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Abstract
Independent Component Analysis (ICA) was introduced in the 1980’s as a model
for Blind Source Separation (BSS), which refers to the process of recovering the
sources underlying a mixture of signals, with little knowledge about the source
signals or the mixing process. While there are many sophisticated algorithms
for estimation, different methods have different shortcomings. In this paper, we
develop a nonparametric score to adaptively pick the right algorithm for ICA with
arbitrary Gaussian noise. The novelty of this score stems from the fact that it just
assumes a finite second moment of the data and uses the characteristic function
to evaluate the quality of the estimated mixing matrix without any knowledge
of the parameters of the noise distribution. In addition, we propose some new
contrast functions and algorithms that enjoy the same fast computability as existing
algorithms like FASTICA and JADE but work in domains where the former may
fail. While these also may have weaknesses, our proposed diagnostic, as shown by
our simulations, can remedy them. Finally, we propose a theoretical framework to
analyze the local and global convergence properties of our algorithms.

1 Introduction
Independent Component Analysis (ICA) was introduced in the 1980’s as a model for Blind Source
Separation (BSS) [13, 12], which refers to the process of recovering the sources underlying a mixture
of signals, with little knowledge about the source signals or the mixing process. It has become a
powerful alternative to the Gaussian model, leading to PCA in factor analysis. A good account of the
history, many results, and the role of dimensionality in noiseless ICA can be found in [28, 5]. In one
of its first forms, ICA is based on observing n independent samples from a k-dimensional population:

xxx = Bzzz + ggg (1)

where B ∈ Rd×k (d ≥ k) is an unknown mixing matrix, zzz ∈ Rk is a vector of statistically
independent mean zero “sources” or “factors” and ggg ∼ N(000,Σ) is a d dimensional mean zero
Gaussian noise vector with covariance matrix Σ, independent of zzz. We denote diag (aaa) := cov (zzz)
and S := cov (xxx) = B diag (aaa)BT +Σ. The goal of the problem is to estimate B.
ICA was initially developed in the context of ggg = 0, now called noiseless ICA. In that form, it
spawned an enormous literature [17, 39, 40, 1, 8, 27, 35, 37, 23, 11, 6, 42] and at least two well-
established algorithms FASTICA [29] and JADE [9] which are widely used. The general model with
nonzero ggg and unknown noise covariance matrix Σ, known as noisy ICA, has developed more slowly,
with its own literature [4, 50, 49, 30, 31, 41].
In the following sections, we will show that various ICA and noisy ICA methods have distinct
shortcomings. Some struggle with heavy-tailed distributions and outliers, while others require
approximations of entropy-based objectives, which have their own challenges (see eg. [32]).
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Although methods for noiseless cases may sometimes work in noisy settings [49], they are not
always reliable (e.g., see Figure 1 in [49] and Theorem 2 in [11]). Despite the plethora of algorithms
for noisy and noiseless ICA, the literature has largely been missing a diagnostic to decide which
algorithm to pick for a given dataset. This is our primary goal.

The paper is organized as follows. Section 2 contains background and notation. Section 3.1 contains
the independence score, its properties, and a Meta algorithm 1 that utilizes this score. Section 3.3
introduces new contrast functions based on the natural logarithm of the characteristic function and
moment generating function of xxxTuuu. Section 4 presents the global and local convergence results for
noisy ICA. Section 5 demonstrates the empirical performance of our new contrast functions as well
as the Meta algorithm applied to a variety of methods for inferring B.

2 Background and overview
This section contains a general overview of the main concepts of ICA.

Notation: We denote vectors using bold font as vvv ∈ Rd. The dataset is represented as
{
xxx(i)
}
i∈[n]

for

xxx(i) ∈ Rd. Scalar random variables and matrices are represented using upper case letters, respectively.
Ik denotes the k- dimensional identity matrix. Entries of vector vvv (matrix M ) are represented
as vi (Mij). M(:, i) (M(i, :)) represents the ith column (row) of matrix M . M† represents the
Moore–Penrose inverse of M . ∥.∥ represents the Euclidean l2 norm for vectors and operator norm
for matrices. ∥.∥F similarly represents the Frobenius norm for matrices. E [.] (Ê [.]) denotes the
expectation (empirical average); xxx ⊥⊥ yyy denotes statistical independence. ∥.∥ψ2

represents the
subgaussian Orlicz norm (see Def. 2.5.6 in [46]). Xn = OP (an) implies that Xn

an
is stochastically

bounded i.e, ∀ϵ > 0, there exists a finite M such that supn P
(∣∣∣Xn

an

∣∣∣ > M
)
≤ ϵ (See [45]).

Identifiability: One key issue in Eq 1 is the identifiability of A := B−11, which holds up to
permutation and scaling of the coordinates of zzz if, at most, one component of zzz is Gaussian (see [14,
43]). If d = k and Σ are unknown, it is possible, as we shall see later, to identify the canonical
versions of B and Σ. For d > k and unknown Σ, it is possible (see [15]) to reduce to the d = k
case. In this work, we assume d = k. For classical factor models, when zzz is Gaussian, identifiability
can only be identified up to rotation and scale, leading to non-interpretability. This suggests fitting
strategies focusing on recovering B−1 through nongaussianity as well as independence. In the noisy
model (Eq 1), an additional difficulty is that recovery of the source signals becomes impossible even
if B is known exactly. This is because, the ICA models x = B(z+ r) + g and x = Bz+ (Br+ g)
are indistinguishable (see [48] pages 2-3). This is resolved in [48] via maximizing the Signal-to-
Interference-plus-Noise ratio (SINR). In classical work on ICA, a large class of algorithms (see [37])
choose to optimize a measure of non-gaussianity, referred to as contrast functions.

Contrast functions: Methods for estimating B typically optimize an empirical contrast function.
Formally, we define a contrast function f(uuu|P ) by f : Bk ×P → R where Bk is the unit ball in Rk
and P is essentially the class of mean zero distributions on Rd. More concretely, for suitable choices
of g, f(uuu|P ) ≡ f(uuu|xxx) = Exxx∼P [g(uuuTxxx)] for any random variablexxx ∼ P . The most popular example
of a contrast function is the kurtosis, which is defined as f(uuu|P ) = Exxx∼P (uuuTxxx)4

/
E
[
(uuuTxxx)2

]2− 3.
The aim is to maximize an empirical estimate, f̂(uuu|P ). Notable contrast functions are the negentropy,
mutual information (used by INFOMAX [7]), the tanh function, etc. (See [37] for further details).

Fitting strategies: There are two broad categories of the existing fitting strategies. (I) Find A such
that the components of Axxx are both as nongaussian and as independent as possible. See, for example,
the multivariate cumulant-based method JADE [9] and characteristic function-based methods [21, 11].
The latter we shall call the PFICA method. (II) Find successively the jth row of A, denoted by
A(j, :) ∈ Rd, j = 1, . . . , k such that A(j, :)Txxx are independent and each as nongaussian as possible,
that is, estimate A(1, :), project, and then apply the method again on the residuals successively. The
chief representative of these methods is FastICA [27] based on univariate kurtosis.

From noiseless to noisy ICA: In the noiseless case one can first prewhiten the dataset using the
empirical variance-covariance matrix, Σ̂, of xxx(i), using Σ̂−1/2. Therefore, WLOG, B can be assumed
to be orthogonal. Searching over orthogonal matrices not only simplifies algorithm design for fitting

1If B is not invertible, this can be replaced by the Moore-Penrose inverse.
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strategy (I) but also makes strategy (II) meaningful. It also greatly simplifies the analysis of kurtosis-
based contrast functions (see [18]). For noisy ICA, prewhitening requires knowledge of the noise
covariance, and therefore many elegant methods [4, 48, 49] avoid this step.

Individual shortcomings of different contrast functions and fitting strategies: To our knowledge,
no single ICA algorithm or contrast function works universally across all source distributions.
Adaptively determining which algorithm is useful in a given setting would be an important tool in a
practitioner’s toolbox. Key challenges include:

Cumulants: Even though contrast functions based on even cumulants have no spurious local optima
(Theorem 3, [49]), they can vanish for some non-Gaussian distributions. Our experiments (Section 5)
show that kurtosis-based contrast functions can perform poorly even when there are a few independent
components with zero kurtosis. They also suffer under heavy-tailed source distributions [3, 11, 26].

PFICA: PFICA can outperform cumulant-based methods in some situations (Section 5). However, it
is computationally much slower, and poorly performs for Bernoulli(p) sources with small p.

FastICA: [32] show that FastICA’s use of Negentropy approximations for computational efficiency
may result in a contrast function where optimal directions do not correspond to directions of low
entropy. tanh is another popular smooth contrast function used by FastICA. However, in [52], the
authors show that this tends to return spurious solutions for some distributions [52].

Contrast functions are usually nonconvex and may have spurious local optima. However, they may
still, under suitable conditions, converge to maximal directions. We introduce such a contrast function
which vanishes iff xxx is Gaussian in Section 3.3 and does not require higher moments.

Our contributions:

1) Using Theorem 1 we obtain a computationally efficient scoring method for evaluating the B
estimated by different algorithms. Our score can also be extended to evaluate each demixing direction
in sequential settings, which we do not pursue here.

2) We propose new contrast functions that work under scenarios where cumulant-based methods fail.
We propose a fast sequential algorithm as in [49] to optimize these and further provide theoretical
guarantees for convergence.

3 Main contributions
In this section, we present the “Independence score” and state the key result that justifies it. We
conclude with two new contrast functions.

