
PhyloGen: Language Model-Enhanced Phylogenetic
Inference via Graph Structure Generation

Chenrui Duan1,2∗ Zelin Zang2∗ Siyuan Li1,2 Yongjie Xu1,2 Stan Z. Li2†
1Zhejiang University, College of Computer Science and Technology; 2Westlake University

duanchenrui@westlake.edu.cn;
{zangzelin; lisiyuan; xuyongjie; stan.zq.li}@westlake.edu.cn

*Equal contribution †Corresponding author

Abstract

Phylogenetic trees elucidate evolutionary relationships among species, but phyloge-
netic inference remains challenging due to the complexity of combining continuous
(branch lengths) and discrete parameters (tree topology). Traditional Markov Chain
Monte Carlo methods face slow convergence and computational burdens. Existing
Variational Inference methods, which require pre-generated topologies and typi-
cally treat tree structures and branch lengths independently, may overlook critical
sequence features, limiting their accuracy and flexibility. We propose PhyloGen, a
novel method leveraging a pre-trained genomic language model to generate and
optimize phylogenetic trees without dependence on evolutionary models or aligned
sequence constraints. PhyloGen views phylogenetic inference as a conditionally
constrained tree structure generation problem, jointly optimizing tree topology
and branch lengths through three core modules: (i) Feature Extraction, (ii) Phy-
loTree Construction, and (iii) PhyloTree Structure Modeling. Meanwhile, we
introduce a Scoring Function to guide the model towards a more stable gradient
descent. We demonstrate the effectiveness and robustness of PhyloGen on eight
real-world benchmark datasets. Visualization results confirm PhyloGen provides
deeper insights into phylogenetic relationships.

1 Introduction

Phylogenetic trees [42] (or evolutionary trees) are tree-structured graphs representing kinship rela-
tionships between species [11], where each leaf node represents a distinct species and internal nodes
represent evolutionary bifurcations. The tree’s topology reflects evolutionary relationships based on
their genetic characteristics, and branch lengths indicate evolutionary distances. Phylogenetics study
is the foundation of evolutionary synthetic biology and is critical for tracking the evolutionary trajec-
tories of species, analyzing the transmission pathways of newly discovered viruses, and providing
meaningful insights for clinical applications [25, 13, 33].

Background. Despite DNA sequencing technologies [32] allowing us to construct evolutionary
relationships based on molecular properties (DNA, RNA, and proteins), phylogenetic inference
remains challenging due to its complex parameter space, which encompasses both continuous
(branch lengths) and discrete (tree topology) components. Traditional MCMC-based methods like
MrBayes [29] and RevBayes [9], despite their ability to extensively explore the huge tree space, are
hindered by slow convergence rates. Additionally, the number of possible tree topologies for n species
grows factorially as (2n−5)!! for n ≥ 3, posing huge computational challenges. In contrast, VI-based
methods leverage approximate inference to provide more efficient estimations. Depending on the
data type and research objectives, these methods can be further categorized into tree representation
learning and tree structure generation. Tree Representation Learning, as shown in Fig. 1(a),

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

131676 https://doi.org/10.52202/079017-4186

Figure 1: Comparison of PhyloTree Tree Inference Methods. (a) The inputs are aligned sequences,
and topologies are learned from existing tree structures using methods like SBNs, which rely on
MCMC-based methods for pre-generated candidate trees without considering branch lengths directly.
(b) The inputs are aligned sequences, and then tree structures and branch lengths are directly inferred
by variational inference and biological modules. These methods optimize tree topology and branch
lengths separately. (c) The inputs are raw sequences processed by a pre-trained language model to
generate species representations. Then, an initial topology is generated through a tree construction
module, and the topology and branch lengths are co-optimized by the tree structure modeling module.

intends to learn topological representations from existing tree structures. For instance, Subsplit
Bayesian Networks (SBNs) [45] focus on probabilistic representations from given tree structures
without considering branch lengths. Variational Bayesian Phylogenetic Inference (VBPI) [46] and its
extensions VBPI-GNN [44] utilize the topological probabilities provided by SBNs and jointly model
tree structures in latent space by deriving branch lengths through variational approximations. However,
these methods require pre-generated topology, based on which better topological representations
are then learned. Tree Structure Generation, as shown in Fig. 1(b), aim to infer tree structures
directly from sequences. PhyloGFN [48] integrates VI and reinforcement learning to construct tree
topologies, simplifying branch lengths into discrete intervals, thus necessitating posterior data for
inference. VaiPhy [16] introduces the SLANTIS sampling strategy and basic biological models (e.g.,
Jukes-Cantor(JC) model [24]) for topology and branch length estimation. ARTree [36] builds tree
topologies recursively using a graph autoregressive model. GeoPhy [22] models tree topologies in a
continuous geometric space. However, these methods require input sequences to be aligned to equal
lengths, and tree topology and branch lengths are optimized separately. They also ignore sequence
features that are critical for accurate phylogenetic analysis.

Our Method. As depicted in Fig. 1(c), we propose a novel approach based on a pre-trained genome
language model. Our model does not rely on evolutionary models or the requirement to align input
sequences to equal lengths and fully exploits the prior knowledge embedded in biological sequences.
PhyloGen models phylogenetic tree inference as a conditional-constrained tree structure generation
problem, aiming to generate and optimize the tree topology and branch lengths jointly. We map
species sequences into a continuous geometric space and perform end-to-end variational inference
without restricting topological candidates. To ensure the topology-invariance of phylogenetic trees,
we incorporate distance constraints in the latent space to maintain translational rotation invariance.
Our approach demonstrates effectiveness and efficiency on the eight real-world benchmark datasets
and verifies its robustness through data augmentation and noise addition [41]. In addition, we propose
a new scoring function to guide the model towards a more stable and faster gradient descent.

2 Related Works

MCMC-based methods, such as MrBayes [29] and RevBayes [9], have been widely used for
phylogenetic inference due to their ability to explore vast tree spaces.

VI-based methods offer a more efficient alternative to MCMC by leveraging approximate inference
techniques. These methods can be categorized into two main approaches: structure representation
and structure generation. Tree Representation Learning. This approach focuses on extracting
information from existing tree structures. SBNs [45] capture the relationships between existing

2

131677https://doi.org/10.52202/079017-4186

Figure 2: Framework of PhyloGen. A. Feature Extraction module extracts genome embeddings E
from raw sequences Y using a pre-trained language model. B. PhyloTree Construction module uses
E to compute topological parameters, which generate an initial tree structure τ∗ via the Neighbor-
Joining algorithm. C. PhyloTree Structure Modeling module jointly model τ and Bτ through the
topology learning component (TreeEncoder R and TreeDecoder Q) and the branch length (Blens)
learning component (dual-pass traversal, DGCNN network, Blens reparameterization).

subsplits without addressing branch lengths. VBPI [46] and its variants VBPI-NF [43] and VBPI-
GNN [44]: These methods introduce a two-pass approach to learn node representations, including
branch lengths. VBPI employs variational approximations to handle branch lengths, allowing for joint
modeling of the tree’s latent space. Tree Structure Generation. This approach aims to infer tree
structures directly from sequence data. PhyloGFN [48] utilizes GFlowNet [10, 20, 21], a combination
of VI and reinforcement learning, which requiring posterior data for accurate inference. VaiPhy [16]
incorporates a sampling strategy and basic biological models to estimate topology and branch lengths.
ARTree [36] employs a graph autoregressive model to build detailed tree topologies. GeoPhy [22]
models tree topologies within a continuous geometric space, offering a different approach to the
distribution of tree topologies. For details on related work, please see Appendix B.

3 Methods

Notation. The phylogenetic tree is denoted as (τ,Bτ), where τ is an unrooted binary tree topology
reflecting evolutionary relationships among N species. Bτ denotes the non-negative evolutionary
distances of each branch. The tree consists of N leaf nodes, each corresponding to a species, and
several internal nodes. PhyloGen aims to generate tree topology and branch lengths directly from the
raw sequences.

Framework. We model the phylogenetic tree inference problem as a tree structure generation
task under conditional constraints, consisting of three main modules as shown in Fig. 2. Feature
Extraction module extracts genome embeddings from raw sequences via a pre-trained language model.
PhyloTree Construction module uses these embeddings to generate an initial tree structure using a tree
construction algorithm, introducing the latent variable z∗ to represent the tree topology. PhyloTree
Structural Modeling module iteratively refines the tree structure and branch lengths through topology
learning and branch length learning components. By integrating these modules, we transform the
complex dynamics of evolutionary history into a tree-based learning framework, facilitating a deeper
understanding of phylogenetic relationships.

A. Feature Extraction We utilize DNABERT2 [49], a genome language model, to transform molec-
ular (DNA) sequences Y = {yi}Ni=1 into genomic embeddings E = {ei}Ni=1. These embeddings
discern complex patterns and long-range dependencies, serving as the basis for generating the latent
variables z∗, which dynamically inform both the topology and the branch lengths. By introducing
DNABERT2, we redefine the construction of phylogenetic trees as a continuous optimization problem
within a biologically meaningful embedding space.

