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Abstract

Fine urban change segmentation using multi-temporal remote sensing images
is essential for understanding human-environment interactions in urban areas.
Although there have been advances in high-quality land cover datasets that reveal
the physical features of urban landscapes, the lack of fine-grained land use datasets
hinders a deeper understanding of how human activities are distributed across the
landscape and the impact of these activities on the environment, thus constraining
proper technique development. To address this, we introduce FUSU, the first fine-
grained land use change segmentation dataset for Fine-grained Urban Semantic
Understanding. FUSU features the most detailed land use classification system to
date, with 17 classes and 30 billion pixels of annotations. It includes bi-temporal
high-resolution satellite images with 0.2-0.5 m ground sample distance and monthly
optical and radar satellite time series, covering 847 km2 across five urban areas
in the southern and northern of China with different geographical features. The
fine-grained land use pixel-wise annotations and high spatial-temporal resolution
data provide a robust foundation for developing proper deep learning models to
provide contextual insights on human activities and urbanization. To fully leverage
FUSU, we propose a unified time-series architecture for both change detection and
segmentation. We benchmark FUSU on various methods for several tasks. Dataset
and code are available at: https://github.com/yuanshuai0914/FUSU.

1 Introduction

Urban areas, housing 57% of the world’s population on just 3% of global land, are dynamic hubs of
human activity [1]. The scale and rapid pace of current urbanization, encompassing both internal
dynamics and population growth, position urban areas as a crucial catalyst of global climate change
and vice versa [2]. Therefore, proper observation and monitoring of urban changes are crucial for
modeling human-nature interactions.
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Figure 1: The unique features of urban areas. Compared with other geographic regions, urban areas
have dense semantics, fast temporal changes, and involve a large amount of human activities.

In the era of data-driven methods, satellite remote sensing provides abundant data for Earth ob-
servation and deep learning-based models to comprehend the changes and mechanisms in such
observations. However, urban areas have unique features requiring stringent conditions for high-
quality data as Fig. 1 shows. First, multiple semantics are concentrated in small areas, and this
dense semantic information is driven by human activities (land use) rather than natural characteristics
(land cover) [3]. This necessitates high-resolution images and fine-grained land use annotations over
land cover segmentation datasets. Second, urban areas undergo rapid temporal changes, demanding
high-frequency observations to capture these dynamics accurately [4]. Third, Fig. 1 highlights the
diversity of human activities during the urban changes, including work, construction, relocation, and
entertainment, requiring multi-source data for effective monitoring.

Although numerous land cover change segmentation datasets (e.g., LoveDA [5], SECOND [6],
Hi-UCD [7], DynamicEarthNet [8]) have been introduced to advance urban monitoring, their coarse-
grained land cover classification systems still limit the ability of fine urban semantic understanding.
For example, the SECOND dataset only focuses on six classes, including ground, trees, low vegetation,
water, buildings, and playgrounds, which fails to capture the full range of urban elements and detailed
land use information, thus inadequately reflecting urban conditions and human-urban interactions.
Besides, due to the difficulties of acquiring multi-temporal high-resolution images (e.g., cloud
obscuration, accessibility), most change segmentation datasets only comprise bi-temporal images
with even single-temporal annotations, which cannot match the pace of urban development, leading
to challenges in timely planning and management. A high spatial-temporal resolution change
segmentation dataset with a fine land use classification system is required.

In this paper, we introduce FUSU, the first multi-temporal, multi-source land use change segmentation
dataset with the finest pixel-wise change segmentation annotations to date, covering 17 land use
classes and over 30 billion pixels. It includes bi-temporal high-resolution satellite images (0.2-0.5 m
resolution) and aligns optical and radar satellite data (Sentinel-2, Sentinel-1) with monthly revisits,
enriching temporal and multi-sensor information. Spanning 847 km2 across five major urban districts
in northern and southern China, FUSU’s geographical diversity ensures domain shifts within the
dataset. To leverage this spatial-spectral-temporal-resolution diversity, we propose FUSU-Net, a
unified time-series architecture, as a baseline to make full utilization of the enriched information in
FUSU for change detection and segmentation tasks. FUSU and FUSU-Net aim to advance dataset
and algorithm development for improved urban monitoring and understanding. Our contributions
include:

• We introduce FUSU, the first land use change segmentation dataset with a fine land use
classification system of 17 classes and over 30 billion annotation pixels. FUSU captures
timely urban dynamics from different perspectives and bridges the gaps between rich remote
sensing data and urban semantic understanding.
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• We showcase how the constructed time-series data can be leveraged for better urban mon-
itoring by proposing a unified time-series baseline architecture FUSU-Net that conducts
end-to-end change detection and segmentation tasks utilizing multi-temporal-source data.

• We benchmark FUSU on kinds of methods in several downstream tasks to provide a
comprehensive insight.

2 Related Works

2.1 Urban Change Segmentation Data

Urban change segmentation is a critical aspect of Earth observation, garnering significant attention in
recent years. Various land cover datasets have been developed to support specific tasks like change
detection and segmentation (see Table 1). ISPRS Potsdam2 provides high-resolution images for urban
parsing, but it covers small areas and has a limited scale. SpaceNet [9], EuroSAT [10], and GID
[11] cover larger areas but suffer from incomplete land cover classification, lower resolution, and
single snapshots. LEVIR-CD [12] and WHU [13] focus on bi-temporal building change detection,
but lack comprehensive semantics. SECOND [6], Hi-UCD [7], and WUSU [14] introduce multi-class
semantic change detection. However, WUSU and Hi-UCD cover limited regions, and SECOND’s
coarse annotations and long intervals reduce continual observation capability. LoveDA [5] includes
patches from various Chinese cities, but the classification system is coarse-grained, and the annotation
only covers a single snapshot time. FLAIR [15] uses aerial and Sentinel-2 images for near-daily
observations, yet only one temporal label cannot tell the changes during periods. DynamicEarthNet
[8] provides daily observations and monthly annotations, but also suffers from the coarse-grained land
cover classification system, which fails to provide semantics on human-environment interactions.

In summary, there is a lack of attention to land use datasets. Existing datasets usually present a
trade-off among resolution, coverage, snapshot time, annotation pixel, and classification system. On
the contrary, FUSU aims for the finest urban semantic understanding, providing the fine-grained
land use classification system (17 classes), large-scale annotation pixels (30 billion), high-resolution
images (0.2-0.5 m), large coverage (847 km2), temporal information (bi-temporal high-resolution
images and monthly Sentinel data), and supporting multiple downstream remote sensing tasks.

Table 1: A survey on open-source urban change segmentation datasets, including segmentation
datasets and change detection datasets.