3.1 Independence score
While there are many tests for independence [22, 34, 42, 6], we choose the Characteristic function-
based one because it is easy to compute and has been widely used in normality testing [19, 20, 25]
and ICA [11, 21, 44]. Let us start with noiseless ICA to build intuition. Say we have estimated the
inverse of the mixing matrix, i.e. B−1 using a matrix F . Ideally, if F = B−1, then Fxxx = zzz, where
zzz is a vector of independent random variables. Kac’s theorem [33] tells us that E

[
exp(itTzzz)

]
=∏k

j=1 E [exp(itjzj)] if and only if zi are independent. In [21], a novel characteristic function-
based objective (CHFICA), is further analyzed and studied by [11] (PFICA). Here one minimizes
|E
[
exp(itTFxxx)

]
−
∏k
j=1 E [exp(itj(Fxxx)j)] | over F . We refer to this objective as the uncorrected

independence score. We propose to adapt the CHFICA objective using estimable parameters, S, to
the noisy ICA setting. We will minimize:

∆(ttt, F |P ) :=

∣∣∣∣∣∣∣∣E
[
exp(itttTFxxx)

]
exp

(
−tttT diag(FSFT )ttt

2

)
︸ ︷︷ ︸

JOINT

−
k∏

j=1

E [exp(itj(Fxxx)j)] exp

(
−tttTFSFT ttt

2

)
︸ ︷︷ ︸

PRODUCT

∣∣∣∣∣∣∣∣∣∣
(2)

where S = E[xxxxxxT ] and can be estimated using the sample covariance matrix. Hence, we do not
require knowledge of any model parameters. We refer to this score as the (corrected) independence
score. The second terms in JOINT and PRODUCT (Eq 2) corrects the original score by canceling
out the additional terms resulting from the Gaussian noise using the covariance matrix S of the

3
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data (estimated via the sample covariance). See [21] for a related score requiring knowledge of the
unknown Gaussian covariance matrix Σ. We are now ready to present our first theoretical result for
consistency of ∆(ttt, F |P ).
Theorem 1. If F ∈ Rk×k is invertible and the joint and marginal characteristic functions of all
independent components, {zi}i∈[k], are twice-differentiable, then ∀ttt ∈ Rk, ∆(ttt, F |P ) = 0 iff
F = DB−1 where D is a permutation of an arbitrary diagonal matrix.

Unfortunately, F is not uniquely defined if Σ is unknown as we have noted in Section 1. The proof of
Theorem 1 is provided in the Appendix Section A.1. When using this score in practice, S is replaced
with the sample covariance matrix of the data, and the expectations are replaced by the empirical
estimates of the characteristic function. The convergence of this empirical score, ∆(t, F |P̂ ), to the
population score, ∆(t, F |P ), is given by the following theorem.

Theorem 2. Let F := {F ∈ Rk×k : ∥F∥≤ 1}, xxx ∼ subgaussian(σ) and Ck :=
max(1, k log (n) Tr(S)). Then, we have

sup
F∈F
|Ettt∈N(0,Ik)∆(ttt, F |P )− Ettt∈N(0,Ik)∆(ttt, F |P̂ )|= OP

√k2∥S∥max(k, σ4∥S∥) log2(nCk)
n


This bound shows that uniformly over F , the empirical average Ettt∈N(0,Ik)∆(ttt, F |P̂ ), is close to the
population score. This guarantees that as long as the difference between the population scores of the
two candidate algorithms is not too small, the meta-algorithm can pick up the better score.
Remark 1 (Subgaussianity assumption). The subgaussianity assumption in Theorem 2 simply ensures
the concentration of the sample covariance matrix since it is used in the score (see Theorem A.3, line
825). It can be relaxed if the concentration in the operator norm is ensured. Appendix Section A.2.1
contains experiments with more super-Gaussian source signals.

The proof of this result is deferred to the Appendix section A.1.1. It is important to note that ∆(ttt, F |P̂ )
is not easy to optimize. As we show in Section 3.2, objective functions that are computationally
more amenable to optimize for ICA, e.g., cumulants, satisfy some properties (see Assumption 1).
The independence score does not satisfy the first property (Assumption 1 (a)). In the noiseless case,
whitening reduces the problem to B being orthogonal. This facilitates efficient gradient descent in
the Stiefel manifold of orthogonal matrices [11]. However, in the noisy setting, the prewhitening
matrix contains the unknown noise covariance Σ, making optimization hard. Furthermore, as noted
in Remark 2, in practice, it is better to use Ettt∼N(0,Ik)∆(ttt, F |P̂ ) [11, 21, 25] instead of using a fixed
vector, ttt, to evaluate ∆(ttt, F |P̂ ). Any iterative optimization method requires repeatedly estimating this
expectation at each gradient step. Therefore, instead of using this score directly as the optimization
objective, we use it to choose between different contrast functions after extracting the demixing
matrix with each. This process is referred to as the Meta algorithm (Algorithm 1).

Algorithm 1 Meta-algorithm for choosing
best candidate algorithm.

Input: Algorithm list L, Data X ∈ Rn×k
for j in range[1, size (L)] do
Bj ← Lj (X) {Extract mixing matrix
Bj using jth candidate algorithm}

δj ← Êttt∼N (0,Ik)

[
∆
(
t, B−1

j |P̂
)]

end for
i∗ ← argminj∈[size(L)] [δj ]
return Bi∗

Figure 1: Correlation of independence score (with
std. dev.) with Amari error between B′ = ϵB +
(1− ϵ) I and B, averaged over 10 random runs.

Remark 2 (Averaging over ttt). Algorithm 1 averages the independence score over ttt ∼ N (0, Ik).
While Eq 2 defines the independence score for one direction ttt, in practice, however, there may be
some directions such that a non-gaussian signal has a small score in that direction. Hence, it is
desirable to average over ttt, following the convention in [11, 21, 25].

4
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To gain an intuition of the independence score, we conduct an experiment where we use the dataset
mentioned in Section 5 (Figure 2b) and compute the independence score forB′ = ϵB+(1− ϵ) I, ϵ ∈
(0.5, 1). As we increase ϵ, B′ approaches B, and hence the Amari error dB′,B (see Eq 8) decreases.
Figure 1 shows the independence score versus Amari error, indicating that the independence score
accurately predicts solution quality even without knowing the true B.

3.2 Desired properties of contrast functions
The following properties are often useful for designing provable optimization algorithms for ICA.

Assumption 1 (Properties of contrast functions). Let f be a contrast function defined for a mean
zero random variable X . Then,

(a) f(u|X + Y ) = f(u|X) + f(u|Y ) for X ⊥⊥ Y
(b) f(0|X) = 0, f ′(0|X) = 0, f ′′(0|X) = 0

(c) f(u|G) = 0,∀u for G ∼ N (0, 1)

(d)WLOG, f(u|X) = f(−u|X) (symmetry)

Properties (a) and (c) ensure that f(u|G + X) = f(u|X) for non-gaussian X and independent
non-gaussian G, which means that the additive independent Gaussian noise does not change f .
Property (c) ensures that |f(u|G)| is minimal for a Gaussian. Property (d) holds without loss of
generality because one can always symmetrize the distribution. 2

3.3 New contrast functions
In Section 2, we provided a discussion of the individual shortcomings of different contrast functions
for existing contrast functions. Before we introduce new contrast functions in this section, we revisit
the algorithmic issues posed by the added Gaussian noise with unknown Σ in Eq 1.

Prewhitening the data is challenging for noisy ICA because E[xxxxxxT ] includes the unknown Gaussian
covariance matrix Σ. [4] show that it is enough to quasi orthogonalize the data, i.e., multiply it
by a matrix, which makes the data have a diagonal covariance matrix (not necessarily the identity).
Subsequent work [50, 49] uses cumulants and the Hessian of f(uuu) to construct a matrix C := BDBT

where D is a diagonal matrix, and then use this matrix to achieve quasi-orthogonalization. In general,
D may not be positive semidefinite (e.g. when components of zzz have kurtosis of different signs). To
remedy this, in [49], the authors propose computing the C matrix using the Hessian of f(uuu) at some
fixed unit vector and then perform an elegant power method in the pseudo-Euclidean space:

uuut ← ∇f(C†uuut−1|P )
/
∥∇f(C†uuut−1|P )∥ (3)

A pseudo-Euclidean space is a generalization of the Euclidean space used by [48]. Here the produce
between vectors uuu,vvv is given as u⊤Av,

Algorithm 2 Pseudo-Euclidean Power Iteration for ICA (Algorithm 2 in [48]) B̃ is the recovered
matrix for the ICA model in Eq 1. Ã is a running estimate of B̃†.

Input: C ∈ Rk×k,∇f
Ã← 0, B̃ ← 0
for j in range[1, k] do

Draw u uniformly at random from Sk−1

while Convergence (up to sign) do
u← B̃Ãu
u← ∇f

(
C†u

)
/
∥∥∇f (C†u

)∥∥
2

end while

B̃j ← u, Ãj ←
[
C†B̃j/

((
C†B̃j

)⊤
B̃j

)]⊤
end for
return B̃, Ã

2Note that yi := xi − x⌊n/2⌋+i, i = 1 · · · ⌊n/2⌋ has a symmetric distribution, and also remains a noisy
version of a linear combination of source signals with the same mixing matrix.

5
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In this section, we present two new contrast functions based on the logarithm of the characteristic
function (CHF) and the cumulant generating function (CGF). These do not depend on a particular
cumulant, and the first only requires a finite second moment, which makes it suitable for heavy-
tailed source signals. We will use f(uuu|P ) or f(uuu|xxx) where xxx ∼ P interchangeably to represent the
population contrast function. In constructing both of the following contrast functions, we use the fact
that, like the cumulants, the CGF and CHF-based contrast functions satisfy Assumption 1 (a). To
satisfy Assumption 1 (c), we subtract out the part resulting from the Gaussian noise, which leads to
the additional terms involving uuu⊤Suuu.

CHF-based contrast function: Recall that S denotes the covariance matrix of xxx. We maximize the
absolute value of following:

f(uuu|P ) = logE exp(iuuuTxxx) + logE exp(−iuuuTxxx) + uuuTSuuu

= log(E cos(uuuTxxx))2 + log(E sin(uuuTxxx))2 + uuuTSuuu (4)

The intuition is that this is exactly zero for zero mean Gaussian data and maximizing this leads to
extracting non-gaussian signal from the data. It also satisfies Assumption 1 a), b) and c).

CGF-based contrast function: The cumulant generating function also has similar properties (see [53]
for the noiseless case). In this case, we maximize the absolute value of following:

f(uuu|P ) = logE exp(uuuTxxx)− 1

2
uuuTSuuu (5)

Like CHF, this vanishes iff xxx is mean zero Gaussian, and satisfies Assumption 1 a), b) and c).
However, it cannot be expected to behave well in the heavy-tailed case. In the Appendix (Section A.1,
Theorem A.1), we show that the Hessian of both functions obtained from Eq 4 and Eq 5 evaluated at
some uuu is, in fact, of the form BDBT where D is some diagonal matrix.