3

131678 https://doi.org/10.52202/079017-4186

B. PhyloTree Construction To construct the phylogenetic tree, genomic embeddings E are input
into an MLP network to derive the parameters µ and σ of the latent space, representing topological
embeddings z∗. This latent space effectively captures the evolutionary relationships that guide
the subsequent tree structure generation process. The latent variable is then generated using the
reparameterization trick [15]: z∗ = µ+ σ ⊙ ε, ε ∼ N (0, I). Then, distance matrix D is computed
using z∗: D(i, j) =

∑N
i,j=1 z

∗
i ⊕ z∗j , where ⊕ means an XOR operation reflecting the nucleotide

mismatches. This distance matrix is fed into the Neighbor-Joining (NJ) algorithm [31] to generate
the initial tree topology τ(z∗). The tree’s topology is structured using a parent-child relationships list
[L[i], R[i], P [i]], where P [i] denotes the parent of node i, and L[i] and R[i] denote the left and right
child node. This representation highlights the tree’s hierarchical nature, optimizing its structure based
on the evolutionary patterns in the data.

C. PhyloTree Structure Modeling The purpose of the tree structure modeling module is to jointly
optimize both the phylogenetic tree’s discrete topology and continuous branch lengths.

C.1. Topology Learning. The first component involves a TreeEncoder R(z|τ(z∗)) and a TreeDe-
coder Q(τ(z)|z) to learn the tree topology. Concretely, the encoder R receives an initial tree topology
τ(z∗) and genomic embeddings E from DNABERT2 as inputs, conditions the latent state z to refine
topological embeddings in a continuous space. We introduce variational inference to enhance the
quality of the tree structure and adapt to data uncertainty and complexity by minimizing the Kullback-
Leibler (KL) divergence. Additionally, the encoder R acts as a regularization mechanism, reducing
overfitting and enhancing gradient stability. To refine the topology, the decoder Q samples from the
probability distribution parameterized by the encoder’s latent state. This process optimizes model
parameters by minimizing the KL divergence between the true distribution P (τ(z)) = P (y|τ(z), Bτ)
and the variational distribution Q(τ(z)) = q(τ(z), Bτ). To facilitate backpropagation through
stochastic nodes, the latent variable z is sampled using the reparameterization trick: z = µ+ σ ⊙ ε,
where ε ∼ N (0, I) introduces controlled stochasticity while maintaining differentiability, ensuring
that z effectively captures refined topological embeddings.

C.2. Branch Length (Blens) Learning. The second component utilizes the inferred topology τ
and genomic embeddings E from DNABERT2 to generate and adjust branch lengths.

Step1: Node Feature via Linear-Time Dual-Pass Traversal. We utilize a linear time O(n)
dual-pass traversal method, combining postorder (bottom-up) and preorder (top-down) strategies,
guaranteeing each node is processed only once.

Postorder Traversal (bottom-up) aggregates information from leaf nodes toward the root node.
ci = max(1,K −

∑
j∈ch(i)

cj)
−1, (1)

where ci is the scaling factor for node i, influenced by the node’s connectivity, and K = 3 due to
binary tree properties. fi = ci · fj + ei, (2)

where fi incorporates contributions from children nodes fj and its own initial feature ei from a
pre-trained genome model. Initially, ci = 0, fi = ei.

Preorder Traversal (top-down) propagates information from the root node toward the leaf nodes,
enhancing each node’s feature xi: xi = ci · ep[i] + fi, (3)

where ep[i] is the feature of node i’s parent.

Step2: Feature Enhancement with Dynamic Graph Convolution (DGCNN) : We use the
edge convolutional layer of DGCNN [35] to enhance node features. This approach captures both
local interactions (between neighboring nodes) and global structural dependencies (reflecting the
entire tree structure) within the phylogenetic tree. For layer L, inputs {xLi ∈ RF }Ni=1 and outputs
{xL+1

i ∈ RF ′}Ni=1 have feature dimensions F = 768 and F ′ = 100. The transformations are:

xL+1
i = DGCNN(xLi), mij = h(xLi , x

L
j),

where h : RF × RF → RF ′
is an MLP-shared asymmetric edge function.

4

131679https://doi.org/10.52202/079017-4186

Topology-Invariance Property. Despite the non-uniqueness of 2D coordinates due to infinite possible
translational rotations, the distances between species remain constant. We define this as topological
invariance: d2ij = ∥zi − zj∥2, where zi and zj are coordinates in the hidden space, maintaining
accurate topological relationships. The function h(xi, xj) incorporates global and local features
through: h(xi, xj) = h(xi, xi − xj , d2ij).
Aggregation of Features. The node features are aggregated using a MAX operation across all edges:

xL+1
i =

K∑
k=1

mL
ij = mL

i1 ⊕ . . .⊕mL
iK , (4)

where ⊕ denotes the MAX aggregation function, focusing on the most significant features.

Step3: Reparametrization of Branch Length. Node features xLi obtained from edge convolution
layers are further fed into the M network, parameterizing mean and log-variance for branch lengths:
µ, log(σ2) = MLP2(h

(1)
ij). Concretely, the M network is defined as:

h
(1)
i = MLP1(x

L
i), h

(1)
ij = MAX{h(1)j : j ∈ N (i)} ∪ h(1)i , (5)

where hi are node features processed through an additional MLP1 to capture inter-node interactions.
Branch lengths are updated by reparametrization b = exp(µ+ exp(σ) ∗ rvs), where rvs ∼ N (0, I),
ensuring differentiability and capturing the probabilistic nature of estimates. Throughout, the prior
P (Bτ) is assumed exponential, while the posterior Q(Bτ), learned via a graph neural network,
reflects inferred tree topologies and node characteristics.

3.1 Scoring Function

0 250 500 750 1000 1250 1500 1750 2000
Steps

7700

7600

7500

7400

7300

7200

7100

7000

Sm
oo

th
ed

 V
al

ue

ELBO Metric and Scoring Function over Steps

ELBO
Scoring Function w/ FC
Scoring Function w/ MLP-2
Scoring Function w/ MLP-3

Figure 3: Comparison of ELBO and
Scoring Function over Training Steps on
DS1. Closer curves mean better.

To address the convergence challenges often associated
with the ELBO in VAE models, we incorporate a scor-
ing function S, implemented via an MLP network. This
function assesses each leaf node in the latent space z and
provides additional gradient information, facilitating more
efficient learning and convergence.

During training, S and ELBO form a joint optimization ob-
jective, optimizing gradient directions to improve overall
performance. Fig. 3 compares the convergence behaviors
and stability of S and ELBO throughout the training pro-
cess. The horizontal axis represents the training steps,
and the vertical axis represents the two metric values. The
closer the S curve is to the ELBO curve, the more it proves
that S can effectively evaluate the model performance and maintain a consistent optimization trend
with ELBO. Different configurations of S, including those with Fully Connected layers (w/ FC), with
two layers MLP (w/ MLP-2), and with three layers MLP (w/ MLP-3), demonstrate similar trends,
closely following the ELBO curve. After an initial period of rapid change, all metrics stabilize and
exhibit minor fluctuations, demonstrating robustness in convergence. What’s more, the number of
layers in MLP has less impact on performance.

3.2 Learning Objectives

As discussed in Appendix Background A, our primary goal is to maximize the expected marginal
likelihood of the observed species sequence Y via max log p(Y |(τ(z), Bτ)). The posterior distribu-
tion as p(τ(z), Bτ |Y) is difficult to infer directly, so we utilize variational inference to approximate
it as q(τ(z), Bτ |Y). The detailed deviation is in Appendix D.2.

To minimize the KL divergence between the true prior and the approximate posterior distributions,
we start from the joint probability distribution: p(Y, τ(z), Bτ) = p(Y |τ(z), Bτ)p(Bτ |τ(z))p(τ(z)),
where p(Y |τ(z), Bτ) represents the conditional probability of the observed data Y . We assume the
tree topology τ(z) and the branch lengths Bτ are conditionally independent.

We introduce a variational distribution q(τ(z), Bτ) = q(Bτ |τ(z))q(τ(z)) to approximate the true
posterior p(τ(z), Bτ |Y). The ELBO loss can initially be written as:

5

131680 https://doi.org/10.52202/079017-4186

L(Q) = Eq[log p(Y, τ(z), Bτ)]− Eq[log q(τ(z), Bτ)]. (6)

To improve training variance and gradient stability, we introduce a regularization term R(z|τ(z∗))
and reformulate the ELBO loss as:

L(Q,R) = EQ(z)[EQ(Bτ |τ(z))[log
p(Y,Bτ |τ(z))p(τ(z))R(z|τ(z))

Q(Bτ |τ(z))Q(z∗)
]]. (7)

For better performance and reduced variance, we adopt a multi-sample approach[23]:

Lmulti-sample(Q,R) =
1

K

K∑
k=1

log
p(Y,Bkτ | τ(zk))p(τ(zk))R(zk | τ(z∗

k))

Q(Bkτ | τ(zk))Q(z∗k)
, (8)

where z∗k andBkτ are samples from the variational distributionsQ(z∗) andQ(Bτ |τ(z)), respectively.
K represents the number of Monte Carlo samples from the variational distribution to compute the
empirical average, providing a more robust approximation of the ELBO. Typically, K is chosen to
be moderate to balance between computational efficiency and estimation accuracy [18]. And the
multi-sample ELBO reduces to the standard ELBO formula when K=1.

