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Abstract

Out-of-distribution (OOD) detection is critical when deploying machine learning
models in the real world. Outlier exposure methods, which incorporate auxiliary
outlier data in the training process, can drastically improve OOD detection perfor-
mance compared to approaches without advanced training strategies. We introduce
Hopfield Boosting, a boosting approach, which leverages modern Hopfield en-
ergy to sharpen the decision boundary between the in-distribution and OOD data.
Hopfield Boosting encourages the model to focus on hard-to-distinguish auxiliary
outlier examples that lie close to the decision boundary between in-distribution and
auxiliary outlier data. Our method achieves a new state-of-the-art in OOD detection
with outlier exposure, improving the FPR95 from 2.28 to 0.92 on CIFAR-10, from
11.76 to 7.94 on CIFAR-100, and from 50.74 to 36.60 on ImageNet-1K.

1 Introduction

Out-of-distribution (OOD) detection is crucial when using machine learning systems in the real
world (Ruff et al., 2021; Yang et al., 2021; Liu et al., 2021). Deployed models will — sooner or
later — encounter inputs that deviate from the training distribution. For example, a system trained
to recognize music genres might also hear a sound clip of construction site noise. In the best case,
a naive deployment can then result in overly confident predictions. In the worst case, we will get
erratic model behavior and completely wrong predictions (Hendrycks & Gimpel, 2017). The purpose
of OOD detection is to classify these inputs as OOD, such that the system can then, for instance,
notify users that no prediction is possible. In this paper we propose Hopfield Boosting, a novel
OOD detection method that leverages the energy component of modern Hopfield networks (MHNs;
Ramsauer et al., 2021) and advances the state-of-the-art of OOD detection. This energy represents a
measure of dissimilarity between a set of data instances X and a query instance ξ. It is therefore a
natural fit for doing OOD detection (as shown in Zhang et al., 2023a).

Hopfield Boosting uses an auxiliary outlier data set (AUX) to boost the model’s OOD detection
capacity. This allows the training process to learn a boundary around the in-distribution (ID) data,
improving the performance at the OOD detection task. In summary, our contributions are as follows:
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Figure 1: The Hopfield Boosting concept. The first step (weight) creates weak learners by firstly
choosing in-distribution samples (ID, orange), and by secondly choosing auxiliary outlier samples
(AUX, blue) according to their assigned probabilities; the second step (evaluate) computes the losses
for the resulting predictions (Section 3); and the third step (update) assigns new probabilities to the
AUX samples according to their position on the hypersphere (see Figure 2).

1. We propose Hopfield Boosting, an OOD detection approach that samples weak learners by
using the MHE (Ramsauer et al., 2021).

2. Hopfield Boosting achieves a new state-of-the-art in OOD detection. It improves the average
false positive rate at 95% true positives (FPR95) from 2.28 to 0.92 on CIFAR-10, from
11.38 to 7.94 on CIFAR-100, and from 50.74 to 36.60 on ImageNet-1K.

3. We provide theoretical background that motivates Hopfield Boosting for OOD detection.

2 Related Work

Some authors (e.g., Bishop, 1994; Roth et al., 2022; Yang et al., 2022) distinguish between anomalies,
outliers, and novelties. These distinctions reflect different goals within applications (Ruff et al.,
2021). For example, when an anomaly is found, it will usually be removed from the training pipeline.
However, when a novelty is found it should be studied. We focus on the detection of samples that are
not part of the training distribution and consider sample categorization as a downstream task.

Post-hoc OOD detection. A common and straightforward OOD detection approach is to use a
post-hoc strategy, where one employs statistics obtained from a classifier. The perhaps most well
known and simplest approach in this class is the Maximum Softmax Probability (MSP; Hendrycks &
Gimpel, 2017), where one utilizes p( y | x ) of the most likely class y given a feature vector x ∈ RD

to estimate whether a sample is OOD. Despite good empirical performances, this view is intrinsically
limited, since OOD detection should focus on p(x) (Morteza & Li, 2022). A wide range of post-hoc
OOD detection approaches have been proposed to address the shortcomings of MSP (e.g., Lee et al.,
2018; Hendrycks et al., 2019a; Liu et al., 2020; Sun et al., 2021, 2022; Wang et al., 2022; Zhang et al.,
2023a; Djurisic et al., 2023; Liu et al., 2023; Xu et al., 2024). Most related to Hopfield Boosting is
the work of Zhang et al. (2023a) — to our knowledge, they are the first to apply the MHE to OOD
detection. Specifically, they use the ID data set to produce stored patterns and then use a modified
version of MHE as the OOD score. While post-hoc approaches can be deployed out of the box on any
model, a crucial limitation is that their performance heavily depends on the employed model itself.
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Training methods. In contrast to post-hoc strategies, training-based methods modify the training
process to improve the model’s OOD detection capability (e.g., Hendrycks et al., 2019c; Tack et al.,
2020; Sehwag et al., 2021; Du et al., 2022; Hendrycks et al., 2022; Wei et al., 2022a; Ming et al., 2023;
Tao et al., 2023; Lu et al., 2024). For example, Self-Supervised Outlier Detection (SSD; Sehwag
et al., 2021) leverages contrastive self-supervised learning to train a model for OOD detection.

Auxiliary outlier data and outlier exposure. A third group of OOD detection approaches are
outlier exposure (OE) methods. Like Hopfield Boosting, they incorporate AUX data in the training
process to improve the detection of OOD samples (e.g., Hendrycks et al., 2019b; Liu et al., 2020;
Ming et al., 2022; Zhang et al., 2023b; Wang et al., 2023a; Zhu et al., 2023; Jiang et al., 2024). We
provide more detailed discussions on a range of OE methods in Appendix C.1. As far as we know, all
OE approaches optimize an objective (LOOD), which aims at improving the model’s discriminative
power between ID and OOD data using the AUX data set as a stand-in for the OOD case. Hendrycks
et al. (2019b) were the first to use the term OE to describe a more restrictive OE concept. Since
their approach uses the MSP for incorporating the AUX data we refer to it as MSP-OE. Further, we
refer to the OE approach introduced in Liu et al. (2020) as EBO-OE (to differentiate it from EBO,
their post-hoc approach). In general, OE methods conceptualize the AUX data set as a large and
diverse data set (e.g., ImageNet for vision tasks). As a consequence, usually, only a small subset of
the samples bear semantic similarity to the ID data set — most data points are easily distinguishable
from the ID data. Recent approaches therefore actively try to find informative samples for the training.
The aim is to refine the decision boundary, ensuring the ID data is more tightly encapsulated (e.g.,
Chen et al., 2021; Ming et al., 2022). For example, Posterior Sampling-based Outlier Mining (POEM;
Ming et al., 2022) selects samples close to the decision boundary using Thompson sampling: They
first sample a linear decision boundary between ID and AUX data and then select those data instances
which are closest to the sampled decision boundary. Hopfield Boosting also makes use of samples
close to the boundary by giving them higher weights for the boosting step.

Continuous modern Hopfield networks. MHNs are energy-based associative memory networks.
They advance conventional Hopfield networks (Hopfield, 1984) by introducing continuous queries
and states with the MHE as a new energy function. MHE leads to exponential storage capacity,
while retrieval is possible with a one-step update (Ramsauer et al., 2021). The update rule of MHNs
coincides with attention as it is used in the Transformer (Vaswani et al., 2017). Examples for
successful applications of MHNs are Widrich et al. (2020); Fürst et al. (2022); Sanchez-Fernandez
et al. (2022); Paischer et al. (2022); Schäfl et al. (2022); Schimunek et al. (2023) and Auer et al.
(2023). Section 3.2 gives an introduction to MHE for OOD detection. For further details on MHNs,
we refer to Appendix A.

Boosting for classification. Boosting, in particular, AdaBoost (Freund & Schapire, 1995), is an
ensemble learning technique for classification. It is designed to focus ensemble members toward data
instances that are hard to classify by assigning them higher weights. These challenging instances often
lie near the maximum margin hyperplane (Rätsch et al., 2001), akin to support vectors in support
vector machines (SVMs; Cortes & Vapnik, 1995). Popular boosting methods include Gradient
boosting (Breiman, 1997), LogitBoost (Friedman et al., 2000), and LPBoost (Demiriz et al., 2002).

Radial basis function networks. Radial basis function networks (RBF networks; Moody & Darken,
1989) are function approximators of the form

φ(ξ) =

N∑
i=1

ωi exp

(
−||ξ − µi||22

2σ2
i

)
, (1)

where ωi are linear weights, µi are the component means and σ2
i are the component variances. RBF

networks can be described as a weighted linear superposition of N radial basis functions and have
previously been used as hypotheses for boosting (Rätsch et al., 2001). If the linear weights are strictly
positive, RBF networks can be viewed as an unnormalized weighted mixture of Gaussian distributions
pi(ξ) = N (ξ;µi, σ

2
i I) with i = {1, . . . , N}. Appendix H.1 explores the connection between RBF

networks and MHNs via Gaussian mixtures in more depth. We refer to Bishop (1995) and Müller
et al. (1997) for more general information on RBF networks.
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3 Method

This section presents Hopfield Boosting: First, we formalize the OOD detection task. Second, we
give an overview of the MHE and why it is suitable for OOD detection. Finally, we introduce the
AUX-based boosting framework. Figure 1 shows a summary of the Hopfield Boosting concept.

3.1 Classification and OOD Detection

Consider a multi-class classification task denoted as (XD,Y D,Y), where XD ∈ RD×N represents
a set of N D-dimensional feature vectors (xD

1 ,x
D
2 , . . . ,x

D
N ), which are i.i.d. samples xD

i ∼ pID.
Y D ∈ YN denotes the labels associated with these feature vectors, and Y is a set containing possible
classes (||Y|| = K signifies the number of distinct classes). We consider observations ξD ∈ RD that
deviate considerably from the data generation pID(ξ

D) that defines the “normality” of our data as
OOD. Following Ruff et al. (2021), an observation is OOD if it pertains to the set

O = {ξD ∈ RD | pID(ξ
D) < ϵ} where ϵ ≥ 0. (2)

Since the probability density of the data generation pID is in general not known, one needs to estimate
pID(ξ

D). In practice, it is common to define an outlier score s(ξ) that uses an encoder ϕ, where
ξ = ϕ(ξD). The outlier score should — in the best case — preserve the density ranking. In contrast
to a density estimation, the score s(ξ) does not have to fulfill all requirements of a probability density
(like proper normalization or non-negativity). Given s(ξ) and ϕ, OOD detection can be formulated
as a binary classification task with the classes ID and OOD:

B̂(ξD, γ) =

{
ID if s(ϕ(ξD)) ≥ γ

OOD if s(ϕ(ξD)) < γ
. (3)

It is common to choose the threshold γ so that a portion of 95% of ID samples from a previously
unseen validation set are correctly classified as ID. However, metrics like the area under the receiver
operating characteristic (AUROC) can be directly computed on s(ξ) without specifying γ since the
AUROC computation sweeps over the threshold.

3.2 Modern Hopfield Energy

The log-sum-exponential (lse) function is defined as

lse(β,z) = β−1 log

(
N∑
i=1

exp(βzi)

)
, (4)

where β is the inverse temperature and z ∈ RN is a vector. The lse can be seen as a soft approximation
to the maximum function: As β → ∞, the lse approaches maxi zi.

Given a set of N d-dimensional stored patterns (x1,x2, . . . ,xN ) arranged in a data matrix X , and a
d-dimensional query ξ, the MHE is defined as

E(ξ;X) = − lse(β,XT ξ) +
1

2
ξT ξ + C, (5)

where C = β−1 logN + 1
2M

2 and M is the largest norm of a pattern: M = maxi ||xi||. X is also
called the memory of the MHN. Intuitively, Equation (5) can be explained as follows: The dot-product
within the lse computes a similarity for a given ξ ∈ Rd to all patterns in the memory X ∈ Rd×N .
The lse function aggregates the similarities to form a single value, where the β parameterizes the
aggregation operation: If β → ∞, the maximum similarity of ξ to the patterns in X is returned.

To use the MHE for OOD detection, Hopfield Boosting acquires the memory patterns X by feeding
raw data instances (xD

1 ,x
D
2 , . . . ,x

D
N ) of the ID data set arranged in the data matrix XD ∈ RD×N to

an encoder ϕ : RD → Rd (e.g., ResNet): xi = ϕ(xD
i ). We denote the component-wise application

of ϕ to the patterns in XD as X = ϕ(XD). Similarly, a raw query ξD ∈ RD is fed through the
encoder to obtain the query pattern: ξ = ϕ(ξD). One can now use E(ξ;X) to estimate whether ξ is
ID or OOD: A low energy indicates ξ is ID, and a high energy signifies that ξ is OOD.

4
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3.3 Boosting Framework

Sampling of informative outlier data. Hopfield Boosting uses AUX data to learn a decision
boundary between the ID and OOD region during the training. Similar to Chen et al. (2021) and
Ming et al. (2022), Hopfield Boosting selects informative outliers close to the ID-OOD decision
boundary. For this selection, Hopfield Boosting weights the AUX data similar to AdaBoost (Freund
& Schapire, 1995) by sampling data instances close to the decision boundary more frequently. We
consider samples close to the decision boundary as weak learners — their nearest neighbors consist of
samples from their own class as well as from the foreign class. An individual weak learner represents
a classifier that is only slightly better than random guessing (Figure 6). Vice versa, a strong learner
can be created by forming an ensemble of a set of weak learners (Figure 2).

We denote the matrix containing the raw AUX data instances (oD
1 ,o

D
2 , . . . ,o

D
N ) as OD ∈ RD×M ,

and the memory containing the encoded AUX patterns as O = ϕ(OD). The boosting process
proceeds as follows: There exists a weight (w1, w2, . . . , wN ) for each data point in OD and the
individual weights are aggregated into the weight vector wt. Hopfield Boosting uses these weights to
draw mini-batches OD

s from OD for training, where weak learners are sampled more frequently.

We introduce an MHE-based energy function which Hopfield Boosting uses to determine how weak
a specific learner ξ is (with higher energy indicating a weaker learner):

Eb(ξ;X,O) = − 2 lse(β, (X ∥O)T ξ) + lse(β,XT ξ) + lse(β,OT ξ), (6)

where X ∈ Rd×N contains ID patterns, O ∈ Rd×M contains AUX patterns, and (X ∥ O) ∈
Rd×(N+M) denotes the concatenated data matrix containing the patterns from both X and O. Before
computing Eb, we normalize the feature vectors in X , O, and ξ to unit length. Figure 3 displays the
energy landscape of Eb(ξ;X,O) using exemplary data on a 3-dimensional sphere. Eb is maximal at
the decision boundary between ID and AUX data and decreases with increasing distance from the
decision boundary in both directions.

As we show in our theoretical discussion in Appendix G, when modeling the class-conditional
densities of the ID and AUX data set as mixtures of Gaussian distributions

p( ξ | ID ) =
1

N

N∑
i=1

N (ξ;xi, β
−1I), (7)

p( ξ | AUX ) =
1

N

N∑
i=1

N (ξ;oi, β
−1I), (8)

with equal class priors p(ID) = p(AUX) = 1/2 and normalized patterns ||xi|| = 1 and ||oi|| = 1,
we obtain Eb(ξ;X,O)

C
= β−1 log(p( ID | ξ ) · p( AUX | ξ )), where C

= denotes equality up to an
irrelevant additive constant. The exponential of Eb is the variance of a Bernoulli random variable with
the outcomes {ID,AUX} conditioned on ξ. Thus, according to Eb, the weak learners are situated at
locations where the model defined in Equations (7) and (8) is uncertain.