Dataset Source
Images

(patches)
Size

Area

(km2)

Resolution

(m)
Class Objects

Temporal

(image)

Temporal

(annotation)

Ann pixel

(×109)

Se
gm

en
ta

tio
n

Potsdam1 Aerial 38 6000 0.05 0.05 6 LC 1 1 0.8

SpanceNet[9] Maxar 60,000 650 5,500 0.3-1.24 2 B&R 1 1 1.3

EuroSAT[10] Sentinel-2 27,000 64 11,059 10 10 LC 1 1 0.1

GID[11] Gaofen-2 150 6800-7200 50,000 1 5/15 LC 1 1 7.3

LoveDA[5] Google Earth 5987 1024 536 0.3 6 LC 1 1 6.3

FLAIR[15] Aerial/Sentinel-2 77,762 512/40 817 0.2/10 18 LC 4 days 1 20.3

C
ha

ng
e

D
et

ec
tio

n LEVIR-CD[12] Google Earth 637 1024 167 0.5 1 B 2 1 0.005

WHU[13] Aerial 8,189 512 192 0.3 1 B 2 1 0.4

SECOND[6] Satellite 4,662 512 1,200 0.5-1 6 LC 2 2 0.9

Hi-UCD[7] Aerial 1,293 1024 30 0.1 9 LC 3 3 2.7

WUSU[14] Gaofen-2 2 5500-7025 80 1 11 LC 3 3 1.5

DynamicEarthNet[8] PlanetFusion 54,750 1024 16,986 3 7 LC daily monthly 1.9

FUSU Google Earth/Sentinel-1/2 62,752 512/128 847 0.2-0.5/10 17 LU monthly 2 32.2

• B-Buildings, R-Roads, LC-Land Cover, LU-Land Use.

2.2 Remote sensing tasks

Change Detection identifies surface differences by processing images of the same area captured at
different times [16]. It includes binary change detection [12, 13], which detects changes in a single
class (changed or unchanged), and semantic change detection [6, 8, 17], which provides detailed
land semantics. High-frequency observations are essential for timely geographical change detection,
and fine-grained annotations improve precision. However, most datasets provide only bi-temporal

2https://www.isprs.org/education/benchmarks/UrbanSemLab/2d-sem-label-potsdam.aspx
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observations due to the challenge of acquiring high-resolution multi-temporal images, resulting in
long intervals that impede timely monitoring. Additionally, the lack of fine-grained multi-temporal
annotations restricts the development of semantic change detection algorithms.

These challenges highlight the need for richer temporal data and fine-grained land use classifications,
as well as methods capable of handling multi-temporal information. Current datasets’ coarse-grained
classifications do not accurately reflect urban conditions, and integrating multi-temporal data from
other accessible sensors to enhance change detection has been underexplored. To address these
issues, we propose FUSU, which includes bi-temporal fine-grained annotations and multi-temporal
observations from high-resolution and Sentinel images. We also design a new unified architecture
FUSU-Net to leverage time-series information for semantic change detection and segmentation.

Semantic segmentation has been widely applied in remote sensing for tasks such as land cover
mapping [18], geographical object extraction [19, 20, 21], and cropland cover mapping [22]. Encoder-
decoder architectures are well-suited to the diverse nature of remote sensing images [8]. Most studies
focus on segmenting objects from static images [5, 23], while some have used time-series images to
improve performance [22, 24]. Our FUSU-Net integrates time-series information into the bi-temporal
segmentation task. We believe the unique time-series structure of FUSU will inspire the development
of more advanced time-series segmentation algorithms in remote sensing.

3 FUSU Dataset
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Figure 2: The visualization of the FUSU dataset construction. Each patch has 27 images (25 Sentinel
images and 2 high-resolution images), and 2 labels. The content of the high-resolution image is
center-surrounded by the Sentinel image as the red rectangle shows.

We introduce FUSU, a multi-temporal, multi-source change segmentation dataset for fine-grained
urban semantic understanding. FUSU consists of 62,752 image patches, each containing 27 images
from three sources with different resolutions and snapshot times, and includes two annotations as
shown in Fig. 2. FUSU has four key features:

Fine-grained: FUSU features the finest land use classification system in change segmentation
datasets, with bi-temporal dense annotations. It includes 17 classes—artificial-constructed, agricul-
tural, and natural—that detail urban functional zoning and enhance understanding of urban structural
development.

Multi-temporal: FUSU offers time-series observations with monthly revisits. Along with bi-temporal
high-resolution images and fine-grained annotations, it supports high-frequency urban monitoring,
enabling methods to leverage long-range temporal context for better inferences.

Multi-source: FUSU combines data from three satellite sources (Google Earth, Sentinel-2, Sentinel-
1) with different temporal, resolution, and band compositions. Each image patch unifies spatial,
temporal, and spectral contexts, providing richer information than single-source data.

Domain shifts: FUSU covers five urban areas in northern and southern China, each with diverse
geographical features and urban landscapes. Variability in climate types and class ratios across these
regions contribute to representation gaps and pronounced domain shifts in the feature data.

4
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Figure 3: The distribution of the FUSU dataset. (a) Xi’an and Jiaxing are located in different climate
zones. (b) The 5 urban districts of Xi’an and Jiaxing in FUSU dataset. (c) The visualization of image
samples.

3.1 Construction of FUSU

Acquisitions. FUSU uses three data sources with different resolutions, geographical details, and
acquisition times. Google Earth images are 512× 512 pixels with a 0.3 m resolution and RGB bands.
Sentinel-1 and Sentinel-2 images are sourced from Google Earth Engine (GEE). Sentinel-1 images are
preprocessed by GEE (noise removal, radiometric calibration, orthorectification). Sentinel-2 images
undergo cloud removal, atmospheric correction, radiometric calibration, and orthorectification, then
are concatenated with Sentinel-1 data. Each Sentinel image is 128×128 pixels with a 10 m resolution
and 14 bands. Google Earth and Sentinel patches are not strictly aligned; Google Earth patches cover
only the central area of corresponding Sentinel patches (Fig. 2). This approach preserves semantic
detail and captures broader context, aiding spatial dynamics understanding. More details are in the
Sec. A.3.

Distribution. FUSU covers 847 km2 across five urban districts in China: Xiuzhou in Jiaxing, and
Yanta, Beilin, Xincheng, and Lianhu in Xi’an. The different climates of Jiaxing and Xi’an are
illustrated in Fig. 3(a). FUSU provides continuous monthly observations from August 2018 to August
2020. Google Earth images were captured in August 2018 and August 2020, while Sentinel-1 and
Sentinel-2 images were collected monthly between these dates.

Annotations. Bi-temporal Google Earth images are manually annotated pixel-wise by two teams
of geography experts. Table 2 shows the classes, label values and colors. More details about the
annotations can be found in Sec. A.1.