The total loss Ltotal is then defined as:

Ltotal = −Lmulti-sample(Q,R) + L(S) + LKL, (9)

where LKL = −KL{qϕ(τ(z)|y)||pθ(τ(z))} − KL{qϕ(Bτ |y)||pθ(Bτ)}, minimizing the KL diver-
gence, and L(S) = −

∑N
i=1 f(zi) accounts for the scoring function loss of the embeddings.

3.3 End-to-End Learning via Stochastic Gradient Descent

We derive the gradients of model parameters θ as follows:

∇θL = EQθ(z∗)[∇ logQθ(z
∗)EQ(Bτ |τ(z))[log

P (Y,Bτ |τ(z))
Q(Bτ |τ(z))

]+

logP (τ(z))R(z|τ(z∗))] +∇H[Qθ(z
∗)],

(10)

where H[Qθ(z
∗)] is the entropy of Qθ(z∗). The derivation of the model parameters ϕ:

∇ϕL = ∇ϕEQθ(z∗)[EQϕ(Bτ |τ(z)) log
P (Y,Bτ | τ(z))
Q(Bτ | τ(z)))

]. (11)

The derivation of the model parameters ψ:

∇ψL = EQθ(z∗)[∇ψ log (Rψ(z|τ(z∗))]. (12)

4 Experiments

In this section, we conduct experiments to demonstrate the effectiveness of our proposed PhyloGen.
We aim to answer seven research questions as follows:

RQ1: How effective is PhyloGen in generating tree structures under the benchmark datasets?
RQ2: How diverse are the tree topologies generated by PhyloGen?
RQ3: How consistent is the PhyloGen-generated tree structure compared to the MrBayes method?
RQ4: How robust is PhyloGen to species sequences?
RQ5: How does each PhyloGen’s module affect its performance?
RQ6: What evolutionary relationships between species does PhyloGen learn?
RQ7: How do key hyper-parameters affect PhyloGen’s performance?

4.1 Experiment Setup

Tasks and Datasets. We evaluate the performance of PhyloGen on the Variational Bayesian Phyloge-
netic Inference task with Evidence Lower Bound (ELBO) and Marginal Log Likelihood (MLL) as
metrics on eight benchmark datasets (see Appendix C).

6

131681https://doi.org/10.52202/079017-4186

Baselines. We compared PhyloGen against three categories of methods: MCMC-based methods
like MrBayes and SBN. Structure Representation methods, including VBPI and VBPI-GNN, use
pre-generated tree topologies in training that have the potential to achieve high likelihoods, and
thus, their training and inference are restricted to a small space of tree topologies and thus are not
directly comparable. Structure Generation methods, which are PhyloTree Structure Generation
tasks that perform approximate Bayesian inference without pre-selecting topologies. For additional
experimental details, including training details, baselines, architectures, and hyperparameters, the
interested reader is referred to Appendix E.

4.2 Performance evaluation across eight benchmark datasets (RQ1)

Table 1: Comparison of the MLL (↑) with different approaches in eight benchmark datasets. VBPI
and VBPI-GNN use pre-generated tree topologies in training and thus are not directly comparable.
Boldface for the highest result, underline for the second highest from traditional methods, and
underline for the second highest from tree structure generation methods.

Methods Dataset
#Taxa (N)

DS1
27

DS2
29

DS3
36

DS4
41

DS5
50

DS6
50

DS7
59

DS8
64

MCMC-based MrBayes -7108.42
(0.18)

-26367.57
(0.48)

-33735.44
(0.50)

-13330.44
(0.54)

-8214.51
(0.28)

-6724.07
(0.86)

-37332.76
(2.42)

-8649.88
(1.75)

SBN -7108.41
(0.15)

-26367.71
(0.08)

-33735.09
(0.09)

-13329.94
(0.20)

-8214.62
(0.40)

-6724.37
(0.43)

-37331.97
(0.28)

-8650.64
(0.50)

Structure
Representation

VBPI -7108.42
(0.10)

-26367.72
(0.12)

-33735.10
(0.11)

-13329.94
(0.31)

-8214.61
(0.67)

-6724.34
(0.68)

-37332.03
(0.43)

-8650.63
(0.55)

VBPI-GNN -7108.41
(0.14)

-26367.73
(0.07)

-33735.12
(0.09)

-13329.94
(0.19)

-8214.64
(0.38)

-6724.37
(0.40)

-37332.04
(0.12)

-8650.65
(0.45)

Structure
Generation

ARTree -7108.41
(0.19)

-26367.71
(0.07)

-33735.09
(0.09)

-13329.94
(0.17)

-8214.59
(0.34)

-6724.37
(0.46)

-37331.95
(0.27)

-8650.61
(0.48)

phi-CSMC -7290.36
(7.23)

-30568.49
(31.34)

-33798.06
(6.62)

-13582.24
(35.08)

-8367.51
(8.87)

-7013.83
(16.99) NA -9209.18

(18.03)

GeoPhy -7111.55
(0.07)

-26379.48
(11.60)

-33757.79
(8.07)

-133342.71
(1.61)

-8240.87
(9.80)

-6735.14
(2.64)

-37377.86
(29.48)

-8663.51
(6.85)

GeoPhy LOO(3)+ -7116.09
(10.67)

-26368.54
(0.12)

-33735.85
(0.12)

-13337.42
(1.32)

-8233.89
(6.63)

-6735.9
(1.13)

-37358.96
(13.06)

-8660.48
(0.78)

PhyloGFN -7108.95
(0.06)

-26368.9
(0.28)

-33735.6
(0.35)

-13331.83
(0.19)

-8215.15
(0.20)

-6730.68
(0.54)

-37359.96
(1.14)

-8654.76
(0.19)

Ours -6910.02
(0.07)

-26257.09
(0.06)

-33481.57
(0.10)

-13063.15
(1.34)

-7928.4
(0.23)

-6330.21
(0.31)

-36838.42
(12.03)

-8171.04
(0.96)

Table 2: Comparison of ELBO (↑) on eight datasets. GeoPhy is not provided in the original paper
and is tested by us. Boldface for the highest result, underline for the second highest result.

Methods Dataset
#Taxa (N)

DS1
27

DS2
29

DS3
36

DS4
41

DS5
50

DS6
50

DS7
59

DS8
64

MCMC-based SBN -7110.24
(0.03)

-26368.88
(0.03)

-33736.22
(0.02)

-13331.83
(0.02)

-8217.80
(0.04)

-6728.65
(0.04)

-37334.85
(0.03)

-8655.05
(0.04)

Structure
Generation

GeoPhy -7116.67
(1.71)

-26434.84
(0.10)

-33766.72
(0.15)

-13389.36
(3.45)

-8220.91
(2.64)

-6769.41
(3.25)

-37882.96
(1.97)

-8654.39
(0.97)

ARTree -7110.09
(0.04)

-26368.78
(0.07)

-33735.25
(0.08)

-13330.27
(0.05)

-8215.34
(0.04)

-6725.33
(0.06)

-37332.54
(0.13)

-8651.73
(0.05)

Ours -7005.98
(0.06)

-26362.75
(0.12)

-33430.94
(0.34)

-13113.03
(3.67)

-8053.23
(2.58)

-6324.9
(1.26)

-36838.42
(1.97)

-8409.06
(1.07)

0 0.2 0.4 0.6 0.8 1.0
Steps

-11000

-10000

-9000

-8000

-7000
-6500

M
ea

n
EL

BO

Comparison of ELBO Across Models for DS1

Ours
ARTree
GeoPhy

0.0 0.2 0.4 0.6 0.8 1.0
Steps

11000

10000

9000

8000

7000

6000

M
ea

n
M

LL

Comparison of MLL Across Models for DS1

Ours
ARTree
GeoPhy

Figure 4: Comparison of ELBO and MLL Metrics for DS1 Dataset with Different Baselines.

We compare the MLL and ELBO metrics of various phylogenetic inference methods on eight
benchmark datasets. Tab. 1 and Tab. 2 show that methods that utilize Tree Structure Generation
have wider applicability than Structure Representation methods, which are restricted to limited pre-
generated topologies. Our method PhyloGen outperforms other methods, achieving the highest MLL

7

131682 https://doi.org/10.52202/079017-4186

0 20 40 60 80 100 120 140 160
Bipartition Rank

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Fr

eq
ue

nc
y

DS1
MrBayes
Ours

0 10 20 30 40 50 60 70
Bipartition Rank

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Fr

eq
ue

nc
y

DS2
MrBayes
Ours

0 20 40 60 80
Bipartition Rank

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Fr

eq
ue

nc
y

DS3
MrBayes
Ours

Figure 5: Comparative Bipartition Frequency Distribution in Tree Topologies for DS1, DS2, and
DS3 datasets. The closer the two curves are, the better, which suggests that our method is highly
consistent with the gold standard MrBayes approach.

and ELBO values on all datasets. The left plot of Fig. 4 illustrates our model’s high stability and rapid
convergence in ELBO metrics on DS1, which significantly outperforms the competition. ARTree
performance improves in the later stages but exhibits large fluctuation. GeoPhy performs the worst,
with consistently the lowest and more fluctuating ELBO values. The right plot of Fig. 4 demonstrates
our model’s advantages in the MLL metric, where it rapidly achieves and maintains high-performance
levels. In contrast, ARTree and GeoPhy have lower MLL values, especially GeoPhy, which has the
weakest performance throughout.

