wooden 
bookshelves are filled with rows of books, some old and some 
new. A vintage lamp on a side table casts a warm light, 
illuminating his serene face. A classic grandfather clock ticks 
softly in the background.

A young girl plays joyfully with a small, fluffy white dog on a 
sandy beach. She's wearing a pink swimsuit with white polka
dots and a matching headband. Her blonde hair is tied into 
pigtails. The girl and the dog run towards the gently crashing 
waves, leaving footprints behind them. In the distance, there 
are colorful beach umbrellas and people lounging on beach 
towels. The sky is clear and blue, with seagulls soaring above.

Figure 17: Generated images of Lumina-Next with long prompts.

We employ a progressive training scheme with a fixed-resolution pre-training stage followed by
an arbitrary-resolution fine-tuning stage, enabling Next-DiT to achieve robust image understanding
across various resolutions.

Fixed Resolution Pre-training We first pre-train the Next-DiT architecture at a fixed resolution
by cropping and resizing images to 224 × 224, following the approach of the original ViT. This
resolution balances the trade-off between training speed and input resolution, as higher resolutions
require more FLOPs and reduced throughput. After pre-training, we directly evaluate our model on
unseen resolutions to guide a subsequent fine-tuning stage with arbitrary resolutions.

Any Resolution Fine-tuning To enable our model to handle images with any resolution and as-
pect ratio, we employ an any-resolution fine-tuning stage. While previous works [23, 78] also utilize
a multi-resolution training approach, they rely on a set of predefined input resolutions and randomly
sample different resolutions for each input image from this set. These methods often alter the origi-
nal resolution of aspect ratio of the input images a lot, potentially causing a performance drop, and
they incur additional computational costs by resizing low-resolution images to higher resolutions un-
necessarily. In contrast, we propose a dynamic padding scheme that allows efficient model training
while preserving the original resolution and aspect ratio of the input images. This approach enables
us to fully exploit the multi-resolution understanding capability of Next-DiT in a computationally
efficient manner.

Dynamic Partitioning and Padding with Masked Attention Our aim is to retain the original
resolution and aspect ratio of each input image to the fullest extent during the subsequent fine-
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Figure 18: Comparison between the original architecture of Next-DiT and modified version for
visual recognition.

tuning stage. Additionally, we seek to ensure that the width and height of the input image are
divisible by the patch size of the patch embed layer, enabling us to fully utilize the image in-
formation during the embedding process. To achieve this, we propose a dynamic partitioning
and padding scheme to optimize the handling of image tokens instead of relying on a fixed res-
olution, as illustrated in Figure 19. Specifically, given constraints on the maximum number of
patches N and the maximum aspect ratio Rmax, we define a set of candidate patch partitions
C =

{
(Hp,Wp) | Hp ·Wp ≤ N and max(Hp,Wp)

min(Hp,Wp)
≤ Rmax

}
. For an input image of size (HI ,WI),

we determine its optimal patch partition by calculating the matching ratio between the original input

size and the target size, given by (H∗
p ,W

∗
p ) = argmax(Hp,Wp)∈C)

min
(

Hp
HI

,
Wp
WI

)
max

(
Hp
HI

,
Wp
WI

) . Subsequently, we

resize the input image to (H∗
p ·P,W ∗

p ·P ), where P denotes the patch size. This dynamic partitioning
process leads to varying sequence lengths of patch tokens for each input image. To handle batches
containing inputs with different token lengths, we pad all image token sequences to match the length
of the longest sequence using a pad token. Additionally, we introduce attention masks within each
attention module to prevent unwanted interactions between pad tokens and regular image tokens.

Flexible Resolution Inference By incorporating NTK-Aware Scaled RoPE and sandwich normal-
ization, Next-DiT demonstrates exceptional resolution extrapolation during inference, even without
fine-tuning on varied resolutions. Furthermore, the proposed dynamic partitioning and padding
scheme allows for efficient fine-tuning while preserving image resolutions and aspect ratios. Con-
sequently, our model can perform flexible inference on images with arbitrary resolutions and aspect
ratios.

