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Abstract

Teaching is a potentially effective approach for understanding interactions among
multiple intelligences. Previous explorations have convincingly shown that teach-
ing presents additional opportunities for observation and demonstration within the
learning model, such as data distillation and selection. However, the underlying
optimization principles and convergence of interactive teaching lack theoretical
analysis, and in this regard co-teaching serves as a notable prototype. In this
paper, we discuss its role as a reduction of the larger loss landscape derived from
Sharpness-Aware Minimization (SAM). Then, we classify it as an iterative pa-
rameter estimation process using Expectation-Maximization. The convergence of
this typical interactive teaching is achieved by continuously optimizing a varia-
tional lower bound on the log marginal likelihood. This lower bound represents
the expected value of the log posterior distribution of the latent variables under a
scaled, factorized variational distribution. To further enhance interactive teaching’s
performance, we incorporate SAM’s strong generalization information into interac-
tive teaching, referred as Sharpness Reduction Interactive Teaching (SRIT). This
integration can be viewed as a novel sequential optimization process. Finally, we
validate the performance of our approach through multiple experiments.

1 Introduction

Backgrounds. Teaching recognized as a pervasive mechanism for disseminating knowledge within
human society, has found extensive application in contemporary deep learning methodologies. It
serves as a cornerstone for various techniques such as knowledge distillation [17, 32, 15], data
distillation [43], model compression [34, 7], and machine teaching, facilitating optimal training con-
trol [46, 47]. Recent investigations into pedagogy have illuminated the integration of large language
models and multi-agent systems into educational frameworks. This novel approach emphasizes the
significance of understanding interactions among multiple clients and agents. Multi-agent systems,
anchored in language models, orchestrate the accomplishment of intricate tasks by assigning specific
roles and prescribing behavioral norms to individual agents [18, 37]. Furthermore, they exhibit
the capacity to transcend individual intelligence barriers through collaborative endeavors [24, 6],
competitive dynamics, deliberative discourses [26, 12, 5], and other strategic modalities.

Question: However, the optimization and generalization mechanisms concerning interactive teaching
strategies remain at an incipient stage of exploration [38]. Consequently, interactive teaching-based
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strategies hold promise in furnishing substantial inductive biases for further advancement in AI
agent research. Especially for bidirectional interactive teaching, which lacks sufficient attention and
theoretical exploration.

In the interactive teaching paradigm, the learning algorithm represented primarily by co-teaching
[16, 44] has demonstrated notable efficacy in achieving successful learning outcomes in the context
of noisy data. This pedagogical approach can be delineated as an interactive teaching prototype
wherein two networks with identical architectures serve as peer entities, engaging in interactions
aimed at selecting samples with minimal loss values for parameter refinement. Despite the practical
efficacy exhibited by interactive teaching methodologies like co-teaching, a notable lacuna persists in
terms of theoretical comprehension and requisite convergence analyses. In light of this, we consider
co-teaching as an incipient prototype for interactive learning, warranting further scholarly exploration.
A more profound understanding of this interactive teaching paradigm holds the potential to yield
significant insights into the dynamics governing interactions among intelligent agents [45]. For
instance, amid projections of diminishing data availability for training large-scale language models
in the foreseeable future and the attendant challenges posed by synthesized data, ongoing research
endeavors are directed towards facilitating collaborative engagements between disparate AI models
to collectively generate data of higher fidelity and reliability [35, 14].

The exploration of the loss landscape is paramount in elucidating the dynamics of interactive teaching,
driving advancements in model generalization. Dinh et al. [10] introduce an important view that
favors flat minima over sharp minima in terms of generalization. However, applying this proposition
directly is hindered by overlooking the loss landscape geometric properties inherent in commonly
used deep architectures. Foret et al. [13] introduce a pioneering methodology termed Sharpness-
Aware Minimization (SAM), which entails delineating a perturbation neighborhood in parameter
space, identifying the perturbation point that maximizes the loss value, and subsequently optimizing
it via gradient descent. This formulation lends itself to a min-max optimization problem, effectively
solvable through gradient descent techniques. The conception of SAM inspires contemplation on
the interaction and update mechanisms of two networks within the context of interactive, within
the framework of the loss landscape. While SAM operates on a single network, it necessitates the
computation of two separate gradients at distinct locations. In this case, the initial step involves
identifying the sharpest points within a specified range of data proportions within the loss landscape.
While diverging from SAM’s approach, interactive teaching omits the utilization of these sharp points
and instead updates parameters based on the minima of the remaining loss points.

Our contributions. In this paper, we initially ascertain that interactive teaching effectively dimin-
ishes the loss landscape by strategically discarding a specific subset of high-loss data points. This
process serves to optimize the training procedure, particularly beneficial in scenarios characterized by
noisy data, ultimately resulting in a transition to a low-loss landscape during each iterative interaction.
Such an approach may be construed as a prior induction of bias, strategically acknowledging the
presence of noise within the training dataset. Subsequently, we advance the conceptualization of
interactive teaching as an EM-iterative parameter estimation technique, drawing upon seminal work
by Dempster et al. [9]. The method’s convergence is predicated upon the continual refinement of the
lower bound of maximum likelihood estimation. This refinement targets the expectation of the noise
posterior distribution pertaining to latent variables, enacted via a relaxation of inequalities. Moreover,
to mitigate the inherent challenge of local optima within the interactive framework, we add a level of
sharpness knowledge exchange that includes gradient information, which we refer to as Sharpness
Reduction Interactive Teaching (SRIT). This amalgamation delineates a novel dual-level sequential
optimization paradigm. Finally, empirical validation of our proposed methodology is undertaken
across diverse datasets, serving to substantiate its efficacy in augmenting model generalization
capabilities. In summation, this manuscript underscores the following key contributions:

• From a perspective centered on loss sharpness, interactive teaching methodologies, such as
co-teaching, serve to facilitate parameter adjustments directed at alleviating elevated loss
values within the optimization landscape. This mechanism exhibits parallels with SAM
optimization, notably in its emphasis on reducing sharpness.