4.3 Tree Topological Diversity Analysis (RQ2)

Table 3: Diversity of tree topologies.
Statistics MrBayes GeoPhy Ours

Diversity Index (↑)
Top Frequency (↓)
Top 95% Frequency (↑)

0.87
0.27
42

0.36
0.80
11

0.89
0.008
149

To evaluate the topological diversity of trees gen-
erated by PhyloGen on DS1, we use three metrics:
Simpson’s Diversity Index [5], Top Frequency,
and Top 95% Frequency, as detailed in Tab. 3. A
higher Diversity Index, which approaches 1, sug-
gests broad diversity among generated tree topolo-
gies. The lower Top Frequency suggests a balanced distribution, preventing single tree structures
from being overly dominant. Furthermore, the presence of 149 distinct topologies within the Top
95% Frequency underscores PhyloGen’s ability to generate a diverse range of topologies.

4.4 Bipartition Frequency Distribution (RQ3)

Fig. 5 shows the bipartition frequency distributions of trees inferred by PhyloGen for datasets DS1,
DS2, and DS3. The horizontal axis indicates the ranking of the bipartitions in the tree topology, and
the vertical axis indicates the normalized frequency of occurrence of the corresponding bipartitions.
The similarity of our method’s curves to those of MrBayes underscores its accuracy, demonstrating
that PhyloGen consistently captures evolutionary patterns with reliability comparable to the gold
standard. This indicates a robust validation of PhyloGen’s phylogenetic inference capabilities. More
detailed information is provided in Appendix E.3.

Table 4: Model Robustness Assessment. Performance is evaluated by ELBO (↑) and MLL (↑). (∆)
represents the absolute difference change after node additions and deletions, with positive values
indicating improved performance and negative values indicating a decline. Time records the total
computation duration.

Metric PhyloGFN GeoPhy GeoPhy LOO(3)+ Ours w/o KL Ours w/o S Ours

se
tti

ng
1 ELBO (∆) NA -7721.82 (-100) -7729.28 (-107) -6725.49 (+12) -6713.01(+15) -6711.47(+14)

MLL (∆) -6705.55 (-93) -7440.38 (-198) -7599.85 (-357) -6564.51 (+18) -6547.32 (+20) -6542.75 (+22)
Time 18h28min 6h16min 15h23min 6h43min 7h42min 6h32min

se
tti

ng
2 ELBO (∆) NA -11802.07 (-98) -11676.29 (-76) -10678.24(+3) -10655.02 (+2) -10674.28(+4)

MLL (∆) -12565.76 (-233) -11763.40 (-131) -11630.16 (-98) -10422.12 (+6) -10654.53 (+12) -10432.71(+5)
Time 24h35min 18h13min 12h24min 7h54min 8h6min 6h37min

8

131683https://doi.org/10.52202/079017-4186

4.5 Robustness Assessment (RQ4)

To assess our model’s robustness, we test its adaptability to data changes by modifying the number of
nodes in the DS1 dataset, which initially contained 27 species sequences. Specifically, we conduct
two experiments: Setting 1: randomly deleting 4 nodes to simulate the impact of data incompleteness
and potential information loss, and Setting 2: randomly adding 4 nodes to simulate an increase in data
size. As shown in Tab. 4, our model and its variants exhibit significant stability and adaptability under
both cases. Changes in ELBO and MLL metrics are represented by ∆ values, where positive changes
indicate improved performance and negative changes indicate decreased performance. Specifically,
smaller positive increases after node deletion (Setting 1) and node addition (Setting 2) emphasize the
model’s ability to adapt to changes in data structure effectively. In contrast, larger negative decreases
highlight challenges when adjusting to increased data complexity. Furthermore, our model exhibits
considerable computational efficiency, outperforming baselines in runtime, a critical advantage for
handling the complexities and variabilities of bioinformatics datasets.

4.6 Ablation Study (RQ5)

Table 5: Ablation Study of PhyloGen.

Methods ELBO (↑) MLL (↑)

Ours -7005.98 -6910.02
Ours w/o KL -7017.57 -6917.34
Ours w/o S -7011.94 -6919.39

Tab. 5 shows the performance of our model compared
with the removal of the KL loss and the Scoring Function
S, respectively. Ours performs best on ELBO and MLL
metrics, with a significant decrease in performance after
the removal of the KL loss, suggesting that the KL loss
plays a key role in regularizing the model and avoiding
overfitting. While removing the S module had a large
impact on MLL, the ELBO impact was relatively small, indicating that the impact of the S module
is more complex and may be related to specific feature extraction functions. Our future work will
explore further enhancements to the S module and investigate other regularization techniques to refine
the model’s performance.

0.0 0.2 0.4 0.6 0.8 1.0
Steps

12000

11000

10000

9000

8000

7000

6000

M
ea

n
M

LL

Comparison of MLL for Different Configurations on DS1

PGen

PGen w/o LN

PGen-Hid=64

PGen-Euclidean

PGen-Cosine

PGen-One-Hot

Figure 6: Ablation Study on DS1 Dataset.

Fig. 6 shows that our method (PGen) achieves
the highest MLL value, indicating optimal fit and
stability throughout the training process. Adjust-
ments to the model structure, particularly without
layer normalisation (PGen w/o LN) and reduc-
ing the hidden dimensions (PGen-Hid=64), re-
sult in a lower MLL, but convergence remains
stable. These results highlight the model’s sen-
sitivity to hyperparameters and affirm its robust-
ness under different configurations. Replacing our
designed distance matrix D with both Euclidean
(PGen-Euclidean) and cosine (PGen-Cosine) dis-
tance matrices would greatly affect the effective-
ness of MLL. These methods do not capture complex evolutionary relationships as effectively as
distance matrices derived from the potential space z. The model with one-hot encoding as the leaf
node representation (PGen-One-Hot) has the lowest MLL, which indicates the importance of our
feature extraction module.

4.7 Case Study of PhyloTree Structure (RQ6)

Figure 7: Plot of PhyloTrees.

Fig. 7 shows a phylogenetic tree constructed from DS1 dataset,
where each leaf node represents a specific species, and the text
next to the node indicates the species name. The branch lengths
reflect the genetic distances, with shorter branches indicating recent
evolutionary history and longer branches indicating greater genetic
differences. The phylogenetic tree shown in Fig. 7 places Siren
intermedia and Trachemys scripta, both aquatic organisms, on ad-
jacent branches, reflecting our model could capture their adaptive
evolutionary information to aquatic environments. Meanwhile, the
reptilian species Heterodon platyrhinos and Trachemys scripta are
also on neighbouring branches, suggesting a relatively recent com-

9

131684 https://doi.org/10.52202/079017-4186

mon ancestor compared to other amphibian and reptilian species. Notably, our method does not
require padding the sequences to a unified length, which effectively reflects actual sequence variation.
For a detailed species sequence and topology comparison, please refer to Appendix E.6.

5 Conclusion

Contributions In this study, we introduced PhyloGen, a novel approach leveraging pre-trained
genomic language models to enhance phylogenetic tree inference through graph structure generation.
By addressing the limitations of traditional MCMC and existing VI methods, PhyloGen jointly
optimizes tree topology and branch lengths without relying on evolutionary models or equal-length
sequence constraints. PhyloGen views phylogenetic tree inference as a conditionally constrained
tree structure generation problem, jointly optimizing tree topology and branch lengths through
three core modules: (i) Feature Extraction, (ii) PhyloTree Construction, and (iii) PhyloTree Structure
Modeling. These modules map species sequences into a continuous geometric space, refine the
tree topology and branch lengths, and maintain topological invariance. Our method demonstrated
superior performance and robustness across multiple real-world datasets, providing deeper insights
into phylogenetic relationships.

Limitations and Future Works While our model demonstrates outstanding performance on stan-
dard benchmarks, it may benefit from using more expressive distributions or incorporating prior
constraints to better capture complex dependencies and interactions in the latent space. Additionally,
although the Neighbor-Joining algorithm is effective for iterative tree construction, it is computa-
tionally intensive. We are exploring efficient data structures and parallel processing techniques to
address this bottleneck. Furthermore, our model has primarily been applied to genomic data, and
further research is needed to extend its applicability to diverse biological data, such as protein and
single-cell data.

Acknowledgement

This work was supported by National Science and Technology Major Project (No. 2022ZD0115101),
National Natural Science Foundation of China Project (No. U21A20427), Project (No.
WU2022A009) from the Center of Synthetic Biology and Integrated Bioengineering of Westlake
University and Integrated Bioengineering of Westlake University and Project (No. WU2023C019)
from the Westlake University Industries of the Future Research Funding. We thank the AI Station of
Westlake University for the support of GPUs.

References
[1] Y. Chen, L. Wu, and M. Zaki. Iterative deep graph learning for graph neural networks: Better and

robust node embeddings. Advances in neural information processing systems, 33:19314–19326,
2020.

[2] P. Diaconis. Sequential importance sampling for estimating the number of perfect matchings
in bipartite graphs: An ongoing conversation with laci. Building Bridges II: Mathematics of
László Lovász, pages 223–233, 2019.