24

131301https://doi.org/10.52202/079017-4172



(0,0) (0,2)(0,1)

(1,0) (1,2)(1,1)

(2,0) (2,2)(2,1)

(0,0) (0,1)

(1,0) (1,1)

(2,0) (2,1)

(3,0) (3,1)

(0,0) (0,2)(0,1)

(1,0) (1,2)(1,1)

(2,0) (2,2)(2,1)

(0,3)

(1,3)

(2,3)

Image 1

Image 2

Image N

Image Token

Seq 1
Seq 2

Seq N

Padding Token

2D Rope at position (i,j) (i,j)

Dynamic 
Partition

Image tokens with Dynamic Padding

Resize ResizeResize

0 0 0 0 0 0 0 0 0 -inf 0 0

-inf 0 0

-inf 0 0

-inf 0 0

-inf 0 0

-inf 0 0

-inf 0 0

-inf 0 0

-inf 0 0

-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 -inf -inf -inf -inf

-inf -inf -inf

-inf -inf -inf

-inf -inf -inf

-inf -inf -inf

-inf -inf -inf

-inf -inf -inf

-inf -inf -inf

-inf -inf -inf

-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf

0 0 0 0 0 0 0 0 -inf

0 0 0 0 0 0 0 0 -inf

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf

-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf

0 0 0 0 0 0 0 0 0 -inf -inf -inf

-inf -inf -inf

-inf -inf -inf

-inf -inf -inf

-inf -inf -inf

-inf -inf -inf

-inf -inf -inf

-inf -inf -inf

-inf -inf -inf

-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf

-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf

Mask 1
Mask 2

Mask N

& Masked Attention

Attention Masks 

Figure 19: Illustration of our dynamic partitioning and padding scheme with masked attention for
handling input images of arbitrary resolutions.

D.2 Setups

We conduct experiments on the ImageNet-1K dataset to validate the effectiveness of Next-DiT for
image recognition. We build our Next-DiT model following the architecture hyperparameters of
ViT-base [28], stacking 12 transformer layers with a hidden size of 768 and 12 attention heads. This
configuration ensures that our architecture has a comparable number of parameters to the original
ViT. During the fixed-resolution pre-training stage, we train the models from scratch for 300 epochs
with an input size of 224 × 224. We use the AdamW optimizer with a cosine decay learning rate
scheduler, setting the initial learning rate, weight decay, and batch size to 1e-3, 0.05, and 1024,
respectively. We follow the same training recipe as the DeiT model [79], including its data augmen-
tation and regularization strategies. In the subsequent any-resolution fine-tuning stage, we further
train the pre-trained model using the proposed dynamic partitioning and padding scheme. This fine-
tuning is performed for an additional 30 epochs with a constant learning rate of 1e-5 and a weight
decay of 1e-8.

D.3 Experiments

We report the performance of our Next-DiT in Table 1. We first test our model at a fixed resolution
of 224 × 224. Compared with DeiT-base, which has comparable parameters, Next-DiT exhibits
superior performance and faster convergence. Notably, training the model for only 100 epochs
achieves a Top-1 accuracy of 81.6%, nearly matching DeiT-base’s result achieved after 300 epochs.
Under the same training setting with 300 epochs of pre-training, Next-DiT surpasses DeiT-base
with an accuracy of 82.3% versus 81.6%, respectively, demonstrating its effectiveness as a robust
image backbone. We also adopt the flexible resolution inference strategy, preserving the original
resolution and aspect ratio of the input images to validate the model’s generalization capability
across varied resolutions. After the additional fine-tuning stage, Next-DiT achieves 84.2% accuracy
when handling arbitrary resolutions. We report the performance of DeiT-base pre-trained at 224 ×
224, using the same inference configuration. To align with the input resolution, we interpolate its
positional embeddings accordingly. Compared to our fine-tuned Next-DiT, the performance of DeiT-
base drops significantly, suggesting its limitations in processing images with varied resolutions.
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Table 1: Comparison of Next-DiT with DeiT [79]
on ImageNet classification.

Model Params Setting Resolution Top-1 Acc(%)

DeiT-base [79] 86M 300E 224× 224 81.8

Next-DiT 86M 100E 224× 224 81.6

Next-DiT 86M 300E 224× 224 82.3

DeiT-base [79] 86M 300E Flexible 67.2

Next-DiT 86M 300E+30E Flexible 84.2
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Figure 20: Performance of Next-DiT
across different resolutions.