Table 2: Land use classification system of FUSU and corresponding label values, colors.
Color Class Label Value Color Class Label Value Color Class Label Value

Traffic land 1 Industrial land 7 Special land 13
Inland water 2 Orchard 8 Forest 14

Residential land 3 Park 9 Storage 15
Cropland 4 Public management 10 wetland 16

Agriculture construction 5 Commercial land 11 Grass 17
Blank 6 Public construction 12 Background 0

3.2 Statistic

FUSU includes bi-temporal pixel-level annotations covering 17 land use classes. Fig. 4(a) and (b)
illustrate the distribution of pixels and polygons for each class at a single time snapshot. Residential
land dominates both in terms of polygons and pixels. Some classes, like agriculture construction
land, exhibit asymmetrical distributions. The highly unbalanced distribution numbers show a ratio
exceeding 90 between the most and least frequent types. Fig. 4(c)-(f) display the class ratios in
Xi’an and Jiaxing at two-time snapshots, revealing varying distributions between the cities. Jiaxing is
characterized by significant cropland and residential areas, while Xi’an has more commercial land.
These class imbalances and city differences pose challenges for urban monitoring using FUSU.

5
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Figure 4: The statistic of the FUSU dataset. (a) Pixels distribution. (b) Polygon distribution. (c) Class
distribution of T1 Xi’an. (d) Class distribution of T1 Jiaxing. (e) Class distribution of T2 Xi’an. (f)
Class distribution of T2 Jiaxing.

4 FUSU-Net

To fully utilize FUSU, we propose a unified time-series baseline architecture named FUSU-Net that
conducts end-to-end change detection and segmentation tasks. Fig. 5 shows the architecture.

4.1 Preliminary and Overview

Given T1 image I1, T2 image I2, the corresponding groundtruth labels Y1, Y2, and the time-series
temporal images IT , we have two ultimate goals: build a segmentation function Fs that generates
segmentation map Ŷ = Fs(I | IT ), and build a change detection function Fc that find binary changes
between two input images Ĉ = Fc(Ŷ1, Ŷ2 | IT ). These two goals mean we need to optimize the loss
L between predicted values and labels:

θ∗ = argmin
θ

{Ls(Fs(I | IT ),Y) + Lc(Fc(Ŷ1, Ŷ2 | IT ),Yc)}, (1)

where θ∗ is the optimized learned parameters generated by the optimized Lc and Ls, and θ represents
the learned parameters, and Yc is the binary change groundtruth label, which can be generated by Y1,
Y2:

y(i,j)c =

{
0, y

(i,j)
1 = y

(i,j)
2

1, y
(i,j)
1 ̸= y

(i,j)
2 ,

(2)

where y(i,j) is the pixel value. Assuming the additional temporal and spectral information in time-
series images can guide the high-resolution segmentation and change detection, we further extract the
high-level temporal and spectral information and use Y1 for supervision. Thus the optimization body
can be divided into:

θ∗ =argmin
θ

{Ls
1(Fs(I | Fs(IT ,Y1; θ),Y1; θ)) + Ls

2(Fs(I | Fs(IT ,Y1; θ),Y2; θ))+

Ls
T (Fs(IT ,Y1; θ)) + Lc(Fc(Ŷ1, Ŷ2 | Fs(IT ,Y1; θ)),Yc; θ)}, (3)

where Ls
{1,2,T} is the loss of segmentation of T1 image, T2 image, and time-series images, respec-

tively.

4.2 Overall architecture

As Fig. 5 shows, the overall architecture of FUSU-Net includes two branches: (a) This branch
processes Sentinel time-series images and outputs time-series features; (b) This branch processes

6
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Figure 5: The architecture of FUSU-Net. (a) U-TAE branch for time-series images. (b) Bi-temporal
branch for segmentation and change detection. (c) Feature fusion.

bi-temporal high-resolution images and annotations and outputs both bi-temporal segmentation results
and change detection results.

As Fig. 5(a) shows, to process the Sentinel time-series images, we use U-TAE [22] with temporal
attention to effectively capture temporal information in feature maps at various resolutions. The
input shape is 25 × 14 × 512 × 512 (T × C ×H ×W ) and the output shape is 64 × 512 × 512.
Fig. 5(b) shows that we first use an HR-Net pre-trained on ImageNet as the backbone to extract
bi-temporal features. Then we input each feature into separated ASPP [25] segmentation heads to
get the segmentation results. We then conduct a minus operation between bi-temporal segmentation
features, and after a Spatial Pyramid Pooling head [26], we can get the binary change detection result.
Note that Fig. 5(c) shows the fusion module. Time-series features fuse with bi-temporal features via
two transformations: First, the time-series feature is center-cropped to strictly geographically align
with the bi-temporal features. Then after a 1×1 convolution and upsampling layer, the center-cropped
feature has the same shape with bi-temporal features. Second, we reserve the large spatial information
of the time-series feature and after a bottle-neck structure with a dilated convolution, we map it to the
same shape of the bi-temporal features. An add operation is conducted for the feature fusion.

4.3 Loss Functions

As discussed in Sec. 4.1, we use 4 loss functions to train FUSU-Net: three segmentation loss
Ls
{1,2,T}, and a change loss Lc. The segmentation loss functions are the multi-class cross-entropy loss.

Specifically, for time-series supervision, we first centercrop the output for geographical alignment,
then upsample it to the same size of groundtruth label Y1. The change loss is the BCE loss to
supervise the binary changes. More details about supervision and implementation can be found in
Sec. A.5.3.

5 Experiments

We utilize our dataset for semantic segmentation in Sec. 5.1 and change detection in Sec. 5.2 with
various experiments on state-of-the-art baseline methods and FUSU-Net. We also validate the feature
disparities between Jiaxing and Xi’an in the segmentation task.

5.1 Semantic Segmentation

Land use segmentation is crucial for urban monitoring. We focus on single-temporal images and
labels for this semantic segmentation task. We compare other seven baseline segmentation methods
with our FUSU-Net: FCN [27], PSPNet [26], Fast-SCNN [28], Deeplab-v3 [25], HRNet [29], K-net
[30], and U-TAE [22]. Evaluation is based on intersection over union (IoU) per class and mean IoU
(mIoU) across all 17 land use classes, following established protocols. Additionally, we investigate
feature disparities between Jiaxing and Xi’an through two experiments: intra-dataset (whole, Xi’an,

7
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Jiaxing) and inter-dataset (training on one, testing on the other). Implementation details are provided
in the Sec. A.5.2.