Given a set of query values (ξ1, ξ2, . . . , ξn) assembled in a query matrix Ξ ∈ Rd×n, we denote a
vector of energies e ∈ Rn with ei = Eb(ξi;X,O) as

e = Eb(Ξ;X,O). (9)

To calculate the weights wt+1, we use the memory of AUX patterns as a query matrix Ξ = O and
compute the respective energies Eb of those patterns. The resulting energy vector Eb(Ξ;X,O) is
then normalized by a softmax. This computation provides the updated weights:

wt+1 = softmax(βEb(Ξ;X,O)). (10)

Appendix J provides theoretical background on how informative samples close to the decision
boundary are beneficial for training an OOD detector.
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Figure 2: Synthetic example of the adaptive resampling mechanism. Hopfield Boosting forms a
strong learner by sampling and combining a set of weak learners close to the decision boundary.
The heatmap on the background shows exp(βEb(ξ;X,O)), where β is 60. Only the sampled (i.e.,
highlighted) points serve as memories X and O.

Training the model with MHE. In this section, we introduce how Hopfield Boosting uses the
sampled weak learners to improve the detection of patterns outside the training distribution. We
follow the established training method for OE (Hendrycks et al., 2019b; Liu et al., 2020; Ming et al.,
2022): Train a classifier on the ID data using the standard cross-entropy loss and add an OOD loss
that uses the AUX data set to sharpen the decision boundary between the ID and OOD regions.
Formally, this yields the loss

L = LCE + λLOOD, (11)

where λ is a hyperparamter indicating the relative importance of LOOD. Hopfield Boosting explicitly
minimizes Eb (which is also the energy function Hopfield Boosting uses to sample weak learners).
Given the weight vector wt, and the data sets XD and OD, we obtain a mini-batch XD

s containing
N samples from XD by uniform sampling, and a mini-batch of N weak learners OD

s from OD

by sampling according to wt with replacement. We then feed the respective mini-batches into the
neural network ϕbase to create a latent feature (in our experiments, we always use the feature of the
penultimate layer of a ResNet). Our proposed approach then uses two heads:

1. A linear classification head that maps the latent feature to the class logits for LCE.
2. A 2-layer MLP ϕproj maps the features from the penultimate layer to the output for LOOD.

Hopfield Boosting computes LOOD on the representations it obtains from ϕ = ϕproj ◦ ϕbase as follows:

LOOD =
1

2N

∑
ξ

Eb(ξ;Xs,Os), (12)

where the memories Xs and Os contain the encodings of the sampled data instances: Xs = ϕ(XD
s )

and Os = ϕ(OD
s ). The sum is taken over the observations ξ, which are drawn from (Xs ∥ Os).

Hopfield Boosting computes LOOD for each mini-batch by first calculating the pairwise similarity
matrix between the patterns in the mini-batch, followed by determining the Eb values of the individual
observations ξ, and, finally a mean reduction. To the best of our knowledge, Hopfield Boosting is the
first method that uses Hopfield networks in this way to train a deep neural network. We note that
there is a relation between Hopfield Boosting and SVMs with an RBF kernel (see Appendix H.3).
However, the optimization procedure of SVMs is in general not differentiable. In contrast, our novel
energy function is fully differentiable. This allows us to use it to train neural networks.

Summary. Algorithm 1 provides an outline of Hopfield Boosting. Each iteration t consists of three
main steps: 1. weight, 2. evaluate, and 3. update. First, Hopfield Boosting samples a mini-batch from
the ID data and weights the AUX data by sampling a mini-batch according to wt. Second, Hopfield
Boosting evaluates the composite loss on the sampled mini-batch. Third, Hopfield Boosting updates
the model parameters and, every N -th step, also the sampling weights for the AUX data set wt+1.

Inference. At inference time, the OOD score s(ξ) is

s(ξ) = lse(β,XT ξ) − lse(β,OT ξ). (13)

6
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Algorithm 1 Hopfield Boosting

Require: T , N , X , O, Y , LCE, Eb, β
Set all weights w1 to 1/|O|
for t = 1 to T do

1. Weight. Get hypothesis Xs ∥Os → {ID,AUX}:
1.a. Mini-batch sampling Xs from X , and
1.b. Sub-sampling of weak learners Os from O according to the weighting wt.

2. Evaluate. Compute loss from Equation (11) on Xs and Os.
3. Update. Update model for the next iteration:

3.a. At every step, update the full model (backbone, classification head, and MHE).
3.b. At every t ∗N step calculate new weights for O with wt+1 = softmax(βEb(O;X,O)).

end for

For computing s(ξ), Hopfield Boosting uses the 50,000 random samples from the ID and AUX data
sets, respectively. As we show in Appendix I.8, this step entails only a very moderate computational
overhead in relation to a complete forward pass (e.g., an overhead of 7.5% for ResNet-18 on an
NVIDIA Titan V GPU with 50,000 patterns stored in each of the memories X and O). We additionally
experimented with using only lse(β,XT ξ) as a score, which also gives reasonable results. However,
the approach in Equation (13) has turned out to be superior. Equation (13) uses information from
both ID and AUX samples. This can, for example, be beneficial for handling query patterns ξ that are
dissimilar from both the memory patterns in X as well as from the memory patterns in O.

3.4 Comparison of Hopfield Boosting to HE and SHE

Zhang et al. (2023a) propose two post-hoc methods for OOD detection with MHE:“Hopfield Energy”
(HE) and “Simplified Hopfield Energy” (SHE). In contrast to Hopfield Boosting, HE and SHE do not
use AUX data to get a better boundary between ID and OOD data. Rather, their methods evaluate
the MHE on ID patterns only to determine whether a sample is ID or OOD. Additional differences
include the selection of patterns stored in the memory or the normalization of the patterns. The OE
process of Hopfield Boosting drastically improves the OOD detection performance compared to HE
and SHE. We verify that the unique contributions of Hopfield Boosting (like the energy-based loss
and the boosting process) are responsible for the superior performance with two extensions of HE
that include AUX data (the comparison can be found in Appendix I.9). For further information on the
differences to HE and SHE, we refer to Appendix H.4.

4 Experiments

4.1 Toy Example

This section presents a toy example illustrating the main intuitions behind Hopfield Boosting. For
the sake of clarity, the toy example does not consider the inlier classification task that would induce
secondary processes, which would obscure the explanations. Formally, we do not consider the first
term on the right-hand side of Equation (11). For further toy examples, we refer to Appendix F.

Figure 2 demonstrates how the weighting in Hopfield Boosting allows good estimations of the
decision boundary, even if Hopfield Boosting only samples a small number of weak learners. This is
advantageous because the AUX data set contains a large number of data instances that are uninforma-
tive for the OOD detection task. For small, low dimensional data, one can always use all the data to
compute Eb (Figure 2, a). For large problems (like in Ming et al., 2022), this strategy is difficult, and
the naive solution of uniformly sampling N data points would also not work. This will yield many
uninformative points (Figure 2, b). When using Hopfield Boosting and sampling N weak learners
according to wt, the result better approximates the decision boundary of the full data (Figure 2, c).
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Table 1: OOD detection performance on CIFAR-10. We compare results from Hopfield Boosting,
DOS (Jiang et al., 2024), DOE (Wang et al., 2023b), DivOE (Zhu et al., 2023), DAL (Wang et al.,
2023a), MixOE (Zhang et al., 2023b), POEM (Ming et al., 2022), EBO-OE (Liu et al., 2020), and
MSP-OE (Hendrycks et al., 2019b) on ResNet-18. ↓ indicates “lower is better” and ↑ “higher is
better”. All values in %. Standard deviations are estimated across five training runs.

Metric HB (ours) DOS DOE DivOE DAL MixOE POEM EBO-OE MSP-OE

FPR95 ↓ 0.23±0.08 3.09±0.75 1.97±0.58 6.21±0.84 1.25±0.62 27.54±2.46 1.48±0.68 2.66±0.91 4.31±1.10

SVHN AUROC ↑ 99.57±0.06 99.15±0.22 99.60±0.13 98.53±0.08 99.61±0.15 95.37±0.44 99.33±0.15 99.15±0.23 99.20±0.15

FPR95 ↓ 0.82±0.17 3.66±0.98 3.22±0.45 1.88±0.25 4.17±0.27 0.14±0.07 4.02±0.91 6.82±0.74 7.02±1.14

LSUN-Crop AUROC ↑ 99.40±0.04 99.04±0.20 99.30±0.12 99.50±0.02 99.13±0.02 99.61±0.11 98.89±0.15 98.43±0.10 98.83±0.15

FPR95 ↓ 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.16±0.17 0.00±0.00 0.00±0.00 0.00±0.00

LSUN-Resize AUROC ↑ 99.98±0.02 99.99±0.01 100.00±0.00 99.89±0.05 99.92±0.05 99.89±0.06 99.88±0.12 99.98±0.02 99.96±0.00

FPR95 ↓ 0.16±0.02 1.28±0.20 2.75±0.57 1.20±0.11 0.95±0.13 4.68±0.22 0.49±0.04 1.11±0.17 2.29±0.16

Textures AUROC ↑ 99.84±0.01 99.63±0.04 99.35±0.12 99.59±0.02 99.74±0.01 98.91±0.07 99.72±0.05 99.61±0.02 99.57±0.01

FPR95 ↓ 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.17±0.12 0.00±0.00 0.00±0.00 0.00±0.00

iSUN AUROC ↑ 99.97±0.02 99.99±0.01 100.00±0.00 99.88±0.05 99.93±0.04 99.87±0.05 99.87±0.12 99.98±0.01 99.96±0.00

FPR95 ↓ 4.28±0.23 12.26±0.97 19.72±2.39 13.70±0.50 14.22±0.51 16.30±1.09 7.70±0.68 11.77±0.68 21.42±0.88

Places 365 AUROC ↑ 98.51±0.10 96.63±0.43 95.06±0.72 96.95±0.09 96.77±0.07 96.92±0.22 97.56±0.26 96.39±0.30 95.91±0.17

FPR95 ↓ 0.92 3.38 4.61 3.83 3.43 8.17 2.28 3.73 5.84Mean AUROC ↑ 99.55 99.07 98.88 99.06 99.18 98.43 99.21 98.92 98.90

ID Accuracy ↑ 94.02±0.09 94.74±0.13 94.93±0.12 94.72±0.17 95.11±0.05 96.60±1.50 89.20±1.30 91.32±0.35 94.83±0.23

Table 2: OOD detection performance on ImageNet-1K. We compare results from Hopfield Boosting,
DOS (Jiang et al., 2024), DOE (Wang et al., 2023b), DivOE (Zhu et al., 2023), DAL (Wang et al.,
2023a), MixOE (Zhang et al., 2023b), POEM (Ming et al., 2022), EBO-OE (Liu et al., 2020), and
MSP-OE (Hendrycks et al., 2019b) on ResNet-50. ↓ indicates “lower is better” and ↑ “higher is
better”. All values in %. Standard deviations are estimated across five training runs.

Metric HB (ours) DOS DOE DivOE DAL MixOE POEM EBO-OE MSP-OE

FPR95 ↓ 44.59±1.05 40.29±0.93 83.83±7.19 42.80±0.74 43.88±0.66 41.05±4.91 31.26±0.67 29.67±1.26 48.38±0.87

Textures AUROC ↑ 88.01±0.57 89.88±0.18 64.22±9.25 88.18±0.06 87.39±0.15 88.51±1.29 92.22±0.14 92.40±0.23 86.25±0.25

FPR95 ↓ 37.37±1.84 59.29±0.96 83.73±8.78 61.00±0.57 65.31±0.61 65.14±2.53 57.46±0.90 57.69±1.61 66.01±0.26

SUN AUROC ↑ 91.24±0.52 84.30±0.21 72.95±7.94 83.64±0.30 81.47±0.22 82.20±0.72 85.38±0.35 85.83±0.60 81.45±0.20

FPR95 ↓ 53.31±2.05 69.72±1.01 86.30±6.69 71.09±0.60 74.46±0.75 71.34±1.49 68.87±1.05 70.03±1.83 74.58±0.44

Places 365 AUROC ↑ 87.10±0.52 81.62±0.22 70.37±7.17 80.35±0.33 78.72±0.28 80.31±0.42 81.79±0.40 81.35±0.63 78.89±0.19

FPR95 ↓ 11.11±0.66 49.55±1.41 70.82±13.89 30.51±0.42 51.92±0.74 47.28±1.55 45.37±1.79 49.02±4.40 51.73±1.35

iNaturalist AUROC ↑ 97.65±0.20 90.49±0.38 83.82±5.75 93.81±0.10 88.33±0.21 90.19±0.35 92.01±0.33 91.44±0.79 88.51±0.30

FPR95 ↓ 36.60 54.71 81.17 51.35 58.90 56.20 50.74 51.60 60.17Mean AUROC ↑ 91.00 86.57 72.84 86.49 83.98 85.30 87.85 87.75 83.78

ID Accuracy ↑ 76.30±0.04 76.04±0.02 64.36±6.94 74.86±0.03 75.46±0.04 75.47±0.20 75.66±0.05 75.64±0.09 75.71±0.03

4.2 Data & Setup

CIFAR-10 & CIFAR-100. Our training and evaluation proceeds as follows: We train Hopfield
Boosting with ResNet-18 (He et al., 2016) on the CIFAR-10 and CIFAR-100 data sets (Krizhevsky,
2009), respectively. In these settings, we use ImageNet-RC (Chrabaszcz et al., 2017) (a low-resolution
version of ImageNet) as the AUX data set. For testing the OOD detection performance, we use the
data sets SVHN (Street View House Numbers) (Netzer et al., 2011), Textures (Cimpoi et al., 2014),
iSUN (Xu et al., 2015), Places 365 (López-Cifuentes et al., 2020), and two versions of the LSUN data
set (Yu et al., 2015) — one where the images are cropped, and one where they are resized to match the
resolution of the CIFAR data sets (32x32 pixels). We refer to the two LSUN data sets as LSUN-Crop
and LSUN-Resize, respectively. We compute the scores s(ξ) as described in Equation (13) and then
evaluate the discriminative power of s(ξ) between CIFAR and the respective OOD data set using the
FPR95 and the AUROC. We use a validation process with different OOD data for model selection.
Specifically, we validate the model on MNIST (LeCun et al., 1998), and ImageNet-RC with different
pre-processing than in training (resize to 32x32 pixels instead of crop to 32x32 pixels), as well as
Gaussian and uniform noise.

ImageNet-1K. We evaluate Hopfield Boosting on the large-scale benchmark: We use ImageNet-1K
(Russakovsky et al., 2015) as ID data set and ImageNet-21K (Ridnik et al., 2021) as AUX data set.
The OOD test data sets are Textures (Cimpoi et al., 2014), SUN (Xu et al., 2015), Places 365 (López-
Cifuentes et al., 2020), and iNaturalist (Van Horn et al., 2018). In this setting, all images are scaled to
a resolution of 224x224. To keep our method comparable to other OE methods, we closely follow the
training and evaluation protocol of (Zhu et al., 2023). This implies htat we fine-tune a ResNet-50 that
was pre-trained on the ImageNet-1K ID classification task (as provided by TorchVision, 2016).

8

131866https://doi.org/10.52202/079017-4192



Table 3: Ablated training procedures on CIFAR-10. We compare the result of Hopfield Boosting
to the results of our method when not using weighted sampling, the projection head, or the OOD
loss. ↓ indicates “lower is better” and ↑ “higher is better”. All values in %. Standard deviations are
estimated across five training runs.