[3] L. Franceschi, M. Niepert, M. Pontil, and X. He. Learning discrete structures for graph neural
networks. In International conference on machine learning, pages 1972–1982. PMLR, 2019.

[4] J. R. Garey, T. J. Near, M. R. Nonnemacher, and S. A. Nadler. Molecular evidence for
acanthocephala as a subtaxon of rotifera. Journal of Molecular Evolution, 43:287–292, 1996.

[5] F. He and X.-S. Hu. Hubbell’s fundamental biodiversity parameter and the simpson diversity
index. Ecology Letters, 8(4):386–390, 2005.

[6] S. B. Hedges, K. D. Moberg, and L. R. Maxson. Tetrapod phylogeny inferred from 18s and
28s ribosomal rna sequences and a review of the evidence for amniote relationships. Molecular
Biology and Evolution, 7(6):607–633, 1990.

10

131685https://doi.org/10.52202/079017-4186

[7] D. A. Henk, A. Weir, and M. Blackwell. Laboulbeniopsis termitarius, an ectoparasite of termites
newly recognized as a member of the laboulbeniomycetes. Mycologia, 95(4):561–564, 2003.

[8] S. Höhna and A. J. Drummond. Guided tree topology proposals for bayesian phylogenetic
inference. Systematic biology, 61(1):1–11, 2012.

[9] S. Höhna, M. J. Landis, T. A. Heath, B. Boussau, N. Lartillot, B. R. Moore, J. P. Huelsenbeck,
and F. Ronquist. Revbayes: Bayesian phylogenetic inference using graphical models and an
interactive model-specification language. Systematic biology, 65(4):726–736, 2016.

[10] E. J. Hu, N. Malkin, M. Jain, K. E. Everett, A. Graikos, and Y. Bengio. Gflownet-em for learning
compositional latent variable models. In International Conference on Machine Learning, pages
13528–13549. PMLR, 2023.

[11] J. P. Huelsenbeck, F. Ronquist, R. Nielsen, and J. P. Bollback. Bayesian inference of phylogeny
and its impact on evolutionary biology. science, 294(5550):2310–2314, 2001.

[12] W. Jin, Y. Ma, X. Liu, X. Tang, S. Wang, and J. Tang. Graph structure learning for robust
graph neural networks. In Proceedings of the 26th ACM SIGKDD international conference on
knowledge discovery & data mining, pages 66–74, 2020.

[13] P. Kapli, Z. Yang, and M. J. Telford. Phylogenetic tree building in the genomic age. Nature
Reviews Genetics, 21(7):428–444, 2020.

[14] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[15] D. P. Kingma and M. Welling. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114,
2013.

[16] H. Koptagel, O. Kviman, H. Melin, N. Safinianaini, and J. Lagergren. Vaiphy: a variational
inference based algorithm for phylogeny. Advances in Neural Information Processing Systems,
35:14758–14770, 2022.

[17] C. Lakner, P. Van Der Mark, J. P. Huelsenbeck, B. Larget, and F. Ronquist. Efficiency of markov
chain monte carlo tree proposals in bayesian phylogenetics. Systematic biology, 57(1):86–103,
2008.

[18] R. Liao, Y. Li, Y. Song, S. Wang, W. Hamilton, D. K. Duvenaud, R. Urtasun, and R. Zemel. Effi-
cient graph generation with graph recurrent attention networks. Advances in neural information
processing systems, 32, 2019.

[19] Y. Liu, Y. Zheng, D. Zhang, H. Chen, H. Peng, and S. Pan. Towards unsupervised deep graph
structure learning. In Proceedings of the ACM Web Conference 2022, pages 1392–1403, 2022.

[20] N. Malkin, M. Jain, E. Bengio, C. Sun, and Y. Bengio. Trajectory balance: Improved credit
assignment in gflownets. Advances in Neural Information Processing Systems, 35:5955–5967,
2022.

[21] N. Malkin, S. Lahlou, T. Deleu, X. Ji, E. Hu, K. Everett, D. Zhang, and Y. Bengio. Gflownets
and variational inference. arXiv preprint arXiv:2210.00580, 2022.

[22] T. Mimori and M. Hamada. Geophy: differentiable phylogenetic inference via geometric
gradients of tree topologies. Advances in Neural Information Processing Systems, 36, 2024.

[23] A. Mnih and D. Rezende. Variational inference for monte carlo objectives. In International
Conference on Machine Learning, pages 2188–2196. PMLR, 2016.

[24] H. N. Munro. Mammalian protein metabolism, volume 4. Elsevier, 2012.

[25] M. Nei and S. Kumar. Molecular evolution and phylogenetics. Oxford university press, 2000.

[26] M. Newman. Networks. Oxford university press, 2018.

11

131686 https://doi.org/10.52202/079017-4186

[27] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, et al. Pytorch: An imperative style, high-performance deep learning
library. Advances in neural information processing systems, 32, 2019.

[28] F. P. Preparata and M. I. Shamos. Computational geometry: an introduction. Springer Science
& Business Media, 2012.

[29] F. Ronquist, M. Teslenko, P. Van Der Mark, D. L. Ayres, A. Darling, S. Höhna, B. Larget, L. Liu,
M. A. Suchard, and J. P. Huelsenbeck. Mrbayes 3.2: efficient bayesian phylogenetic inference
and model choice across a large model space. Systematic biology, 61(3):539–542, 2012.

[30] A. Y. Rossman, J. M. McKemy, R. A. Pardo-Schultheiss, and H.-J. Schroers. Molecular studies
of the bionectriaceae using large subunit rdna sequences. Mycologia, 93(1):100–110, 2001.

[31] N. Saitou and M. Nei. The neighbor-joining method: a new method for reconstructing phyloge-
netic trees. Molecular biology and evolution, 4(4):406–425, 1987.

[32] J. Shendure, S. Balasubramanian, G. M. Church, W. Gilbert, J. Rogers, J. A. Schloss, and R. H.
Waterston. Dna sequencing at 40: past, present and future. Nature, 550(7676):345–353, 2017.

[33] J. L. Steenwyk, Y. Li, X. Zhou, X.-X. Shen, and A. Rokas. Incongruence in the phylogenomics
era. Nature Reviews Genetics, 24(12):834–850, 2023.

[34] S. Tavaré. Some probabilistic and statistical problems on the analysis of dna sequence. Lecture
of Mathematics for Life Science, 17:57, 1986.

[35] Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and J. M. Solomon. Dynamic graph
cnn for learning on point clouds. ACM Transactions on Graphics (tog), 38(5):1–12, 2019.

[36] T. Xie and C. Zhang. Artree: A deep autoregressive model for phylogenetic inference. Advances
in Neural Information Processing Systems, 36, 2024.

[37] W. Xie, P. O. Lewis, Y. Fan, L. Kuo, and M.-H. Chen. Improving marginal likelihood estimation
for bayesian phylogenetic model selection. Systematic biology, 60(2):150–160, 2011.

[38] Z. Yang and A. D. Yoder. Comparison of likelihood and bayesian methods for estimating
divergence times using multiple gene loci and calibration points, with application to a radiation
of cute-looking mouse lemur species. Systematic biology, 52(5):705–716, 2003.

[39] A. D. Yoder and Z. Yang. Divergence dates for malagasy lemurs estimated from multiple gene
loci: geological and evolutionary context. Molecular Ecology, 13(4):757–773, 2004.

[40] Z. Zang, S. Li, D. Wu, G. Wang, K. Wang, L. Shang, B. Sun, H. Li, and S. Z. Li. Dlme:
Deep local-flatness manifold embedding. In European Conference on Computer Vision, pages
576–592. Springer, 2022.

[41] Z. Zang, H. Luo, K. Wang, P. Zhang, F. Wang, S. Z. Li, and Y. You. Diffaug: Enhance unsuper-
vised contrastive learning with domain-knowledge-free diffusion-based data augmentation. In
Forty-first International Conference on Machine Learning.

[42] Z. Zang, Y. Xu, C. Duan, J. Wu, S. Z. Li, and Z. Lei. A review of artificial intelligence
based biological-tree construction: Priorities, methods, applications and trends. arXiv preprint
arXiv:2410.04815, 2024.

[43] C. Zhang. Improved variational bayesian phylogenetic inference with normalizing flows.
Advances in neural information processing systems, 33:18760–18771, 2020.

[44] C. Zhang. Learnable topological features for phylogenetic inference via graph neural networks.
ArXiv, 2023.

[45] C. Zhang and F. A. Matsen IV. Generalizing tree probability estimation via bayesian networks.
Advances in neural information processing systems, 31, 2018.

[46] C. Zhang and F. A. Matsen IV. Variational bayesian phylogenetic inference. In International
Conference on Learning Representations, 2018.

12

131687https://doi.org/10.52202/079017-4186

[47] N. Zhang and M. Blackwell. Molecular phylogeny of dogwood anthracnose fungus (discula
destructiva) and the diaporthales. Mycologia, 93(2):355–365, 2001.

[48] M. Zhou, Z. Yan, E. Layne, N. Malkin, D. Zhang, M. Jain, M. Blanchette, and Y. Bengio. Phy-
logfn: Phylogenetic inference with generative flow networks. arXiv preprint arXiv:2310.08774,
2023.