• Our analysis establishes that interactive teaching can be delineated as a probabilistic model,
with the incorporation of noisy data as latent variables shedding light on its operational
intricacies. This elucidation presents a robust framework for the optimization of interactive
teaching methodologies.
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• Theoretically, our research confirms that the interactive teaching paradigm and the EM
algorithm share certain underlying principles. Combined with the SAM method, it can
effectively alleviate the issue of local optima. Therefore, this integration promotes better
convergence towards reducing global sharpness in the optimization of loss landscape.

2 Related Work

Interactive teaching In teaching community, the use of two networks for interactive teaching has
gained prominence. Blum and Mitchell [4] divide examples into two views and trained separate
algorithms on each, using their predictions to expand the other’s training set. To address noisy
labels, Malach and Shalev-Shwartz [29] propose a meta-algorithm with two identical predictors
that update parameters based on prediction disagreements. Jiang et al. [19] introduce MentorNet, a
neural network that guides a deep network (StudentNet) to focus on likely correct samples, reducing
overfitting to corrupted labels. Co-teaching [16] employs two networks to combat noisy labels,
with each network teaching its peer using small-loss instances. Variants like co-teaching+ [44],
JoCoR [36], and CNLCU [40] have emerged. Co-teaching+ selects data with inconsistent predictions,
JoCoR promotes prediction consistency and applies constraints, and CNLCU uses interval estimation
to account for loss uncertainty. Based on these investigations, this paper adopts co-teaching as the
prototype for interactive teaching research. In contrast to the exchange of loss information in a single
interaction, our proposed algorithm introduces an additional level of sharpness knowledge exchange
that includes gradient information. This can be viewed as a form of dual-level interactive learning.

Loss landscape Several studies have explored the relationship between loss landscape flatness and
optimization. Li et al. [25] investigate how network structures impact the loss landscape, finding that
shortcut connections in ResNet lead to convergence towards better minima, while deeper models
have sharper landscapes, and wider models tend to be flatter with better performance. Yao et al.
[42] suggest that increasing batch size increases the spectrum of the Hessian matrix, resulting in
convergence towards sharper solutions and higher error rates for deeper local minima. Baldassi et al.
[2] demonstrate that the error loss function exhibits few extremely wide flat minima and propose
entropy-driven algorithms for searching these regions. Bisla et al. [3] derive an optimization algorithm
using low-pass filters to actively search for flat regions in the deep learning optimization landscape,
similar to SGD.

Sharpness-Aware Minimization (SAM) SAM aims to improve the generalization performance of
deep neural networks by seeking minima with flatter loss landscapes. Researchers have investigated
various aspects related to the weight perturbation radius. Adaptive SAM [22] demonstrates that fixed-
radius sharpness is sensitive to parameter rescaling, therefore incorporating scale-invariant adaptive
sharpness. Surrogate Gap Minimization [50] defines an easily computable surrogate gap, which is
equivalent to the dominant eigenvalue of the Hessian matrix. Du et al. [11] propose Efficient SAM,
which incorporates two training strategies: Stochastic Weight Perturbation and Sharpness-Sensitive
Data Selection. To alleviate high complexity, Liu et al. [27] propose a novel algorithm called Look-
SAM that only periodically calculates the inner gradient ascent. Jiang et al. [20] design an adaptive
policy based on the geometric structure of the loss function to enable random or periodic switching
between SAM updates and ERM updates. Sparse SAM [31] accelerates training by introducing
sparse perturbations through a binary mask. Other perspectives on SAM include Andriushchenko
and Flammarion [1], who suggest that a smaller number of data points within each batch can result in
better implicit bias of gradient descent for commonly used neural network architectures, and Zhang
et al. [48], who propose first-order flatness to bound the maximal eigenvalue of the Hessian at local
minima. Additionally, Dai et al. [8] point out that normalization in SAM helps stabilize the algorithm
and makes it less sensitive to the choice of the hyperparameter ρ.

3 Preliminaries

Non-Convex Optimization for Loss Function For a training dataset D = {(xi, yi)}Ni=1, where
xi ∈ X represents the input and yi ∈ Y represents the outputs or targets. We use fθ(x) to
denote a commonly used neural network with θ representing the weight parameters of the network.
ℓ : θ × X × Y → R+ represents a per-data-point loss function, the training of neural network is
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typically a non-convex optimization problem, the empirical risk minimization is shown as Equation 1:

θ̂ = argmin
θ

LD (fθ) where LD (fθ) =
1

|D|
∑

(xi,yi)∈D

ℓ (fθ (xi) , yi) , (1)

we make the assumption that the function LD (fθ) is both continuous and differentiable. During each
iteration, the optimizers randomly select a mini-batch Bt from the set D, using a fixed batch size.

Sharpness-Aware Minimization (SAM) SAM [13] expects the training process to unfold in a
flatter region, resulting in smaller training losses around the neighborhood of the converged parameter
θ̂ and improving the model’s generalization performance. The sharpness measure term is defined
as the maximum change between the loss caused by parameter perturbation within a neighborhood
and the previous loss, expressed as: maxϵ:∥ϵ∥2≤ρ LD(fθ+ϵ)− LD(fθ). SAM optimizes a min-max
problem as depicted in Equation 2:

θ̂ = argmin
θ

max
ϵ:∥ϵ∥2≤ρ

LSAM
D (fθ+ϵ) + λ∥θ∥22, (2)

where ρ represents a pre-defined constant that limits the radius of the neighborhood, while ϵ denotes
the weight perturbation vector responsible for maximizing the training loss within the neighborhood
constrained by ρ. λ denotes hyperparameter that dominates a L2 regularization term about weights. ϵ̂
is obtained by approximating the first-order Taylor expansion of LD(fθ+ϵ) at θ and solving it as a
classical dual norm problem:

ϵ̂ = arg max
ϵ:∥ϵ∥2<ρ

LD(fθ+ϵ) ≈ ρ
∇θLD (fθ)

∥∇θLD (fθ)∥22
, (3)

after obtaining ϵ̂, the outer optimization minθ in SAM follows the usual gradient descent update for
θ: θt+1 = θt − ηg(θ + ϵ̂), where η is the learning rate. The difference lies in the computation of
g(θ + ϵ̂) = ∇θLD(fθ)|θ+ϵ̂, where the gradient is evaluated at θ + ϵ̂.