Table 3: Semantic segmentation results obtained from intra-dataset.
Method

IoU per class (%)
mIoU

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

FCN [27] 70.83 76.49 74.67 84.14 30.84 52.16 53.39 33.32 52.7 50.24 28.98 0.09 30.62 57.42 23.61 13.04 17.79 44.25

PSPNet [26] 65.37 79.15 71.44 82.354 23.5 49.97 52.82 40.44 44.90 44.50 31.39 30.08 24.04 48.69 41.64 24.50 32.58 46.32

Fast-SCNN [28] 54.42 72.28 66.25 78.97 2.80 42.40 47.84 35.33 30.24 30.24 31.94 12.03 0 0 44.66 31.75 23.39 35.56

Deeplab-v3 [25] 66.17 77.31 71.20 82.10 26.30 49.61 53.96 37.35 45.85 47.61 33.21 35.06 30.68 54.14 34.94 34.15 32.07 47.74

HRNet [29] 67.6 80.39 73.24 83.02 22.94 49.00 54.05 40.10 46.43 49.12 31.66 26.68 15.21 52.38 42.84 30.16 32.09 46.88

K-net [30] 59.97 72.68 66.87 79.46 18.45 44.19 48.07 32.05 35.07 35.64 19.9 18.44 18.69 49.61 29.2 23.88 22.51 39.69

U-TAE [22] 59.57 64.18 65.76 77.92 24.87 40.13 46.75 29.89 41.72 30.57 26.13 6.85 25.96 30.57 41.83 15.08 8.12 37.63

FUSU-Net 74.79 78.95 76.13 85.35 34.81 50.54 53.47 41.50 49.64 45.78 36.69 28.85 28.98 60.21 44.41 30.07 33.69 50.10

Table 4: Semantic segmentation results obtained from inter-dataset.
Method

mIoU

Training on Xi’an

Testing on Xi’an

Training on Jiaxing

Testing on Jiaxing

Training on Xi’an

Testing on Jiaxing

Training on jiaxing

Testing on Xi’an

FCN [27] 50.21 45.53 9.07 9.36

PSPNet [26] 46.52 43.35 8.55 9.72

Fast SCNN [28] 32.97 32.76 7.83 8.51

HRNet [29] 46.78 45.01 10.07 9.73

K-net [30] 38.17 37.41 9.31 10.59

Deeplab-v3 [25] 47.30 47.89 9.65 9.13

FUSU-Net 53.63 49.91 11.65 10.46

Overall results. Table 3 shows the segmentation results. We observe that FUSU-Net achieves the
best results regarding mIoU. Specifically, FUSU-Net performs better than other methods not only on
some comparatively simple classes (i.e., traffic land-1, residential land-3) but also has continuous
promising results on difficult classes where other methods have poor performance (i.e., commercial
land-11, special land-13). Note that FUSU-Net is backboned by HRNet and the segmentation head is
PSPNet with FCN, and the results directly show the benefits of adding features of time-series Sentinel
images. When compared with U-TAE, we can see that high-resolution images can also improve
performance by providing more clear observation details.

Cross-dataset results. Table 4 shows the segmentation results with different training and testing
datasets. There is a dramatic drop in mIoU on cross-dataset training and testing compared with
training and testing on the same datasets. We can tell the huge feature differences between Jiaxing
and Xi’an from these results.

Table 5: Semantic change detection results obtained from intra-dataset.
IoU per class (%)

Method
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

mIoU

BIT [31] 35.54 48.90 46.89 42.27 4.01 46.70 59.92 23.6 35.41 25.82 17.88 0 3.95 54.23 22.62 12.20 46.15 30.95

ChangeFormer [32] 39.31 57.87 57.13 39.42 9.20 25.58 60.11 31.33 27.17 19.79 12.07 0.31 7.42 59.81 19.71 35.61 35.13 32.17

ICIFNet [33] 49.75 56.41 62.23 51.21 4.7 53.81 61.43 30.03 47.35 3.47 10.45 0 0 73.65 53.18 11.15 60.75 36.17

DMINet [34] 26.63 34.08 54.91 42.75 0 32.59 39.80 17.91 19.34 0 6.35 0 0 21.83 39.41 20.94 54.18 24.16

SSCD-l [35] 23.19 15.95 31.32 29.12 6.12 35.46 27.08 12.30 18.91 2.50 0 0 3.39 2.06 20.51 16.34 15.69 15.29

Bi-SRNet [35] 26.19 41.42 39.82 40.01 21.18 44.26 46.59 26.70 25.05 31.23 20.21 7.18 4.74 40.91 31.66 30.87 37.40 30.91

FUSU-Net 55.67 61.46 66.19 55.83 19.82 55.22 57.86 34.59 46.43 15.45 16.31 5.89 9.47 65.12 54.32 14.45 64.52 41.09

5.2 Change Detection

We then compare the performance of change detection baselines on FUSU. Here, we complete the
binary change detection (BCD) experiment and semantic change detection (SCD) experiment. For
binary change detection, we introduce 6 methods: DMINet [34], ICIFNet [33], ChangeFormer [32],
A2Net [36], BIT [31], USSFC-Net [37]. We evaluate the results by IoU on changed pixels. For
semantic change detection, we introduce 6 methods: BIT [31], ChangeFormer [32], ICIFNet [33],
DMINet [34], SSCD-l [35], Bi-SRNet [35]. We evaluate the change detection results by IoU per
class and mIoU over all 17 land use classes. Implementation details can be found in Sec. A.5.2.

8
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Table 6: Binary change detection results
obtained from intra-dataset.

Method IoU Method IoU

BIT [31] 47.91 ChangeFormer [32] 59.64

ICIFNet [33] 64.74 DMINet [34] 72.59

A2Net [36] 69.22 USSFC-Net [37] 62.85

FUSU-Net 79.80

Overall results. Table 6 and Table 5 present the results
of binary and semantic change detection. In binary
change detection, with only unchanged and changed
pixels, class-specific IoU is not applicable. Our FUSU-
Net outperforms other baselines by 7.21%-31.89% in
IoU. In semantic change detection, challenging classes
such as public management-10, public construction-12,
and special land-13 are observed across all methods,
consistent with semantic segmentation results. Notably,
FUSU-Net achieves better performance compared to other baseline methods than it does in the
semantic segmentation task, which can be attributed to continuous observation and change information
provided by time-series Sentinel images between two high-resolution image snapshots.

6 Discussion

Table 7: Ablation results on the ef-
fectiveness of time-series.

Time-series 0 9 18 25

mIoU (Seg) 46.72 47.19 48.47 50.10

IoU (BCD) 65.51 69.35 74.39 79.80

mIoU (SCD) 26.64 34.14 36.55 41.09

Effectiveness of time-series. We evaluate to what extent
time-series images enhance the performance. Table 7 shows
the results. We choose the number of time-series images as
the variable (i.e., all time-series images, partial time-series
images, zero time-series images). We can see for the FUSU
dataset, more time-series images contribute to better results. It
is desirable to use all time-series images as additional temporal
information.

Limitations. The FUSU dataset has three primary limitations.
First, it is limited to five urban districts. Despite its rich geographical diversity and pixel data,
including more global urban areas is desirable. We encourage the community to share high-quality,
fine-grained land use datasets to advance urban monitoring. Second, land use change segmentation
requires understanding human activities and production, unlike land cover, which directly corresponds
to pixel values. Relying solely on remote sensing imagery makes high accuracy challenging. Third,
as Table 8 shows, because of the sensor gaps between optical images and SAR images, the simple
concatenation of Sentinel-1 and Sentinel-2 is not ideal. Better fusion methods should be considered
for synergizing both Sentinel-2 and Sentinel-1 strengths. In the future, we aim to design optical-SAR
fusion methods and incorporate more multi-source data, such as economic and population data, to
develop a multi-modal framework for comprehensive urban semantic understanding.