4 Global and local Convergence: loss landscape of noisy ICA
Here we present sufficient conditions for global and local convergence of a broad class of contrast
functions. This covers the cumulant-based contrast functions and our CHF and CGF-based proposals.

4.1 Global convergence
The classical argument for global optima of kurtosis for noiseless ICA in [18] assumes WLOG that
B is orthogonal. This reduces the optimization over uuu into one for vvv = Buuu. Since B is orthogonal,
∥uuu∥= 1 translates into ∥vvv∥= 1. It may seem that this idea should extend to the noisy case due to
property 1 a) and c) by optimizing over vvv = Buuu over potentially non-orthogonal mixing matrices B.

However, for non-orthogonal B, the norm constraint on vvv is no longer vvvTvvv = 1, rendering the
original argument invalid. In what follows, we extend the original argument to the noisy ICA setting
by introducing pseudo-euclidean constraints. Our framework includes a large family of contrast
functions, including cumulants.

To our knowledge, this is the first work to characterize the loss functions in the pseudo-euclidean
space. In contrast, [50] provides global convergence of the cumulant-based methods by a convergence
argument of the power method itself.

Consider the contrast function f (uuu|P ) := Exxx∼P
[
g
(
xxxTuuu

)]
and recall the definition of the quasi

orthogonalization matrix C = BDBT , where D is a diagonal matrix. For simplicity, WLOG let
us assume that D is invertible. We now aim to find the optimization objective that leads to the
pseudo-Euclidean update in Eq 3. For f

(
C−1uuu|P

)
= Exxx∼P

[
g
(
uuuTC−1xxx

)]
, consider the following:

f
(
C−1uuu|P

)
=
∑
i∈[k]

E
[
g
((
B−1uuu

)
i
zi/Dii

)]
=
∑
i∈[k]

E [g (αiz̃i)] =
∑
i∈[k]

f (αi/Dii|zi) (6)

where we define ααα := B−1uuu and z̃i = zi/Dii. We now examine f(C−1uuu) subject to the “pseudo”
norm constraint uuuTC−1uuu = 1. The key point is that for suitably defined f , one can construct a matrix
C = BDBT from the data even when B is unknown. So our new objective is to optimize

f
(
C−1uuu|P

)
s.t. uuuTC−1uuu = 1

6
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Using the Lagrange multiplier method, optimizing the above simply gives the power method update
(Eq 3) uuu ∝ ∇f(C−1uuu). Furthermore, optimizing Eq 6 leads to the following transformed objective:

max
ααα

∣∣∣∣∣∑
i

f (αi/Dii| zi)

∣∣∣∣∣ s.t.
∑
i

α2
i /Dii = 1 (7)

Now we provide our theorem about maximizing f(C−1uuu|P ). Analogous results hold for minimiza-
tion. We will denote the corresponding derivatives evaluated at t0 as f ′(t0|zi) and f ′′(t0|zi).
Theorem 3. LetC be a matrix of the formBDBT , where di := Dii = f ′′(ui|zi) for some random ui.
Let S+ = {i : di > 0}. Consider a contrast function f : R→ R. Assume that for every non-Gaussian
independent component, Assumption 1 holds and the third derivative, f ′′′(u|X), does not change
the sign in the half-lines [0,∞), (∞, 0]. Then f

(
C−1uuu

∣∣xxx) with the constraint of ⟨uuu,uuu⟩C−1 = 1 has
local maxima at B−1uuu = eeei, i ∈ S+. All solutions satisfying eeeTi B

−1uuu ̸= 0, ∀i ∈ [1, k] are minima,
and all solutions with |

{
i : eeeTi B

−1uuu ̸= 0
}
|< k are saddle points. These are the only fixed points.

Note that the above result immediately implies that for C̃ = −C, the same optimization in Theorem 3
will have maxima at all uuu such that B−1uuu = eeei, i ∈ S−.
Corollary 3.1. 2kth cumulant-based contrast functions for k > 1, have maxima and minima at the
directions of the columns of B, provided {zzzi}i∈[k] have a corresponding non-zero cumulant.

Proof. This proof (see Appendix Section A.1) is immediate since cumulants satisfy (a), (c). For (c)
and (d), note that f(u|Z) is simply u2jκ2j(Z), where κ2j(Z) is the 2jth cumulant of Z.

Theorem 3 can be easily extended to the case where C is not invertible. The condition on the third
derivative, f ′′′ (u|X), may seem strong, and it is not hard to construct examples of random variables
Z where this fails for suitable contrast functions (see [36]). However, for such settings, it is hard to
separate Z from a Gaussian. See the Appendix A.4.1 for more details.

4.2 Local convergence
In this section, we establish a local convergence result for the power iteration-based method described
in Eq 3. Define ∀t ∈ R,∀i ∈ [d], the functions qi (t) := f ′

(
αi

Dii

∣∣∣ zi). Then, without loss of
generality, we have the following result for the first corner:
Theorem 4. Let αi = B−1uuui and ααα∗ := eee1. Let the contrast function f(.|X), satisfy assumptions
1 (a), (b), (c), and (d). Let B := [−∥B−1∥2, ∥B−1∥2] and define c1, c2, c3 > 0 such that ∀i ∈ [d],

supx∈B

{
|qi(x)|
c1

,
|q′i(x)|
c2

,
|q′′i (x)|
c3

}
≤ 1. Define ϵ := ∥B∥F

∥Be1∥2 max

{
c3+c2∥Be1∥
|q1(α∗

1)|
,

c22

|q1(α∗
1)|2

, c3∥Be1∥
|q′1(α∗

1)|

}
.

Let ∥ααα0 −ααα∗∥2≤ R, R ≤ max
{
c2
c3
, 1
5ϵ

}
. Then, we have ∀t ≥ 1,

∥αααt+1 −ααα∗∥
∥αααt −ααα∗∥

≤ 1
2 .

Therefore, we can establish linear convergence without the third derivative constraint required for
global convergence (see Theorem 3), by assuming some mild regularity conditions on the contrast
functional and a sufficiently close initialization. The proof is included in Appendix Section A.1.2.
Remark 3. Let ααα = B−1uuu denote the demixed direction, uuu. Theorem 4 shows that if the initial uuu0 is
such that ααα0 is close to the ground truth ααα∗ (which is WLOG taken to be eee1), then there is geometric
convergence to ααα∗. |q1(α∗

1)| and |q′1(α∗
1)| essentially quantify how non-gaussian the corresponding

independent component is since they are zero for a mean zero Gaussian. When these are large
quantities, ϵ is small, and the initialization radius ∥ααα0 −ααα∗∥2 can be relatively larger.

5 Experiments
In this section, we provide experiments to compare the fixed-point algorithms based on the character-
istic function (CHF), the cumulant generating function (CGF) (Eqs 4 and 5) with the kurtosis-based
algorithm (PEGI-κ4 [49]). We also compare against noiseless ICA3 algorithms - FastICA, JADE,
and PFICA. These six algorithms are included as candidates for the Meta algorithm (see Algorithm

3MATLAB implementations (under the GNU General Public License) can be found at - FastICA and JADE.
The code for PFICA was provided on request by the authors.
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1). We also present the Uncorrected Meta algorithm (Unc. Meta) to denote the Meta algorithm
with the uncorrected independence score proposed in CHFICA [21]. Table 1 and Figure 2 provide
experiments on simulated data, and Figure 3 provides an application for image demixing [16]. We
provide additional experiments on denoising MNIST images in the Appendix Section A.2.

Experimental setup: Similar to [49], the mixing matrix B is constructed as B = UΛV T , where
U, V are k dimensional random orthonormal matrices, and Λ is a diagonal matrix with Λii ∈ [1, 3].
The covariance matrix Σ of the noise ggg follows the Wishart distribution and is chosen to be ρ

kRR
T ,

where k is the number of sources, and R is a random Gaussian matrix. Higher values of the noise
power ρ can make the noisy ICA problem harder. Keeping B fixed, we report the median of 100
random runs of data generated from a given distribution (different for different experiments). The
quasi-orthogonalization matrix for CHF and CGF is initialized as B̂B̂T using the mixing matrix, B̂,
estimated via PFICA. The performance of CHF and CGF is based on a single random initialization of
the vector in the power method (see Algorithm 2). Our experiments were performed on a Macbook
Pro M2 2022 CPU with 8 GB RAM.

Error Metrics: Due to the inherent ambiguity in signal recovery discussed in Section 2, we measure
error using the accuracy of estimating B. We report the widely used Amari error [2, 24, 11, 10] for
our results. For estimated demixing matrix B̂, define W = B̂−1B, after normalizing the rows of
B̂−1 and B−1. Then we measure dB̂,B as -

dB̂,B :=
1

k

 k∑
i=1

∑k
j=1|Wij |

maxj |Wij |
+

k∑
j=1

∑k
i=1|Wij |

maxi|Wij |

− 2 (8)

Variance reduction using Meta: We first show that the independence score can also be used to pick
the best solution from many random initializations. In Figure 2 (a), the top panel has a histogram of
40 runs of CHF, each with one random initialization. The bottom panel shows the histogram of 40
experiments, where, for each experiment, the best out of 30 random initializations are picked using
the independence score. The top and bottom panels have (mean, standard deviation) (0.51, 0.51) and
(0.39,0.34) respectively. This shows a reduction in variance and overall better performance.

Effect of varying kurtosis: For our second experiment (see Table 1), we use k = 5 independent
components, sample size n = 105 and noise power ρ = 0.2 from a Bernoulli(p) distribution, where
we vary p from 0.001 to 0.5− 1/

√
12. The last parameter makes kurtosis zero. Different algorithms

Algorithm
Scaled κ4 994 194 95 15 5 2 0.8 0.13 0

Meta 0.007 0.010 0.011 0.010 0.011 0.011 0.0128 0.01981 0.023
CHF 1.524 0.336 0.011 0.010 0.011 0.011 0.0129 0.0213 0.029
CGF 0.007 0.011 0.011 0.016 0.029 0.044 0.05779 0.06521 0.071
PEGI 0.007 0.010 0.011 0.010 0.012 0.017 0.02795 0.13097 1.802

PFICA 1.525 0.885 0.540 0.024 0.023 0.023 0.0212 0.0224 0.024
JADE 0.021 0.022 0.021 0.022 0.022 0.023 0.029 0.089 1.909

FastICA 0.024 0.027 0.026 0.026 0.026 0.027 0.02874 0.0703 -
Unc. Meta 1.52 0.049 0.041 0.0408 0.0413 0.0414 0.0413 0.0416 0.0419

Table 1: Median Amari error with varying p in Bernoulli(p) data. The scaled kurtosis is given as
κ4 := (1− 6p (1− p))/(p (1− p)). Observe that the Meta algorithm (shaded in red) performs at par
or better than the best candidate algorithms. FastICA did not converge for zero-kurtosis data.

perform differently (best candidate algorithm is highlighted in bold font) for different p. In particular,
characteristic function-based methods like PFICA and CHF perform poorly for small values of p. We
attribute this to the fact that the characteristic function is close to one for small p. Kurtosis-based
algorithms like PEGI, JADE, and FASTICA perform poorly for kurtosis close to zero. Furthermore,
the Uncorrected Meta algorithm performs worse than the Meta algorithm since it shadows PFICA.