Co-teaching The architecture of co-teaching [16] consists of two models, f and g, along with
their corresponding weights θf and θg. The algorithm starts by shuffling the training set D, which
represents a noisy dataset. In each iteration, the algorithm fetches a mini-batch D̄ from the shuffled
dataset. Next, it selects a subset D̄f and D̄g of D̄ by choosing the instances with the smallest losses
based on the models f and g respectively. This selection is done by randomly sampling a fraction
R(T ) of the instances with the smallest losses:

D̄f = arg min
D′:|D′|≥R(T )|D̄|

L(f,D′); D̄g = arg min
D′:|D′|≥R(T )|D̄|

L(g,D′), (4)

where R(t) is a parameter that determines the proportion of the smallest values to retain. |D̄|
represents the number of samples in the dataset D̄. Then, the algorithm updates the weights θf and
θg by applying a gradient descent step using the selected subsets D̄g and D̄f respectively:

θf = θf − η∇L(f, D̄g); θg = θg − η∇L(g, D̄f ). (5)

The algorithm updates the value of R(T ) ∈ (0, 1] based on the current epoch T and a predetermined
parameter Tk. The update rule is given by R(T ) = 1−min

{
T
Tk

τ, τ
}

.

4 Theoretical Analysis and Solution

In this section, we put forward three main points of view:

1. Interactive teaching methods like co-teaching update parameters by reducing high loss
values in the landscape. By actively involving two teachers, models in interactive framework
learn from each other’s strengths through a collaborative filtering mechanism and focus on
minimizing loss examples.

2. Our core assumption is that the cleanliness of the data distribution serves as a latent variable,
as it remains unknown within the training dataset. Based on this assumption, the interactive
teaching process can be effectively exemplified as a unique type of parameter iteration within
the EM framework. This perspective provides a probabilistic modeling-based explanation
for the iteration and convergence of interactive teaching, such as co-teaching.

4

131735https://doi.org/10.52202/079017-4188



Figure 1: Interactive teaching, Sharpness Reduction Interactive Teaching (SRIT), the plane in the
figure represents the loss landscape, which gradually becomes flat during the iterative optimization
process due to the receipt of flat gradient information cues from each other.

3. Concerning the local convergence in EM, we observe that a flatter loss landscape facilitates
the optimization process in escaping local optima. Under such conditions, we incorporate
the SAM to flatten the loss landscape and promote more global convergence within the
interactive teaching paradigm. Building upon the exchange of loss information in a single
interaction, an additional level of sharpness knowledge exchange containing gradient in-
formation has been introduced, which can be regarded as a form of dual-level interactive
learning. This interactive teaching process, augmented by SAM, enables the acceptance of
flatter high-probability regions from the peer network, thereby enhancing both the predictive
performance and generalization capability of the model, as illustrated in Figure 1.

The essence of the SAM method lies in a more refined exploration of the gradient space, implicitly
utilizing second-order information about the parameter space in the loss landscape. In experiments,
it significantly improves generalization performance but incurs some unavoidable additional com-
putations. The computational power consumption of the current algorithm complexity can be kept
within a reasonable range and does not exponentially increase with the scale of data and models. This
increase in complexity, compared to computational resources, is considered acceptable.

4.1 Analysis of parameter update mechanism

Figure 2: Loss landscape, we can broadly
assume that in each iteration, a fixed cut-
ting plane is used to remove the peaks
with high loss values.

The critical first step While both co-teaching and
SAM update network weights in two steps per iteration,
they differ fundamentally in how they compute the first
step. Specifically, in co-teaching, during the selection pro-
cess of data points with small losses, the network is pre-
trained and kept fixed. In SAM, the training data source
domain remains unchanged, but perturbations are applied
to the network weights. Within a set distance ρ neighbor-
hood, SAM seeks the direction of maximum offset ϵ that
induces the greatest change in loss values compared to
the original loss, i.e., argmax∥ϵ∥2≤ρ LD(fθ+ϵ)−LD(fθ).
SAM not only seeks out points within a defined domain
where the loss function undergoes the greatest change, ex-
hibiting high curvature characteristics geometrically, but
also aims to minimize the value of the loss function in re-
gions of high curvature (sharp regions). The computation
∇LD(fθ)|θ+ϵ, implicitly depends on the Hessian proper-
ties of LD(fθ), as the perturbation value ϵ̂ is determined
by the gradient ∇LD(fθ).