Table 8: Effectiveness of Sentinel-1.

+ S1 - S1

mIoU (Seg) 50.10 51.17

Conclusion. We present FUSU, a comprehensive multi-source,
multi-temporal change segmentation dataset for fine-grained
urban semantic understanding. FUSU includes a detailed 17-
class land use classification system, 30 billion annotated pixels,
847 km² coverage, and temporal information from bi-temporal
high-resolution images and monthly Sentinel data. This makes
FUSU the most comprehensive urban semantic dataset available. We benchmark various methods to
demonstrate FUSU’s effectiveness in urban land use segmentation and change detection. Additionally,
we introduce FUSU-Net, a model that fully utilizes the spatial, spectral, and temporal diversity of
FUSU. We anticipate that FUSU and FUSU-Net will advance the development of powerful techniques
for multi-source, multi-temporal change segmentation in urban environments without any negative
societal impacts.
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A Appendix

A.1 Annotations

The 17 land use classes used in FUSU are annotated according to the Chinese Land Use Classification
Criteria (GB/T21010-2017) Level-1 classification system, i.e., traffic land, inland water, residential
land, cropland, agriculture construction, blank, industrial land, orchard, park, public management,
commercial land, public construction, special land, forest, storage, wetland, grass, background. The
detailed criteria and description of each class are shown in Table 9. The annotation is conducted by
two teams of geo-experts based on the ArcGIS geospatial software. Each team is responsible for one
city and the annotation results are cross-checked by the other team. If there exists disagreement in
some areas, these areas will be re-annotated when the agreement is reached. Leaders of two teams
will randomly select 100 small areas in two cities for quality check. All objects are annotated as
polygon features. Total annotation costs about 3 months. To ensure geographical continuity, the
annotation is conducted on the full-scale images before image cropping.

Table 9: Class description and criteria.
Value Name Criteria

1 Traffic land
Refers to land for transportation facilities and their affiliated facilities such as railways, highways, airports, ports,

docks, pipelines, urban rail transit, various roads, and transport stations, excluding auxiliary roads and parking lots within other lands

2 Inland water
Refers to natural land water bodies within the land area such as rivers, lakes, glaciers, and perennial snow, as well

as artificial land water bodies such as reservoirs, ponds, and canal water surfaces

3 Residential land Refers to urban and rural residential land and land for community service facilities supporting residential life

4 Cropland
Refers to land mainly used for cultivating crops, with at least one crop cycle per year (including land used for

perennial crops cultivated in a manner of one or more crop cycles per year). This includes mature land, newly

developed, reclaimed, and organized land, fallow land (including fallow rotation and fallow land)

5 Agriculture construction
Refers to land where the surface cultivation layer has been destroyed for the service of agricultural production

and rural life, including rural roads and construction land for planting facilities, livestock and poultry facilities,

and aquaculture facilities

6 Blank
Refers to land within urban and village areas designated by national space planning with unclear planning use,

not to be developed within the planning period or to be developed under specific conditions

7 Industrial land Refers to land used for industrial and mining production

8 Orchard
Refers to land used for cultivating perennial crops intensively for the collection of fruits, leaves, roots, stems, or

sap, with a coverage rate of more than 50% or more than 70% of the reasonable number of plants per acre, including land used for nurseries

9 Park
Refers to land within urban and village construction areas for parks, protective green spaces, squares, and other

public open spaces, excluding auxiliary green spaces in other construction lands

10 Public management
Refers to land for institutions and facilities of administrative bodies, groups, research, culture, education, sports,

health, social welfare, etc., excluding rural and urban community service facilities

11 Commercial land Refers to land for commercial, business finance, and recreational facilities, excluding rural and urban community service facilities

12 Public construction
Refers to land for urban and regional infrastructure facilities such as water supply, drainage, power supply, gas

supply, heating, communication, postal services, broadcasting, sanitation, firefighting, main channels, and hydraulic works

13 Special land Refers to land for military, foreign affairs, religious, security, funeral purposes, and sites of historical relics with special properties

14 Forest
Refers to land growing trees, bamboo, or shrubs. This does not include wetland growing trees, greening land

within urban and village areas, trees within the scope of railway and highway land, or trees for river and canal embankment protection

15 Storage Refers to land for logistics storage and strategic material reserve warehouses

16 Wetland
Refers to the land at the interface of land and water bodies where the water level is close to or at the surface,

or with shallow water layers, remaining in a natural state

17 Grass
Refers to land mainly growing herbaceous plants, including sparse forest grasslands with a tree canopy density of less than 0.1

and shrub grasslands with shrub coverage of less than 40%. This does not include wetlands or saline-alkali lands growing herbaceous plants

0 Background Others or extremely difficult to annotate

A.2 Sentinel Time Series

Sentinel-2. The Sentinel-2 sensor is a multispectral sensor launched in 2015. The Sentinel-2 we use
has 12 bands covering the VNIR and SWIR regions, with spatial resolutions of 10, 20, and 60 m.
The swath width is 290 km. In general, the complete survey of the earth is repeated every 5 days.
Here, we select all available Level-2A products (Bottom-Of-the-Atmosphere reflectances) in one
single month, which are preprocessed through atmosphere correction, and compute the mean of these
products to get the monthly-revisited observation data. All images are cloud-free by s2cloudless3.
Table 10 summarizes the spectral and spatial attributes and applications of Sentinel-2 bands. Note
that Sentinel-2 sensors have 10, 20, and 60 m spatial resolutions, and all bands are resampled to 10 m
by the nearest interpolation method.

3https://github.com/sentinel-hub/sentinel2-cloud-detector
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Table 10: Spectral and spatial attributes of Sentinel-2.
Original

band number

FUSU

band number

Band width

(mm)

Center band

(mm)

Original resolution

(m)

FUSU resolution

(m)
Usage

1 1 20 443 60 10 Atmospheric correction

2 2 65 490 10 10 Vegetation aerosol scattering

3 3 35 560 10 10 Green peak

4 4 30 665 10 10 Max chlorophyll absorption

5 5 15 705 20 10 Not used in L2A context

6 6 15 740 20 10 Not used in L2A context

7 7 20 783 20 10 Not used in L2A context

8 8 115 842 10 10 LAI

8a 9 20 865 20 10 Water vapor absorption reference

9 10 20 945 60 10 Water vapor absorption atmospheric correction

11 11 90 1610 20 10 Soils detection

12 12 180 2190 20 10 AOT determination

Sentinel-1.The Sentinel-1 mission provides data from a dual-polarization C-band Synthetic Aperture
Radar (SAR) instrument at 5.405GHz (C band). The satellites are to operate day-and-night and
perform a synthetic aperture with radar imaging in all weather conditions. Sentinel-1 images in
FUSU have 2 bands VV and VH (dual-band cross-polarization, vertical transmit/horizontal receive).
The revisited cycle is 6 days. To get the monthly-revisited data, we also first select all available
products in one single month and process the raw data by noise removal, radiometric calibration, and
orthorectification, and then compute the mean of these products.