Effect of varying noise power: For our next two experiments, we use k = 9, out of which 3 are from

Uniform
(
−
√
3,
√
3
)
, 3 are from Exponential(5) and 3 are from

(
Bernoulli

(
1
2 −

√
1
12

))
and hence

have zero kurtosis. In these experiments, we vary the sample size (Figure 2b), n fixing ρ = 0.2, and

8

132654https://doi.org/10.52202/079017-4217



the noise power (Figure 2a) , ρ fixing n = 105, respectively. Note that with most mixture distributions,
it is easily possible to have low or zero kurtosis. We include such signals in our data to highlight
some limitations of PEGI-κ4 and show that Algorithm 1 can choose adaptively to obtain better results.
Figure 2a shows that large noise power leads to worse performance for all methods. PEGI, JADE,

(a) Variation of performance with noise power (b) Variation of performance with sample size

(c) Histograms of Amari error with n = 104 and noise
power ρ = 0.2

Figure 2: Amari error in the log-scale on y axis and varying noise powers (for n = 105) and varying sample
sizes (for ρ = 0.2) on x axis for figures 2a and 2b respectively. For figure 2c, the top panel contains a histogram
of 40 runs with one random initialization. The bottom panel contains a histogram of 40 runs, each of which is
the best independence score out of 30 random initializations.

and FastICA perform poorly consistently, because of some zero kurtosis components. CGF suffers
because of heavy-tailed components. However, CHF and PFICA perform well consistently. The Meta
algorithm mostly picks the best algorithm except for a few points, where the difference between the
two leading algorithms is small. The Uncorrected Meta algorithm (which uses the independence
score without the additional correction term introduced for noise) performs identically to PFICA.

Effect of varying sample size: Figure 2b shows that the noiseless ICA methods have good per-
formance at smaller sample sizes. However, they suffer a bias in performance compared to their
noiseless counterparts as the sample size increases. The Meta algorithm can consistently pick the best
option amongst the candidates, irrespective of the distribution, leading to significant improvements
in performance. What is interesting is that up to a sample size of 104, PFICA dominates other
algorithms and Meta performs like PFICA. However, after that CHF dominates, and one can see that
Meta starts to have a similar trend as CHF. We also see that the Uncorrected Meta algorithm (which
uses the independence score without the additional correction term introduced for noise) has a near
identical error as PFICA and has a bias for large n.

6 Conclusion
ICA is a classical problem that aims to extract independent non-Gaussian components. The vast
literature on both noiseless and noisy ICA introduces many different inference methods based on a
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(a) Source Images

(b) Mixed Images

(c) Demixed Images using CHF-based contrast function (∆(ttt, F |P ) = 5.26× 10−3).

(d) Demixed Images using Kurtosis-based contrast function (∆(ttt, F |P ) = 2.48× 10−2)

Figure 3: We demix images using ICA by flattening and linearly mixing them with a 4 × 4 matrix B (i.i.d
entries ∼ N (0, 1)) and Wishart noise (ρ = 0.001). The CHF-based method (c) recovers the original sources
well, upto sign. The Kurtosis-based method (d) fails to recover the second source. This is consistent with its
higher independence score. The Meta algorithm selects CHF from candidates CHF, CGF, Kurtosis, FastICA,
and JADE. Appendix Section A.2 provides results for other contrast functions and their independence scores.

variety of contrast functions for separating the non-Gaussian signal from the Gaussian noise. Each has
its own set of shortcomings. We aim to identify the best method for a given dataset in a data-driven
fashion. In this paper, we propose a nonparametric score, which is used to evaluate the quality
of the solution of any inference method for the noisy ICA model. Using this score, we design a
Meta algorithm, which chooses among a set of candidate solutions of the demixing matrix. We
also provide new contrast functions and a computationally efficient optimization framework. While
they also have shortcomings, we show that our diagnostic can remedy them. We provide uniform
convergence properties of our score and theoretical results for local and global convergence of our
methods. Simulated and real-world experiments show that our Meta-algorithm matches the accuracy
of the best candidate across various distributional settings.
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A Appendix

The Appendix is organized as follows -

• Section A.1 proves Theorems 1, 2, A.1, 3 and 4
• Section A.2 provides additional experiments for noisy ICA
• Section A.3 provides the algorithm to compute independence scores via a sequential proce-

dure
• Section A.4 explores the third derivative constraint in Theorem 3 and provides examples

where it holds
• Section A.5 contains surface plots of the loss landscape for noisy ICA using the CHF-based

contrast functions

A.1 Proofs

Proof of Theorem 1. We will give an intuitive argument for the easy direction for k = 2. We will
show that if F = DB−1 for some permutation of a diagonal matrixD, then after projecting using that
matrix, the data is of the form zzz + ggg′ for some Gaussian vector ggg′. Let k = 2. Let the entries of this
vector be z1 + g′1 and z2 + g′2, where zi, i ∈ {1, 2} are mean zero independent non-Gaussian random
variables and g′i, i ∈ {1, 2} are mean zero possibly dependent Gaussian variables. The Gaussian
variables are independent of the non-Gaussian random variables. Let ti, i ∈ {1, 2} be arbitrary but
fixed real numbers. Let ttt = (t1, t2) and let Σg′ denote the covariance matrix of the Gaussian g′.
Assume for simplicity var(zi) = 1 for i ∈ {1, 2}. Denote by Λ := cov(Fxxx) = FSFT = I + Σg′ .
The JOINT part of the score is given by:

JOINT = E [it1z1]E [it2z2] exp

(
−t
ttT (Σg′ + diag(Λ))ttt

2

)
The PRODUCT part of the score is given by

PRODUCT = E [it1z1]E [it2z2] exp

(
−t
ttT (diag(Σg′) + Λ)ttt

2

)
It is not hard to see that JOINT equals PRODUCT. The same argument generalizes to k > 2. We next
provide proof for the harder direction here. Suppose that ∆F (ttt|P ) = 0, i.e,

E
[
exp(itttTFxxx)

]
exp

(
−
tttT diag

(
FSFT

)
ttt

2

)
−

k∏
j=1

E [exp(itj(Fxxx)j)] exp

(
−t
ttTFSFT ttt

2

)
= 0

(A.9)

We then prove that F must be of the form DB−1 for D being a permutation of a diagonal matrix.
Then, taking the logarithm, we have

ln
(
E
[
exp(itttTFxxx)

])
−

k∑
j=1

ln (E [exp(itj(Fxxx)j)]) =
1

2
tttT
(
diag

(
FSFT

)
− FSFT

)
ttt

=
1

2
tttT
(
diag

(
FΣFT

)
− FΣFT

)
ttt

Under the ICA model we have, xxx = Bzzz + ggg. Therefore, from Eq A.9, using the definition of the
characteristic function of a Gaussian random variable and noting that cov (ggg) = Σ, we have

ln
(
E
[
exp(itttTFxxx)

])
= ln

(
E
[
exp(itttTFBzzz)

])
+ ln

(
E
[
exp(itttTFggg)

])
= ln

(
E
[
exp(itttTFBzzz)

])
− 1

2
tttTFΣFT ttt

and similarly,
k∑
j=1

ln (E [exp(itj(Fxxx)j)]) =

k∑
j=1

ln (E [exp(itj(FBzzz)j)])−
1

2
tttT diag

(
FΣFT

)
ttt
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Therefore, from Eq A.9,

gF (ttt) := ln
(
E
[
exp(itttTFBzzz)

])
−

k∑
j=1

ln (E [exp(itj(FBzzz)j)])

must be a quadratic function of ttt. It is important to note that the second term is an additive function
w.r.t t1, t2, · · · tk. For simplicity, consider the case of k = 2 and assume that the joint and marginal

characteristic functions of all signals are twice differentiable. Consider
∂2(gF (ttt))
∂t1∂t2

, then

2∑
k=1

∂2 (gF (ttt))

∂t1∂t2
≡ const. (A.10)

To simplify the notation, let ψj(t) := E
[
eitzj

]
, fj ≡ logψj , M := FB. The above is then

equivalent to
2∑
k=1

M1kM2kf
′′
k (M1kt1 +M2kt2) ≡ const. (A.11)

Note that M is invertible since F,B are invertible. Therefore, let s ≡MT t, then
2∑
k=1

M1kM2kf
′′
k (sk) ≡ const.

which implies that either M1kM2k = 0 or f ′′k (sk) ≡ const, for k = 1, 2. For any k ∈ {1, 2}, since
zk is non-Gaussian, its logarithmic characteristic function, i.e. fk cannot be a quadratic function, so

M1kM2k = 0

which implies that each column of M has a zero. Since M is invertible, thus M is either a diagonal
matrix or a permutation of a diagonal matrix. Now to consider k > 2, we just need to apply the above
k = 2 argument to pairwise entries of {t1, · · · , tk} with other entries fixed. Hence proved.

Proof of Theorem 3. We start with considering the following constrained optimization problem -

sup
uuuTC−1uuu=1

f
(
C−1uuu|P

)
By an application of lagrange multipliers, for the optima uuuopt, we have

νC−1uuuopt = C−1∇f
(
(C−1)Tuuuopt|P

)
, uuuToptC

−1uuuopt = 1

with multiplier ν ∈ R. This leads to a fixed-point iteration very similar to the one in [49], which is
the motivation for considering such an optimization framework. We now introduce some notations to
simplify the problem.