Loss landscape perspective In the non-convex optimization of neural networks, the relationship
between the magnitude of the loss value and its gradient is not clearly causal. Let’s consider network
fθ and a set of samples (xi, yi) ∈ D̄, and i = 1, .., N . The sum of the gradients of the loss function
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can be represented by the following Equation 6. The network g undergoes the same process:

∇L(fθ, D̄) =

N∑
i=1

∇Li(fθ(xi), yi) = ∇L(fθ(x1), y1) + ...+∇L(fθ(xN ), yN ), (6)

after receiving K data points D̂g = argminL(gθ, D̄) from network gθ, (xj , yj) ∈ D̂g, j = 1, ..,K,
we have:

∇L(fθ, D̂g) = ∇L(fθ(x1), y1) + ...+∇L(fθ(xj), yj) + ...+∇L(fθ(xK), yK), (7)

further, according to Equation 6 and 7, we have:

∇L(fθ, D̂g)︸ ︷︷ ︸
R(t)·#(L)

= ∇L(fθ, D̄g)− [∇L(fθ(xK+1), yK+1) + ...+∇L(fθ(xN ), yN )] , (8)

= ∇L(fθ, D̄g)− ∇L(fθ, D̃g)︸ ︷︷ ︸
(1−R(t))·#(L)

, (9)

where D̃g = D̄g\D̂g = {(xK+1, yK+1), ..., (xN , yN )}, the symbol #(L) represents the quantity of
data point loss values. Therefore, for the update at time t+ 1, gradients are computed on examples
with low loss values:

θft+1 = θft − η∇L(fθ, D̂g), (10)

= θft − η
(
∇L(fθ, D̄g)−∇L(fθ, D̃g)

)
= θft − η∇

(
L(fθ, D̄g)− L(fθ, D̃g)

)
. (11)

As illustrated by the gradient decomposition discussed above, it can be observed that co-teaching
segments the loss landscape by reducing high loss values and only optimizes parameters on the low
loss landscape. This concept is visually depicted in the schematic diagram presented in Figure 2.

4.2 EM iterative process in typical interactive teaching

The analysis in Section 4.1 reveals that the interactive teaching utilizes low-loss samples from a peer
network as prior knowledge, subsequently refining model parameters. This approach mirrors the
iterative parameter estimation of the EM algorithm, commonly employed for probabilistic models
with hidden variables. To elucidate the iterative steps and convergence, we adopt the EM framework,
grounded in Maximum Likelihood Estimation. In typical interactive teaching, specifically co-
teaching, we treat the cleanliness of training data as hidden variables, with θf and θg representing the
parameters to be estimated for two structurally identical neural networks. The iterative convergence
of the interactive teaching process within the EM framework is then characterized by the following
proposition.
Proposition 4.1. Given the training dataset D = {Xi = (xi, yi)}Ni=1, which contains noisy samples,
and assuming the samples are independent, we define the hidden variable Zc = 1 to indicate
that the c-th sample is a cleaner sample, meaning it has a lower loss value compared to noisy
data. Z = Zf

c ∪ Zg
c = {Zc}Kc=1 represents the set of hidden variables for all samples, and the

corresponding latent distribution is denoted as q(Z). The joint probability of p(Xi, Zc|θf , θg)
is obtained by simultaneously updating neural networks f and g for Xi and Zc. The logarithm
likelihood of the observed data D has the following lower bound L:

L(θf , θg, q) ≡
N∑
i=1

K∑
c=1

[
q(Zc) log

p(Xi, Zc|θf , θg)
q(Zc)

]
, (12)

the EM algorithm approximates the maximization of log p(D|θf , θg) by maximizing this lower bound
L(θf , θg, q). Specifically, the EM iteration process for the interactive teaching paradigm is as follows:

E-step:

Q(θf , θ
(t)
g ) = E

Zf
c |D,θ

(t)
f ,θg

[log p(Zf
c ,D|θf , θ(t)g )], (13)

Q(θ
(t)
f , θg) = E

Zg
c |D,θf ,θ

(t)
g
[log p(Zg

c ,D|θ(t)f , θg)], (14)

6
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The subscript Zf
c |D, θ

(t)
f , θg (or Zg

c |D, θf , θ
(t)
g ) of the expectation represents the corresponding set

of low-loss samples selected by network f (or g) and is used to update network g (or f ).

M-step:

θ
(t+1)
f = argmax

θf
Q(θ

(t)
f , θg), (15)

θ(t+1)
g = argmax

θg
Q(θf , θ

(t)
g ). (16)

Please refer to Appendix A for the deduction process of the proposition.
Remark 4.2. (1) In the E-step, we first calculate the distribution of the hidden variable
p(Zf

c |D, θ
(t)
f , θg) using the current fixed parameters θ(t)f and the dataset D. In the context of interac-

tive teaching, this involves selecting a specific proportion of clean samples to provide to the peer net-
work. We then utilize this posterior distribution to compute the expectation of log p(Zf

c ,D|θf , θ(t)g ).

(2) In the M-step, θ(t+1)
f = argmaxθf Q(θ

(t)
f , θg) optimizes the parameters of the f network to

maximize the logarithm likelihood function on the subset of samples Zg
c selected by the g network.

The network g follows the same process. And as we know, maximum likelihood estimation is
equivalent to minimizing the empirical loss.

(3) The key distinction of interactive teaching from the conventional EM algorithm lies in one party
receiving data information on the latent variable distribution from the other party. It not only allows
for a priori determination of which important information needs to be preserved but also introduces a
distribution from the counterpart, thereby increasing randomness and diversity to prevent overfitting.
From a probabilistic modeling perspective, one party receives the high-probability region of clean
samples from the other party, which effectively enhances the overall performance.

Algorithm 1: Sharpness Reduction Interactive Teaching (SRIT)
Input: Initial network parameters θf0 , θg0 , learning rate η, fixed parameter τ , iteration counts Tk

and Tmax, maximum iteration count Nmax, pre-defined constant ρ.
Output: Updated network parameters θf and θg .

1 for T = 1 to Tmax do
2 Shuffle the training set D (noisy dataset);
3 for N = 1 to Nmax do
4 Sample a mini-batch D̄ from D;
5 Dual-level optimization: The first level of loss information exchange.
6 Compute the loss of network f on D̄ and obtain D̂f :

D̂f = argminD′:|D′|≥R(T )|D̄| L(f, D̄); //sample R(T ) · |D̄| small-loss instances;
7 Compute the loss of network g on D̄ and obtain D̂g:

D̂g = argminD′:|D′|≥R(T )|D̄| L(g, D̄) //sample R(T ) · |D̄| small-loss instances;
8 Dual-level optimization : The second level of sharpness element exchange.