Weighted Sampling ✓ ✗ ✗ ✗
Projection Head ✓ ✓ ✗ ✗
LOOD ✓ ✓ ✓ ✗

FPR95 ↓ 0.23±0.06 0.70±0.13 1.01±0.27 45.65±13.51

SVHN AUROC ↑ 99.57±0.06 99.55±0.08 99.21±0.21 90.99±2.68

FPR95 ↓ 0.28±0.05 1.58±0.31 2.22±0.36 28.59±4.33

LSUN-Crop AUROC ↑ 99.40±0.05 99.24±0.10 98.28±0.25 94.08±0.86

FPR95 ↓ 0.00±0.02 0.00±0.00 0.00±0.00 50.30±7.16

LSUN-Resize AUROC ↑ 99.98±0.02 99.98±0.01 99.98±0.01 89.15±1.89

FPR95 ↓ 0.16±0.01 0.26±0.06 0.38±0.10 49.36±1.63

Textures AUROC ↑ 99.85±0.01 99.81±0.02 99.70±0.06 89.58±0.52

FPR95 ↓ 0.00±0.02 0.00±0.00 0.00±0.00 51.08±6.38

iSUN AUROC ↑ 99.97±0.02 99.99±0.00 99.98±0.01 88.89±1.74

FPR95 ↓ 4.28±0.11 6.20±0.21 8.73±1.06 77.44±0.81

Places 365 AUROC ↑ 98.51±0.11 97.68±0.21 94.77±0.81 78.30±0.83

FPR95 ↓ 0.92 1.46 2.06 50.40Mean AUROC ↑ 99.55 99.38 98.65 88.50

Baselines. As mentioned earlier, previous works offer vast experimental evidence that OE methods
offer superior OOD detection compared to methods without OE (see e.g., Ming et al., 2022; Wang
et al., 2023a). Our experiments in Appendix I.14 confirm this. Thus, we focus on a comprehensive
comparison of Hopfield Boosting to eight OE methods: MSP-OE (Hendrycks et al., 2019b), EBO-OE
(Liu et al., 2020), POEM (Ming et al., 2022), MixOE (Zhang et al., 2023b), DAL (Wang et al., 2023a),
DivOE (Zhu et al., 2023), DOE (Wang et al., 2023b) and DOS (Jiang et al., 2024).

Training setup. The network trains for 100 epochs (CIFAR-10/100) or 4 epochs (ImageNet-1K),
respectively. In each epoch, the model processes the entire ID data set and a selection of AUX
samples (sampled according to wt). We sample mini-batches of size 128 per data set, resulting in a
combined batch size of 256. We evaluate the composite loss from Equation (11) for each resulting
mini-batch and update the model accordingly. After an epoch, we update the sample weights, yielding
wt+1. For efficiency reasons, we only compute the weights for 500,000 AUX data instances (∼40%
of ImageNet), which we denote as Ξ. The weights of the remaining samples are set to 0. During the
sample weight update, Hopfield Boosting does not compute gradients or update model parameters.
The update of the sample weights wt+1 proceeds as follows: First, we fill the memories X and O
with 50,000 ID samples and 50,000 AUX samples, respectively. Second, we use the obtained X and
O to get the energy Eb(Ξ;X,O) for each of the 500,000 AUX samples in Ξ and compute wt+1

according to Equation (10). In the following epoch, Hopfield Boosting samples the mini-batches
OD

s according to wt+1 with replacement. To allow the storage of even more patterns in the Hopfield
memory during the weight update process, one could incorporate a vector similarity engine (e.g.,
Douze et al., 2024) into the process. This would potentially allow a less noisy estimate of the sample
weights. For the sake of simplicity, we did not opt to do this in our implementation of Hopfield
Boosting. As we show in section 4.3, Hopfield Boosting achieves state-of-the-art OOD detection
results and can scale to large datasets (ImageNet-1K) even without access to a similarity engine.

Hyperparameters & Model Selection. Like Yang et al. (2022), we use SGD with an initial
learning rate of 0.1 and a weight decay of 5 · 10−4. We decrease the learning rate during the training
process with a cosine schedule (Loshchilov & Hutter, 2016). Appendix I.2 describes the image
transformations and pre-processing. We apply optimizer, weight decay, learning rate, scheduler, and
transformations consistently to all OOD detection methods of the comparison. For training Hopfield
Boosting, we use a single value for β throughout the training and evaluation process and for all OOD
data sets. For model selection, we use a grid search with λ, chosen from the set {0.1, 0.25, 0.5, 1.0},
and β, chosen from the set {2, 4, 8, 16, 32}. From these hyperparameter configurations, we select
the model with the lowest mean FPR95 metric (where the mean is taken over the validation OOD
data sets) and do not consider the ID classification accuracy for model selection. In our experiments,
β = 4 and λ = 0.5 yields the best results for CIFAR-10 and CIFAR-100. For ImageNet-1K, we set
β = 32 and λ = 0.25.
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4.3 Results & Discussion

Table 1 summarizes the results for CIFAR-10. Hopfield Boosting achieves equal or better performance
compared to the other methods regarding the FPR95 metric for all OOD data sets. It surpasses POEM
(the previously best OOD detection approach with OE in our comparison), improving the mean
FPR95 metric from 2.28 to 0.92. On CIFAR-100 (Appendix I.1), Hopfield Boosting improves the
mean FPR95 metric from 11.76 to 7.94. It is notable that all methods achieve perfect FPR95 results
on the LSUN-Resize and iSUN data sets. This is somewhat problematic since there exists evidence
that the LSUN-Resize data set can give misleading results due to image artifacts resulting from the
resizing procedure (Tack et al., 2020; Yang et al., 2022). We hypothesize that a similar issue exists
with the iSUN data set, as in our experiments, LSUN-Resize and iSUN behave very similarly.

On ImageNet-1K (Table 2), Hopfield Boosting surpasses all methods in our comparison in terms of
both mean FPR95 and mean AUROC. Compared to POEM (the previously best method) Hopfield
Boosting improves the mean FPR95 from 50.74 to 36.60. This demonstrates that Hopfield Boosting
scales very favourably to large-scale settings.

We observe that all methods tested perform worst on the Places 365 data set. To gain more insights
regarding this behavior, we look at the data instances from the Places 365 data set that Hopfield
Boosting trained on CIFAR-10 most confidently classifies as in-distribution (i.e., which receive the
highest scores s(ξ)). Visual inspection shows that among those images, a large portion contains
objects from semantic classes included in CIFAR-10 (e.g., airplanes, horses, automobiles). We refer
to Appendix I.6 for more details.

We evaluate the performance of the following 3 ablated training procedures on the CIFAR-10
benchmark to gauge the importance of the individual contributions of Hopfield Boosting: (a) Random
sampling instead of weighted sampling, (b) Random sampling instead of weighted sampling and no
projection head, (c) No application of LOOD. The results (Table 3) show that all contributions (i.e,
weighted sampling, the projection head, and LOOD) are important factors for Hopfield Boosting ’s
performance. For additional ablations, we refer to Appendix I.

When subjecting Hopfield Boosting to data sets that were designed to show the weakness of OOD
detection approaches (Appendix I.7), we identify instances where a substantial number of outliers are
wrongly classified as inliers. Testing with EBO-OE yields comparable outcomes, indicating that this
phenomenon extends beyond Hopfield Boosting.

5 Limitations

Lastly, we would like to discuss two limitations that we found: First, we see an opportunity to
improve the evaluation procedure for OOD detection. Specifically, it remains unclear how reliably
the performance on specific data sets can indicate the general ability to detect OOD inputs. Our
results from iSUN and LSUN-Resize (Section 4.3) indicate that issues like image artifacts in data
sets greatly influence model evaluation. Second, although OE-based approaches improve the OOD
detection capability, their reliance on AUX data can limit their applicability. For one, the selection of
the AUX data is crucial (since it determines the characteristics of the decision boundary surrounding
the inlier data). Furthermore, the use of AUX data can be prohibitive in domains where only a few or
no outliers at all are available for training the model.

6 Conclusions

We introduce Hopfield Boosting: an approach for OOD detection with OE. Hopfield Boosting uses
an energy term to boost a classifier between inlier and outlier data by sampling weak learners that
are close to the decision boundary. We illustrate how Hopfield Boosting shapes the energy surface
to form a decision boundary. Additionally, we demonstrate how the boosting mechanism creates
a sharper decision boundary than with random sampling. We compare Hopfield Boosting to eight
modern OOD detection approaches using OE. Overall, Hopfield Boosting shows the best results.
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A Details on Continuous Modern Hopfield Networks

The following arguments are adopted from Fürst et al. (2022) and Ramsauer et al. (2021). Associative
memory networks have been designed to store and retrieve samples. Hopfield networks are energy-
based, binary associative memories, which were popularized as artificial neural network architectures
in the 1980s (Hopfield, 1982, 1984). Their storage capacity can be considerably increased by
polynomial terms in the energy function (Chen et al., 1986; Psaltis & Park, 1986; Baldi & Venkatesh,
1987; Gardner, 1987; Abbott & Arian, 1987; Horn & Usher, 1988; Caputo & Niemann, 2002; Krotov
& Hopfield, 2016). In contrast to these binary memory networks, we use continuous associative
memory networks with far higher storage capacity. These networks are continuous and differentiable,
retrieve with a single update, and have exponential storage capacity (and are therefore scalable, i.e.,
able to tackle large problems; Ramsauer et al., 2021).

Formally, we denote a set of patterns {x1, . . . ,xN} ⊂ Rd that are stacked as columns to the matrix
X = (x1, . . . ,xN ) and a state pattern (query) ξ ∈ Rd that represents the current state. The largest
norm of a stored pattern is M = maxi ∥xi∥. Then, the energy E of continuous Modern Hopfield
Networks with state ξ is defined as (Ramsauer et al., 2021)

E = − β−1 log

(
N∑
i=1

exp(βxT
i ξ)

)
+

1

2
ξT ξ + C, (14)

where C = β−1 logN + 1
2 M2. For energy E and state ξ, Ramsauer et al. (2021) proved that the

update rule
ξnew = X softmax(βXT ξ) (15)

converges globally to stationary points of the energy E and coincides with the attention mechanisms
of Transformers (Vaswani et al., 2017; Ramsauer et al., 2021).

The separation ∆i of a pattern xi is its minimal dot product difference to any of the other patterns:

∆i = min
j,j ̸=i

(
xT
i xi − xT

i xj

)
. (16)

A pattern is well-separated from the data if ∆i is above a given threshold (specified in Ramsauer et al.,
2021). If the patterns xi are well-separated, the update rule Equation 15 converges to a fixed point
close to a stored pattern. If some patterns are similar to one another and, therefore, not well-separated,
the update rule converges to a fixed point close to the mean of the similar patterns.

The update rule of a Hopfield network thus identifies sample–sample relations between stored patterns.
This enables similarity-based learning methods like nearest neighbor search (see Schäfl et al., 2022),
which Hopfield Boosting leverages to detect samples outside the distribution of the training data.

Hopfield networks have recently been used for OOD detection (Zhang et al., 2023a). Hu et al. (2024)
introduces Hopfield layers for outlier-efficient memory update.

B Notes on Langevin Sampling

Another method that is appropriate for earlier acquired models is to sample the posterior via the
Stochastic Gradient Langevin Dynamics (SGLD) (Welling & Teh, 2011). This method is efficient
since it iteratively learns from small mini-batches Welling & Teh (2011); Ahn et al. (2012). See basic
work on Langevin dynamics Welling & Teh (2011); Ahn et al. (2012); Teh et al. (2016); Xu et al.
(2018). A cyclical stepsize schedule for SGLD was very promising for uncertainty quantification
Zhang et al. (2020). Larger steps discover new modes, while smaller steps characterize each mode
and perform the posterior sampling.

C Related work

C.1 Details on further OE approaches

This section gives details about related works from the area of OE in OOD detection. With OE, we
refer to the usage of AUX for training an OOD detector in general.

17

131875 https://doi.org/10.52202/079017-4192



MSP-OE. Hendrycks et al. (2019b) were the first to introduce the term OE in the context of OOD
detection. Specifically, they improve an MSP-based OOD detection (Hendrycks & Gimpel, 2017):
They train a classifier on the ID data set and maximize the entropy of the predictive distribution of
the classifier for the AUX data. The combined loss they employ is

L = LCE + λLOOD (17)
LOOD = E

oD∼pAUX

[H(U , pθ(o))] (18)

where H denotes the cross-entropy, U denotes the uniform distribution over K classes, and pθ is the
model mapping the features to the predictive distribution over the K classes.

EBO-OE. Liu et al. (2020) propose a post-hoc and an OE approach. Their post-hoc approach
(EBO) is to use the classifier’s energy to perform OOD detection:

E(ξD) = − β−1lse(β, fθ(ξ
D)) (19)

s(ξD) = −E(ξD, fθ) (20)

where fθ outputs the model’s logits as a vector. Their OE approach (EBO-OE) promotes a low energy
on ID samples and a high energy on AUX samples:

LOOD = E
xD∼pID

[(max(0,E(xD) − mID))
2] + E

oD∼pAUX

[(max(0,mAUX − E(oD)))2] (21)

where mID and mAUX are margin hyperparameters.

POEM. Ming et al. (2022) propose to incorporate Thompson sampling into the OE process. More
specifically, they sample a linear decision boundary in embedding space between the ID and AUX
data using Bayesian linear regression and then select those samples from the AUX data set that
are closest to the sampled decision boundary. In the following epoch, they sample the AUX data
uniformly from the selected data instances without replacement and optimize the model with the
EBO-OE loss (Equation (21)).

MixOE. Zhang et al. (2023b) employ mixup (Zhang et al., 2018) between the ID and AUX samples
to augment the OE task. Formally, this results in the following:

x̃ = λxD + (1− λ)oD (22)
ỹ = λy + (1− λ)U (23)

LOOD = E
(xD,y)∼pID

oD∼pAUX

[H(ỹ, x̃)] (24)

Alternatively, they also propose to employ CutMix (Yun et al., 2019) instead of mixup (which would
change the mixing operation in Equation (22)).

DAL. Wang et al. (2023a) augment the AUX data by defining a Wasserstein-1 ball around the AUX
data and performing OE using this Wasserstein ball. DAL is motivated by the concept of distribution
discrepancy: The distribution of the real OOD data will in general be different from the distribution
of the AUX data. The authors argue that their approach can make OOD detection more reliable if the
distribution discrepancy is large.

DivOE. Zhu et al. (2023) pose the question of how to utilize the given outliers from the AUX data
set if the auxiliary outliers are not informative enough to represent the unseen OOD distribution.
They suggest solving this problem by diversifying the AUX data using extrapolation, which should
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result in better coverage of the OOD space of the resultant extrapolated distribution. Formally, they
employ a loss using a synthesized distribution with a manipulation ∆:

LOOD = E
oD∼pAUX

[(1 − γ)H(U , pθ(oD)) + γmax
∆

[H(U , pθ(oD +∆)) − H(U , pθ(oD))]]

(25)

DOE. Wang et al. (2023b) implicitly synthesize auxiliary outlier data using a transformation of the
model weights. They argue that perturbing the model parameters has the same effect as transforming
the data.

DOS. Jiang et al. (2024) apply K-means clustering to the features of the AUX data set. They then
employ a balanced sampling from the K obtained clusters by selecting the same number of samples
from each cluster for training. More specifically, they select those n samples from each cluster which
are closest to the decision boundary between the ID and OOD regions.

D Future Work

D.1 Smooth and Sharp Decision Boundaries

Our work treats samples close to the decision boundary as weak learners. However, the wider
ramifications of this behavior remain unclear. One can also view the sampling of data instances close
to the decision boundary as a form of adversarial training in that we search for something like “natural
adversarial examples”: Loosely speaking, the usual adversarial example case starts with a given ID
sample and corrupts it in a specific way to get the classifier to output the wrong class probabilities. In
our case, we start with a large set of potential adversarial instances (the AUX data) and search for the
ones that could be either ID or OOD samples. That is, the sampling process will more likely select
data instances that are hard to discriminate for the model — for example, if the model is uncertain
whether a leaf in an auxiliary outlier sample is a frog or not.