We also evaluate the performance across different image resolutions, as illustrated in Figure 20.
Next-DiT demonstrates better generalization to larger image sizes compared to DeiT-base, even
without fine-tuning. With additional fine-tuning using the proposed dynamic partitioning scheme,
our model significantly enhances its ability to handle varied resolutions, particularly high resolutions
such as 1024× 1024, outperforming DeiT-base by a significant margin. These experimental results
highlight the effectiveness of Next-DiT as a powerful image backbone for recognizing images at any
resolution, in addition to its capability to generate images at various resolutions.

E Generating Multi-Views, Music and Audio with Lumina-Next

Lumina-Next is a versatile and expandable framework for generative modeling that goes beyond
text-conditioning image generation. In this section, we demonstrate the application of Lumina-Next
to multi-view generation using both image and text conditioning. Additionally, we extend Lumina-
Next to encompass a wider range of modalities, including text-conditional audio, music, and point
cloud generation.

E.1 Image- and Text-conditional Multi-View Generation

Pipelines Having witnessed the success of Next-DiT on text-to-image generation, we use Next-
DiT’s text-to-image model as a pre-trained model and extend it to image- and text-conditional multi-
view generation, called MV-Next-DiT, as shown in Figure 21. Firstly, we introduce relative pose
control to Next-DiT to distinguish between views. Specifically, for N multi-view images with the
same elevation and random azimuths rendering from 3D object, taking the azimuth of the first image
as the reference view, the relative azimuths of the remaining N − 1 images to the first image are
calculated sequentially. The obtained relative azimuths are encoded into the same dimension as time
embedding using a 2-layer MLP network after sin and cos transformation, and are added to the
time embedding to inject camera control into the model. Secondly, we expanded the original text
condition of Next-DiT into text and image conditions. Specifically, the same encoding and injection
method as Next-DiT is used for text condition. For the image condition, we use VAE to encode the
input image, and then concatenate it to the multi-view noises (N + 1). This image is not used for
supervision during training. In addition, when building the training data, this condition image has
the same azimuth as the first supervised view (both are 0), but it is a random elevation. It is worth
noting that the image condition is dropped based on probability during training, and the input of the
image condition is optional during inference. Finally, a progressive training strategy of views and
resolution is adopted during training, and views flexible inference strategy is used during inference.
Specifically, during training, we first performed training at 256× 256 resolution with N = 4. Then
it was expanded to the training of 512× 512 resolution with N = 4, and finally it was expanded to
the training of 512 × 512 resolution with N = 8. In inference, since each object is trained using
all random views, any number of view can be inferenced at one time. These improvements allow
MV-Next-DiT to output multi-view images with high quality and flexible azimuth.

Setups Data preparation: we use the Objaverse [24] list and caption provided by Cap3D [58]
as training data. For data rendering, we first use the same elevation and 8 random azimuths for
each object, render with the same camera setting, and obtain supervision data. Then the azimuths
corresponding to 4 images are randomly selected from the 8 rendered views, and cooperate random
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Figure 21: An illustration of multi-view images generation. Left: All view training paradigm of
MV-Next-DiT. Right: Any view inference paradigm of MV-Next-DiT.

elevations to render input images. Each object then has 4 groups of training samples. Training
details: We use Next-DiT with 600M parameters for training of MV-Next-DiT. The specific training
settings are shown in Table 2.

Table 2: The detailed training setting of MV-Next-DiT.

Training method Pre-train model Total batch (Images) Learning rate Iteration A100 cost

256 × 256, N = 4 Next-DiT, Text-to-Image 256 × (N + 1) 1e-4 100k 16GPUs × 45h
512 × 512, N = 4 MV-Next-DiT, 256 × 256, N = 4 128 × (N + 1) 1e-4 100k 16GPUs × 57h
512 × 512, N = 8 MV-Next-DiT, 512 × 512, N = 4 32 × (N + 1) 1e-4 100k 16GPUs × 72h

Experiments We collected images provided by previous work, such as CRM [83], to test the per-
formance of our MV-Next-DiT. In particular, we provide the generated results of only text condtion,
text and image conditions, and the results of sampling 4 views, 6views, and 8views respectively from
the setting of N=8, as shown in Figure 22. In addition, we compared the capabilities with existing
multi-view methods as shown in Table 3. The overall performance demonstrates the advantages of
our MV-Next-DiT. The rich higher-resolution flexible view generated results demonstrate MV-Next-
DiTs excellent multi-view generation capabilities and the superiority of the Next-DiT architecture.