A.3 Dataset Expanding and Benefits

Dataset expanding. To expand the temporal information of FUSU, we develop a data-expanding
paradigm that combines the temporally rich Sentinel images with high-resolution Google Earth
images. This method involves three steps. First, we crop Google Earth images into 512× 512 patches
and generate a shapefile that is five times larger centered around the patch’s midpoint for each patch.
Then these shapefiles are used to download Sentinel images from Google Earth Engine. The time
series of Sentinel images span the entire time interval between the snapshot times of two Google Earth
images, with one image per month. Sentinel-1 images are preprocessed by noise removal, calibration,
and correction. We then process Sentinel-2 to usable conditions by cloud removal, atmosphere
correction, radiometric calibration, and orthorectification. As a result, Sentinel images have a size
of 128 × 128 with a resolution of 10 m. Note that the Sentinel patches and Google Earth patches
are not strictly aligned. The geographic content covered by a Google Earth patch only occupies the
central areas of the corresponding Sentinel patch as shown in Fig. 6. This consideration is adopted
for two main reasons: First, if strict alignment were enforced, the Sentinel patch size would be very
small due to the significant resolution difference, resulting in insufficient semantic information for
model training. Second, the larger coverage area of Sentinel patches captures the surrounding context
and landscape variations and helps identify and understand patterns and trends in broader spatial
dynamics.

This data-expanding paradigm enhances FUSU’s temporal resolution, capturing more detailed changes
during time series. Moreover, it is versatile enough to be extended to other readily available change
detection datasets. We will provide the process steps and code accordingly for the community.

Benefits. Supplementing bi-temporal high-resolution images with the public multi-temporal Sentinel-
2 and Sentinel-1 images has benefits in both clear geographic feature awareness and feature change
awareness. First, Sentinel images provide high temporal-resolution observations, filling the gap of
continuous temporal information between the snapshot times of bi-temporal images. This enables
the capture of monthly changes and enhances the ability to detect and understand changes over time.
Second, Sentinel images offer extensive spatial information. Thanks to the data-expansion design
described in Sec. A.3, each Sentinel image is centered around the corresponding high-resolution
image. This additional spatial information provides larger receptive fields for our model, ensuring
geographical continuity and enabling broader area observations. Third, Sentinel-1 and Sentinel-2
images provide diverse observations from different modalities. These varied modalities enhance the
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Figure 6: The alignment of Google Earth images and Sentinel images.

Table 11: Training and testing data split.

Data Train Test Val

Complete 43,927 12,550 6,275

Xi’an 25,303 7,205 3,660

Jiaxing 18,624 5,345 2,615

Change Detection 16,998 4,813 2,413

dataset by capturing a wider range of features and details, providing multiple ways of observations
on different kinds of human activities.

A.4 License

Use of the Google Earth images must respect the "Google Earth" terms of use. All images and their
associated annotations in FUSU can be used for academic purposes only, and any commercial use is
prohibited (CC BY-NC-SA 4.0).

A.5 Extra Experiment Results

A.5.1 Dataset Split

We show our training and testing dataset split in the URL link. In general, table 11 shows the details.
Note that for change detection, we only select the patches that have changed pixels.

A.5.2 Implementation Details

For segmentation, we use a Stochastic Gradient Descent (SGD) optimizer with a momentum of 0.9
and a weight decay of 1e-4. The learning rate is 0.01, and a ’poly’ scheduler with power 0.9 is applied.
The batch size is 8 and the max training iterations are 80k. For semantic change detection, we use
AdamW as our optimizer and β1 is 0.5 and β2 is 0.999. The learning rate is 3e-4 and linearly decays
are applied to 0 until trained for max epochs. The batch size is 8 and the max training epochs are
200. For binary change detection, the learning rate is 0.001, and other settings are the same as the
semantic change detection. For FUSU-Net, the settings are the same as other methods in different
tasks. For domain adaptation, we adopt the architectures in [5] and keep the default settings. All
experiments are conducted on 4 NVIDIA GTX 4090 GPUs with 25 GB memory.

A.5.3 FUSU-Net Supervision

Fig. 7 shows the supervision in FUSU-Net. There are four outputs of FUSU-Net, i.e., change
prediction, T1 prediction, time-series prediction, T2 prediction, and three labels, i.e., change label,
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Figure 7: The visualization of supervision in FUSU-Net.

Table 12: Domain adaptation results obtained from training and testing on the whole dataset.
Domain Method

IoU per class (%)
mIoU

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Jiaxing

↓
Xi’an

FADA [38] 5.23 33.17 6.32 5.10 11.45 32.67 3.14 6.28 9.12 3.24 1.02 1.08 5.18 8.33 0.20 0.11 1.15 8.23

PyCDA [39] 3.08 32.54 8.11 1.28 12.35 26.48 8.27 6.17 10.33 5.42 1.10 1.22 9.18 3.21 1.12 1.08 1.16 8.34

CLAN [40] 4.33 24.67 6.42 3.15 18.34 39.78 4.22 8.17 14.23 4.14 2.08 3.18 3.11 6.33 1.16 1.41 1.57 9.63

CBST [41] 17.21 10.43 5.34 2.11 28.78 39.32 2.07 5.38 7.22 3.42 7.12 2.03 2.14 2.21 0.44 0.45 1.13 9.24

AdaptSeg [42] 7.23 35.78 14.54 3.12 13.67 25.22 3.18 6.34 8.28 5.13 2.11 3.12 3.14 2.25 1.15 1.19 1.24 9.68

IAST [43] 8.13 36.42 15.78 4.12 15.89 27.65 5.12 7.42 10.21 6.38 3.21 4.19 4.33 8.45 2.81 2.22 2.35 10.93

Xi’an

↓
Jiaxing

FADA [38] 11.38 31.67 10.21 4.18 11.24 22.53 9.12 10.28 7.18 2.14 1.11 1.22 3.23 1.08 1.14 1.49 1.25 9.97

PyCDA [39] 13.45 10.24 7.34 2.13 3.28 25.65 3.14 2.15 9.38 2.08 1.12 1.18 5.23 3.15 1.77 2.02 1.14 8.70