Let uuu = Bααα, z′i :=
zi
di

and a′i := var(z′i) =
ai
d2i

, where ai := var(zi). Then,

sup
uuuTC−1uuu=1

f
(
C−1uuu|P

)
= sup
αααTD−1ααα=1

f
(
D−1ααα|zzz

)
We will use f(uuu|P ) or f(uuu|xxx) where xxx ∼ P interchangeably. By Assumption 1-(a), we see that
f
(
D−1ααα|zzz

)
=
∑k
i=1 f

(
αi

di
|zi
)

. For simplicity of notation, we will use hi(αi/di) = f (αi/di|zi),
since the functional form can be different for different random variables zi. Therefore, we seek to
characterize the fixed points of the following optimization problem -

sup
ααα

k∑
i=1

hi(αi/di) (A.12)

s.t

k∑
i=1

α2
i

di
= 1,

di ̸= 0 ∀ i ∈ [k]
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where ααα,d ∈ Rk. We have essentially moved from optimizing in the ⟨., .⟩C−1 space to the ⟨., .⟩D−1

space. We find stationary points of the Lagrangian

L(ααα, λ) :=
k∑
i=1

hi

(
αi
di

)
− λ

(
k∑
i=1

α2
i

di
− 1

)
(A.13)

The components of the gradient of L(ααα, λ) w.r.t ααα are given as

∂

∂αj
L(ααα, λ) = 1

dj
h′j

(
αj
dj

)
− λαj

dj
,

At the fixed point (ααα, λ) we have,

∀j ∈ [k], h′j

(
αj
dj

)
− λαj = 0

By Assumption 1-(b), for αi = 0, the above is automatically zero. However, for {j : αj ̸= 0}, we
have,

λ =
h′j

(
αj

dj

)
αj

(A.14)

So, for all {j : αj ̸= 0}, we must have the same value and sign of 1
αj
h′j

(
αj

dj

)
. By assumption in

the theorem statement, h′′′i (x) does not change sign on the half-lines x > 0 and x < 0. Along with
Assumption 1-(b), this implies that

∀ x ∈ [0,∞), sgn(hi(x)) = sgn(h′i(x)) = sgn(h′′i (x)) = sgn(h′′′i (x)) = κ1 (A.15)

∀ x ∈ (−∞, 0], sgn(hi(x)) = −sgn(h′i(x)) = sgn(h′′i (x)) = −sgn(h′′′i (x)) = κ2 (A.16)

where κ1, κ2 ∈ {−1, 1} are constants. Furthermore, we note that Assumption 1-(d) ensures that
hi(x) is a symmetric function. Therefore, ∀ x ∈ R, sgn(hi(x)) = sgn(h′′i (x)) = κ, κ ∈ {−1, 1}.
Then, since di = h′′i (ui),

sgn (di) = sgn (hi(x)) ,∀x ∈ R (A.17)

Now, using A.14,

sgn(λ) = sgn
(
h′j

(
αj
dj

))
× sgn(αj)

= sgn
(
αj
dj

)
× sgn

(
hj

(
αj
dj

))
× sgn(αj), using Eq A.15 and A.16

= sgn (dj)× sgn
(
hj

(
αj
dj

))
= 1, using Eq A.17 (A.18)

Keeping this in mind, we now compute the Hessian, H ∈ Rk×k, of the lagrangian, L(ααα, λ) at the
fixed point, (ααα, λ). Recall that, we have h′i(0) = 0 and h′′i (0) = 0. Thus, for {i : αi = 0},

Hii = −λ/di (A.19)

This implies that sgn (diHii) = sgn (λ) = −1 for {i : αi = 0}, using Eq A.18.

For {i : αi ̸= 0}, we have

Hij =
∂2

∂αi∂αj
L(ααα, λ)

∣∣∣∣
ααα

= 1(i = j)

h′′i
(
αi

di

)
d2i

− λ

di


= 1(i = j)

h′′i
(
αi

di

)
d2i

−
h′i

(
αi

di

)
αidi

 , for αi ̸= 0, using A.14

= 1(i = j)
1

diαi

[
αi
di
h′′i

(
αi
di

)
− h′i

(
αi
di

)]
, for αi ̸= 0
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We consider the pseudo inner product space ⟨., .⟩D−1 for optimizing ααα. Furthermore, since we are in
this pseudo-inner product space, we have

⟨vvv,Hvvv⟩D−1 = vvvD−1Hvvv

So we will consider the positive definite-ness of the matrix H̃ := D−1H to characterize the fixed
points. Recall that for a differentiable convex function f , we have ∀ x, y ∈ dom(f) ⊆ Rn

f(y) ≥ f(x) +∇f(x)T (y − x)

Therefore, for {i : αi ̸= 0}, we have

sgn (diHii) = sgn (di)× sgn (diαi)× sgn
(
αi
di
h′′i

(
αi
di

)
− h′i

(
αi
di

))
= sgn (αi)× sgn

(
h′′′i

(
αi
di

))
, using convexity/concavity of h′(.)

= sgn (αi)× sgn
(
h′i

(
αi
di

))
, using A.15 and A.16

= sgn (αi)× sgn (λ)× sgn (αi) , using A.14
= sgn (λ)
= 1, using Eq A.17 (A.20)

Let S := {i : αi ̸= 0}. We then have the following cases -

1. Assume that only one αi is nonzero, then ∀vvv orthogonal to this direction, ⟨vvv,Hvvv⟩D−1 < 0
by Eq A.19. Thus this gives a local maxima.

2. Assume more than one αi are nonzero, but |S|< k. Then we have for i ̸∈ S, H̃jj < 0 using
A.19. For i ∈ S, H̃ii > 0 from Eq A.20. Hence these are saddle points.

3. Assume we have S = [k], i.e. ∀i, αi ̸= 0. In this case, H̃ ≻ 0. So, we have a local minima.

This completes our proof.

Theorem A.1. Consider the data generated from the noisy ICA model (Eq 1). If f(uuu|P ) is defined
as in Eq 4 or Eq 5, we have ∇2f(uuu|P ) = BDuB

T , for some diagonal matrix Du, which can be
different for the differerent contrast functions.

Remark 4. The above theorem is useful because it shows that the Hessian of the contrast functions
based on the CHF (eq 4 or CGF (eq 5) is of the form BDBT , where D is some diagonal matrix. This
matrix can be precomputed at some vector uuu and used as the matrix C in the power iteration update
(see eq 3) in Algorithm 2 of [49].

Proof of Theorem A.1. First, we show that the CHF-based contrast function (see Eq 4), the Hessian,
is of the correct form.

CHF-based contrast function

f(uuu|P ) = logE exp(iuuuTBzzz) + logE exp(−iuuuTBzzz) + uuuTB diag(aaa)BTuuu,

where diag(aaa) is the covariance matrix of zzz. For simplicity of notation, define ϕ(zzz;uuu) :=
E
[
exp(iuuuTBzzz)

]
.

∇f(uuu|P ) = iB

E
[
exp(iuuuTBzzz)zzz

]
ϕ(zzz;uuu)︸ ︷︷ ︸
µ(uuu;zzz)

−i
E
[
exp(−iuuuTzzz)zzz

]
ϕ(zzz;−uuu)

+ 2B diag(aaa)BTuuu
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Define

H(uuu;zzz) :=
E
[
exp(iuuuTBzzz)zzzzzzT

]
ϕ(zzz;uuu)

− µ(uuu;zzz)µ(uuu;zzz)T .

Taking a second derivative, we have:

∇2f(uuu|P ) = B (−H(uuu;zzz)−H(zzz;−uuu) + 2 diag(aaa))BT

All we have to show at this point is that H(uuu;zzz) is diagonal. We will evaluate the k, ℓ entry. Let Bi
denote the ith column of B. Let Y\k,ℓ := uuuTB

∑
j ̸=k,ℓ zj . Using independence of the components

of zzz, we have, for k ̸= ℓ,

E
[
exp(iuuuTBkzk + iuuuTBℓzℓ + Y\kℓ)zkzℓ

]
ϕ(zzz;uuu)

=
E
[
exp(iuuuTBkzk)zk

]
E
[
exp(iuuuTBℓzℓ)zℓ

]
E [exp(iuuuTBkzk)]E [exp(iuuuTBℓzℓ)]

(A.21)

Now we evaluate:

eeeTk µ(uuu;zzz) :=
E
[
exp(iuuuTBzzz)zk

]
ϕ(zzz;uuu)

=
E
[
exp(iuuuTBkzk)zk

]
E [exp(iuuuTBkzk)]

(A.22)

Using Eqs A.21 and A.22, we see that indeed H(uuu;zzz) is diagonal.

Now, we prove the statement about the CGF-based contrast function.

CGF-based contrast function

We have,

∇f (uuu|P ) =
E
[
exp

(
uuuTBzzz

)
Bzzz
]

E [exp (uuuTBzzz)]
−B diag (aaa)BTuuu,

∇2f (uuu|P ) =
E
[
exp

(
uuuTBzzz

)
BzzzzzzTBT

]
E [exp (uuuTBzzz)]

−
E
[
exp

(
uuuTBzzz

)
Bzzz
]
E
[
exp

(
uuuTBzzz

)
zzzTBT

]
E [exp (uuuTBzzz)]

2 −B diag (aaa)BT

= B


E
[
exp

(
uuuTBzzz

)
zzzzzzT

]
E [exp (uuuTBzzz)]

−
E
[
exp

(
uuuTBzzz

)
zzz
]
E
[
exp

(
uuuTBzzz

)
zzzT
]

E [exp (uuuTBzzz)]
2︸ ︷︷ ︸

Covariance of zzz ∼ P(zzz).
exp

(
uuuTBzzz

)
E [exp (uuuTBzzz)]

−diag (aaa)


BT

The new probability density P (zzz) .
exp(uuuTBzzz)

E[exp(uuuTBzzz)] is an exponential tilt of the original pdf, and since
{zi}di=1 are independent, and the new tilted density also factorizes over the zi’s, therefore, the
covariance under this tilted density is also diagonal.

A.1.1 Uniform convergence

In this section, we provide the proof for Theorem 2. First, we state some preliminary results about
the uniform convergence of smooth function classes which will be useful for our proofs.