9 Update ϵ̂(θf ) = ρ
∇θLD̂g

(fθ)∥∥∥∇θLD̂g
(fθ)

∥∥∥2

2

and ϵ̂(θg) = ρ
∇θLD̂f

(gθ)∥∥∥∇θLD̂f
(gθ)

∥∥∥2

2

;

10 Compute the approximate gradient for network f : Gf = ∇θfL(fθ, D̂g)|θf+ϵ̂(θf );
11 Compute the approximate gradient for network g: Gg = ∇θgL(gθ, D̂f )|θg+ϵ̂(θg);
12 Update the network parameters of f using gradient descent: θf = θf − ηGf ;
13 Update the network parameters of g using gradient descent: θg = θg − ηGg;
14 end
15 Compute R(T ) = 1−min

{
T
Tk

τ, τ
}

.

16 end

4.3 Sharpness Reduction Interactive Teaching (SRIT)

Since the convergence of the EM algorithm guarantees only local optima, while SAM can flatten the
loss landscape and effectively alleviate local optima, favoring global optima, we incorporate SAM into
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the interactive teaching process, which referred as Sharpness Reduction Interactive Teaching (SRIT)
to enhance performance and generalization. We conclude the proposed method as a novel dual-level
sequential optimization process. For the first level, we start by screening the required low-loss dataset
minD̂ L(fθ, D̄). For the second level, we transfer the loss information to the counterpart model for
SAM optimization: θ∗ = argminθ̂ maxϵ̂ L(gθ+ϵ, D̂). Among the second level, we have two crucial
steps: 1).The first step estimates the direction of the change in the network weights ϵ̂(θf ) and ϵ̂(θg)
based on the gradient information of the loss function, and then computes the new approximate
gradients Gf and Gg ,

Gf = ∇θfL(fθ, D̂g)|θf+ϵ̂(θf ),Gg = ∇θgL(gθ, D̂f )|θg+ϵ̂(θg), (17)

where ϵ̂(θf ) = ρ
∇θLD̂g

(fθ)∥∥∥∇θLD̂g
(fθ)

∥∥∥2

2

, ϵ̂(θg) = ρ
∇θLD̂f

(gθ)∥∥∥∇θLD̂f
(gθ)

∥∥∥2

2

. 2). The second step involves updating the

parameters of networks f and g based on the estimated gradients. The detailed algorithm procedure
is shown in Algorithm 1.

In summary, it involves two levels of interaction: the first level is the exchange of loss information, and
the second level is the exchange of sharpness knowledge containing gradient information. The first
level filters out data that are harmful to the model, while the second level flattens the optimized loss
landscape, making it less prone to local optima, thereby enhancing optimization and generalization
performance.

5 Experiments

In this section, we will conduct experiments on two core baselines, co-teaching [16] and CNLCU [40].
Co-teaching has served as a foundation for the development of various optimization techniques within
this framework, and CNLCU is a cutting-edge research achievement. In the experiment, we use four
NVIDIA RTX 6000 GPUs with 24GB of memory each.

Table 1: Test accuracy (%) on five datasets. The best results are highlighted in bold.

Noise type Symmetric. Pairflip. Tridiagonal. Instance.
Noise ratio 20% 40% 20% 40% 20% 40% 20% 40%

MNIST

Co-teaching 97.50
±0.06

94.96.
±0.07

95.49
±0.11

91.54
±0.15

96.61
±0.06

92.76
±0.09

95.90
±0.05

91.23
±0.18

SRIT 99.42
±0.03

99.19
±0.03

99.35
±0.02

98.14
±0.07

99.47
±0.03

98.75
±0.05

99.43
±0.02

98.03
±0.10

CIFAR10

Co-teaching 82.15
±0.09

77.38
±0.15

82.32
±0.08

75.37
±0.14

82.77
±0.07

76.41
±0.17

81.86
±0.12

73.61.
±0.25

SRIT 85.64
±0.15

79.83
±0.12

85.10
±0.20

76.95
±0.17

85.39
±0.18

78.90
±0.12

84.77
±0.19

74.07
±0.25

CIFAR100

Co-teaching 50.21
±0.23

42.40
±0.16

48.27
±0.11

34.74
±0.13

50.32
±0.19

38.78
±0.16

49.74
±0.18

38.57
±0.12

SRIT 59.66
±0.16

50.57
±0.21

57.16
±0.10

35.82
±0.16

59.07
±0.15

42.27
±0.22

59.66
±0.16

40.36
±0.18

FMNIST

Co-teaching 91.13
±0.09

87.99
±0.09

89.83
±0.10

85.44
±0.12

90.42
±0.07

86.09
±0.09

90.27
±0.12

85.63
±0.13

SRIT 92.68
±0.10

88.77
±0.13

92.76
±0.09

89.25
±0.11

91.44
±0.11

89.97
±0.09

91.44
±0.09

86.02
±0.21

SVHN

Co-teaching 91.83
±0.08

88.72
±0.10

91.49
±0.10

85.09
±0.15

92.16
±0.10

87.51
±0.13

91.26
±0.18

86.33
±0.23

SRIT 94.95
±0.05

93.06
±0.05

94.34
±0.08

89.37
±0.20

94.66
±0.05

91.56
±0.12

94.45
±0.08

90.50
±0.10
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5.1 Experimental Settings

Datasets and type of noise Based on previous research [16, 44, 40], we conduct experiments on
five widely used datasets to effectively demonstrate the efficacy of the co-teaching algorithm. These
datasets include MNIST [23], FMNIST [41], CIFAR10 [21], SVHN [33], and CIFAR100 [21]. In
co-teaching, we do not use validation dataset as in research [16]. However, to maintain consistency
with CNLCU, we use 90% of the training data and 10% as the validation set in CNLCU. In CNLCU,
we conduct experiments on three representative datasets: MNIST, CIFAR10, and CIFAR100. We
utilize various types of noise commonly used in multiple studies [28, 44, 39, 49, 40], including
symmetric noise, tridiagonal noise, pairflip noise, and instance noise. To facilitate comparison with
previous research [40], we set the noise rates in the datasets to 20% and 40% respectively. On the
test dataset, we consider the average test accuracy of the last ten epochs as the final test accuracy,
accompanied by a 95% confidence interval.