CLAN [40] 11.38 13.42 12.24 4.28 10.53 17.68 4.17 8.28 13.42 2.14 1.11 1.25 5.21 1.08 0.78 1.34 1.21 9.24

CBST [41] 6.42 23.78 20.12 2.11 28.89 22.34 3.21 14.27 17.45 2.14 1.23 1.28 3.14 1.16 0.62 1.39 1.18 10.21

AdaptSeg [42] 6.28 40.18 6.11 2.17 18.42 40.78 2.13 6.42 4.11 2.18 1.21 1.27 1.34 1.16 1.24 1.29 1.35 10.63

IAST [43] 8.38 38.27 8.12 3.24 16.42 38.68 3.24 7.24 4.28 3.15 1.18 1.25 2.27 2.17 2.23 2.28 2.32 10.89

T1 label and T2 label. To balance segmentation and change detection, we set the weight of change
loss as 2, and the weights of segmentation losses as 1. The total loss function is calculated as:

L = Ls
1 + Ls

2 + Ls
T + 2× Lc (4)

A.5.4 Domain Adaptation

Because of the feature gaps between Jiaxing and Xi’an, as we discussed in Sec. 3 and Sec. 5.1, the
FUSU dataset also has the ability to support domain adaptation. Here we evaluate the performance of
6 unsupervised domain adaptation methods on FUSU dataset, which include FADA [38], PyCDA
[39], CLAN [40], CBST [41], AdaptSeg [42] and IAST [43]. IoU per class and mIoU over 17 classes
are calculated.

Overall results. Table 12 shows the semantic change detection results. We can see there are some
easy classes for all unsupervised domain adaptation methods (i.e., inland water-2, blank-6), which
are similar to the results of semantic segmentation. Some classes bring challenges (i.e., storage-15,

Table 13: Top performances compared with other datasets.
Dataset mIoU

GID [11] 90.79

ISPRS Potsdam4 82.17

LoveDA [5] 49.02

FLAIR [15] 54.51

FUSU 46.88
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grass-17), indicating difficulty in adapting to feature changes in those specific categories. Also, we
can see the interchange between the source domain and the target domain will affect the performance
of domain adaptation tasks. Xi’an to Jiaxing task gets higher performance on blank-5 than the Jiaxing
to Xi’an task. There isn’t much disparity in performance between two mainstream approaches, i.e.,
adversarial training (AdaptSeg, CLAN, FADA) and self-training (CBST, PyCDA). In summary,
these methods get unsatisfactory performance on our dataset. The results show little improvement
compared to the source-only results, and in some cases, they are even worse. We hypothesize the
following two reasons. First, general domain adaptation methods in the field of computer vision
cannot adapt to the domain characteristics of the FUSU dataset, necessitating the development of
improved methods. A customized method might achieve better results. Second, the categories in
Jiaxing and Xi’an are discontinuous, with Jiaxing having more cropland and Xi’an having more urban
buildings, resulting in a significant domain gap. This large gap makes it challenging for the methods
to learn effectively.

A.5.5 Comparison with Other Datasets

We investigate the difficulty of several open-source segmentation datasets by comparing the top
performances on these datasets via HRNet. We can see from Table 13 that FUSU has the lowest
performance among all datasets, which indicates the difficulty of the FUSU dataset. We summarize
the challenges of FUSU from two aspects. First, the feature gaps between Jiaxing and Xi’an increase
the difficulty of this dataset. The training model must adapt with two main features during one end-to-
end period. Second, the land use classification involves many understandings of human activities and
production rather than land cover, which can directly correspond to pixel values. Therefore, relying
solely on remote sensing imagery makes achieving high accuracy challenging. Multi-source data is
needed for better performance.

Img Label FUSU-Net (Ours) HRNet PSPNet KNet

Figure 8: The visualization of results.
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B Datasheet for FUSU

B.1 Motivation

• Q1: For what purpose was the dataset created? Was there a specific task in mind? Was
there a particular gap that needed to be filled? Please provide a description.

– The FUSU dataset was created to fill the gap in fine-grained land use data for urban areas.
It aims to enable a deeper understanding of human activities and their impacts on the
environment by providing detailed pixel-wise land use annotations and high-resolution
spatial-temporal data. This dataset supports the development and benchmarking of
deep learning models for tasks such as change detection and segmentation in urban
environments, thereby enhancing contextual insights into urbanization and human
activities.

• Q2: Who created the dataset?
– This dataset is created by the Department of Earth System Science, Tsinghua University,

and Tsinghua University (Department of Earth System Science)- Xi’an Institute of
Surveying and Mapping Joint Research Center for Next-Generation Smart Mapping.

• Q3: Who funded the creation of the dataset?
– The FUSU dataset creation is funded by the National Natural Science Foundation of

China under Grant No. T2125006.

• Q4: Any other comments?
– [N/A]

B.2 Composition

• Q5: What do the instances that comprise the dataset represent?
– We provide bi-temporal high-resolution images with pixel-wise land use segmentation

annotations along with corresponding Sentinel-1 and Sentinel-2 images center-around
the high-resolution patches. This dataset spans over 847 km2, covering 2 cities (Jiaxing
and Xi’an) and 5 urban districts (Beilin, Yanta, Xincheng, Lianhu, Xiuzhou) in the
southern and northern of China.

• Q6: How many instances are there in total?
– We provide 62,752 image patches. Each patch contains 2 high-resolution images with

a resolution of 0.2-0.5 m, 2 pixel-wise annotations with a resolution of 0.2-0.5 m, and
25 Sentinel images with a resolution of 10 m. The whole FUSU dataset comprises over
30 billion annotated pixels with 17 land use classes.

• Q7: Does the dataset contain all possible instances or is it a sample?
– This dataset contains all possible instances in the selected study areas. We hope the

community can contribute more instances in other places (e.g., other cities in China or
other countries) with us.

• Q8: What data does each instance consist of?
– Each patch contains 2 high-resolution images with a resolution of 0.2-0.5 m, 2 pixel-

wise annotations with a resolution of 0.2-0.5 m, and 25 Sentinel images with a resolu-
tion of 10 m. The high-resolution image is with a size of 512× 512 and R/G/B bands.
The Sentinel image is with a size of 128× 128 and 14 bands.

• Q9: Is there a label or target associated with each instance?
– Yes, we provide bi-temporal pixel-wise labels with 17 land use classes and over 30

billion annotation pixels.

• Q10: Is any information missing from individual instances?
– [No]

• Q11: Are relationships between individual instances made explicit?
– [No]
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• Q12: Are there recommended data splits?
– Yes, we provide data splits in the GitHub link for reproducing.

• Q13: Are there any errors, sources of noise, or redundancies in the dataset?
– Despite the rigorous quality control applied during visual interpretation, some errors

are inevitable, particularly for classes that are visually difficult to distinguish. To
minimize these errors, internal quality control involving multiple annotations has been
conducted.

• Q14: Is the dataset self-contained, or does it link to or otherwise rely on external
resources?

– This dataset will be stored and distributed on the data website of Peng Cheng Laboratory.
The link on the GitHub page will redirect to the data website.