A.1.1.1 Preliminaries

Let D := supθ,θ̃∈T ρX

(
θ, θ̃
)

denote the diameter of set T, and let NX (δ;T) denote the δ-covering
number of T in the ρX metric. Then, we have the following standard result:
Proposition A.2. (Proposition 5.17 from [51]) Let {Xθ, θ ∈ T} be a zero-mean subgaussian process
with respect to the metric ρX . Then for any δ ∈ [0, D] such that NX (δ;T) ≥ 10, we have

E

[
sup
θ,θ̃∈T

(
Xθ −Xθ̃

)]
≤ 2E

[
sup

γ,γ′∈T;ρX(γ,γ′)≤δ

(
Xθ −Xθ̃

)]
+ 4
√
D2 log (NX (δ;T))
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Remark 5. For zero-mean subgaussian processes, Proposition A.2 implies, E [supθ∈TXθ] ≤
E
[
supθ,θ̃∈T

(
Xθ −Xθ̃

)]
Proposition A.3. (Theorem 4.10 from [51]) For any b-uniformly bounded class of functions C, any
positive integer n ≥ 1, any scalar δ ≥ 0, and a set of i.i.d datapoints

{
X(i)

}
i∈[n]

we have

sup
f∈C

∣∣∣∣∣ 1n
n∑
i=1

f
(
X(i)

)
− E [f (X)]

∣∣∣∣∣ ≤ 2
1

n
EX,ϵ

[
sup
f∈C

∣∣∣∣∣
n∑
i=1

ϵif
(
X(i)

)∣∣∣∣∣
]
+ δ

with probability at least 1− exp
(
−nδ

2

2b2

)
. Here {ϵi}i∈[n] are i.i.d rademacher random variables.

A.1.1.2 Proof of theorem 2

For dataset
{
xxx(i)
}
i∈[n]

,xxx(i) ∈ Rk, consider the following definitions:

ϕ(ttt, F |P ) := Exxx
[
exp(itttTFxxx)

]
, ϕ(ttt, F |P̂ ) := 1

n

n∑
j=1

exp(itttTFxxx(j)) (A.23)

ψ(ttt, F |P ) :=
k∏
j=1

Exxx [exp(itj(Fxxx)j)] , ψ(ttt, F |P̂ ) := 1

n

k∏
j=1

n∑
r=1

exp(itj(Fxxx
(r))j) (A.24)

Let ∆(ttt, F |P̂ ) be the empirical version where the expectation is replaced by sample averages. Now
define:

∆(ttt, F |P ) =
∣∣ϕ(ttt, F |P ) exp (−tttT diag(FSFT )ttt

)
− ψ(ttt, F |P ) exp

(
−tttTFSFT ttt

)∣∣
∆(ttt, F |P̂ ) =

∣∣∣ϕ(ttt, F |P̂ ) exp(−tttT diag(FŜFT )ttt
)
− ψ(ttt, F |P̂ ) exp

(
−tttTFŜFT ttt

)∣∣∣
Theorem A.4. Let F := {F ∈ Rk×k : ∥F∥≤ 1}. Assume that xxx ∼ subgaussian(σ). We have:

sup
F∈F
|Ettt∈N(0,Ik)∆(ttt, F |P )− Ettt∈N(0,Ik)∆(ttt, F |P̂ )|= OP

√k2∥S∥max(k, σ4∥S∥) log2(nCk)
n


where Ck := max(1, k log (n) Tr(S)).

Proof. Define E = {ttt : ∥ttt∥≤
√
2k log n}. We will use the fact that P (Ec) ≤ 2/n (Example

2.12, [51]). Also note that by construction, ∆(ttt, F |P ) ≤ 1. Observe that:

sup
F∈F
|Ettt∈N(0,Ik)∆(ttt, F |P )− Ettt∈N(0,Ik)∆(ttt, F |P̂ )|

≤ sup
F∈F

Ettt∈N(0,Ik)|∆(ttt, F |P )−∆(ttt, F |P̂ )|

≤ Ettt∈N(0,Ik) sup
F∈F
|∆(ttt, F |P )−∆(ttt, F |P̂ )|

≤ Ettt∈N(0,Ik)

[
sup
F∈F

∣∣∣∆(ttt, F |P )−∆(ttt, F |P̂ )
∣∣∣∣∣∣∣ E]+ Ettt∈N(0,Ik)

[
sup
F∈F
|∆(ttt, F |P )−∆(ttt, F |P̂ )

∣∣∣∣ |Ec]P (Ec)
≤ Ettt∈N(0,Ik)

[
sup
F∈F

∣∣∣∆(ttt, F |P )−∆(ttt, F |P̂ )
∣∣∣∣∣∣∣ E]+ 2/n

= OP

√k2∥S∥max(k, σ4∥S∥) log2(nCk)
n

+ 2/n, using Theorem A.5

The second inequality follows from Jensen’s inequality, the fourth follows from E[sup(.)] ≤
sup(E[.]).
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Theorem A.5. Let F := {F ∈ Rk×k : ∥F∥≤ 1}. Assume that xxx ∼ subgaussian(σ). We have:

sup
F∈F
|∆(ttt, F |P )−∆(ttt, F |P̂ )|= OP

(
∥ttt∥
√
k∥S∥max(k, σ4∥S∥) log(nCt)

n

)

where Ct := max(1, ∥ttt∥2Tr(S)).

Proof.

∆(ttt, F |P )−∆(ttt, F |P̂ ) ≤
∣∣∣ϕ(ttt, F |P )− ϕ(ttt, F |P̂ )∣∣∣ exp (−tttT diag(FSFT )ttt

)
+ ϕ(ttt, F |P̂ )

∣∣∣exp(−tttT diag(FŜFT )ttt
)
− exp

(
−tttT diag(FSFT )ttt

)∣∣∣
+
∣∣∣ψ(ttt, F |P )− ψ(ttt, F |P̂ )∣∣∣ exp (−tttTFSFT ttt)

+ ψ(ttt, F |P̂ )
∣∣∣exp(−tttTFŜFT ttt)− exp

(
−tttTFSFT ttt

)∣∣∣
Finally, for some S′ = λS + (1− λ)Ŝ,

|exp(−tttTFSFT ttt)− exp(−tttTFŜFT ttt)| =
∣∣∣〈∂S exp(−tttTFSFT ttt)∣∣S′ , Ŝ − S

〉∣∣∣
≤ exp(−tttTFS′FT ttt)

∣∣∣tttTF (S − Ŝ)FT ttt∣∣∣
≤ ∥ttt∥2∥S − Ŝ∥= ∥ttt∥2OP

(
σ2 ∥S∥

√
k

n

)
where the last result follows from Theorem 4.7.1 in [47]. Now, for the second term, observe that:∣∣∣ϕ(ttt, F |P̂ )(exp(−tttT diag(FŜFT )ttt

)
− exp

(
−tttT diag(FSFT )ttt

))∣∣∣
≤ exp

(
−tttT diag(FSFT )ttt

) ∣∣∣exp(−tttT diag(F (Ŝ − S)FT )ttt
)
− 1
∣∣∣ (A.25)

We next have that, with probability at least 1− 1/n,∥∥∥diag (F (S − Ŝ)FT)∥∥∥
2
≤
∥∥∥F (S − Ŝ)FT∥∥∥

2
≤ C

(
σ2 ∥S∥

√
k log n

n

)

Thus with probability at least 1− 1/n, using the inequality |1− ex|≤ 2|x|, ∀x ∈ [−1, 1], Eq A.25
leads to:∣∣∣ϕ(ttt, F |P̂ )(exp(−tttT diag(FŜFT )ttt

)
− exp

(
−tttT diag(FSFT )ttt

))∣∣∣ ≤ 2C∥ttt∥2
(
σ2 ∥S∥

√
k log n

n

)

Note that the matrices diag
(
F (S − Ŝ)FT

)
and FSFT are positive semi-definite and ttt is unit-norm.

Observe that, using Lemmas A.6 and A.7, we have:

sup
F∈F
|∆(ttt, F |P )−∆(ttt, F |P̂ )|

≤ OP

(
∥ttt∥
√
kTr(S) log (nCt)

n

)
+OP

(
∥ttt∥σ2 ∥S∥

√
k log n

n

)
+OP

(
∥ttt∥
√
k2∥S∥log n

n

)

= OP

(
∥ttt∥
√
k∥S∥max(k, σ4∥S∥) log(nCt)

n

)
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Lemma A.6. Define F := {F ∈ Rk×k : ∥F∥≤ 1}. Let
{
xxx(i)
}
i∈[n]

be i.i.d samples from a
subgaussian(σ) distribution. We have:

sup
F∈F

∣∣∣∣∣∣ 1n
n∑
j=1

exp(itttTFxxx(j))− Exxx
[
exp(itttTFxxx)

]∣∣∣∣∣∣ = OP

(
∥ttt∥
√
kTr(S) log (nCt)

n

)

where Ct := max(1, ∥ttt∥2Tr(S)).

Proof. Let ϕ(ttt, F ;xxx(i)) = exp(itttTFxxx(i)). Next, we note that ∥F∥2 ≤ 1 imply
∥∥FT ttt∥∥ ≤ ∥ttt∥.