Models and hyper-parameters For all datasets, we utilize a 9-layer CNN architecture [16] with
dropout and batch normalization for the classification task. In co-teaching, for all datasets, we use
the Adam optimizer with a momentum of 0.9, an initial learning rate of 0.001, and trained for 200
epochs. For R(T ) = 1 − min

{
T
Tk

τ, τ
}

, where Tk is set to 10 by default [16]. In SAM related
optimization, such as SRIT and SRCNLCU, we use an SGD optimizer with an initial learning rate
of 0.1, momentum of 0.9, weight decay of 0.0001, epochs of 200, and set ρ to 0.05 [13]. It has
been pointed out by Andriushchenko and Flammarion [1] that the generalization performance of a
model is influenced by the number of data points within a batch. Insufficient data quantity in a batch
leads to inefficient utilization of GPU accelerators, while excessively large data quantity can result in
suboptimal generalization. Therefore, taking reference from [1], we empirically set the batch size to
128 as an optimal choice.

Table 2: Test accuracy (%) on MNIST,CIFAR10,CIFAR100. The best results are highlighted in bold.

Noise type Symmetric. Pairflip. Tridiagonal. Instance.
Noise ratio 20% 40% 20% 40% 20% 40% 20% 40%

MNIST

CNLCU-H 98.70
±0.06

98.24
±0.06

98.44
±0.19

97.37
±0.32

98.89
±0.15

97.92
±0.05

98.74
±0.16

97.42
±0.39

SRCNLCU-H 99.16
±0.02

98.81
±0.05

99.01
±0.03

98.38
±0.20

99.04
±0.03

98.42
±0.05

98.88
±0.03

97.84
±0.04

CIFAR10

CNLCU-H 83.03
±0.47

78.33
±0.50

83.39
±0.68

73.40
±1.53

82.52
±0.71

74.79
±1.13

81.93
±0.25

73.58
±1.39

SRCNLCU-H 85.43
±0.11

80.88
±0.16

84.89
±0.12

75.19
±0.27

85.35
±0.14

78.94
±0.12

83.87
±0.11

75.49
±0.16

CIFAR100

CNLCU-H 46.27
±0.38

42.05
±0.87

43.25
±0.75

30.79
±0.86

45.02
±1.06

35.24
±0.93

45.02
±1.07

36.17
±1.54

SRCNLCU-H 55.84
±0.24

44.72
±0.43

53.33
±0.22

33.03
±0.27

54.28
±0.19

38.81
±0.42

54.98
±0.15

37.88
±0.17

5.2 Experimental results on SRIT, Co-teaching, SRCNLCU and CNLCU

In this part, our experimental results are saved in Table 1 and 2. In Figure 3, we showcase the
test performance on co-teaching and SRIT, more specific details are presented in Appendix B.
Under all dataset and noise conditions, SRIT and SRCNLCU with SAM both consistently achieve
significantly higher test accuracy compared to using co-teaching and CNLCU alone. This advantage
is evident across different types of noise and noise ratios. Additionally, it is apparent from the figures
presented in Appendix B that incorporating SAM into the training process demonstrates remarkable
generalization capabilities, effectively mitigating overfitting.

Performance on Different Datasets SRIT achieves exceptional performance on the MNIST dataset.
For the CIFAR10 dataset, SRIT also performs well. This indicates that even on the more complex
CIFAR10 dataset, employing SAM in interactive teaching (co-teaching) can significantly enhance
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Figure 3: Testings of five datasets by noise type, and the noise ratio is 20%.

the model’s generalization ability and accuracy. Similarly, on the FMNIST, SVHN, and CIFAR100
datasets, SRIT outperforms co-teaching in all noise scenarios. In SRCNLCU, nearly all experiments
demonstrate a significant advantage. It should be noted that we selected the experimental results of
CNLCU-H directly for comparison, without any bias.

From a macro-level perspective, co-teaching and CNLCU with SAM consistently outperformed co-
teaching alone across all tested datasets and noise conditions. Whether it is the simple MNIST dataset
or the complex CIFAR10 and CIFAR100 datasets, SRIT demonstrate strong robustness and high
accuracy. The introduction of the sharpness reduction strategy effectively improves the performance
of interactive teaching methods such as co-teaching and CNLCU, particularly when faced with high
noise ratios and complex types of noise, resulting in even more significant enhancements.

6 Conclusions

In this paper, we first analyze how the low-loss selection of noisy data for interactive teaching
reduces high-loss regions. Then, we introduce the EM framework to explore the interactive teaching
mechanism, using the co-teaching algorithm as an example, which is a typical algorithm within the
interactive teaching paradigm. We demonstrate that the iteration process of the typical interactive
teaching algorithm follows the EM algorithm, ensuring its convergence. Since SAM makes the loss
landscape flatter, it helps interactive teaching to escape local optima. Finally, based on sharpness
reduction, we propose a dual-level interactive strategy to further enhance performance and general-
ization, validating its effectiveness through experiments. In the future, we will further investigate the
strategy design of interactive teaching in intelligent agents and consider how to reduce the complexity
of the SAM algorithm in the context of interactive teaching.
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A Appendix A