This process can be viewed as “sharpening” the decision boundary: The boosting process frequently
samples data instances with high uncertainty. LOOD encourages the model to assign less uncertainty
to the sampled data instances. After training, few training data instances will have high uncertainty.
Nevertheless, a closer systematic evaluation of the sharpened decision boundary of Hopfield Boosting
is important to fully understand the potential implications w.r.t. adversarial examples. We view such
an investigation as out-of-scope for this work. However, we consider it an interesting avenue for
future work.

Anderson & Sojoudi (2022) show that a smooth decision boundary helps with “classical” adversarial
examples. In this framing, our approach would produce different adversarial examples that are not
based on noise but are more akin to “natural adversarial examples”. For example, it is perfectly
fine for us that an OOD sample close to the boundary does not correspond to any of the ID classes.
Furthermore, the noise based smoothing leads to adversarial robustness at the (potential) cost of
degrading classification performance. Similarly, our sharpening of the boundaries leads to better
discrimination between ID and OOD region at the (potential) cost of degrading ID classification
performance.

E Societal Impact

This section discusses the potential positive and negative societal impacts of our work. As our work
aims improves the state-of-the-art in OOD detection, we focus on potential societal impact of OOD
detection in general.

• Postive Impacts
– Improved model reliability: OOD detection aims to detect unfamiliar inputs that have

little support in the model’s training distribution. When these samples are detected,
one can, for example, notify the user that no prediction is possible, or trigger a manual
intervention. This can lead to an increase in a model’s reliability.
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– Abstain from doing uncertain predictions: When a model with appropriate OOD
detection recognizes that a query sample has limited support in the training distribution,
it can abstain from performing a prediction. This can, for example, increase trust in
ML models, as they will rather tell the user they are uncertain than report a confidently
wrong prediction.

• Negative Impacts
– Wrong sense of safety: Having OOD detection in place could cause users to wrongly

assume that all OOD inputs will be detected. However, like most systems, also OOD
detection methods can make errors. It is important to consider that certain OOD
examples could remain undetected.

– Potential for misinterpretation: As with many other ML systems, the outcomes of
OOD detection methods are prone to misinterpretation. It is important to acquaint
oneself with the respective method before applying it in practice.
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F Toy Examples

F.1 3D Visualizations of Eb on a hypersphere

(a) Out-of-Distribution energy function

(b) Exponentiated Out-of-Distribution energy function

Figure 3: Depiction of the energy function Eb(ξ;X,O) on a hypersphere. (a) shows Eb(ξ,X,O)
with exemplary inlier (orange) and outlier (blue) points; and (b) shows exp(βEb(ξ,X,O)). β was
set to 128. Both, (a) and (b), rotate the sphere by 0, 90, 180, and 270 degrees around the vertical axis.

This example depicts how inliers and outliers shape the energy surface (Figure 3). We generated
patterns so that X clusters around a pole and the outliers populate the remaining perimeter of the
sphere. This is analogous to the idea that one has access to a large AUX data set, where some data
points are more and some less informative for OOD detection (e.g., as conceptualized in Ming et al.,
2022).

F.2 Dynamics of LOOD on Patterns in Euclidean Space

In this example, we applied our out-of-distribution loss LOOD on a simple binary classification
problem. As we are working in Euclidean space and not on a sphere, we use a modified version of
MHE, which uses the negative squared Euclidean distance instead of the dot-product-similarity. For
the formal relation between Equation (26) and MHE, we refer to Appendix H.1:

E(ξ;X) = − β−1 log

(
N∑
i=1

exp(−β

2
||ξ − xi||22)

)
(26)

Figure 4a shows the initial state of the patterns and the decision boundary exp(βEb(ξ;X,O)). We
store the samples of the two classes as stored patterns in X and O, respectively, and compute LOOD
for all samples. We then set the learning rate to 0.1 and perform gradient descent with LOOD on
the data points. Figure 4b shows that after 25 steps, the distance between the data points and the
decision boundary has increased, especially for samples that had previously been close to the decision
boundary. After 100 steps, as shown in Figure 4d, the variability orthogonal to the decision boundary
has almost completely vanished, while the variability parallel to the decision boundary is maintained.

21

131879 https://doi.org/10.52202/079017-4192



(a) After 0 steps (b) After 25 steps

(c) After 50 steps (d) After 100 steps

Figure 4: LOOD applied to exemplary data points on euclidean space. Gradient updates are applied to
the data points directly. We observe that the variance orthogonal to the decision boundary shrinks
while the variance parallel to the decision boundary does not change to this extent. β is set to 2.
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F.3 Dynamics of LOOD on Patterns on the Sphere

(a) After 0 steps

(b) After 500 steps

(c) After 2500 steps

Figure 5: LOOD applied to exemplary data points on a sphere. Gradients are applied to the data points
directly. We observe that the geometry of the space forces the patterns to opposing poles of the
sphere.

F.4 Learning Dynamics of Hopfield Boosting on Patterns on a Sphere - Video

The example video1 demonstrates the learning dynamics of Hopfield Boosting on a 3-dimensional
sphere. We randomly generate ID patterns X clustering around one of the sphere’s poles and AUX
patterns O on the remaining surface of the sphere. We then apply Hopfield Boosting on this data set.
First, we sample the weak learners close to the decision boundary for both classes, X and O. Then,
we perform 2000 steps of gradient descent with LOOD on the sampled weak learners. We apply the
gradient updates to the patterns directly and do not propagate any gradients to an encoder. Every 50
gradient steps, we re-sample the weak learners. For this example, the initial learning rate is set to
0.02 and increased after every gradient step by 0.1%.

1https://youtu.be/H5tGdL-0fok
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F.5 Location of Weak Learners near the Decision Boundary

Figure 6: A prototypical classifier (red circle) that is constructed with a sample close to the decision
boundary. Classifiers like this one will only perform slightly better than random guessing (as indicated
by the radial decision boundaries) and are, therefore, well-suited for weak learners.

F.6 Interaction between ID and OOD losses

Figure 7: Synthetic example of Hopfield Boosting training dynamics. The ID data is split in two
classes (shown in red and orange); the AUX data (blue) is sampled uniformly. We minimize the loss
L = LCE + LOOD, and apply the gradient updates on the patterns directly. The left Figure shows
the initial pattern positions, the rightmost Figure shows the positions after 1000 gradient updates:
The classes are well-separated; Eb forms a tight decision boundary around the ID data.

To demonstrate how Hopfield Boosting can interact in a classification task we created a toy example
that resembles the ID classification setting (Figure 7): The example shows the decision boundary
and the inlier samples organized in two classes (shown in red and orange). We sample uniformly
distributed auxiliary outliers. Then, we minimize the compound objective (applying the gradient
updates on the patterns directly). This shows that Hopfield Boosting is able to separate the two classes
well and that still forms a tight decision boundary around the ID data.
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G Notes on Eb

G.1 Probabilistic Interpretation of Eb

We model the class-conditional densities of the in-distribution data and auxiliary data as mixtures of
Gaussians with the patterns as the component means and tied, diagonal covariance matrices with β−1

in the main diagonal.

p( ξ | ID ) =
1

N

N∑
i=1

N
(
ξ;xi, β

−1I
)

(27)

p( ξ | AUX ) =
1

M

M∑
i=1

N
(
ξ;oi, β

−1I
)

(28)

Further, we assume the distribution p(ξ) as a mixture of p( ξ | ID ) and p( ξ | AUX ) with equal prior
probabilities (mixture weights):

p(ξ) = p(ID) p( ξ | ID ) + p(AUX) p( ξ | AUX ) (29)

=
1

2
p( ξ | ID ) +

1

2
p( ξ | AUX ) (30)

The probability of an unknown sample ξ being an AUX sample is given by

p( AUX | ξ ) =
p( ξ | AUX ) p(AUX)

p(ξ)
(31)

=
p( ξ | AUX )

2 p(ξ)
(32)

=
p( ξ | AUX )

p( ξ | AUX ) + p( ξ | ID )
(33)

=
1

1 + p( ξ | ID )
p( ξ | AUX )

(34)

=
1

1 + exp(log(p( ξ | ID ))− log(p( ξ | AUX )))
(35)

where in line (34) we have used that p( ξ | AUX ) > 0 for all ξ ∈ Rd. The probability of ξ being an
ID sample is given by

p( ID | ξ ) =
p( ξ | ID )

2 p(ξ)
(36)

=
1

1 + exp(log(p( ξ | AUX ))− log(p( ξ | ID )))
(37)

= 1− p( AUX | ξ ) (38)

Consider the function

fb(ξ) = p( AUX | ξ) · p( ID | ξ ) (39)

=
p( ξ | AUX ) · p( ξ | ID )

4p(ξ)2
(40)

By taking the log of Equation (40) we obtain the following. We use C
= to denote equality up to an

additive constant that does not depend on ξ.
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β−1 log (fb(ξ))
C
= − 2 β−1 log (p(ξ)) + β−1 log (p( ξ | ID )) + β−1 log (p( ξ | AUX ))

(41)

Multiplication by β−1 is equivalent to a change of base of the log. The term − β−1 log(p(ξ)) is
equivalent to the MHE (Ramsauer et al., 2021) (up to an additive constant) when assuming normalized
patterns, i.e. ||xi||2 = 1 and ||oi||2 = 1, and an equal number of patterns M = N in the two Gaussian
mixtures p( ξ | ID ) and p( ξ | AUX ):

− β−1 log(p(ξ)) = − β−1 log

(
1

2
p( ξ | ID ) +

1

2
p( ξ | AUX )

)
(42)

C
= − β−1 log (p( ξ | ID ) + p( ξ | AUX )) (43)

= − β−1 log

(
1

N

N∑
i=1

N
(
ξ;xi, β

−1I
)
+

1

N

N∑
i=1

N
(
ξ;oi, β

−1I
))

(44)

C
= − β−1 log

(
N∑
i=1

N
(
ξ;xi, β

−1I
)
+

N∑
i=1

N
(
ξ;oi, β

−1I
))

(45)

C
= − β−1 log

(
N∑
i=1

exp(−β

2
||ξ − xi||22) +

N∑
i=1

exp(−β

2
||ξ − oi||22)

)
(46)

C
= − β−1 log

(
N∑
i=1

exp(βxT
i ξ − β

2
ξT ξ) +

N∑
i=1

exp(βoT
i ξ − β

2
ξT ξ)

)
(47)

= − β−1 log

(
N∑
i=1

exp(βxT
i ξ) +

N∑
i=1

exp(βoT
i ξ)

)
+

1

2
ξT ξ (48)

C
= − lse(β, (X ∥O)T ξ) +

1

2
ξT ξ + β−1 logN +

1

2
M2 (49)

Analogously, β−1 log(p( ξ | ID )) and β−1 log(p( ξ | AUX )) also yield MHE terms. Therefore, Eb

is equivalent to β−1 log(fb(ξ)) under the assumption that ||xi||2 = 1 and ||oi||2 = 1 and M = N .
The 1

2ξ
T ξ terms that are contained in the three MHEs cancel out.

β−1 log (fb(ξ))
C
= − 2 lse(β, (X ∥O)T ξ) + lse(β,XT ξ) + lse(β,OT ξ) = Eb(ξ;X,O)

(50)

fb(ξ) can also be interpreted as the variance of a Bernoulli distribution with outcomes ID and AUX:

fb(ξ) = p( AUX | ξ ) p( ID | ξ ) = p( ID | ξ )(1− p( ID | ξ )) = p( AUX | ξ )(1− p( AUX | ξ ))
(51)

In other words, minimizing Eb means to drive a Bernoulli-distributed random variable with the
outcomes ID and AUX towards minimum variance, i.e., p( ID | ξ ) is driven towards 1 if p( ID | ξ ) >
0.5 and towards 0 if p( ID | ξ ) < 0.5. Conversely, the same is true for p( AUX | ξ ).

From Equation (35), under the assumptions that ||xi||2 = 1 and ||oi||2 = 1 and M = N , the
conditional probability p( AUX | ξ ) can be computed as follows:

p( AUX | ξ ) = σ(log(p( ξ | AUX ))− log(p( ξ | ID ))) (52)

= σ(β (lse(β,OT ξ)− lse(β,XT ξ))) (53)

26

131884https://doi.org/10.52202/079017-4192



where σ denotes the logistic sigmoid function. Similarly, p( ID | ξ ) can be computed using

p( ID | ξ ) = σ(β (lse(β,XT ξ)− lse(β,OT ξ))) (54)
= 1− p( AUX | ξ ) (55)

G.2 Alternative Formulations of Eb and fb

Eb can be rewritten as follows.

Eb(ξ;X,O) = − 2 lse(β, (X ∥O)T ξ) + lse(β,XT ξ) + lse(β,OT ξ) (56)

= − 2β−1 log cosh

(
β

2
(lse(β,XT ξ) − lse(β,OT ξ))

)
− 2β−1 log(2) (57)

To prove this, we first show the following:

− β−1 log
(
exp( β lse(β,XT ξ) ) + exp( β lse(β,OT ξ) )

)
(58)

= − β−1 log

(
exp

(
β β−1 log

(
N∑
i=1

exp(βxT
i ξ)

))
+ exp

(
β β−1 log

(
N∑
i=1

exp(βoT
i ξ)

)))
(59)

= − β−1 log

(
N∑
i=1

exp(βxT
i ξ) +

N∑
i=1

exp(βoT
i ξ)

)
(60)

= − lse(β, (X ∥O)T ξ) (61)

Let EX = −lse(β,XT ξ) and EO = −lse(β,OT ξ).

Eb(ξ;X,O) = − 2 lse(β, (X ∥O)T ξ) + lse(β,XT ξ) + lse(β,OT ξ) (62)

= − 2β−1 log ( exp( − β EX ) + exp( − β EO ) ) − EX − EO (63)

= − 2β−1 log

(
exp( − β

2
EX ) + exp( − β EO +

β

2
EX )

)
− EO (64)

= − 2β−1 log

(
exp( − β

2
EX +

β

2
EO ) + exp( − β

2
EO +

β

2
EX )

)
(65)

= − 2β−1 log cosh

(
β

2
( − EX + EO)

)
− 2β−1 log(2) (66)

= − 2β−1 log cosh

(
β

2
(lse(β,XT ξ) − lse(β,OT ξ))

)
− 2β−1 log(2) (67)

= − 2β−1 log cosh

(
β

2
(lse(β,OT ξ) − lse(β,XT ξ))

)
− 2β−1 log(2) (68)

By exponentiation of the above result we obtain

fb(ξ) ∝ exp(βEb(ξ;X,O)) =
1

4 cosh2
(

β
2 (lse(β,XT ξ) − lse(β,OT ξ))

) (69)

The function log cosh(x) is related to the negative log-likelihood of the hyperbolic secant distribution
(see e.g. Saleh & Saleh, 2022). For values of x close to 0, log cosh can be approximated by x2

2 , and
for values far from 0, the function behaves as |x| − log(2).
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(a) Probabilities (b) Log-probabilities

Figure 8: The product of two logistic sigmoids yields fb (a); the sum of two log-sigmoids yields
log(fb) = Eb (b).