[49] Z. Zhou, Y. Ji, W. Li, P. Dutta, R. Davuluri, and H. Liu. Dnabert-2: Efficient foundation model
and benchmark for multi-species genome. arXiv preprint arXiv:2306.15006, 2023.

13

131688 https://doi.org/10.52202/079017-4186

A Background

A.1 Graph Structure Generation (GSG)

Let G = (A,X) denote a graph, where A ∈ RN×N is the adjacency matrix and X ∈ RN×F is the
node feature matrix with xi ∈ RF being the embedding of node vi. Given a feature matrix X , the
target of GSG is to directly learn a graph structure A∗ by jointly optimizing the graph structure and
Graph Neural Networks (GNN) [19, 1, 3].

Feature Extraction To better model the similarity of node pairs, a feature extractor is usually
needed to map node features from a high-dimensional input space to a low-dimensional embedding
space [40].

Graph Construction A similarity metric function is generally used to compute the similarity between
embedding pairs as edge weights. There are several ways to construct a sparse adjacency matrix from
a fully connected similarity matrix. For instance, we can create a graph that selects only connected
node pairs whose similarity exceeds some predetermined threshold. In addition, we can connect the k
nearest nodes to one node, thus constructing a k-nearest neighbor (kNN) [28].

Graph Structure modeling The core of GSG is the structure learner, which models edge connectivity
to refine the preliminary graph [12]. Metric-based and neural network-based approaches are generally
employed to learn edge connectivity through parameterized networks to receive node representations
and regenerate the adjacency matrix that optimizes the graph structure, which is able to reveal the
real connectivity relationship between nodes better and can be widely used in various downstream
tasks [26].

A.2 Variational Inference (VI)

Variational Autoencoders (VAE) [15] is a deep generative models that learn the distribution of input
data by encoding it into a latent space. In this process, the encoder maps each input x to a latent
space defined by parameters: mean µ and variance σ. Latent variables z are then sampled from this
distribution for data generation.

VI is employed within VAE to handle the computational challenges of estimating marginal likelihoods
of observed data. This involves computing the log of the marginal likelihood:

max
θ

log pθ(X) =

N∑
i=1

log

∫
Z

pθ(X,Z)dz (13)

where pθ(X,Z) represents the joint distribution of the observable data x e.g. a Gaussian distribution,
N (x|µ, σ) and its latent encoding Z under the model parameter θ.

Since the direct estimation of marginal likelihoods is typically infeasible, VI introduces a variational
distribution qϕ(z|x) to approximate the true posterior. The goal of VI is to maximize the Evidence
Lower Bound (ELBO), formulated as:

ELBO = Eqϕ(z|x)[log pθ(x|z)]−KL[qϕ(z|x)||p(z)] (14)

The first term is the reconstruction log-likelihood, log pθ(x|z) can be considered as a decoder, i.e., the
log-likelihood between the reconstructed data and the original data given the potential representation.
The second term, the KL divergence, quantifies the difference between the variational posterior
qϕ(z|x) and the latent prior p(z). Usually, VAE utilizes a reparameterization trick for gradient
backpropagation through non-differentiable sampling operations. Once trained, VAEs can generate
new data by directly sampling from the latent space and processing it through the decoder.

B Related Work

MCMC-based methods, such as MrBayes [29] and RevBayes [9], have been widely used for
phylogenetic inference due to their ability to explore vast tree spaces. However, these methods are
limited by the high-dimensional search space and the combinatorial explosion of tree topologies,
which makes estimating posterior probabilities using simple sample relative frequencies (SRF)
problematic [8]. The accuracy of these methods is compromised in unsampled tree spaces, and they

14

131689https://doi.org/10.52202/079017-4186

tend to be unstable when estimating low-probability trees, often requiring impractically large sample
sizes to achieve reliable results.

VI-based methods offer a more efficient alternative to MCMC by leveraging approximate inference
techniques. These methods can be categorized into two main approaches: structure representation
and structure generation.

Tree Representation Learning. This approach focuses on extracting information from existing tree
structures. Subsplit Bayesian Networks (SBN) [45]: Given a collection of trees, SBNs capture the
relationships between existing subsplits, providing probabilistic representations of various tree shapes
under given data. However, SBNs do not directly address branch lengths.

Variational Bayesian Phylogenetic Inference (VBPI) [46] and its variants VBPI-NF [43] and VBPI-
GNN [44]: These methods introduce a two-pass approach to learn node representations, including
branch lengths. VBPI employs variational approximations to handle branch lengths, allowing for
joint modeling of the tree’s latent space.

Tree Structure Generation. This approach aims to infer tree structures directly from sequence data.
PhyloGFN [48] utilizes GFlowNet [10, 20, 21], a combination of VI and reinforcement learning.
PhyloGFN constructs tree topologies by simplifying branch lengths into discrete intervals, requiring
posterior data for accurate inference. VaiPhy [16] incorporates the SLANTIS sampling strategy [2]
and basic biological models (e.g., Jukes-Cantor model) to estimate topology and branch lengths.
ARTree [36] employs a graph autoregressive model to build detailed tree topologies. Branch length
estimation is conducted independently through log-probabilities. Once the topology is determined,
classical evolutionary models (e.g., Jukes-Cantor [24] or GTR (eneralized time reversible) [34])
are used to estimate branch lengths via maximum likelihood or Bayesian methods. GeoPhy [22]
models tree topologies within a continuous geometric space, offering a different approach to the
distribution of tree topologies. ARTree and GeoPhy differ primarily in their approach to modeling
tree topologies. While ARTree uses a discrete autoregressive model, GeoPhy leverages continuous
geometric representations, providing a more flexible framework for capturing the evolutionary
relationships among species.

C Datasets

Our model PhyloGen performs phylogenetic inference on biological sequence datasets of 27 to 64
species compiled in [17]. Notably, our approach does not require sequences to be of equal length,
overcoming a common limitation in traditional phylogenetic analysis. In Tab. 6, we summarize the
statistics of benchmark datasets.

Table 6: Statistics of the benchmark datasets from DS1 to DS8..
Dataset # Species # Sites Reference

DS1 27 1949 [6]
DS2 29 2520 [4]
DS3 36 1812 [38]
DS4 41 1137 [7]
DS5 50 378 [17]
DS6 50 1133 [47]
DS7 59 1824 [39]
DS8 64 1008 [30]

D Methods

D.1 Scoring Function

To address the convergence challenges often associated with the ELBO in VAE models, we incorporate
a scoring function S, implemented via an MLP network. This function assesses each leaf node in the
latent space z and provides additional gradient information, facilitating more efficient learning and

15

131690 https://doi.org/10.52202/079017-4186

Figure 8: Analysis of the Cosine Similarities between Scoring Function and ELBO.

convergence. During training, S and ELBO form a joint optimization objective, optimizing gradient
directions to improve overall performance.

Fig. 3 compares the convergence behaviors and stability of S and ELBO throughout the training
process. The horizontal axis represents the training steps, and the vertical axis represents the two
metric values. The closer the S curve is to the ELBO curve, the more it proves that S can effectively
evaluate the model performance and maintain a consistent optimization trend with ELBO. Different
configurations of S, including those with Fully Connected layers (w/ FC), with two layers MLP
(w/ MLP-2), and with three layers MLP (w/ MLP-3), demonstrate similar trends, closely following
the ELBO curve. After an initial period of rapid change, all metrics stabilize and exhibit minor
fluctuations, demonstrating robustness in convergence. To further evaluate the performance of each
S configuration, we computed their scaled cosine similarity to ELBO. Scaled cosine similarity
is calculated as: Scaled Cosine Similarity = x·y

∥x∥∥y∥ , where x and y are vectors of normalized
performance metrics for S and ELBO, respectively. As depicted in Figure 8, the horizontal axis
measures the similarity ranging from 0 to 1, with values closer to 1 indicating a closer alignment
with ELBO. The vertical axis displays the normalized difference percentage, highlighting how each
configuration deviates from ELBO. All configurations maintain high similarity values, generally
above 0.8, suggesting robust performance across different architectures. Given these results, the
Fully Connected (w/ FC) configuration is selected for its closest to the ELBO curve and has better
performance consistency. What’s more, the number of layers in MLP has less impact on performance,
as verified in Fig. 8 and Fig. 3.

D.2 Gradient Derivation for Objective Function

It is important to emphasise that we no longer distinguish between z∗ and z in the derivation for
simplicity and uniformly use the latent variable z to denote the topology.

In variational inference, we typically start from the joint probability distribution:

p(Y, θ) = p(Y |θ)p(θ) (15)

where θ could be any set of parameters or latent variables, and Y is the observed data.

For a tree model, assume that θ includes the tree topology τ(z) and the branch lengths Bτ . Thus, we
have:

p(Y, τ(z), Bτ) = p(Y |τ(z), Bτ)p(τ(z), Bτ) (16)
where p(Y |τ(z), Bτ) represents the conditional probability of the observed data Y , given the tree
structure and branch lengths, while p(τ(z), Bτ) is the joint prior probability of the tree structure and
branch lengths.