Given independent observed data D, hidden variable Z, and the probability model p(D, Z, θf , θg)
with parameters θf and θg , according to MLE, the optimal point estimate of θf is obtained when the
likelihood of the model is maximized: θf = argmaxθf p(D | θf , θg). Suppose the training dataset is
D = {Xi = (xi, yi)}Ni=1, where xi represents the input, yi represents the label, and noise is present.
We define a hidden variable Zc ∈ {0, 1} to indicate whether the c-th sample is a noisy sample, where
Zc = 0 denotes a noisy sample and Zc = 1 denotes a clean sample. Z = Zf

c ∪ Zg
c = {Zc}Kc=1

represents the set of all sample hidden variables Zc. The joint probability of p(D, Zc|θf , θg) is
obtained by simultaneously updating f and g for Xi and Zc. Considering the hidden variables, the
likelihood of the discrete variable model can be expanded as follows:

p(D | θf , θg) =
K∑
c=1

p (D, Zc | θf , θg) , Z = {Z1, . . . , ZK} . (18)

The hidden variable Z represents any unobservable random variable in the probability model, and
p (D, Zc | θf , θg) is referred to as the joint likelihood of D and Zc. Using the general approach
of MLE and considering the independence of the observed data, we can take the logarithm of the
equation above to obtain:

log p(D | θf , θg) = log

N∏
i=1

p (Xi | θf , θg) =
N∑
i=1

log p (Xi | θf , θg) =
N∑
i=1

log

[
K∑
c=1

p (Xi, Zc | θf , θg)

]
.

Introducing a probability distribution q(Z) related to the hidden variables, known as the latent
distribution, which can be seen as the posterior of the hidden variables given the observed data. By
applying Jensen’s inequality log(E[X]) ≥ E[log(X)]. The logarithm likelihood of the observed data
D can be related as follows:

p(D | θf , θg) =
N∑
i=1

log

[
K∑
c=1

q (Zc)

q (Zc)
p (Xi, Zc | θf , θg)

]
(19)

≥
N∑
i=1

K∑
c=1

[
q (Zc) log

p (Xi, Zc | θf , θg)
q (Zc)

]
≡ L(θf , θg, q), (20)

where L(θf , θg, q) is a lower bound for log p(D | θf , θg). The EM algorithm [9] approximates the
maximization of log p(D | θf , θg) by maximizing this lower bound. When θf , θg, q maximize the
right-hand side of the inequality, the obtained θf , θg at least yield a local maximum for the left-hand
side of the inequality. Therefore, expressing the right-hand side as L(θf , θg, q), the EM algorithm
aims to solve the following optimization problem:

θ̂f , θ̂g = argmax
θf ,θg

L(θf , θg, q), (21)

where L(θf , θg, q) is a lower bound for the MLE optimization problem, and the EM algorithm
approximates [30] the maximum likelihood by maximizing a surrogate function. Specifically, the
EM iteration process for the co-teaching algorithm can be expressed using the following proposition:
Proposition A.1. Given the training dataset D = {Xi = (xi, yi)}Ni=1, which contains noisy samples,
and assuming the samples are independent, we define the hidden variable Zc = 1 to indicate
that the c-th sample is a cleaner sample, meaning it has a lower loss value compared to noisy
data. Z = Zf

c ∪ Zg
c = {Zc}Kc=1 represents the set of hidden variables for all samples, and the

corresponding latent distribution is denoted as q(Z). The joint probability of p(Xi, Zc|θf , θg)
is obtained by simultaneously updating neural networks f and g for Xi and Zc. The logarithm
likelihood of the observed data D has the following lower bound L:

L(θf , θg, q) ≡
N∑
i=1

K∑
c=1

[
q(Zc) log

p(Xi, Zc|θf , θg)
q(Zc)

]
, (22)

the EM algorithm approximates the maximization of log p(D|θf , θg) by maximizing this lower bound
L(θf , θg, q). Specifically, the EM iteration process for the interactive teaching paradigm is as follows:
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E-step:

Q(θf , θ
(t)
g ) = E

Zf
c |D,θ

(t)
f ,θg

[log p(Zf
c ,D|θf , θ(t)g )], (23)

Q(θ
(t)
f , θg) = E

Zg
c |D,θf ,θ

(t)
g
[log p(Zg

c ,D|θ(t)f , θg)], (24)

The subscript Zf
c |D, θ

(t)
f , θg (or Zg

c |D, θf , θ
(t)
g ) of the expectation represents the corresponding set

of low-loss samples selected by network f (or g) and is used to update network g (or f ).

M-step:

θ
(t+1)
f = argmax

θf
Q(θ

(t)
f , θg), (25)

θ(t+1)
g = argmax

θg
Q(θf , θ

(t)
g ). (26)

Proof. The EM algorithm in the interactive teaching process is a set of iterative computations,
consisting of two steps: the E-step and the M-step. In the E-step, denoted as E, the previous iteration’s
values of θ(t)f (or θ(t)g ) are fixed, and the posterior latent distribution of q(t+1)

f (or q(t+1)
g ) with respect

to L(θf , θg, q) is calculated. In the M-step, denoted as M , the weights of the network parameters
θ
(t+1)
f (or θ(t+1)

g ) are updated using q
(t+1)
g (or q(t+1)

f ) to maximize lower bound L(θf , θg, q). The
interactive teaching starts iterating after initializing the model parameters, with the E-step and M-step
alternating during each iteration. This aligns with the consistent update process of general EM
algorithm. The following outlines the derivation of the E-step and M-step of the EM algorithm about
the interactive teaching update process.