G.3 Derivatives of Eb

In this section, we investigate the derivatives of the energy function Eb. The derivative of the lse is:

∇z lse(β,z) = ∇z β−1 log

(
N∑
i=1

exp(βzi)

)
= softmax(β z) (70)

Thus, the derivative of the MHE E(ξ;X) w.r.t. ξ is:

∇ξ E(ξ;X) = ∇ξ (−lse(β,XT ξ) +
1

2
ξT ξ + C) = −Xsoftmax(βXT ξ) + ξ (71)

The update rule of the MHN

ξt+1 = Xsoftmax(βXT ξt) (72)

is derived via the concave-convex procedure. It coincides with the attention mechanisms of Transform-
ers and has been proven to converge globally to stationary points of the energy E(ξ;X) (Ramsauer
et al., 2021). It can also be shown that the update rule emerges when performing gradient descent on
E(ξ;X) with step size η = 1 Park et al. (2023):

ξt+1 = ξt − η ∇ξE(ξ
t;X) (73)

ξt+1 = Xsoftmax(βXT ξt) (74)

From Equation (71), we can see that the gradient of Eb(ξ;X,O) w.r.t. ξ is:

∇ξEb(ξ;X,O) = ∇ξ (− 2 lse(β, (X ∥O)T ξ) + lse(β,XT ξ) + lse(β,OT ξ)) (75)

= − 2 (X ∥O) softmax(β(X ∥O)T ξ) + Xsoftmax(βXT ξ) + Osoftmax(βOT ξ)
(76)

When Xsoftmax(βXT ξ), Osoftmax(βOT ξ), lse(β,XT ξ) and lse(β,OT ξ) are available, one
can efficiently compute (X ∥O) softmax(β(X ∥O)T ξ) as follows:
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(X ∥O) softmax(β(X ∥O)T ξ) (77)

= ∇ξ lse(β, (X ∥O)T ξ) (78)

= ∇ξ β−1 log
(
exp(βlse(β,XT ξ)) + exp(βlse(β,OT ξ))

)
(79)

=
(
Xsoftmax(βXT ξ) Osoftmax(βOT ξ)

)
softmax

(
β

(
lse(β,XT ξ)
lse(β,OT ξ)

))
(80)

We can also compute the gradient of Eb(ξ;X,O) w.r.t. ξ via the log cosh-representation of Eb (see
Equation (68)). The derivative of the log cosh function is

d

dx
β−1 log cosh(βx) = tanh(βx) (81)

Therefore, we can compute the gradient of Eb(ξ;X,O) as

∇ξ Eb(ξ;X,O) (82)

= ∇ξ − 2β−1 log cosh

(
β

2
(lse(β,OT ξ) − lse(β,XT ξ))

)
(83)

= − tanh

(
β

2
(lse(β,OT ξ) − lse(β,XT ξ))

)(
Osoftmax(βOT ξ)−Xsoftmax(βXT ξ)

)
(84)

= − tanh

(
β

2
(lse(β,XT ξ) − lse(β,OT ξ))

)(
Xsoftmax(βXT ξ)−Osoftmax(βOT ξ)

)
(85)

Next, we would like to compute the gradient of Eb(ξ;X,O) w.r.t. the memory matrices X and O.
For this, let us first look at the gradient of the MHE E(ξ;X) w.r.t. a single stored pattern xi (where
X is the matrix of concatenated stored patterns (x1,x2, . . . ,xN )):

∇xi
E(ξ;X) = − ξsoftmax(βXT ξ)i (86)

Thus, the gradient w.r.t. the full memory matrix X is

∇XE(ξ;X) = −ξsoftmax(βXT ξ)T (87)

We can now also use the log cosh formulation of Eb(ξ;X,O) to compute the gradient of
Eb(ξ;X,O), w.r.t X and O:

∇XEb(ξ;X,O) = ∇X − 2β−1 log cosh

(
β

2
(lse(β,XT ξ) − lse(β,OT ξ))

)
(88)

= − tanh

(
β

2
(lse(β,XT ξ)− lse(β,OT ξ))

)
ξsoftmax(βXT ξ)T (89)

(90)

Analogously, the gradient w.r.t O is

∇OEb(ξ;X,O) = − tanh

(
β

2
(lse(β,OT ξ)− lse(β,XT ξ))

)
ξsoftmax(βOT ξ)T (91)
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H Notes on the Relationship between Hopfield Boosting and other methods

H.1 Relation to Radial Basis Function Networks

This section shows the relation between radial basis function networks (RBF networks; Moody &
Darken, 1989) and modern Hopfield energy (following Schäfl et al., 2022). Consider an RBF network
with normalized linear weights:

φ(ξ) =

N∑
i=1

ωi exp(−
β

2
||ξ − µi||22) (92)

where β denotes the inverse tied variance β = 1
σ2 , and the ωi are normalized using the softmax

function:

ωi = softmax(βa)i =
exp(βai)∑N
j=1 exp(βaj)

(93)

An energy can be obtained by taking the negative log of φ(ξ):

E(ξ) = − β−1 log (φ(ξ)) (94)

= − β−1 log

(
N∑
i=1

ωi exp(−
β

2
||ξ − µi||22))

)
(95)

= − β−1 log

(
N∑
i=1

exp( β(−1

2
||ξ − µi||22 + β−1 log softmax(βa)i) )

)
(96)

= − β−1 log

(
N∑
i=1

exp( β(−1

2
||ξ − µi||22 + ai − lse(β,a) )

)
(97)

= − β−1 log

(
N∑
i=1

exp( β(−1

2
ξT ξ + µT

i ξ − 1

2
µT

i µi + ai) )

)
+ lse(β,a) (98)

Next, we define ai =
1
2µ

T
i µi

E(ξ) = − β−1 log

(
N∑
i=1

exp(βµT
i ξ)

)
+

1

2
ξT ξ + lse(β,a) (99)

Finally, we use the fact that lse(β,a) ≤ maxi ai + β−1 logN

E(ξ) = − β−1 log

(
N∑
i=1

exp(βµT
i ξ)

)
+

1

2
ξT ξ + β−1 logN +

1

2
M2 (100)

where M = maxi ||µi||2

H.2 Contrastive Representation Learning

A commonly used loss function in contrastive representation learning (e.g., Chen et al., 2020; He
et al., 2020) is the InfoNCE loss (Oord et al., 2018):

LNCE = E
(x,y)∼ppos

{x−
i }M

i=1∼pdata

[
− log

ef(x)
T f(y)/τ

ef(x)T f(y)/τ +
∑

i e
f(x−

i )T f(y)/τ

]
(101)
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Wang & Isola (2020) show that LNCE optimizes two objectives:

LNCE = E
(x,y)∼ppos

[
−f(x)T f(y)/τ

]
︸ ︷︷ ︸

Alignment

+ E
(x,y)∼ppos

{x−
i }M

i=1∼pdata

[
log

(
ef(x)

T f(y)/τ +
∑
i

ef(x
−
i )T f(x)/τ

)]
︸ ︷︷ ︸

Uniformity

(102)

Alignment enforces that features from positive pairs are similar, while uniformity encourages a
uniform distribution of the samples over the hypersphere.

In comparison, our proposed loss, LOOD, does not visibly enforce alignment between samples within
the same class. Instead, we can observe that it promotes uniformity to the instances of the foreign class.
Due to the constraints that are imposed by the geometry of the space the optimization is performed on,
that is, ||f(x)|| = 1 when the samples move on a hypersphere, the loss encourages the patterns in the
ID data have maximum distance to the samples of the AUX data, i.e., they concentrate on opposing
poles of the hypersphere. A demonstration of this mechanism can be found in Appendix F.2 and F.3

H.3 Support Vector Machines

In the following, we will show the relation of Hopfield Boosting to support vector machines (SVMs;
Cortes & Vapnik, 1995) with RBF kernel. We adopt and expand the arguments of Schäfl et al. (2022).

Assume we apply an SVM with RBF kernel to model the decision boundary between ID and AUX
data. We train on the features Z = (x1, . . . ,xN ,o1, . . . ,oM ) and assume that the patterns are
normalized, i.e., ||xi||2 = 1 and ||oi||2 = 1. We define the targets (y1, . . . , y(N+M)) as 1 for ID and
−1 for AUX data. The decision rule of the SVM equates to

B̂(ξ) =

{
ID if s(ξ) ≥ 0

OOD if s(ξ) < 0
(103)

where

s(ξ) =

N+M∑
i=1

αiyik(zi, ξ) (104)

k(zi, ξ) = exp

(
−β

2
||ξ − zi||22

)
(105)

We assume that there is at least one support vector for both ID and AUX data, i.e., there exists at least
one index i s.t. αiyi > 0 and at least one index j s.t. αjyj < 0. We now split the samples zi in s(ξ)
according to their label:

s(ξ) =

N∑
i=1

αik(xi, ξ) −
M∑
i=1

αN+ik(oi, ξ) (106)

We define an alternative score:

sfrac(ξ) =

∑N
i=1 αik(xi, ξ)∑M

i=1 αN+ik(oi, ξ)
(107)

(108)

31

131889 https://doi.org/10.52202/079017-4192



Because we assumed there is at least one support vector for both ID and AUX data and as the αi are
constrained to be non-negative and because k(·, ·) > 0, the numerator and denominator are strictly
positive. We can, therefore, specify a new decision rule B̂frac(ξ).

B̂frac(ξ) =

{
ID if sfrac(ξ) ≥ 1

OOD if sfrac(ξ) < 1
(109)

Although the functions s(ξ) and sfrac(ξ) are different, the decision rules B̂(ξ) and B̂frac(ξ) are
equivalent. Another possible pair of score and decision rule is the following:

slog(ξ) = β−1 log(sfrac(ξ)) = β−1 log

(
N∑
i=1

αik(xi, ξ)

)
− β−1 log

(
M∑
i=1

αN+ik(oi, ξ)

)
(110)

B̂log(ξ) =

{
ID if slog(ξ) ≥ 0

OOD if slog(ξ) < 0
(111)

Let us more closely examine the term β−1 log
(∑N

i=1 αik(xi, ξ)
)

. We define ai = β−1 log(αi).

β−1 log

(
N∑
i=1

αik(xi, ξ)

)
= β−1 log

(
N∑
i=1

exp(βai) exp

(
−β

2
||ξ − xi||22

))
(112)

= β−1 log

(
N∑
i=1

exp(βai) exp

(
−β

2
ξT ξ + βxT

i ξ − β

2
xT
i xi

))
(113)

= β−1 log

(
N∑
i=1

exp

(
−β

2
ξT ξ + βxT

i ξ − β

2
xT
i xi + βai

))
(114)

= β−1 log

(
N∑
i=1

exp
(
βxT

i ξ + βai
))

− 1

2
ξT ξ − 1

2
(115)

We now construct a memory XH and query ξH such that we can compute (115) using the MHE
(Equation (5)):

XH =

(
x1 . . . xN

a1 . . . aN

)
(116)

ξH =

(
ξ
1

)
(117)

We obtain

E(ξH ;XH) = − lse(β,XT
HξH) +

1

2
ξTHξH + C (118)

= − β−1 log

(
N∑
i=1

exp
(
βxT

i ξ + 1βai
))

+
1

2
ξT ξ +

1

2
· 12 + C (119)

= − β−1 log

(
N∑
i=1

exp
(
βxT

i ξ + βai
))

+
1

2
ξT ξ +

1

2
+ C (120)

= − β−1 log

(
N∑
i=1

αik(xi, ξ)

)
+ C (121)
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We construct OH analogously to Equation (116) and thus can compute

slog(ξ) = E(ξH ;OH) − E(ξH ;XH) = lse(β,XT
HξH) − lse(β,OT

HξH) (122)

which is exactly the score Hopfield Boosting uses for determining whether a sample is OOD (Equation
(13)). In contrast to SVMs, Hopfield Boosting uses a uniform weighting of the patterns in the memory
when computing the score. However, Hopfield Boosting can emulate a weighting of the patterns by
more frequently sampling patterns with high weights into the memory.

H.4 HE and SHE

Zhang et al. (2023a) introduce two post-hoc methods for OOD detection using MHE, which are
called “Hopfield Energy” (HE) and “Simplified Hopfield Energy” (SHE). Like Hopfield Boosting,
HE and SHE both employ the MHE to determine whether a sample is ID or OOD. However, unlike
Hopfield Boosting, HE and SHE offer no possibility to include AUX data in the training process to
improve the OOD detection performance of their method. The rest of this section is structured as
follows: First, we briefly introduce the methods HE and SHE, second, we formally analyze the two
methods, and third, we relate them to Hopfield Boosting.

Hopfield Energy (HE) The method HE (Zhang et al., 2023a) computes the OOD score sHE(ξ) as
follows:

sHE(ξ) = lse(β,XT
c ξ) (123)

where Xc ∈ Rd×Nc denotes the memory (xc1, . . . ,xcNc
) containing Nc encoded data instances of

class c. HE uses the prediction of the ID classification head to determine which patterns to store in
the Hopfield memory:

c = argmax
y

p( y | ξD ) (124)

Simplified Hopfield Energy (SHE) The method SHE (Zhang et al., 2023a) employs a simplified
score sSHE(ξ):

sSHE(ξ) = mT
c ξ (125)

where mc ∈ Rd denotes the mean of the patterns in memory Xc:

mc =
1

Nc

Nc∑
i=1

xci (126)

Relation between HE and SHE In the following, we show a simple yet enlightening relation
between the scores sHE and sSHE. For mathematical convenience, we first slightly modify the score
sHE:

sHE(ξ) = lse(β,XT
c ξ) − β−1 logNc (127)

All data sets which were employed in the experiments of Zhang et al. (2023a) (CIFAR-10 and
CIFAR-100) are class-balanced. Therefore, the additional term β−1 logNc does not change the result
of the OOD detection on those data sets, as it only amounts to the same constant offset for all classes.

The function
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lse(β,z)− β−1 logN = β−1 log

(
1

N

N∑
i=1

exp(βzi)

)
(128)

converges to the mean function as β → 0:

lim
β→0

(lse(β,z)− β−1 logN) =
1

N

N∑
i=1

zi (129)

We now investigate the behavior of sHE in this limit:

lim
β→0

(lse(β,XT
c ξ) − β−1 logN) =

1

N

N∑
i=1

(xT
ciξ) (130)

=

(
1

N

N∑
i=1

xci

)T

ξ (131)

= mT
c ξ (132)

where

mc =
1

N

N∑
i=1

xci (133)

Therefore, we have shown that

lim
β→0

sHE(ξ) = sSHE(ξ) (134)

Relation of HE and SHE to Hopfield Boosting. In contrast to HE and SHE, Hopfield Boosting
uses an AUX data set to learn a decision boundary between the ID and OOD regions during the
training process. To do this, our work introduces a novel MHE-based energy function, Eb(ξ;X,O),
to determine how close a sample is to the learnt decision boundary. Hopfield Boosting uses this
energy function to frequently sample weak learners into the Hopfield memory and for computing a
novel Hopfield-based OOD loss LOOD. To the best our knowledge, we are the first to use MHE in
this way to train a neural network.

The OOD detection score of Hopfield Boosting is

s(ξ) = lse(β,XT ξ) − lse(β,OT ξ). (135)

where X ∈ Rd×N contains the full encoded training set (x1, . . . ,xN ) of all classes and O ∈ Rd×M

contains AUX samples. While certainly similar to sHE, the Hopfield Boosting score s differs from
sHE in three crucial aspects:

1. Hopfield Boosting uses AUX data samples in the OOD detection score in order to create a
sharper decision boundary between the ID and OOD regions.

2. Hopfield Boosting normalizes the patterns in the memories X and O and the query ξ to unit
length, while HE and SHE use unnormalized patterns to construct their memories Xc and
their query pattern ξ.
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3. The score of Hopfield Boosting, s(ξ), contains the full encoded training data set, while
sHE only contains the patterns of a single class. Therefore Hopfield Boosting computes the
similarities of a query sample ξ to the entire ID data set. In Appendix I.8, we show that
this process only incurs a moderate overhead of 7.5% compared to the forward pass of the
ResNet-18.