Further assuming that the tree topology τ(z) and the branch lengthsBτ are conditionally independent,
the prior can be decomposed as:

p(τ(z), Bτ) = p(Bτ |τ(z))p(τ(z)) (17)

Combining the above formula 16 and 17, we can rewrite the joint probability as:

p(Y, τ(z), Bτ) = p(Y |τ(z), Bτ)p(Bτ |τ(z))p(τ(z)) (18)

16

131691https://doi.org/10.52202/079017-4186

In variational inference, we introduce a variational distribution q(τ(z), Bτ) to approximate the true
posterior distribution p(τ(z), Bτ |Y), and often assume:

q(τ(z), Bτ) = q(Bτ |τ(z))q(τ(z)) (19)

Thus, the ELBO can then be written as:

L(Q) = Eq [log p(Y, τ(z), Bτ)]− Eq [log q(τ(z), Bτ)] (20)

Inserting the joint distribution and variational distribution formulas, we obtain:

L(Q) = Eq [log p(Y |τ(z), Bτ) + log p(Bτ |τ(z)) + log p(τ(z))]−Eq [log q(Bτ |τ(z)) + log q(τ(z))]
(21)

This can be simplified by integrating the logarithmic terms:

L(Q) = Eq
[
log

p(Y |τ(z), Bτ)p(Bτ |τ(z))p(τ(z))
q(Bτ |τ(z))q(τ(z))

]
(22)

This step introduces the key P and Q ratio. We are essentially comparing the variational distribution q
and the conditional probability model p for discrepancies.

The conditional distribution C(z|τ(z)) is introduced to enhance the model’s capacity for capturing
complex dependencies within the data. This distribution is aimed at refining the approximation of
latent variables given specific conditions. The revised ELBO, incorporating C, becomes:

L(Q,R) = EQ(z)Q(Bτ |τ(z))

[
log

p(Y,Bτ |τ(z))p(τ(z))R(z|τ(z))
Q(Bτ |τ(z))Q(z)

]
(23)

This formulation explicitly considers the influence of C(z|τ(z)), reinforcing the variational frame-
work’s ability to more accurately model the posterior distributions conditioned on complex hierarchi-
cal data structures.

Since τ(z) and Bτ are sampled from their respective distributions and Bτ explicitly depends on the
former:

L(Q,R) = EQ(z)

[
EQ(Bτ |τ(z))

[
log

p(Y,Bτ |τ(z))p(τ(z))R(z|τ(z))
Q(Bτ |τ(z))Q(z)

]]
(24)

Begin the derivation of the model parameters θ:

∇θL = ∇θEQθ(z)

[
EQ(Bτ |τ(z))

[
log

p(Y,Bτ |τ(z))p(τ(z))R(z|τ(z))
Q(Bτ |τ(z))Q(z)

]]
(25)

∇θL = ∇
(∫

Qθ(z)EQ(Bτ |τ(z))

[
log

p(Y,Bτ |τ(z))p(τ(z))R(z|τ(z))
Q(Bτ |τ(z))Q(z)

]
dz

)
(26)

=

∫
Qθ(z)∇ logQθ(z)

(
EQ(Bτ |τ(z))

[
log

p(Y,Bτ |τ(z))p(τ(z))R(z|τ(z))
Q(Bτ |τ(z))Q(z)

])
dz (27)

= EQθ(z)

[
∇ logQθ(z)

(
EQ(Bτ |τ(z))

[
log

p(Y,Bτ |τ(z))p(τ(z))R(z|τ(z))
Q(Bτ |τ(z))Q(z)

])]
(28)

where H[Qθ(z)] = −EQθ(z)[logQθ(z)] is the differential entropy. The derivative of H is
∇θH[Qθ(z)] = −∇θEQθ(z)[logQθ(z)].

Then we use the chain rule to apply the derivative operation to the desired logarithmic term yields:
∇θH[Qθ(z)] = −EQθ(z)[∇θ logQθ(z)] and∇θ logQθ(z) = ∇θQθ(z)

Qθ(z)
, we rewrite the∇θL as:

∇θL = EQθ(z)[∇ logQθ(z)EQ(Bτ |τ(z))[log
P (Y,Bτ |τ(z))P (τ(z))R(z|τ(z))

Q(Bτ |τ(z))Q(z)
]] (29)

= EQθ(z)[∇ logQθ(z)EQ(Bτ |τ(z))[log
P (Y,Bτ |τ(z))
Q(Bτ |τ(z))

] + logP (τ(z))R(z|τ(z))] +∇H[Qθ(z)]

(30)

17

131692 https://doi.org/10.52202/079017-4186

Begin the derivation of the model parameters ϕ:

∇ϕL = ∇ϕEQθ(z)

[
EQϕ(Bτ |τ(z))

[
log

P (Y,Bτ | τ(z))
Q(Bτ | τ(z)))

]]
(31)

We apply the reparameterization technique to express variables involving stochasticity as a combi-
nation of a deterministic transformation and a noise distribution that does not depend on the model
parameters. With this transformation, the gradients of the model parameters can be passed directly
through subsequent computations without being interrupted by the random sampling process. Next,
we assume that z can be expressed as a result of a deterministic transformation hθ(εz).

Accordingly, Bτ is no longer sampled directly from a simple normal distribution but is instead
obtained by transforming it through the function hϕ(·), which combines the independent noise
variable εB (usually from a simple distribution such as the standard normal distribution) and τ(z) to
generate Bτ .

Bτ = hϕ(εB , τ(z)), εB ∼ p(ε) (32)

Such treatment allows the model to take into account the fact that complex dependency structures
into account, allowing the computation of gradients to be carried out in this reparameterized way,
which is important for reflecting the actual complexity in biological data.

The expectation can be rewritten as:

EQϕ(Bτ |τ(z)) = Ep(ε)[log
P (Y, hϕ(εB , τ(z)) | τ(z))
Q(hϕ(εB , τ(z)) | τ(z)))

] (33)

Substituting this into the derivation formula gives:

∇ϕL = ∇ϕEQθ(z)[EQϕ(Bτ |τ(z)) log
P (Y,Bτ | τ(z))
Q(Bτ | τ(z)))

] (34)

Cψ(Z|τ) Begin the derivation of the model parameters ψ:

∇ψL = EQθ(z)[∇ψ log (Rψ(z|τ(z))] (35)

D.3 Algorithm

PhyloGen’s algorithm flow is as shown in Algorithm 1.

Algorithm 1 Phylogenetic Tree Generation

1: Input: Genomic sequences Y , Model parameters
2: Output: Optimized phylogenetic tree (τ,Bτ)
3: Preprocessing: Encode Y into genomic embeddings E using DNABERT2.
4: Initialize: Generate initial latent variable z∗.
5: Construct Tree: Compute distance matrix D from z∗ and use NJ algorithm.
6: Optimize Tree Structure and Branch Lengths.
7: procedure GRADIENTUPDATE(E, τ(z∗), θ, ϕ, ψ)
8: Initialize model parameters θ, ϕ, ψ
9: while not converged do

10: Sample z∗ ∼ Rψ(z∗|z) using the reparameterization trick.
11: Sample z ∼ Qθ(z|Y) using the reparameterization trick.
12: Compute the loss Ltotal (Eq. 9)
13: Compute gradients using backpropagation and Update parameters using Adam optimizer:
14: θ ← θ − η∇θL (Eq. 10)
15: ϕ← ϕ− η∇ϕL (Eq. 11)
16: ψ ← ψ − η∇ψL (Eq. 12)
17: end while
18: return Updated θ, ϕ, ψ
19: end procedure
20: return the generated phylogenetic tree (τ,Bτ)

18

131693https://doi.org/10.52202/079017-4186

E Experiment

E.1 Training Details

We focus on the most challenging aspect of the phylogenetic tree inference task: the joint learning of
tree topologies and branch lengths. For this, we employ a uniform prior for the tree topology and an
independent and identically distributed (i.i.d.) exponential prior (Exp(10)) for the branch lengths. We
evaluate all methods across eight real datasets (DS1-8) frequently used to benchmark phylogenetic
tree inference methods. These datasets include sequences from 27 to 64 eukaryote species, each
comprising 378 to 2520 sites. Notably, our approach does not require sequences to be of equal length,
thus overcoming a common limitation in traditional phylogenetic analysis. For our Monte Carlo
simulations, we select K = 2 samples and apply an annealed unnormalized posterior during each i-th
iteration, where λn = min{1.0, 0.001 + i/H} acts as the inverse temperature. This parameter starts
at 0.001 and gradually increases to 1 over H iterations, effectively simulating a cooling schedule
commonly used in annealing algorithms, similar to the approach in [45], with an initial temperature
of 0.001, which gradually decreases over 100,000 steps.

During the model training process, we utilize stochastic gradient descent to process a total of one
million Monte Carlo samples, employing K samples at each training step. The stepping-stone (SS)
algorithm [37] in MrBayes is viewed as the gold-standard value. All models were implemented in
Pytorch [27] with the Adam optimizer [14]. The MLL estimate is derived by sampling the importance
of 1000 samples, with the larger mean value being better. The learning rate is initially set to 1e-4 and
is reduced by a factor of 0.75 every 200,000 training steps. Momentum is set at 0.9 to prevent the
optimization process from becoming trapped in local minima. Utilizing the StepLR scheduler, the
current learning rate is multiplied by 0.75 every 200,000 steps to ensure steady progression, detailed
in Tab. 7 and Tab. 8.