1. E-step (Expectation-step)

According to the objective of the EM algorithm, the E-step involves computing the latent variable dis-
tribution q that maximizes the lower bound, given the fixed network parameters θf (or θg)computed
in the previous step, the lower bound is as follows L:

q = argmax
q

L(θf , θg, q) = argmax
q

N∑
i=1

K∑
c=1

[
q (Zc) log

p (Xi, Zc | θf , θg)
q (Zc)

]
. (27)

Taking into account the previous Inequality 20, log p(D | θf , θg)− L(θf , θg, q) as follows:

log p(D | θf , θg)− L(θf , θg, q)

=

N∑
i=1

log

[
K∑
c=1

p (Xi, Zc | θf , θg)

]
−

N∑
i=1

K∑
c=1

[
q (Zc) log

p (Xi, Zc | θf , θg)
q (Zc)

]

=

N∑
i=1

[
log p (Xi | θf , θg)

K∑
c=1

q (Zc)−
K∑
c=1

q (Zc) log
p (Xi, Zc | θf , θg)

q (Zc)

]

=

N∑
i=1

K∑
c=1

q (Zc)

[
log p (Xi | θf , θg)− log

p (Xi, Zc | θf , θg)
q (Zc)

]

=

N∑
i=1

K∑
c=1

q (Zc) log

[
p (Xi | θf , θg) q (Zc)

p (Xi, Zc | θf , θg)

]
,

N∑
i=1

K∑
c=1

q (Zc) log

[
q (Zc)

p (Zc | Xi, θf , θg)

]
=

N∑
i=1

KL [q(Z)∥p (Z | Xi, θf , θg)] , (28)

⇒L(θf , θg, q) = log p(D | θf , θg)−
N∑
i=1

KL [q(Z)∥p (Z | Xi, θf , θg)] , (29)

where KL represents the Kullback-Leibler divergence. Based on the properties of KL divergence,
its minimum value is achieved when the two probability distributions are equal. Therefore, when
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q(Z) = p(Z | D, θf , θg), the lower bound L(θf , θg, q) is maximized. For the t-th iteration, the E-step
is computed as follows, taking into account that

∑K
c=1 q (Zc) = 1, by applying Bayes’ theorem, the

above equation can be transformed into:

max
q

L(θf , θg, q) ⇐⇒ min
q

N∑
i=1

KL [q(Z)∥p (Z | Xi, θf , θg)] , (30)

q
(t+1)
f = p

(
Zf
c | D, θ

(t)
f , θg

)
, q(t+1)

g = p
(
Zg
c | D, θf , θ

(t)
g

)
. (31)

At this point, we have completed the calculation of the posterior distribution of latent variables in the
E-step of the EM algorithm, as described in Equation 31.

2. M-step (Maximization step)

Building upon the E-step, the M-step involves solving for model parameters that maxi-
mize L(θf , θg, q). For network f , the necessary condition for this extremum problem is
∂L(θf , θg, q)/∂θf = 0:

max
θf

L(θf , θg, q) ⇒
∂

∂θf
[L(θf , θg, q)] = 0, (32)

⇒ ∂

∂θf

[
N∑
i=1

K∑
c=1

q (Zc) log p (Xi, Zc | θf , θg)

]
= 0, (33)

⇒ ∂

∂θf
Eq[log p(D, Z | θf , θg)] = 0, (34)

where Eq represents the mathematic expectation of the joint likelihood p(D, Z | θf , θg) with respect
to the hidden distribution q(Z). Based on this, the computation for the M-step in interactive teaching
is obtained as follows:

θ
(t+1)
f = argmax

θf
E
q
(t)
g
[log p(Zg

c ,D | θ(t)f , θg)], (35)

θ(t+1)
g = argmax

θf
E
q
(t)
f

[log p(Zf
c ,D | θf , θ(t)g )]. (36)

For network g, the derivation follows the same process as described above. Maximum likelihood
estimation is equivalent to minimizing empirical risk in machine learning.

B Appendix B

B.1 Figures on datasets

We present the test accuracy figures for different noise types across MNIST, FMNIST,CIFAR10,
SVHN, CIFAR100, with a noise level of 20%. It is evident from the figures that Sharpness Reduc-
tion Interactive Teaching (SRIT) exhibits superior generalization performance and is less prone to
overfitting.

Figure 4: Plotting charts based on the type of noise, with a noise rate of 20%. The charts compare the
test performance of co-teaching and Sharpness Reduction Interactive Teaching (SRIT) on the MNIST
dataset.
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Figure 5: Figures based on the type of noise, with a noise rate of 20%. The charts compare the test
performance of co-teaching and Sharpness Reduction Interactive Teaching (SRIT) on the FMNIST
dataset.

Figure 6: Figures based on the type of noise, with a noise rate of 20%. The charts compare the test
performance of co-teaching and Sharpness Reduction Interactive Teaching (SRIT) on the CIFAR10
dataset.

Figure 7: Figures based on the type of noise, with a noise rate of 20%. The charts compare the test
performance of co-teaching and Sharpness Reduction Interactive Teaching (SRIT) on the SVHN
dataset.

Figure 8: Figures based on the type of noise, with a noise rate of 20%. The charts compare the test
performance of co-teaching and Sharpness Reduction Interactive Teaching (SRIT) on the CIFAR100
dataset.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The claims put forward are consistent with theoretical and experimental results,
and can be generalized under similar assumptions.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The assumption of this article is that the training samples are subject to
noisy conditions, and it is assumed that the noisy data is difficult to observe. We conduct
experiments on multiple widely-used datasets and metrics.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: In the paper, we make necessary assumptions regarding the theoretical results,
which are outlined in the main text and elaborately proven in the appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide a detailed description of the algorithm implementation process
in the paper, along with the key experimental hyperparameters required to reproduce the
results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The paper will make the code openly accessible for reproducing the experi-
mental results.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper specifies all the training and testing details in the experimental
section, including data splits, hyperparameters, selection methods, optimizer types, and
more.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The article calculates confidence intervals for the experimental results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide relevant information about the computational resources to serve as
a reference for reproducibility.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper complies with NeurIPS’ ethical guidelines
in all aspects.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The paper discusses the positive societal impacts of the work performed,
without addressing any negative impacts. It addresses efficient interaction teaching strategies
for intelligent agents, which has a positive impact.
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Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper does not address data or models with a high risk for misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We have provided proper attribution and citation for the assets used in the
paper.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not involve any new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve these things.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve any potential risks for study participants.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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