Therefore,

sup
F∈F

∣∣∣∣∣∣ 1n
n∑
j=1

exp(itttTFxxx(j))− Exxx
[
exp(itttTFxxx)

]∣∣∣∣∣∣ ≤ sup
uuu∈Rk,∥uuu∥≤1

∣∣∣∣∣∣ 1n
n∑
j=1

exp(iuuuTxxx(j))− Exxx
[
exp(iuuuTxxx)

]∣∣∣∣∣∣
Let fX(uuu) =

∑
i ϵiξ(uuu;xxx

(i)). We will argue for unit vectors uuu, and later scale them by ∥ttt∥. Define
Bk :=

{
uuu ∈ Rk, ∥uuu∥ ≤ 1

}
, ξ(uuu;xxx) := exp(iuuuTxxx) and let

d(uuu,uuu′)2 :=
∑
i

(ξ(uuu;xxx(i))− ξ(uuu′;xxx(i)))2

Then we have,

∥∇uuu exp(iuuuTxxx)∥2 = ∥xxx∥|− sin(uuuTxxx) + i cos(uuuTxxx)| ≤ ∥xxx∥

Then, ∣∣∣ξ(uuu;xxx(i))− ξ(ttt;xxx(i))∣∣∣ ≤ min
(
∥∇uuu′′ξ(uuu;xxx(i))∥2∥uuu− uuu′∥ , 2

)
≤ min

(
∥xxx(i)∥2∥uuu− uuu′∥ , 2

)
Let Ŝ :=

∑
i xxx

(i)
(
xxx(i)
)T
/n and τn := nTr

(
Ŝ
)

. We next have,

D2 := max
uuu,uuu′

d(uuu,uuu′)2 ≤ min

{
4n,max

uuu,uuu′

∑
i

∥xxx(i)∥22∥uuu− uuu′∥
2

}
≤ 4min {n, τn}

Next, we bound the covering number N(δ;Bk, duuu). Note that N(δ;Bk, duuu) ≤ N(δ/
√
τn;Bk, ∥.∥2)

since,

d (uuu,uuu′)
2
=
∑
i

(ξ(uuu;xxx(i))− ξ(uuu′;xxx(i)))2

≤
∑
i

∥xxx(i)∥22∥uuu− uuu′∥
2

=
∑
i

Tr

(
xxx(i)

(
xxx(i)
)T)

∥uuu− uuu′∥2

Using Cauchy-Schwarz, we have:

|fX(uuu)− fX(uuu′)|≤
n∑
i=1

ϵi|ξ(uuu;xxx(i))− ξ(uuu;xxx(i))|≤
√
nd(uuu,uuu′)2
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Therefore, we have N(δ;Bk, duuu) ≤
(

3
√
τn
δ

)k
. Therefore, using Proposition A.2,

Exxx,ϵ
[
sup
F∈F
|fX(uuu)− fX(uuu′)|

]
≤ 2Exxx

[
sup

d(uuu,uuu′)≤δ
|fX(uuu)− fX(uuu′)|

]
+ 4Exxx

[
D
√
logN(δ;Bk, duuu)

]
≤ 2Exxx

[
inf
δ>0

{
δ
√
n+ 8

√
min {n, τn}

√
2k log

(
3
√
τn
δ

)}]
= O

(
Exxx
√
(kmin(n, τn) log (max(τn, n))

)
, setting δ :=

√
min(1, τn/n)

=
√
knO

(√
min(1,Tr(S)) log (nmax(1,Tr(S)))

)
, Cauchy-Schwarz inequality

Now we recall that ∥FT ttt∥≤ ∥ttt∥, since all vectors ttt appear as tttTFTxxx(i), this simply leads to scaling
τ and ∥S∥ by ∥ttt∥2. Dividing both sides by n, we have

1

n
Exxx,ϵ

[
sup
F∈F
|fX(ttt)− fX(ttt′)|

]
≤
√
k

n
O
(√

min(1, ∥ttt∥2Tr(S)) log (nmax(1, ∥ttt∥2Tr(S)))
)

Thus, using Proposition A.3 and using the definition of Ct, we have,

sup
F∈F
|ϕ(ttt, F |P̂ )− ϕ(ttt, F |P )|=

√
k

n
O
(√
∥ttt∥2Tr(S) log (nCt)

)
= ∥ttt∥

√
k

n
O
(√

Tr(S) log (nCt)
)

Lemma A.7. Let F = {F ∈ Rk×k : ∥F∥≤ 1}. We have:

sup
F∈F

∣∣∣ψ(ttt, F |P̂ )− ψ(ttt, F |P )∣∣∣ ≤ OP (∥ttt∥√k2∥S∥log n
n

)

Proof. Let Bk :=
{
uuu ∈ Rk, ∥uuu∥ ≤ 1

}
Now define ψj(ttt, F ;xxx) = E[exp(itjFTj xxx)]. Also define

f
(j)
X (F ) = 1

n

∑
i ϵiψj(ttt, F ;xxx

(i)). Thus, using the same argument as in Lemma A.6 for ttt← ∥ttt∥eeej
and xxx(i) ← tjxxx

(i),

sup
F∈F
|ψj(ttt, F |P̂ )− ψj(ttt, F |P )|= OP

(
|tj |
√
k∥S∥log n

n

)
Finally, we see that:

sup
F∈F

∣∣∣ψ(ttt, F |P̂ )− ψ(ttt, F |P )∣∣∣ ≤∑
j

OP

(
|tj |
√
k∥S∥log n

n

)

= OP

(√
k∥S∥log n

n

) k∑
j=1

|tj |

 = ∥ttt∥OP

(√
k2∥S∥log n

n

)
The above is true because, for |ai|, |bi|≤ 1, i = 1, . . . , k,∣∣∣∣∣

k∏
i=1

ai −
k∏
i=1

bi

∣∣∣∣∣ =
∣∣∣∣∣∣
k−1∑
j=0

∏
i≤j

bi(aj+1 − bj+1)

k∏
i=j+2

ai

∣∣∣∣∣∣ ≤
k−1∑
j=0

|aj+1 − bj+1|

A.1.2 Local convergence

In this section, we provide the proof of Theorem 4. Recall the ICA model from Eq 1,

xxx = Bzzz + ggg,

diag (aaa) := cov (zzz) , Σ := cov (ggg) = B diag (aaa)BT +Σ
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We provide the proof for the CGF-based contrast function. The proof for the CHF-based contrast
function follows similarly. From the Proof of Theorem A.1 we have,

∇f (uuu|P ) =
E
[
exp

(
uuuTBzzz

)
Bzzz
]

E [exp (uuuTBzzz)]
−B diag (aaa)BTuuu,

∇2f (uuu|P ) =
E
[
exp

(
uuuTBzzz

)
BzzzzzzTBT

]
E [exp (uuuTBzzz)]

−
E
[
exp

(
uuuTBzzz

)
Bzzz
]
E
[
exp

(
uuuTBzzz

)
zTBT

]
E [exp (uuuTBzzz)]

2 −B diag (aaa)BT

= B


E
[
exp

(
uuuTBzzz

)
zzzzzzT

]
E [exp (uuuTBzzz)]

−
E
[
exp

(
uuuTBzzz

)
zzz
]
E
[
exp

(
uuuTBzzz

)
zzzT
]

E [exp (uuuTBzzz)]
2︸ ︷︷ ︸

Covariance of zzz ∼
P (zzz) exp

(
uuuTBzzz

)
E [exp (uuuTBzzz)]

−diag (aaa)


BT

The new probability density
P (zzz) exp

(
uuuTBzzz

)
E [exp (uuuTBzzz)]

is an exponential tilt of the original pdf, and since

{zi}di=1 are independent, and the new tilted density also factorizes over the zi’s, therefore, the
covariance under this tilted density is also diagonal.

Let C := BD0B
T . We denote the ith column of B as B.i. Define functions

ri (uuu) := ln
(
E
[
exp

(
uuuTB.izi

)])
−Var (zi)

uuuTB.iB
T
.iuuu

2
gi (uuu) := ∇ri (uuu)

Then f (uuu|P ) =
∑d
i=1 ri (uuu), ∇f (uuu|P ) =

∑d
i=1 gi (uuu). For fixed point iteration, uuuk+1 =

∇f(C−1uuuk|P)
∥∇f(C−1uuuk|P )∥ . Consider the function ∇f

(
C−1uuu|P

)
. Let ei denote the ith axis-aligned unit

basis vector of Rn. Since B is full-rank, we can denote ααα = B−1uuu. We have,

∇f
(
C−1uuu|P

)
=

d∑
i=1

gi
(
C−1uuu

)

=

d∑
i=1

E
[
exp

(
uuuT
(
C−1

)T
B.izi

)
B.izi

]
E
[
exp

(
uuuT (C−1)

T
B.izi

)] −Var (zi)B.iB
T
.iC

−1uuu

=

d∑
i=1

E
[
exp

(
uuuT
(
BT
)−1

D−1
0 eeeizi

)
B.izi

]
E
[
exp

(
uuuT (BT )

−1
D−1

0 eeeizi

)] −Var (zi)B.ieee
T
i D

−1
0 B−1u

=

d∑
i=1

E
[
exp

(
αi

(D0)ii
zi

)
zi

]
E
[
exp

(
αi

(D0)ii
zi

)] −Var (zi)
αi

(D0)ii

B.i

For t ∈ R, define the function qi (t) : R→ R as -

qi (t) :=
E
[
exp

(
t

(D0)ii
zi

)
zi

]
E
[
exp

(
t

(D0)ii
zi

)] −Var (zi)
t

(D0)ii

Note that qi (0) = E [zi] = 0. For t = (t1, t2, · · · td) ∈ Rd, let q (t) :=
[q1 (t1) , q2 (t2) · · · qd (td)]T ∈ Rd. Then,

∇f
(
C−1u|P

)
= Bq (ααα)
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Therefore, if uuut+1 = Bαααt+1, then

Bαααt+1 =
Bq (αααt)

∥Bq (αααt)∥

=⇒ αααt+1 =
q (αααt)

∥Bq (αααt)∥

=⇒ ∀i ∈ [d], (αααt+1)i =
qi ((αααt)i)

∥Bq (αααt)∥

At the fixed point, ααα∗ =
eee1
∥Beee1∥

and
Bqqq (ααα∗)

∥Bqqq (ααα∗)∥2
= Beee1. Therefore,

∀i ∈ [2, d], (αααt+1)i − α
∗
i = (αααt+1)i =

qi ((αααt)i)

∥Bq (αααt)∥
(A.26)

for i = 1, (αααt+1)1 − α
∗
1 =

q1 ((αααt)i)

∥Bq (αααt)∥
− 1

∥Beee1∥
(A.27)

Note the smoothness assumptions on qi(.) mentioned in Theorem 4, ∀i ∈ [d],

1. supt∈[−∥B−1∥2,∥B−1∥2]|qi (t) |≤ c1
2. supt∈[−∥B−1∥2,∥B−1∥2]|q

′
i (t) |≤ c2

3. supt∈[−∥B−1∥2,∥B−1∥2]|q
′′
i (t) |≤ c3

Since ∀k, ∥uuuk∥= 1, therefore, ∀k, ∥αααt∥≤ ∥B−1∥2. We seek to prove that the sequence {αααt}nk=1
converges to ααα∗.

A.1.2.1 Taylor expansions

Consider the function gi (y) :=
qi (yi)

∥Bq (yyy) ∥
for yyy ∈ Rd. We start by computing the gradient,

∇ygi (y).