Table 3: Comparison of capabilities between MV-Next-DiT and other mutli-view methods.

Methods Base model Resolution Condition type Inference views

Zero-123 [49] SD Image Variations v2 256 × 256 Image 1
MVDream [71] SD v2.1 256 × 256 Text 4
UniDream [51] SD v2.1 256 × 256 Text 4

ImageDream [82] MVDream (SD v2.1) 256 × 256 Image 4
Wonder3D [52] SD Image Variations v2 256 × 256 Image 6
Zero-123++ [70] SD v2 256 × 256 Image 6

CRM [83] ImageDream (SD v2.1) 256 × 256 Image 6
MV-Next-DiT Next-DiT 512 × 512 Text & Image 1∼8

E.2 Text-Conditional Audio and Music Generation

Pipelines We use a modified audio VAE with a 1D-convolution-based model to derive audio latent.
The audio signal is a sequence of mel-spectrogram sample x ∈ [0, 1]Ca×T , where Ca, T respectively
denote the mel channels and the number of frames. Our spectrogram autoencoder is composed of
1) an encoder network E which takes samples x as input and outputs latent representations z; 2) a
decoder network G reconstructs the mel-spectrogram signals x′ from the compressed representation
z; and 3) a multi-window discriminator learns to distinguish the generated samples G(z) from real
ones in different multi-receptive fields of mel-spectrograms.

In text2audio generation, we include the dual text encoder architecture consisting of a main text
encoder CLAP [30] that takes the original natural language caption y as input and a temporal encoder
FLAN-T5 [20] which takes the structured caption ys passed by LLM as input. The final conditional
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Figure 22: Results generated by MV-Next-DiT. The upper right is the result of text-to-multiview, and
the rest is the result of text-&image-to-multiview, where the first column is the corresponding input
image with background removed. In addition, every 3 rows from top to bottom are the generated
results of 4 views, 6 views, and 8 views respectively.

representation is expressed as:

c = Linear(Concat(ftext(y), ftemp(ys))), (5)

Where ftext is the main text encoder and ftemp is the temporal encoder. For the text encoder in
text2music generation, we use the FLAN-T5 [20] text encoder that takes the original natural lan-
guage caption y as input.
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Setups of Text-to-Music Generation We employ a diverse combination of datasets to facilitate
the training process of our model. In the context of text-to-music synthesis, we exclusively employ
the LP-MusicCaps [27] dataset. The culmination of these efforts yields a dataset comprising 0.92
million audio-text pairs, boasting a cumulative duration of approximately 3.7K hours.

We conduct preprocessing on both text and audio data as follows: 1) We convert the sampling rate of
audios to 16kHz. Prior works [84, 41, 46] pad or truncate the audio to a fixed length (10s), while we
group audio files with similar durations together to form batches to avoid excessive padding which
could potentially impair model performance and slow down the training speed. This approach also
allows for improved variable-length generation performance. We truncate any audio file that exceeds
20 seconds, to speed up the training process. 2) For audios without natural language annotation, we
apply the pseudo prompt enhancement method from Make-An-Audio [41] to construct captions
aligned with the audio. We traverse the AudioCaps training set and the LLM augmented data with a
probability of 50%, while randomly selecting data from all other sources with a probability of 50%.
For the latter dataset, we use "<text & all>" as their structured caption.

Experiments of Text-to-Music Generation In this part, we compare the generated audio samples
with other systems, including 1) GT, the ground-truth audio; 2) MusicGen [21]; 3) MusicLM [3]; 4)
Mousai [68]; 5) Riffusion [33]; 6) MusicLDM [16]; 7) AudioLDM 2 [47]. The results are presented
in Table 4, and we have the following observations: Regarding audio quality, our model consistently
surpasses diffusion-based methods and language models across FAD and KL metrics. In terms of
subjective evaluation, our model demonstrates the strong text-music alignment faithfulness.

Table 4: The comparison with baseline models on the MusicCaps Evaluation set. We borrow the
results of Mousai, Melody, and MusicLM from MusicGen [21].