The selection of the score function s(ξ) is only a small aspect of Hopfield Boosting. Hopfield
Boosting additionally samples informative AUX data close to the decision boundary, optimizes
an MHE-based loss function, and thereby learns a sharp decision boundary between ID and OOD
regions. Those three aspects are novel contributions of Hopfield Boosting. In contrast, the work of
Zhang et al. (2023a) solely focuses on the selection of a suitable Hopfield-based OOD detection score
for post-hoc OOD detection.
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Table 4: OOD detection performance on CIFAR-100. We compare results from Hopfield Boosting,
DOS (Jiang et al., 2024), DOE (Wang et al., 2023b), DivOE (Zhu et al., 2023), DAL (Wang et al.,
2023a), MixOE (Zhang et al., 2023b), POEM (Ming et al., 2022), EBO-OE (Liu et al., 2020), and
MSP-OE (Hendrycks et al., 2019b) on ResNet-18. ↓ indicates “lower is better” and ↑ “higher is
better”. All values in %. Standard deviations are estimated across five training runs.

Metric HB (ours) DOS DOE DivOE DAL MixOE POEM EBO-OE MSP-OE

FPR95 ↓ 13.27±5.46 9.84±2.75 19.38±4.60 28.77±5.42 19.95±2.34 41.54±13.16 33.59±4.12 36.33±2.95 19.86±6.90

SVHN AUROC ↑ 97.07±0.81 97.64±0.39 95.72±1.12 94.25±0.98 95.69±0.66 92.27±2.71 94.06±0.51 92.93±0.72 95.74±1.60

FPR95 ↓ 12.68±2.38 19.40±2.45 28.23±2.69 35.10±4.23 24.24±2.12 23.10±7.39 15.72±3.46 21.06±3.12 32.88±1.28

LSUN-Crop AUROC ↑ 96.54±0.65 96.42±0.35 93.79±0.88 92.45±0.94 95.04±0.43 96.11±1.09 96.85±0.60 95.79±0.62 92.85±0.33

FPR95 ↓ 0.00±0.00 0.01±0.00 0.05±0.04 0.01±0.00 0.00±0.00 10.27±10.72 0.00±0.00 0.00±0.00 0.03±0.01

LSUN-Resize AUROC ↑ 99.98±0.01 99.96±0.02 99.99±0.01 99.99±0.00 99.94±0.02 97.99±1.92 99.57±0.09 99.57±0.03 99.97±0.00

FPR95 ↓ 2.35±0.13 6.02±0.52 19.42±1.58 11.52±0.49 5.22±0.39 28.99±6.79 2.89±0.32 5.07±0.54 10.34±0.40

Textures AUROC ↑ 99.22±0.02 98.33±0.11 94.93±0.48 97.02±0.08 98.50±0.16 94.24±1.21 98.97±0.08 98.15±0.16 97.42±0.08

FPR95 ↓ 0.00±0.00 0.03±0.01 0.01±0.02 0.06±0.01 0.01±0.02 14.40±13.48 0.00±0.00 0.00±0.00 0.08±0.02

iSUN AUROC ↑ 99.98±0.01 99.95±0.02 99.99±0.00 99.97±0.00 99.93±0.02 97.23±2.59 99.59±0.09 99.57±0.03 99.96±0.01

FPR95 ↓ 19.36±1.02 32.13±1.55 58.68±4.15 44.20±0.95 33.43±1.11 47.01±6.41 18.39±0.68 26.68±2.18 45.96±0.85

Places 365 AUROC ↑ 95.85±0.37 91.73±0.39 83.47±1.55 88.28±0.26 91.10±0.29 89.20±1.86 95.03±0.71 91.35±0.70 87.77±0.15

FPR95 ↓ 7.94 11.24 20.96 19.94 13.81 27.55 11.76 14.86 18.19Mean AUROC ↑ 98.11 97.34 94.65 95.33 96.70 94.51 97.34 96.23 95.62

ID Accuracy ↑ 75.08±0.46 75.72±0.26 76.96±0.33 76.91±0.30 77.29±0.14 79.20±2.99 66.38±0.85 69.07±0.32 76.87±0.39

I Additional Experiments & Experimental Details

I.1 Results on CIFAR-100

When applying Hopfield Boosting on CIFAR-100 (Table 4), Hopfield Boosting surpasses POEM
(the previously best method), improving the mean FPR95 from 11.76 to 7.95. On the SVHN data
set, Hopfield Boosting improves the FPR95 metric the most, decreasing it from 33.59 to 13.27. For
the LSUN-Resize and iSUN data sets, we observe a similar behavior as we saw in our CIFAR-10
evaluation — almost all methods achieve a perfect result with regard to the FPR95 metric.

I.2 Pre-Processing and Transformations

For evaluating OOD detection methods, consistent pre-processing and image transformation is crucial.
An inconsistent application of image transformations will skew results when comparing different
OOD detection methods. We, therefore, apply the same pre-processing steps and transformations to
all OOD detection methods we compare.

CIFAR-10 & CIFAR-100. For CIFAR-10 and CIFAR-100, we apply the following transformations:

1. RandomCrop (32x32, padding 4)

2. RandomHorizontalFlip

ImageNet-RC. For ImageNet-RC (used as AUX data set for the ID data sets CIFAR-10 and
CIFAR-100), we apply the following transformations:

1. RandomCrop (32x32)

2. RandomCrop (32x32, padding 4)

3. RandomHorizontalFlip

ImageNet-1K. For ImageNet-1K, we apply the following transformations. We closely follow the
transformations used in the experiments of Zhu et al. (2023):

1. Resize (224x224)

2. RandomCrop (224x224, padding 4)

3. RandomHorizontalFlip
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Table 5: Comparison between HE, SHE and our version. ↓ indicates “lower is better” and ↑ indicates
“higher is better”.

Ours HE SHE
OOD Dataset FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑
SVHN 36.79 93.18 35.81 92.35 35.07 92.81
LSUN-Crop 13.10 97.25 17.74 95.96 18.19 96.10
LSUN-Resize 16.65 96.84 20.69 95.87 21.66 95.85
Textures 44.54 89.38 46.29 86.67 46.19 87.44
iSUN 19.20 96.08 22.52 95.08 23.25 95.06
Places 365 39.02 90.63 41.56 88.41 42.57 88.38

Mean 28.21 93.89 30.77 92.39 31.66 92.60

ImageNet-21K. For ImageNet-21K (used as AUX data set for the ID data sets ImageNet-1K), we
apply the following transformations. We closely follow the transformations used in the experiments
of Zhu et al. (2023):

1. RandAugment (Cubuk et al., 2020)

2. Resize (224x224)

3. RandomCrop (224x224, padding 4)

4. RandomHorizontalFlip

I.3 Comparison HE/SHE

Since Hopfield Boosting shares similarities with the MHE-based methods HE and SHE (Zhang et al.,
2023a), we also looked at the approach as used for their methods. We use the same ResNet-18 as a
backbone network as we used in the experiments for Hopfield Boosting, but train it on CIFAR-10
without OE. We modify the approach of Zhang et al. (2023a) to not only use the penultimate layer,
but perform a search over all layer activation combinations of the backbone for the best-performing
combination. We also do not use the classifier to separate by class. From the search, we see that
the concatenated activations of layers 3 and 5 give the best performance on average, so we use this
setting. We experience a quite noticeable drop in performance compared to their results (Table 5).
Since the computation of the MHE is the same, we assume the reason for the performance drop is
the different training of the ResNet-18 backbone network, where (Zhang et al., 2023a) used strong
augmentations.

I.4 Ablations

We investigate the impact of different encoder backbone architectures on OOD detection performance
with Hopfield Boosting. The baseline uses a ResNet-18 as the encoder architecture. For the ablation,
the following architectures are used as a comparison: ResNet-34, ResNet-50, and Densenet-100.
It can be observed, that the larger architectures lead to a slight increase in OOD performance
(Table 6). We also see that a change in architecture from ResNet to Densenet leads to a different
OOD behavior: The result on the Places365 data set is greatly improved, while the performance on
SVHN is noticeably worse than on the ResNet architectures. The FPR95 of Densenet on SVHN also
shows a high variance, which is due to one of the five independent training runs performing very
badly at detecting SVHN samples as OOD: The worst run scores an FPR95 5.59, while the best run
achieves an FPR95 of 0.24.

I.5 Effect on Learned Representation

In order to analyze the impact of Hopfield Boosting on learned representations, we utilize the output
of our model’s embedding layer (see 4.2) as the input for a manifold learning-based visualization.
Uniform Manifold Approximation and Projection (UMAP) McInnes et al. (2018) is a non-linear
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Table 6: Comparison of OOD detection performance on CIFAR-10 of Hopfield Boosting on different
encoders. ↓ indicates “lower is better” and ↑ indicates “higher is better”. Standard deviations are
estimated across five independent training runs.

ResNet-18 ResNet-34 ResNet-50 Densenet-100
OOD Dataset FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑
SVHN 0.23±0.08 99.57±0.06 0.33±0.25 99.63±0.07 0.19±0.09 99.64±0.11 2.11±2.76 99.31±0.35

LSUN-Crop 0.82±0.20 99.40±0.05 0.65±0.14 99.54±0.07 0.69±0.15 99.47±0.09 0.40±0.23 99.52±0.09

LSUN-Resize 0.00±0.00 99.98±0.02 0.00±0.00 99.89±0.04 0.00±0.00 99.93±0.10 0.00±0.00 100.0±0.00

Textures 0.16±0.02 99.85±0.01 0.15±0.07 99.89±0.04 0.16±0.07 99.83±0.01 0.08±0.03 99.88±0.01

iSUN 0.00±0.00 99.97±0.02 0.00±0.00 99.98±0.02 0.00±0.00 99.98±0.02 0.00±0.00 99.99±0.01

Places 365 4.28±0.26 98.51±0.11 4.13±0.54 98.46±0.22 4.75±0.45 98.71±0.05 2.56±0.20 99.26±0.03

Mean 0.92 99.55 0.88 99.57 0.97 99.59 0.86 99.66

(a) without Hopfield Boosting (b) with Hopfield Boosting

Figure 9: UMAP embeddings of ID (CIFAR-10) and OOD (AUX and SVHN) data based on our
model trained without (a) and with Hopfield Boosting (b). Clearly, without Hopfield Boosting,
the embedded OOD data points tend to overlap with the ID data points, making it impossible to
distinguish between ID and OOD. On the other hand, Hopfield Boosting shows a clear separation of
ID and OOD data in the embedding.

dimensionality reduction technique known for its ability to preserve both global and local structure in
high-dimensional data.

First, we train two models – with and without Hopfield Boosting– and extract the embeddings of both
ID and OOD data sets from them. This results in a 512-dimensional vector representation for each
data point, which we further reduce to two dimensions with UMAP. The training data for UMAP
always corresponds to the training data of the respective method. That is, the model trained without
Hopfield Boosting is solely trained on CIFAR-10 data, and the model trained with Hopfield Boosting
is presented with CIFAR-10 and AUX data during training, respectively. We then compare the learned
representations concerning ID and OOD data.

Figure 9 shows the UMAP embeddings of ID (CIFAR-10) and OOD (AUX and SVHN) data based
on our model trained without (a) and with Hopfield Boosting (b). Without Hopfield Boosting, OOD
data points typically overlap with ID data points, with just a few exceptions, making it difficult to
differentiate between them. Conversely, Hopfield Boosting allows to distinctly separate ID and OOD
data in the embedding.

I.6 OOD Examples from the Places 365 Data Set with High Semantic Similarity to CIFAR-10

We observe that Hopfield Boosting and all competing methods struggle with correctly classifying the
samples from the Places 365 data set as OOD the most. Table 1 shows that for Hopfield Boosting, the
FPR95 for the Places 365 data set with CIFAR-10 as the ID data set is at 4.28. The second worst
FPR95 for Hopfield Boosting was measured on the LSUN-Crop data set at 0.82.
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We inspect the 100 images from Places 365 that perform worst (i.e., that achieve the highest score
s(ξ)) on a model trained with Hopfield Boosting on the CIFAR-10 data set as the in-distribution data
set. Figure 10 shows that within those 100 images, the Places 365 data set contains a non-negligible
amount of data instances that show objects from semantic classes contained in CIFAR-10 (e.g., horses,
automobiles, dogs, trucks, and airplanes). We argue that data instances that clearly show objects of
semantic classes contained in CIFAR-10 should be considered as in-distribution, which Hopfield
Boosting correctly recognizes. Therefore, a certain amount of error can be anticipated on the Places
365 data set for all OOD detection methods. We leave a closer evaluation of the amount of the
anticipated error up to future work.

For comparison, Figure 11 shows the 100 images from Places 365 with the lowest score s(ξ), as
evaluated by a model trained with Hopfield Boosting on CIFAR-10. There are no objects visible that
have clear semantic overlap with the CIFAR-10 classes.

Figure 10: The set of top-100 images from the Places 365 data set which Hopfield Boosting recognized
as in-distribution. The image captions show s(ξ) of the respective image below the caption.
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Figure 11: The set of top-100 images from the Places 365 data set which Hopfield Boosting recognized
as out-of-distribution. The image captions show s(ξ) of the respective image below the caption.

I.7 Results on Noticeably Different Data Sets

The choice of additional data sets should not be driven by a desire to showcase good performance;
rather, we suggest opting for data that highlights weaknesses, as it holds the potential to drive
investigations and uncover novel insights. Simple toy data is preferable due to its typically clearer
and more intuitive characteristics compared to complex natural image data. In alignment with these
considerations, the following data sets captivated our interest: iCartoonFace (Zheng et al., 2020),
Four Shapes (smeschke, 2018), and Retail Product Checkout (RPC) (Wei et al., 2022b). In Figure 12,
we show random samples from these data sets to demonstrate the noticeable differences compared to
CIFAR-10.
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Table 7: Comparison between EBO-OE (Liu et al., 2020) and our version. ↓ indicates “lower is better”
and ↑ indicates “higher is better”.

Hopfield Boosting EBO-OE
OOD Dataset FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑
iCartoonFace 0.60 99.57 4.01 98.94
Four Shapes 40.81 90.53 62.55 75.34
RPC 4.07 98.65 18.51 96.10

Figure 12: Random samples from three data sets, each noticeably different from CIFAR-10. First
row: iCartoonFace; Second row: Four shapes; Third row: RPC.

In Table 7, we present some preliminary results using models trained with the respective method
on CIFAR-10 as ID data set (as in Table 1). Results for comparison are presented for EBO-OE
only, as time constraints prevented experimenting with additional baseline methods. Although
one would expect near-perfect results due to the evident disparities with CIFAR-10, Four Shapes
(smeschke, 2018) and RPC (Wei et al., 2022b) seem to defy that expectation. Their results indicate
a weakness in the capability to identify outliers robustly since many samples are classified as
inliers. Only iCartoonFace (Zheng et al., 2020) is correctly detected as OOD, at least to a large
degree. Interestingly, the weakness uncovered by this data is present in both methods, although more
pronounced in EBO-OE. Therefore, we suspect that this specific behavior may be a general weakness
when training OOD detectors using OE, an aspect we plan to investigate further in our future work.