• Q15: Does the dataset contain data that might be considered confidential?
– [No]

• Q16: Does the dataset contain data that might be offensive, insulting, or threatening?
– [No]

• Q17: Does the dataset relate to people?
– The dataset may feature pedestrian or individuals, but the resolution of 20cm-

50cm/pixel and the aerial perspective is not sufficient to recognize them uniquely.
• Q18: Does the dataset identify any subpopulations?

– [No]
• Q19: Is it possible to identify individuals from the dataset?

– [No]
• Q20: Does the dataset contain sensitive data?

– [No]
• Q21: Any other comments?

– [No]

B.3 Collection Process

• Q22: How was the data associated with each instance acquired?
– The high-resolution images are collected from Google Earth. This platform pre-

processes the images including correction, mosaic conduction, and so on. The labels
are annotated and cross-checked by two expert teams manually. The Sentinel-2 and
Sentinel-1 images are collected from Google Earth Engine platform with all necessary
processing steps. All data is mapped onto the WGS84 coordinate reference system.

• Q23: What mechanisms or procedures were used to collect the data (e.g., hardware
apparatus or sensor, manual human curation, software program, software API)?

– We use the Google Earth API to collect all image data, and hire two expert teams to
annotate the images.

• Q24: If the dataset is a sample from a larger set, what was the sampling strategy (e.g.,
deterministic, probabilistic with specific sampling probabilities)?

– [N/A]
• Q25: Who was involved in the data collection process (e.g., students, crowdworkers,

contractors) and how were they compensated (e.g., how much were crowdworkers
paid)?

– We contracted geography experts from the remote sensing institute and university
through a public call for tender to annotate the dataset. The creation of the dataset was
facilitated by researchers and developers employed by us under their work contracts.

• Q26: Over what timeframe was the data collected? Does this timeframe match the
creation timeframe of the data associated with the instances (e.g., recent crawl of old
news articles)?

20

132436https://doi.org/10.52202/079017-4209



– The collection of the data spans from Aug, 2018 to Aug, 2020. The high-resolution
images are collected in Aug, 2018 and Aug, 2020. The Sentinel images are collected
each month during this period. This dataset was created in 2022 after the processing
steps and fine-tuned in 2023.

• Q27: Were any ethical review processes conducted (e.g., by an institutional review
board)?

– [No]

• Q28: Does the dataset relate to people?
– [No]

• Q29: Did you collect the data from the individuals in question directly, or obtain it via
third parties or other sources (e.g., websites)?

– [N/A]

• Q30: Were the individuals in question notifies about the data collection?
– [N/A]

• Q31: Did the individuals in question consent to the collection and use of their data?
– [N/A]

• Q32: If consent was obtained, were the consenting individuals provided with a mecha-
nism to revoke their consent in the future or for certain uses?

– [N/A]

• Q33: Has an analysis of the potential impact of the dataset and its use on data subjects
(e.g., a data protection impact analysis) been conducted?

– [No]

• Q34: Any other comments?
– [No]

B.4 Preprocessing, Cleaning, and/or Labeling

• Q35: Was any preprocessing/cleaning/labeling of the data done (e.g., discretization or
bucketing, tokenization, part-of-speech tagging, SIFT feature extraction, removal of
instances, processing of missing values)?

– [No]

• Q36: Was the “raw” data saved in addition to the preprocessed/cleaned/labeled data
(e.g., to support unanticipated future uses)? If so, please provide a link or other access
point to the “raw” data.

– [No]

• Q37: Is the software used to preprocess/clean/label the instances available?
– [No]

• Q38: Any other comments?
– [No]

B.5 Uses

• Q39: Has the dataset been used for any tasks already?
– [No]

• Q40: Is there a repository that links to any or all papers or systems that use the
dataset?

– [No]

• Q41: What (other) tasks could the dataset be used for?
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– Actually FUSU dataset can support many other tasks because of its special attributes.
First, because there exist different vision modalities in FUSU, we look forward to
utilizing FUSU to explore multimodal fusion methods. Second, FUSU also offers the
opportunities for super-resolution tasks.

• Q42: Is there anything about the composition of the dataset or the way it was collected
and preprocessed/cleaned/labeled that might impact future uses?

– During the data creation, we use a data-expanding paradigm to enhance FUSU’s
temporal resolution, capturing more detailed changes during time series. We have
discussed it in the Appendix. It is versatile enough to be extended to other readily
available change detection datasets. We will provide the process steps and code
accordingly for the community.

• Q43: Are there tasks for which the dataset should not be used?
– [No]

• Q44: Any other comments?
– [No]

B.6 Distribution

• Q45: Will the dataset be distributed to third parties outside of the entity (e.g., company,
institution, organization) on behalf of which the dataset was created?

– Yes, the dataset will be open-source.

• Q46: How will the dataset be distributed (e.g., tarball on website, API, GitHub)?
– The data will be available on GitHub, which redirects to the data website of Peng

Cheng Laboratory.

• Q47: When will the dataset be distributed?
– The demo will be released in June 2024, and the whole dataset, along with the dataset

split, will be released in early October 2024.

• Q48: Will the dataset be distributed under a copyright or other intellectual property
(IP) license, and/or under applicable terms of use (ToU)?

– Yes, use of the Google Earth images must respect the "Google Earth" terms of use. All
images and their associated annotations in FUSU can be used for academic purposes
only, and any commercial use is prohibited (CC BY-NC-SA 4.0).

• Q49: Have any third parties imposed IP-based or other restrictions on the data
associated with the instances?

– [No]

• Q50: Do any export controls or other regulatory restrictions apply to the dataset or to
individual instances?

– [No]

• Q51: Any other comments?
– [No]

B.7 Maintenance

• Q52: Who will be supporting/hosting/maintaining the dataset?
– The authors of this paper will support and maintain this dataset.

• Q53: How can the owner/curator/manager of the dataset be contacted (e.g., email
address)?

– shuai914@connect.hku.hk

• Q54: Is there an erratum?
– [No]
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• Q55: Will the dataset be updated (e.g., to correct labeling errors, add new instances,
delete instances)?

– Yes, this dataset will be updated if more data sources are available (e.g., DEM data,
Night-time light data).

• Q56: If the dataset relates to people, are there applicable limits on the retention of
the data associated with the instances (e.g., were individuals in question told that their
data would be retained for a fixed period of time and then deleted)?

– [N/A]
• Q57: Will older versions of the dataset continue to be supported/hosted/maintained?

– Yes, we will continue to provide support for the FUSU dataset.
• Q58: If others want to extend/augment/build on/contribute to the dataset, is there a

mechanism for them to do so?
– Communities can contact the hosts for correction or contributions to the FUSU dataset.

All kind suggestions, extensions, augmentation, and contributions are welcome with
the consideration of license and maintenance requirements.

• Q59: Any other comments?
– [No]
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