Model Objective Metrics Subjective Metrics
FAD (↓) KL (↓) MOS-Q(↑) MOS-F(↑)

GroundTruth / / 88.42 90.34
Riffusion 13.31 2.10 76.11 77.35
Mousai 7.50 / / /
Melody 5.41 / / /
MusicLM 4.00 / / /
MusicGen 4.50 1.41 80.74 83.70
MusicLDM 5.20 1.47 80.51 82.35
AudioLDM 2 3.81 1.22 82.24 84.35

Ours 3.75 1.24 83.56 85.69

Setups of Text-to-Audio Generation Following the benchmark studies [43, 41], we train on
AudioSet-SL [46] and finetune the model in the Audiocaps dataset. Overall, we have ∼3k hours
with 1M audio-text pairs for training data. For evaluating text-to-audio models, the AudioCaption
validation set is adopted as the standard benchmark, which contains 494 samples with five human-
annotated captions in each audio clip.

We conduct preprocessing on the text and audio data: 1) convert the sampling rate of audios to
16kHz and pad short clips to 10-second long; 2) extract the spectrogram with the FFT size of 1024,
hop size of 256 and crop it to a mel-spectrogram of size 80 × 624; 3) non-standard words (e.g., ab-
breviations, numbers, and currency expressions) and semiotic classes [77] (text tokens that represent
particular entities that are semantically constrained, such as measure phrases, addresses, and dates)
are normalized.

Our models conduct a comprehensive evaluation using both objective and subjective metrics to mea-
sure audio quality, text-audio alignment fidelity, and inference speed. Objective assessment includes
Kullback-Leibler (KL) divergence, Frechet audio distance (FAD), and CLAP score to quantify audio
quality. In terms of subjective evaluation, we conduct crowd-sourced human assessments employing
the Mean Opinion Score (MOS) to evaluate both audio quality (MOS-Q) and text-audio alignment
faithfulness (MOS-F).
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Figure 23: An illustration of text-guided music/audio generation. It consists of the following main
components: 1) VAE to encode spectrogram into a latent and convert it back to spectrogram; 2) text
encoder to derive high-level textual representation; 3) flow transformer to inject condition; and 4)
separately-trained neural vocoder to convert mel-spectrograms to raw waveforms. In the following
sections, we describe these components in detail.

Experiments of Text-to-Audio Generation We conduct a comparative analysis of the quality of
generated audio samples and inference latency across various systems, including GT (i.e., ground-
truth audio), AudioGen [43], Make-An-Audio [41], AudioLDM-L [47], TANGO [36], Make-An-
Audio 2 [39], and AudioLDM 2 [47], utilizing the published models as per the respective paper
and the same inference steps of 100 for a fair comparison. The evaluations are conducted using the
AudioCaps test set and then calculate the objective and subjective metrics. The results are compiled
and presented in Table 6. From these findings, we draw the following conclusion:

In terms of audio quality, our proposed system demonstrates outstanding performance with the FAD
of 1.03, demonstrating minimal spectral and distributional discrepancies between the generated au-
dio and ground truth. Human evaluation results further confirm the superiority, with MOS-Q and
MOS-F scores of 77.53 and 76.52, respectively. These findings suggest a preference among evalua-
tors for the naturalness and faithfulness of audio synthesized by our model over baseline approaches.

For ablation, we 1) explore the effectiveness of dual text encoders for a deep understanding of
arbitrary natural language input and observe that the drop in CLAP encoders has witnessed the
distinct degradation of text-audio alignment faithfulness; 2) study the usage of Audioset data, and
find that without fine-tuning on Audiocaps following previous works [47], a significant drop on
objective evaluation happens.

Table 5: The audio quality comparisons with baselines.

Model Objective Metrics Subjective Metrics
FAD (↓) KL (↓) CLAP (↑) MOS-Q(↑) MOS-F(↑)

GT / / 0.670 86.65 84.23

AudioGen-Large 1.74 1.43 0.601 / /
Make-An-Audio 2.45 1.59 0.616 70.32 66.24
AudioLDM 4.40 2.01 0.610 64.21 60.96
Tango 1.87 1.37 0.650 74.35 72.86
AudioLDM 2 1.90 1.48 0.622 / /
AudioLDM 2-Large 1.75 1.33 0.652 75.86 73.75
Make-An-Audio 2 1.80 1.32 0.645 75.31 73.44

Ours 1.03 1.45 0.630 77.53 76.52
Ours (w/o Dual-encoder) 1.48 1.53 0.601 75.13 72.01
Ours (w/ Audioset) 2.09 2.06 0.562 / /
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Table 6: Ablation studies. We use DiT to denote the same model architecture but with DDPM
formulation.