I.8 Runtime Considerations for Inference

When using Hopfield Boosting in inference, an additional inference step is needed to check whether
a given sample is ID or OOD. Namely, to obtain the score (Equation (13)) of a query sample ξD,
Hopfield Boosting computes the dot product similarity of the embedding obtained from ξ = ϕ(ξD)
to all samples in the Hopfield memories X and O. In our experiments, X contains the full in-
distribution data set (50,000 samples) and O contains a subset of the AUX data set of equal size. We
investigate the computational overhead of computing the dot-product similarity to 100,000 samples
in relation to the computational load of the encoder. For this, we feed 100 batches of size 1024 to an
encoder (1) without using the score and (2) with using the score, measure the runtimes per batch, and
compute the mean and standard deviation. We conduct this experiment with four different encoders
on an NVIDIA Titan V GPU. The results are shown in Figure 13 and Table 8. One can see that,
especially for larger models, the computational overhead of determining the score is very moderate in
comparison.
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Table 9: OOD detection performance on CIFAR-10. We compare results from Hopfield Boosting
with two extensions of HE (Zhang et al., 2023a) on ResNet-18: HE+AUX includes AUX data in the
OOD score. HE+OE applies OE (Hendrycks et al., 2019b) during the training process. ↓ indicates
“lower is better” and ↑ “higher is better”. All values in %.

OOD Dataset Metric HB (ours) HE+AUX HE+OE

FPR95 ↓ 0.23 25.02 2.38SVHN AUROC ↑ 99.57 94.90 99.30
FPR95 ↓ 0.82 7.35 2.39LSUN-Crop AUROC ↑ 99.40 98.67 99.22
FPR95 ↓ 0.00 13.69 0.00LSUN-Resize AUROC ↑ 99.98 97.68 99.95
FPR95 ↓ 0.16 17.42 0.70Textures AUROC ↑ 99.84 97.08 99.72
FPR95 ↓ 0.00 14.76 0.00iSUN AUROC ↑ 99.97 97.68 99.95
FPR95 ↓ 4.28 41.24 10.84Places 365 AUROC ↑ 98.51 91.16 96.83

FPR95 ↓ 0.92 19.91 2.72Mean AUROC ↑ 99.55 96.15 99.16

Figure 13: Mean inference runtimes for Hopfield Boosting on four different encoders on an NVIDIA
Titan V GPU. We plot the contributions to the total runtime of the encoder and the MHE-based score
(Equation (13)) separately. The evaluation shows that the score computation adds a negligible amount
of computational overhead to the total runtime.

Table 8: Inference runtimes for Hopfield Boosting with four different encoders on an NVIDIA
Titan V GPU. We compare the runtime of the encoder only and the runtime of the encoder with the
MHE-based score computation (Equation (13)) combined.

Encoder Time encoder (ms / batch) Time encoder + score (ms / batch) Rel. overhead (%)

ResNet-18 100.93±0.24 108.50±0.19 7.50
ResNet-34 209.80±0.40 217.33±0.51 3.59
ResNet-50 360.93±1.51 368.17±0.62 2.01
Densenet-100 251.24±1.36 258.82±0.84 3.02

I.9 HE and SHE Extensions with AUX Data

To show that the unique contributions of Hopfield Boosting (like the energy-based loss LOOD and the
boosting process) are responsible for the superior performance of Hopfield Boosting, we devise two
extensions of HE that include AUX data and compare them to Hopfield Boosting.
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Figure 14: Tradeoff between classification error and Mean OOD FPR95 for different values of λ.
Decreasing the value of λ to 0.1 improves the classification error while maintaining low OOD FPR95.
λ = 0 (i.e., training only the ID classifier) achieves low classification error but dramatically increases
the OOD FPR95.

The first extension (HE+AUX) uses a model trained only on the ID data and adapts HE to include an
MHE term that measures the energy of ξ on the AUX data O:

smod(ξ) = sHE(ξ) − lse(β,OT ξ) (136)

The second extension (HE+OE) applies OE (Hendrycks et al., 2019b) while training the model. It
then uses sHE to estimate whether a sample is ID or OOD. For both extensions, we select β by
minimizing the mean FPR95 on the OOD test data sets to obtain an upper bound of the possible
performance of these extensions. The β we selected for HE+AUX is 0.001, and for HE+OE is 0.01.

Our results (Table 9) show that Hopfield Boosting is superior to both extensions. HE+AUX results in
a mean FPR95 of 19.91, HE+OE achieves a mean FPR95 of 2.72. Hopfield Boosting improves on
both extensions, achieving a mean FPR95 of 0.92.

I.10 Ablation on the Hyperparameter λ

There is usually an inherent tradeoff between ID accuracy and OOD detection performance when
employing OE methods. In practice one can always improve the tradeoff by using models with more
capacity — in the extreme case practitioners can even train a separate ID network. Hence, the model
selection process we employed only considered the OOD detection performance and did not take the
ID accuracy into account. To investigate if and how this tradeoff can be controlled by changing the
hyperparameters of Hopfield Boosting, we conduct the following experiment:

We (1) ablate the hyperparameter (the weight of the out-of-distribution loss) and run Hopfield
Boosting on the CIFAR-10 benchmark; (2) select λ from the range [0, 1] with a step size of 0.1; and
(3) record the OOD detection performance (the mean FPR95 where the mean is taken over the OOD
test data sets) and the ID classification error for the individual settings of λ.

The results indicate that decreasing the hyperparameter λ improves the ID classification accuracy
of Hopfield Boosting (Figure 14). At the same time, the mean OOD AUROC is only moderately
influenced: When setting, the hyperparameter setting reported in the original manuscript, the mean ID
classification error is 5.98%, and the mean FPR95 is 0.92%. When decreasing λ to 0.1, the mean ID
classification error improves to 5.02%. Similarly, the FPR95 only slightly increases to 1.08% (which
is still substantially better than the second-best outlier exposed method, POEM, which achieves
a mean FPR95 of 2.28%). Hence, practitioners can control the tradeoff between ID classification
accuracy and OOD detection performance.

43

131901 https://doi.org/10.52202/079017-4192



(a) Balanced Hopfield networks (b) Imbalanced Hopfield networks

Figure 15: Ablating the number of patterns stored in the Hopfield memories during inference. AUROC
on SVHN based on the number of patterns in the Hopfield memory. In (a), X and O contain the
same number of patterns; in (b) X contains 50, 000 patterns, and we vary the number of patterns in
O. The variability of the AUROC is reduced when X and O contain 50,000 patterns, respectively.

I.11 Ablation on the Number of Patterns Stored in the Memories during Inference

In our implementation of Hopfield Boosting, we fill the memories X and O with N = 50, 000
patterns to compute the score s(ξ), respectively. To investigate the robustness of Hopfield Boosting
when changing the number of patterns N , we conduct the following experiments:

1. We train Hopfield Boosting on CIFAR-10 (ID data) and ImageNet (AUX data). During the
weight update process, we store 50,000 patterns in the memories X and O, and then ablate
the number of patterns stored in the memories for computing the score s(ξ) at inference
time. We evaluate the discriminative power of s(ξ) on SVHN with 1, 5, 10, 50, 100, 500,
1,000, 5,000, 10,000, and 50,000 patterns stored in the memories X and O. To investigate
the influence of the stochastic process of sampling N patterns from the ID and AUX data
sets, we conduct 50 runs for all of the and create boxplots of the runs. The results (Figure
15a) show that sampling 50, 000 patterns has the lowest variability of the individual trials.
We argue that the reason for this is that by this time the entire ID data set is stored in the
Hopfield memory — which effectively eliminates stochasticity from randomly selecting N
patterns from the ID data.

2. To verify that we can use s(ξ) when the number of patterns in X and O is imbalanced, we
fill X with all 50,000 data instances of CIFAR-10 and fill O with 1, 5, 10, 50, 100, 500,
1000, 5000, 10,000, and 50,000 data instances of the AUX data set. Then, we evaluate the
discriminative power of s(ξ) for the different instances. Our results (Figure 15b) show that
Hopfield Boosting is robust to an imbalance in the number of samples in X and O. The
setting with 50,000 samples in both memories (which is the setting we use in the experiments
in our original manuscript) incurs the least variability.

I.12 Compute Ressources

Our experiments were conducted on an internal cluster equipped with a variety of different GPU
types (ranging from the NVIDIA Titan V to the NVIDIA A100-SXM-80GB). For our experiments
on ImageNet-1K, we additionally used resources of an external cluster that is equipped with NVIDIA
A100-SXM-64GB GPUs.

For our experiments with Hopfield Boosting on CIFAR-10 and CIFAR-100, one run (100 epochs) of
Hopfield Boosting trained for about 8.0 hours on a single NVIDIA RTX 2080 Ti GPU and required 4.3
GB of VRAM. Fnding the hyperparameters required 160h of compute for CIFAR-10 and CIFAR-100,
respectively. These were divided across four RTX 2080 Ti. Estimating the standard deviation required
40 hours of compute on a single RTX 2080 Ti for CIFAR-10 and CIFAR-100 respectively.
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For ImageNet-1K, one run (4 epochs) of Hopfield Boosting trained for about 4.4 hours on a single
NVIDIA A-100-SXM64GB GPU and required 26.9 GB of VRAM. Finding the optimal hyperpa-
rameters required a total of 86h of compute, divided across 20 NVIDIA A-100-SXM64GB GPUs.
Estimating the standard deviation required 22 hours of compute, divided across 5 NVIDIA A-100-
SXM64GB GPUs.

The amount of resources reported above cover the compute for obtaining the results of Hopfield
Boosting reported in the paper. The total amount of compute resources for the project is substantially
higher. Notable additional compute expenses are preliminary training runs during the development of
Hopfield Boosting, and the training runs for tuning the hyperparameters and evaluating the results of
the methods we compare Hopfield Boosting to.
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I.13 Data Sets and Licenses

We provide a list of the data sets we used in our experiments and, where applicable, specify their
licenses:

• CIFAR-10 (Krizhevsky, 2009): License unknown
• CIFAR-100 (Krizhevsky, 2009): License unknown
• ImageNet-RC (Chrabaszcz et al., 2017): Custom License2

• SVHN (Netzer et al., 2011): Creative Commons (CC)
• Textures (Cimpoi et al., 2014): Custom License3

• iSUN (Xu et al., 2015): License unknown
• Places 365 (López-Cifuentes et al., 2020): License unknown
• LSUN (Yu et al., 2015): License unknown
• ImageNet-1K (Russakovsky et al., 2015): Custom License2

• ImagetNet-21K (Ridnik et al., 2021): Custom License2

• SUN (Isola et al., 2011): License unknown
• iNaturalist (Van Horn et al., 2018): Custom License4

2https://image-net.org/download.php
3https://www.robots.ox.ac.uk/~vgg/data/dtd/index.html
4https://github.com/visipedia/inat_comp/tree/master/2017
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Table 10: OOD detection performance on CIFAR-10. We compare results from Hopfield Boosting,
PALM (Lu et al., 2024), NPOS (Tao et al., 2023), SSD+ (Sehwag et al., 2021), ASH (Djurisic et al.,
2023), GEN (Liu et al., 2023), EBO (Liu et al., 2020), MaxLogit (Hendrycks et al., 2019a), and MSP
(Hendrycks & Gimpel, 2017) on ResNet-18. ↓ indicates “lower is better” and ↑ “higher is better”.
All values in %. Standard deviations are estimated across five training runs.

HB (ours) PALM NPOS SSD+ ASH GEN EBO MaxLogit MSP

FPR95 ↓ 0.23±0.08 1.24±0.49 9.04±1.13 3.05±0.22 25.17±9.55 33.26±5.99 32.10±6.41 33.27±6.18 49.41±3.77

SVHN AUROC ↑ 99.57±0.06 99.70±0.12 98.37±0.23 99.41±0.06 94.86±2.09 93.53±1.42 93.43±1.60 93.29±1.57 92.48±0.93

FPR95 ↓ 0.82±0.17 1.21±0.27 5.52±0.50 2.83±1.10 13.13±1.81 19.40±2.22 17.25±2.30 18.50±2.24 38.32±2.61

LSUN-Crop AUROC ↑ 99.40±0.04 99.65±0.05 98.97±0.04 99.37±0.16 97.33±0.36 96.48±0.46 96.73±0.46 96.52±0.47 94.37±0.53

FPR95 ↓ 0.00±0.00 27.01±5.82 26.85±3.14 34.30±2.17 38.18±5.78 31.50±3.92 30.69±4.03 31.64±4.01 45.82±3.48

LSUN-Resize AUROC ↑ 99.98±0.02 95.41±0.74 95.68±0.36 94.78±0.25 90.39±2.00 94.04±0.84 94.02±0.86 93.90±0.86 92.84±0.80

FPR95 ↓ 0.16±0.02 17.32±2.50 27.72±2.55 21.20±2.20 46.08±6.22 44.62±4.14 44.67±4.46 44.97±4.44 55.04±2.86

Textures AUROC ↑ 99.84±0.01 96.82±0.71 95.36±0.35 96.46±0.35 88.32±2.08 90.12±1.32 89.61±1.50 89.56±1.48 90.10±0.92

FPR95 ↓ 0.00±0.00 25.71±4.83 26.90±3.52 35.71±2.27 42.41±6.28 35.85±4.05 34.99±4.33 36.02±4.18 49.10±3.06

iSUN AUROC ↑ 99.97±0.02 95.60±0.65 95.74±0.38 94.49±0.25 89.06±2.26 93.05±0.84 92.99±0.90 92.88±0.90 91.99±0.74

FPR95 ↓ 4.28±0.23 22.97±2.17 32.62±0.13 24.99±1.21 48.03±2.04 45.82±1.07 44.87±1.11 45.63±1.26 57.58±0.97

Places 365 AUROC ↑ 98.51±0.10 94.95±0.53 93.76±0.12 94.93±0.22 85.65±0.77 88.68±0.28 88.53±0.30 88.42±0.29 88.06±0.25

FPR95 ↓ 0.92 15.91 21.44 20.35 35.50 35.07 34.09 35.00 49.21Mean AUROC ↑ 99.55 97.02 96.31 96.57 90.94 92.65 92.55 92.43 91.64

Method type OE Training Training Training Post-hoc Post-hoc Post-hoc Post-hoc Post-hoc
Augmentations Weak Strong Strong Strong Weak Weak Weak Weak Weak
Auxiliary outlier data ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

I.14 Non-OE Baselines

To confirm the prevailing notion that OE methods can improve the OOD detection capability in
general, we compare Hopfield Boosting to 3 training methods (Sehwag et al., 2021; Tao et al., 2023;
Lu et al., 2024) and 5 post-hoc methods (Hendrycks & Gimpel, 2017; Hendrycks et al., 2019b; Liu
et al., 2020, 2023; Djurisic et al., 2023). For all methods, we train a ResNet-18 on CIFAR-10. For
Hopfield Boosting, we use the same training setup as described in section 4.2. For the post-hoc
methods, we do not use the auxiliary outlier data. For the training methods, we use the training
procedures described in the respective publications for 100 epochs. Notably, all training methods
employ stronger augmentations than the OE or the post-hoc methods. The OE and post-hoc methods
use the following augmentations (denoted as “Weak”):

1. RandomCrop (32x32), padding 4
2. RandomHorizontalFlip

The training methods use the following augmentations (denoted as “Strong”):

1. RandomResizedCrop (32x32), scale 0.2-1
2. RandomHorizontalFlip
3. ColorJitter applied with probability 0.8
4. RandomGrayscale applied with probability 0.2

Table 10 shows the results of the comparison of Hopfield Boosting to the post-hoc and training
methods. Hopfield Boosting is better at OOD detection than all non-OE baselines on CIFAR-10 in
terms of both mean AUROC and mean FPR95 by a large margin. Further, Hopfield Boosting achieves
the best OOD detection on all OOD data sets in terms of FPR95 and AUROC, except for SVHN and
LSUN-Crop, where PALM (Lu et al., 2024) shows better AUROC results. An interesting avenue for
future work is to combine one of the non-OE based training methods with the OE method Hopfield
Boosting.
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J Informativeness of Sampling with High Boundary Scores

This section adopts and expands the arguments of Ming et al. (2022) on sampling with high boundary
scores.