Table 7: Training Settings of PhyloGen.

Training Configuration

Optimizer Adam optimizer
Learning rate 1e-4
Schedule Step Learning Rate
Weight Decay 0.0
momentum 0.9
eta_min 1e-6
base_lr 1e-4
max_lr 0.001
scheduler.gamma 0.75
annealing init 0.001
annealing steps 100,000

Table 8: Common Hyperparameters for PhyloGen.

TopoNet
Hidden Dim. 256
Layer 2
Output Dim. 4
TreeEncoder
Hidden Dim. 256
Layer 2
TreeDecoder
Hidden Dim. 256
Layer 2
DGCNN
Layer 2

E.2 Baselines

We mainly compare PhyloGen with three types of methods, including two MCMC-based methods
(i.e., MrBayes, SBN), two tree-structure representation learning methods (i.e., VBPI, VBPI-GNN),
and five tree-structure generation methods. It should be noted that the results of all baseline methods
are not included in the MLL tables, as some of the baseline methods are not provided with source
code, and the results of the MLL metrics are not shown in the original paper.

E.3 Bipartition Frequency Distribution (RQ3)

A bipartition frequency comparison plot is used in evolutionary analysis to show the bipartition
frequencies observed in a sample of tree topologies. Each bipartition represents a node in the tree
and defines the division of two sets of taxonomic units (e.g., species) on either side of that node.
The frequency of these bipartitions in the posterior tree topology distribution reflects how often each
topology appeared during the MCMC sampling process, which in turn reveals the confidence level of
the different topological features.

19

131694 https://doi.org/10.52202/079017-4186

We sample 1000 Monte Carlo trees from the posterior distribution Q(τ), calculate the frequency
of each bipartition within these samples, and then compare these frequencies with the bipartition
frequencies obtained using MrBayes. These frequencies are then compared with those obtained using
the MrBayes method to visualize the consistency and differences between the two methods in terms
of tree topology inference through graphs. Fig. 5 shows the bipartition frequency distributions of trees
inferred by PhyloGen for the DS1, DS2, and DS3 datasets. The horizontal axis indicates the ranking
of the bipartitions in the tree topology, and the vertical axis indicates the normalized frequency of
occurrence of the corresponding bipartitions, reflecting the prevalence of various topological features
observed during the MCMC sampling process. The results in the figure show that our method’s
variation curves are consistent with those of MrBayes, which indicates that our method has a high
degree of consistency in tree topology inference and is able to capture underlying evolutionary
patterns with a confidence level similar to the established gold standard MrBayes method.

E.4 Ablation Study (RQ5)

Tab. 5 shows the performance of our model compared with the removal of the KL loss and the Scoring
Function S, respectively. ours performs best on both the ELBO and MLL metrics, with a significant
decrease in performance after the removal of the KL loss, suggesting that the KL loss plays a key role
in regularizing the model and avoiding overfitting. While removing the S module had a large impact
on MLL, the ELBO impact was relatively small, indicating that the impact of the S module is more
complex and may be related to specific feature extraction functions. Our future work will explore
further enhancements to the S module and investigate other regularization techniques to refine the
model’s performance.

Fig. 6 presents a comparative analysis of the MLL metric across six configurations of our model on the
DS1 dataset. The standard configuration (‘Ours’) demonstrates superior performance with the highest
MLL value, indicating optimal fit and stability throughout the training process. Variants without
Layer Normalization or with a reduced hidden dimension show significant decreases in MLL metric.
Furthermore, models using other distance functions for tree construction—specifically, Euclidean and
Cosine distances—along with those using one-hot encoding for leaf node representation demonstrate
lower MLL values. Notably, the one-hot approach works the worst, suggesting that both the method
of computing the distance matrix and the choice of feature representation for leaf nodes critically
influence the model’s accuracy. Additionally, the distance matrix (calculated from the latent space z)
that we specifically designed as an input to the NJ algorithm effectively captures key information
about evolutionary relationships that a simple Euclidean or Cosine distance matrix would not be able
to capture, resulting in MLL values lower than our standard configuration.

E.5 Hyper-Parameter Analysis (RQ7)

Table 9: Hyperparameter Analysis of PhyloGen Performance in Various Parameter Configurations.
Parameter Setting Cfg. ELBO (↑) MLL (↑)

Output Dimension (emd)
(hid=256)

2 -7111.95 -6908.65
3 -7015.65 -6914.82
4 -7012.20 -6911.02
8 -7005.98 -6910.02
16 -7023.67 -6928.89

Hidden Dimension (hid)
(Layer Norm, emd=8)

64 -7116.75 -6863.84
128 -7021.16 -6917.80
256 -7005.98 -6910.02
512 -7023.96 -6915.18

Hidden Dimension
(No Layer Norm, emd=8)

64 -7123.71 -6912.71
128 -7024.32 -6919.42
256 -7020.07 -6920.05
512 -7028.93 -6921.01

The first part of Tab. 9 demonstrates the effect of different output dimensions on the model perfor-
mance at a fixed hidden layer dimension (hd=256). It can be seen that the ELBO and MLL metrics

20

131695https://doi.org/10.52202/079017-4186

show different trends when the output dimension is increased from 2 to 16, especially when the output
dimension is 8. The ELBO and MLL values are optimal, suggesting that higher output dimensions
may contribute to the model performance, but there are some fluctuations. The second and third
parts of Tab. 9 compare the effects of different hiding dimensions on model performance with and
without using layer regularization. When using layer regularization, the model reaches optimal values
for both ELBO and MLL at a hidden layer dimension of 256. The overall decrease in performance
when layer regularization is not used shows that layer normalization plays an important role in model
stability and performance.

E.6 Visualizations

Figure 9: Visualization of phylogenetic trees. The left side shows a phylogenetic tree constructed
from the sequences of the DS1 dataset. Each leaf node represents a specific species, and the text next
to the node indicates the species name. On the right side, the colored sequences represent fragments
of the species’ protein sequences, with different colored blocks corresponding to different amino acid
residues. It is worth noting that this method of sequence presentation does not require a uniform
sequence length or padding procedure and can effectively reflect actual sequence variations. The scale
bar in the lower left corner indicates the ratio between branch length and evolutionary distance. These
sequence fragments visualize the key sequence features on which the construction of the phylogenetic
tree depends.

F Broader Impacts

We recognise the importance of addressing the societal impact of our work. Phylogenetic inference
methods such as the one we propose have the potential to greatly improve our understanding of the
evolution, origin, and transmission mechanisms of viruses and bacteria. Such an understanding could
have far-reaching societal implications, especially in the fields of public health and disease control.

21

131696 https://doi.org/10.52202/079017-4186

Figure 10: Enhanced visualization of phylogenetic relationships depicted through a coloured heatmap
integrated with a phylogenetic tree. The evolutionary tree, structured using Newick format data,
illustrates the hierarchical relationships among species. Nodes are distinctly coloured to represent the
frequency of bipartition support derived from posterior probability analysis: high support (>0.2) is
indicated with blue, medium support (>0.1) with green, and low support with red.

Figure 11: Phylogenetic tree visualization. This figure shows the phylogenetic relationships of
bacterial taxa constructed based on comparative genomics analysis. Each node in the tree represents
a species sample, and the labels on the right side show the detailed classification of the samples
according to the taxonomic hierarchy, from broad taxonomic classes (e.g., "Bacteria") to more specific
classes (e.g., "Genus" and "Species"). "species").

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Our abstract and introduction do contain all the claims, innovations and
contributions mentioned in the paper.

22

131697https://doi.org/10.52202/079017-4186

Guidelines:
• The answer NA means that the abstract and introduction do not include the claims

made in the paper.
• The abstract and/or introduction should clearly state the claims made, including the

contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss a comparison of the metrics, design experiments to verify the
robustness of the model to noisy data, and state the assumptions.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: We detail all the formulae derived in the paper in the main text and in the
appendix for the derivation part of the equation.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.

23

131698 https://doi.org/10.52202/079017-4186

• The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We detail dataset information, network architecture, various hyperparameters,
and algorithms in the main text and appendices.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: We are not providing the source code now and will release the full code if it is
acceptable.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.

24

131699https://doi.org/10.52202/079017-4186

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We detail the network architecture of the model, the various hyperparameter
settings and the algorithmic pseudocode in the main text and in the appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: In the experimental section, we provide standard deviations for the ELBO and
MLL metrics and, in the appendix, we mention the choice of parameters and describe how
we ran the various methods.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.

25

131700 https://doi.org/10.52202/079017-4186

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide the time required to run the datasets in the robustness experiment
analysis.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have carefully read the NeurIPS Code of Ethics to ensure compliance in
all areas.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We illustrate in the Appendix, in the Broader Impacts section, about the
societal impact of our work, which has the potential to greatly improve our understanding of
the evolution, origins, and transmission mechanisms of viruses and bacteria, particularly in
the areas of public health and disease control.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

26

131701https://doi.org/10.52202/079017-4186

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our work has no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite all research works.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

27

131702 https://doi.org/10.52202/079017-4186

paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We are not providing the code now and will release all code if the paper is
accepted.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our work does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our work does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

28

131703https://doi.org/10.52202/079017-4186