Model FAD (↓) KL (↓) CLAP (↑)
Next-DiT 1.03 1.45 0.630

w/o Dual-encoder 1.48 1.53 0.601
w/ Audioset 2.09 2.06 0.562

DiT 1.56 1.91 0.573

Table 7: Quantitative results of point cloud generation. We multiplied the value of CD by 103.

Shape Model MMD (↓) COV (%, ↑) Shape Model MMD (↓) COV (%, ↑)

Airplane

PC-GAN 3.819 42.17

Chair

PC-GAN 13.436 46.23
TreeGAN 4.323 39.37 TreeGAN 14.936 38.02
PointFlow 3.688 44.98 PointFlow 13.631 41.86
ShapeGF 3.306 50.41 ShapeGF 13.175 48.53
PDiffusion 3.276 48.71 PDiffusion 12.276 48.94

Ours 3.371 49.21 Ours 12.975 48.33

E.3 Label- and Text-Conditional Point Cloud Generation

Pipelines We propose a density-invariant point cloud generator to validate the effectiveness of
Lumina-Next in the 3D domain. The density-invariant property allows an efficient training on a
fixed point number (e.g., 256 points) and an inference of any point number (e.g., 1024, 2048, or
more points). Different from 2D images, increasing the density of a point cloud does not affect
the overall shape but rather enhances the details. To achieve any point inference, we combine the
Time-aware Scaled RoPE with Fourier features [76] and design a Time-aware Scaled Fourier feature.

[cos(2πθ⊤
1 p), sin(2πθ

⊤
1 p), ..., cos(2πθ

⊤
d p), sin(2πθ

⊤
d p), ...]. To inject the time condition of dif-

fusion steps into the Fourier feature, we scale the frequency via θ′
d = θd · s

dhead
dt , where dt =

(dhead − 1) · t + 1. This leads the generator to focus on the global information in the early steps
of denoising, and include more shape details in later steps. This Time-aware Scaled Fourier feature
can effectively distinguish continual positions in 3D space, thus our model guarantees any point
inference even though the model is only trained on a fixed low density.

Setups We train a label and a textual conditioned 3D generator respectively. For the label condi-
tional model, we employ the ShapeNet dataset [13] and follow [56] to preprocess it. We randomly
sample 256 points from each point cloud to train the model. After training, we synthesize point
clouds of densities in {256, 512, 1024, 2048, 4096, 8192}. To evaluate the generation, we adopt the
Minimum Matching Distance (MMD) and the Coverage score (COV) as quality metrics and use
Chamfer Distance (CD) as the distance measure to calculate them. For the textual guided genera-
tor, we adopt the Cap3D dataset [57] to train the model, where we use RoPE positional embedding
instead of the time-aware Fourier feature.
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Figure 24: Examples of generated point clouds with different densities, sampled from the generator
trained on 256 points.

Experiments We compare the generation performance of two categories: airplane and chair. We
fine-tune our pre-trained generator on 2048 points to further improve the generation quality. We
mainly compare our performance with PC-GAN [2], TreeGAN [72], PointFlow [85], ShapeGF [11],
and PDiffusion [56] in Table 7. We observe that our generator achieves a satisfactory performance
compared to existing models. We also visualize some generated point clouds in Figure 24, where
we directly apply the generator pre-trained on 256 points to sample higher-density point clouds. We
observe the density of generated point clouds decreases when we increase the density (e.g., airplane
and chair), which could be due to the fact that more points would cause a smoother attention matrix
in self-attention layers.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Yes, our paper proposes a unified framework for generative modeling, which
is corresponded with our abstract and introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitation at the beginning of the Appendix.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: Our paper does not focus on theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theo-

rems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We depict all implementing details of our method. We are also releasing the
code and checkpoints for reproduction.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear

how to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provide the training and inference code.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/

public/guides/CodeSubmissionPolicy) for more details.
• While we encourage the release of code and data, we understand that this might not

be possible, so No is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We give implementing details as well as configs for our experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of

detail that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?
Answer: [No]
Justification: The evaluation of large generative models is expensive.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-

ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We list GPU usage for each experiment.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We conform with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss the potential societal impacts in our paper.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: We explain in our paper about filtering the dataset to remove harmful content.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We properly cite the original paper.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the pack-

age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?
Answer: [Yes]
Justification: We provide readme for our codebase.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.
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