We assume the extracted features of a trained deep neural network to approximately equal a Gaussian
mixture model with equal class priors:

p(ξ) =
1

2
N (ξ;µ, σ2I) +

1

2
N (ξ;−µ, σ2I) (137)

pID(ξ) = p(ξ|ID) = N (ξ;µ, σ2I) (138)

pAUX(ξ) = p(ξ|AUX) = N (ξ;−µ, σ2I) (139)

Using the MHE and sufficient data from those distributions, we can estimate the densities p(ξ),
p(ξ|ID) and p(ξ|AUX).

Lemma J.1. (see Lemma E.1 in Ming et al. (2022)) Assume the M sampled data points oi ∼ pAUX
satisfy the following constraint on high boundary scores Eb(ξ)

−
∑M

i=1 Eb(oi)

M
≤ ϵ (140)

Then they have

M∑
i=1

|2µToi| ≤ Mϵσ2 (141)

Proof. They first obtain the expression for Eb(ξ) under the Gaussian mixture model described above
and can express p(AUX|ξ) as

p(AUX|ξ) =
p(ξ|AUX)p(AUX)

p(ξ)
(142)

=
1
2p(ξ|AUX)

1
2p(ξ|ID) + 1

2p(ξ|AUX)
(143)

=
(2πσ2)−d/2 exp(− 1

2σ2 ||ξ − µ||22)
(2πσ2)−d/2 exp(− 1

2σ2 ||ξ + µ||22) + (2πβ−1)−d/2 exp(− 1
2σ2 ||ξ − µ||22)

(144)

=
1

1 + exp(− 1
2σ2 (||ξ − µ||22 − ||ξ + µ||22))

(145)

When defining fAUX(ξ) = 1
2σ2 (||ξ − µ||22 − ||ξ + µ||22) such that p(AUX|ξ) = σ(fAUX(ξ)) =

1
1 + exp(−fAUX(ξ))

, they define Eb as follows:

Eb(ξ) = −|fAUX(ξ)| (146)

= − 1

2σ2
| ||ξ − µ||22 − ||ξ + µ||22 | (147)

= − 1

2σ2
| ξT ξ − 2µT ξ + µTµ− (ξT ξ + 2µT ξ + µTµ)| (148)

= −|2µT ξ|
σ2

(149)
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Therefore, the constraint in Equation (141) is translated to

M∑
i=1

|2µToi| ≤ Mϵσ2 (150)

As maxi∈M |µToi| ≤
∑M

i=1 |µToi| given a fixed M , the selected samples can be seen as generated
from pAUX with the constraint that all samples lie within the two hyperplanes in Equation (150).

Parameter estimation. Now they show the benefit of such constraint in controlling the sample
complexity. Assume the signal/noise ratio is large: ||µ||

σ = r ≫ 1, and ϵ ≤ 1 is some constant.

Assume the classifier is given by

θ =
1

N +M
(

M∑
i=1

xi −
N∑
i=1

oi) (151)

where oi ∼ pAUX and xi ∼ pID. One can decompose θ. Assuming M = N :

θ = µ+
1

2
η +

1

2
ω (152)

η =
1

N
(

N∑
i=1

xi)− µ (153)

ω =
1

N
(

M∑
i=1

− oi)− µ (154)

We would now like to determine the distributions of the random variables ||η||22 and µTη

||η||22 =

d∑
i=1

η2i (155)

ηi ∼ N (0,
σ2

N
) (156)

√
N

σ
ηi ∼ N (0, 1) (157)

(

√
N

σ
ηi)

2 ∼ χ2
1 (158)

Therefore, for ||η||22 we have

N

σ2
||η||22 =

d∑
i=1

(

√
N

σ
ηi)

2 ∼ χ2
d (159)

Now we would like to determine the distribution of µTη:
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µTη =

d∑
i=1

µi ηi (160)

µi ηi ∼ N (0,
σ2µ2

i

N
) (161)

d∑
i=1

µi ηi ∼ N (0,

d∑
i=1

σ2µ2
i

N
) (162)

d∑
i=1

µi ηi ∼ N (0,
σ2

N

d∑
i=1

µ2
i ) (163)

µTη

||µ||
∼ N (0,

σ2

N
) (164)

Concentration bounds. They now develop concentration bounds for ||η||22 and µTη. First, we
look at ||η||22. A concentration bound for χ2

d is:

P(X − d ≥ 2
√
dx+ 2x) ≤ exp(−x) (165)

By assuming x = d
8σ2 we obtain

P(X − d ≥ 2

√
d

d

8σ2
+ 2

d

8σ2
) ≤ exp(− d

8σ2
) (166)

P(X ≥ d√
2σ

+
d

4σ2
+ d) ≤ exp(− d

8σ2
) (167)

P(
N

σ2
||η||22 ≥ d√

2σ
+

d

4σ2
+ d) ≤ exp(− d

8σ2
) (168)

P(||η||22 ≥ σ2

N
(

d√
2σ

+
d

4σ2
+ d)) ≤ exp(− d

8σ2
) (169)

If d ≥ 2 we have that5

d√
2σ

+
d

4σ2
>

1

σ
(170)

and thus, the above bound can be simplified when assuming d ≥ 2 as follows:

P(||η||22 ≥ σ2

N
(
1

σ
+ d)) ≤ exp(− d

8σ2
) (171)

For ||ω||22, since all oi is drawn i.i.d. from pAUX, under the constraint in Equation (150), the
distribution of ω can be seen as a truncated distribution of η. Thus, with some finite positive constant
c, we have

P(||ω||22 ≥ σ2

N
(d+

1

σ
)) ≤ cP(||η||22 ≥ σ2

N
(d+

1

σ
)) ≤ c exp(− d

8σ2
) (172)

Now, we develop a bound for µTη. A concentration bound for N (µ, σ2) is

5Strictly, the bound is valid for d >
√
2
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P(X − µ ≥ t) ≤ exp(
−t2

2σ2
) (173)

By applying µTη
||µ|| ∼ N (0, σ2

N ) to the above bound we obtain

P(
µTη

||µ||
≥ t) ≤ exp(

−t2N

2σ2
) (174)

Assuming t = (σ||µ||)1/2 we obtain

P(
µTη

||µ||
≥ (σ||µ||)1/2) ≤ exp(

−(σ||µ||)N
2σ2

) (175)

P(
µTη

||µ||
≥ (σ||µ||)1/2) ≤ exp(

−||µ||N
2σ

) (176)

Due to symmetry, we have

P(−µTη

||µ||
≤ −(σ||µ||)1/2) ≤ exp(

−||µ||N
2σ

) (177)

P(−µTη

||µ||
≤ −(σ||µ||)1/2) + P(

µTη

||µ||
≥ (σ||µ||)1/2) ≤ 2 exp(

−||µ||N
2σ

) (178)

We can rewrite the above bound using the absolute value function.

P(
|µTη|
||µ||

≥ (σ||µ||)1/2) ≤ 2 exp(
−||µ||N

2σ
) (179)

Benefit of high boundary scores. We will now show why sampling with high boundary scores is
beneficial. Recall the results from Equations (150) and (154):

M∑
i=1

|2µToi| ≤ Mϵσ2 (180)

ω =
1

M
(−

M∑
i=1

oi)− µ (181)

The triangle inequality is

|a+ b| ≤ |a|+ |b| (182)
|a+ (−b)| ≤ |a|+ |b| (183)

Using the two facts above and the triangle inequality we can bound |µTω|:
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1

M
|

M∑
i=1

µToi| ≤
σ2ϵ

2
(184)

1

M
| −

M∑
i=1

µToi| ≤
σ2ϵ

2
(185)

1

M
| −

M∑
i=1

µToi|+ ||µ||22 ≤ σ2ϵ

2
+ ||µ||22 (186)

1

M
| −

M∑
i=1

µToi − µTµ| ≤ σ2ϵ

2
+ ||µ||22 (187)

|µTω| ≤ ||µ||22 +
σ2ϵ

2
(188)

Developing a lower bound. Let

||η||22 ≤ σ2

N
(d+

1

σ
) (189)

||ω||22 ≤ σ2

N
(d+

1

σ
) (190)

|µTη|
||µ||

≤ (σ||µ||)1/2 (191)

hold simultaneously. The probability of this happening can be bounded as follows: We define T and
its complement T̄ :

T = {||η||22 ≤ σ2

N
(d+

1

σ
)} ∩ {||ω||22 ≤ σ2

N
(d+

1

σ
)} ∩ {|µ

Tη|
||µ||

≤ (σ||µ||)1/2} (192)

T̄ = {||η||22 >
σ2

N
(d+

1

σ
)} ∪ {||ω||22 >

σ2

N
(d+

1

σ
)} ∪ {|µ

Tη|
||µ||

> (σ||µ||)1/2} (193)

With P(T ) + P(T̄ ) = 1. The probability P(T̄ ) can be bounded using Boole’s inequality and the
results in Equations (171), (172) and (179):

P(T̄ ) ≤ exp(−d/8σ2) + c exp(−d/8σ2) + 2 exp(
−||µ||N

2σ
) (194)

P(T̄ ) ≤ (1 + c) exp(−d/8σ2) + 2 exp(
−||µ||N

2σ
) (195)

Further, we can bound the probability P(T ):

P(T̄ ) ≤ (1 + c) exp(−d/8σ2) + 2 exp(
−||µ||N

2σ
) (196)

1− P(T ) ≤ (1 + c) exp(−d/8σ2) + 2 exp(
−||µ||N

2σ
) (197)

P(T ) ≥ 1− (1 + c) exp(−d/8σ2)− 2 exp(
−||µ||N

2σ
) (198)

Therefore, the probability of the assumptions in Equations (189), (190), and (191) occuring simult-
neously is at least 1− (1 + c) exp(−d/8σ2)− 2 exp(−||µ||N

2σ ).
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By using the triangle inequality, Equation (152) and the Assumptions (189) and (190) they can bound
||θ||22:

||θ||22 = || µ +
1

2
η +

1

2
ω||22 (199)

||θ||22 ≤ ||µ||22 + ||1
2
η||22 + ||1

2
ω||22 (200)

||θ||22 ≤ ||µ||22 +
1

4
||η||22 +

1

4
||ω||22 (201)

||θ||22 ≤ ||µ||22 +
1

2

σ2

N
(d+

1

σ
) (202)

||θ||22 ≤ ||µ||22 +
σ2

N
(d+

1

σ
) (203)

The reverse triangle inequality is defined as

|x− y| ≥
∣∣|x| − |y|

∣∣ (204)

|x− (−y)| ≥
∣∣|x| − |y|

∣∣ (205)

Using the reverse triangle inequality, Equations (152), (188) and Assumption (191) we have that

|µTθ| = |µTµ +
1

2
µTη +

1

2
µTω| (206)

|µTθ| ≥
∣∣|µTµ| − |1

2
µTη| − |1

2
µTω|

∣∣ (207)

|µTθ| ≥
∣∣||µ||22 − 1

2
σ1/2||µ||3/2 − 1

2
||µ||22 − 1

2

σ2ϵ

2

∣∣ (208)

|µTθ| ≥
∣∣1
2
||µ||22 − 1

2
σ1/2||µ||3/2 − 1

2

σ2ϵ

2

∣∣ (209)

|µTθ| ≥
∣∣1
2
(||µ||22 − σ1/2||µ||3/2 − σ2ϵ

2
)
∣∣ (210)

They have assumed that the signal/noise ratio is large: ||µ||
σ = r ≫ 1. Thus, we can drop the absolute

value, because we assume that the term inside the || is larger than zero:

|µTθ| ≥
∣∣1
2
(||µ||22 − 1

r
||µ||1/2||µ||3/2 − ||µ||22ϵ

2r2
)
∣∣ (211)

|µTθ| ≥
∣∣(1− 1

r
− ϵ

2r2
)
1

2
(||µ||22)

∣∣ (212)

We have

(1− 1

r
− ϵ

2r2
) ≥ 0 (213)

if r ≥ 1.36602540378443 . . . and ϵ ≤ 1, and therefore

|µTθ| ≥ 1

2
(||µ||22 − σ1/2||µ||3/2 − σ2ϵ

2
) (214)

Because of Equation (203) and the fact that if x ≤ y and sgn (x) = sgn (y) then x−1 ≥ y−1 we have
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1

||θ||
≥ 1√

||µ||22 + σ2

N (d+ 1
σ )

(215)

We can combine the Equations (214) and (215) to give a single bound:

|µTθ|
||θ||

≥
||µ||22 − σ1/2||µ||3/2 − σ2ϵ

2

2
√

||µ||22 + σ2

N (d+ 1
σ )

(216)

we define θ such that µTθ > 0 and thus

µTθ

||θ||
≥

||µ||22 − σ1/2||µ||3/2 − σ2ϵ
2

2
√
||µ||22 + σ2

N (d+ 1
σ )

(217)

The false negative rate FNR(θ) and false positive rate FPR(θ) are

FNR(θ) =

∫ 0

−∞
N (x;

µTθ

||θ||
, σ2) dx (218)

FPR(θ) =

∫ ∞

0

N (x;
−µTθ

||θ||
, σ2) dx (219)

As N (x;µ, σ2) = N (−x;−µ, σ2), we have FNR(θ) = FPR(θ). From Equation (217) we can see
that as ϵ decreases, the lower bound of µT θ

||θ|| will increase. Thus, the mean of the Gaussian distribution
in Equation (218) will increase and therefore, the false negative rate will decrease, which shows the
benefit of sampling with high boundary scores. This completes the extended proof adapted from
(Ming et al., 2022).
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The claims made in the abstract and introduction regarding improvement in
OOD detection capabilities are backed by extensive experiments in Section 4. Our theoretical
results in the Appendix (most notably Sections G.1, H.1, and J) support the applicability of
our method for OOD detection with OE.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Section 4.3 and Appendix I.7 show that when subjecting Hopfield Boosting
to data sets that have been designed to show the weaknesses of OE methods, we identify
instances where a substantial number of outliers are wrongly classified as inliers by Hopfield
Boosting and EBO-OE.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: Our theoretical results include the probabilistic interpretation of Equation (6)
in Appendix G.1, the suitability of Hopfield Boosting for OOD detection in Appendix J, and
the connection of Hopfield Boosting to RBF networks (Appendix H.1) and SVM (Appendix
H.3). The proofs of our claims are contained in the respective Appendices.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The details of the experiments we conducted are explained in section 4.2,
and the data sets are publicly available. The code of Hopfield Boosting is included in the
submission.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide the code to reproduce the experimental results of Hopfield Boosting
in the submission. All data sets used are publicly available. Descriptions how to run the
code and how to obtain the data sets come with the code.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide the training and OOD test data sets, the optimizer, and the
hyperparameters we tested and selected, as well as the selection procedure in Section 4.2.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
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Justification: We provide estimates of the standard deviation for the main results of our
paper on Hopfield Boosting and on the compared methods in the Tables 1, 4, 2, 3, 6, 10. The
standard deviations were estimated across five training runs, which is stated in the captions
of the respective tables.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide a detailed description of the compute resources we used as well as
the amount of compute our experiments required in Appendix I.12.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have read the NeurIPS Code of Ethics and found that our work conforms
with the code of ethics. More specifically, we did not include any human subjects in our
work. We excluded deprecated data sets from our work.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
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• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We provide a discussion of positive and negative societal impacts in Appendix
E.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our work is concerned with the improvement of out-of-distribution (OOD)
detection algorithms on small- to mid-scale vision data sets, and is therefore not considered
to pose a high risk.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
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Answer: [Yes]

Justification: We provide a list of the data sets we use (and cite the original authors) in
Section 4.2. We provide a list of the respective licenses (where applicable) in Appendix I.13.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The code that is included in the submission comes with a READE.md file,
which contains all instructions how to run the code to reproduce the experiments.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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