Lemma A.8. Let gi (y) :=
qi (yi)

∥Bq (yyy) ∥
, then we have

[∇ygi (y)]j =


1

∥Bq (yyy) ∥
∂qi (yi)

∂yi
− qi (yi)

∥Bq (yyy) ∥2
∂∥Bq (yyy) ∥
∂qi (yi)

∂qi (yi)

∂yi
, for j = i

−
q′j (yj)

∥Bq (yyy) ∥
qi (yi)eee

T
j B

TBq (yyy)

∥Bq (yyy) ∥2
, for j ̸= i

Proof. The derivative w.r.t yi is given as -

∂gi (yyy)

∂yi
=

1

∥Bq (yyy) ∥
∂qi (yi)

∂yi
− qi (yi)

∥Bq (yyy) ∥2
∂∥Bq (yyy) ∥

∂yi

=
1

∥Bq (yyy) ∥
∂qi (yi)

∂yi
− qi (yi)

∥Bq (yyy) ∥2
∂∥Bq (yyy) ∥
∂qi (yi)

∂qi (yi)

∂yi

Note that

∇yyy∥Ayyy∥2=
1

∥Ayyy∥
ATAyyy

Therefore,

∂gi (yyy)

∂yi
=

1

∥Bq (yyy) ∥
∂qi (yi)

∂yi
− qi (yi)

∥Bq (yyy) ∥2
1

∥Bq (yyy) ∥
eeeTi B

TBq (yyy)
∂qi (yi)

∂yi

=
q′i (yi)

∥Bq (yyy) ∥

[
1− qi (yi)eee

T
i B

TBq (yyy)

∥Bq (yyy) ∥2

]
(A.28)
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For j ̸= i, the derivative w.r.t yj is given as -

∂gi (yyy)

∂yj
= − qi (yi)

∥Bq (yyy) ∥2
∂∥Bq (yyy) ∥
∂qj (yj)

∂qj (yj)

∂yj

= −
q′j (yj)

∥Bq (yyy) ∥
qi (yi)eee

T
j B

TBq (yyy)

∥Bq (yyy) ∥2
(A.29)

Next, we bound qi (t) and q′i (t).
Lemma A.9. Under the smoothness assumptions on qi(.) mentioned in Theorem 4, we have for
t ∈ [−∥B−1∥2, ∥B−1∥2],

1. |q1 (t)− q1 (α∗
1)| ≤ c2 |t− α∗

1| , |q′1 (t)− q′1 (α∗
1)| ≤ c3 |t− α∗

1|

2. ∀i, |qi (t) |≤ c3t
2

2 , |q′i (t) |≤ c3|t|

Proof. First consider qi (t) and q′i (t) for i ̸= 1. Using Taylor expansion around t = 0, we have for
some c ∈ (0, t) and ∀i ̸= 1,

qi (t) = qi (0) + tq′i (0) +
t2

2
q′′i (c) and

q′i (t) = q′i (0) + tq′′i (0)

Now, we know that qi (0) = q′i (0) = 0. Then using Assumption 1, we have, for t ∈
[−∥B−1∥2, ∥B−1∥2],

|qi (t) |≤
c3t

2

2
and (A.30)

|q′i (t) |≤ c3|t| (A.31)

Similarly, using Taylor expansion around α∗
1 = 1

∥Beee1∥2
for q1 (.) we have, for some c′ ∈ (0, t)

q1 (t) = q1 (α
∗
1) + (t− α∗

1) q
′
1 (c

′) and

q′1 (t) = q′1 (α
∗
1) + (t− α∗

1) q
′′
1 (c′)

Therefore, using Assumption 4, we have, for t ∈ [−∥B−1∥2, ∥B−1∥2]

|q1 (t)− q1 (α∗
1)| ≤ c2 |t− α∗

1| and (A.32)

|q′1 (t)− q′1 (α∗
1)| ≤ c3 |t− α∗

1| (A.33)

A.1.2.2 Using convergence radius

In this section, we use the Taylor expansion results for qi (.) and q′i (.) in the previous section to
analyze the following functions for yyy ∈ Rd,

1. w (yyy) := ∥Byyy∥

2. v (yyy; i) :=
eeeTi B

TBq (yyy)

∥Bq (yyy) ∥2

Under the constraints specified in the theorem statement we have,

∥yyy −ααα∗∥2≤ R, R ≤ max {c2/c3, 1} ,

ϵ :=
∥B∥F
∥Beee1∥

max

{
c2

|q1 (α∗
1)|
,

c3
|q′1 (α∗

1)|

}
, ϵR ≤ 1

10
(A.34)

We start with w (yyy).
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Lemma A.10. ∀ yyy ∈ Rd, satisfying (A.34), let δ (yyy) := q (yyy)− q1 (α∗
1)eee1. Then, we have

1. (1− ϵ∥yyy −ααα∗∥) |q1 (α∗
1)| ∥Beee1∥ ≤ ∥Bq (yyy) ∥≤ (1 + ϵ∥yyy −ααα∗∥) |q1 (α∗

1)| ∥Beee1∥

2. ∥δ (yyy) ∥≤ c2∥yyy −ααα∗∥

Proof. Consider the vector δ (yyy) := q (yyy)− q1 (α∗
1)eee1. Then,

|(δ (yyy))ℓ | ≤
{
c2 |y1 − α∗

1| , for ℓ = 1, using Eq A.32
c3
2 (y)

2
ℓ , for ℓ ̸= 1, using Eq A.30

(A.35)

Note that

∥δ (yyy) ∥≤ c2∥yyy −ααα∗∥ (A.36)

Now consider w (yyy). Using the mean-value theorem on the Euclidean norm we have,

∥Bq (yyy) ∥ = |q1 (α∗
1)| ∥Beee1∥+

1

∥Bγ (yyy) ∥
(
BTBγ (yyy)

)T
δ (yyy) , (A.37)

where γ (yyy) = µq (yyy) + (1− µ) q1 (α∗
1)eee1, µ ∈ (0, 1). Then,∥∥∥∥ 1

∥Bγ (yyy) ∥
(
BTBγ (yyy)

)T
δ (yyy)

∥∥∥∥ ≤ 1

∥Bγ (yyy) ∥
∥∥BTBγ (yyy)∥∥ ∥δ (yyy)∥

≤ 1

∥Bγ (yyy) ∥
∥B∥ ∥Bγ (yyy)∥ ∥δ (yyy)∥

= ∥B∥ ∥δ (yyy)∥
≤ c2 ∥B∥ ∥yyy −ααα∗∥, using Eq A.36
≤ c2 ∥B∥F ∥yyy −ααα

∗∥,
≤ ϵ |q1 (α∗

1)| ∥Beee1∥ ∥yyy −ααα∗∥, using Eq A.34 (A.38)

Therefore using A.37,

(1− ϵ∥yyy −ααα∗∥) |q1 (α∗
1)| ∥Beee1∥ ≤ ∥Bq (yyy) ∥≤ (1 + ϵ∥yyy −ααα∗∥) |q1 (α∗

1)| ∥Beee1∥ (A.39)

Finally, we consider the function v (yyy; i) :=
eeeTi B

TBq (yyy)

∥Bq (yyy) ∥2
.

Lemma A.11. ∀ yyy ∈ Rd satisfying (A.34), we have

1. For i = 1, 1− 5ϵ∥yyy −ααα∗∥≤ q1 (α∗
1) v (yyy|1) ≤ 1 + 5ϵ∥yyy −ααα∗∥

2. For i ̸= 1, |q1 (α∗
1) v (yyy; i)| ≤ (1 + 5ϵ∥yyy −ααα∗∥) ∥Be

eei∥
∥Beee1∥

Proof. Define θ := ϵ∥yyy −ααα∗∥ for convenience of notation. We have,

eeeTi B
TBq (yyy)

∥Bq (yyy) ∥2
= q1 (α

∗
1)
eeeTi B

TBeee1
∥Bq (yyy) ∥2

+
eeeTi B

TBδ (yyy)

∥Bq (yyy) ∥2
, using definition of δ (yyy) (A.40)

Therefore, if i = 1, then using Lemma A.10,

1

(1 + θ)
2 +

q1 (α
∗
1)eee

T
1 B

TBδ (yyy)

∥Bq (yyy) ∥2
≤ q1 (α

∗
1)eee

T
1 B

TBq (yyy)

∥Bq (yyy) ∥2
≤ 1

(1− θ)2
+
q1 (α

∗
1)eee

T
1 B

TBδ (yyy)

∥Bq (yyy) ∥2
(A.41)

Using the following inequalities -

1

(1 + θ)
2 ≥ 1− 2θ, θ ≥ 0, and,

1

(1− θ)2
≤ 1 + 5θ, θ ≤ 1

5
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and observing that using Eq A.34, and Lemma A.10,∣∣∣∣q1 (α∗
1)eee

T
1 B

TBδ (yyy)

∥Bq (yyy) ∥2

∣∣∣∣ ≤ |q1 (α∗
1)|

∥Beee1∥
(1− θ)2 |q1 (α∗

1)|
2 ∥Beee1∥2

∥B∥ ∥δ (yyy)∥

≤ 1

(1− θ)2
c2∥B∥

|q1 (α∗
1)| ∥Beee1∥

∥yyy −ααα∗∥

≤ ϵ

(1− θ)2
∥yyy −ααα∗∥

Therefore we have from Eq A.41,

1− 5θ ≤ q1 (α∗
1) v (yyy; i) ≤ 1 + 5θ (A.42)

where we used θ := ϵ∥yyy −ααα∗∥. For the case of i ̸= 1, using Lemma A.10 we have

|q1 (α∗
1)| |v (yyy; i)| = |q1 (α∗

1)|
∣∣∣∣eeeTi BTBq (yyy)

∥Bq (yyy) ∥2

∣∣∣∣
≤ |q1 (α∗

1)|
∣∣∣∣ ∥Beeei∥∥Bq (yyy) ∥

∣∣∣∣
≤ 1

(1− θ)2
∥Beeei∥
∥Beee1∥

≤ (1 + 5θ)
∥Beeei∥
∥Beee1∥

(A.43)

We now operate under the assumption that Eq A.34 holds for yyy = αααt and inductively show that it

holds for yyy = αααt+1 as well. Recall the function gi (yyy) :=
qi (yi)

∥Bq (yyy) ∥
. By applying the mean-value

theorem for gi (.) for the points αααt and ααα∗, we have from Eq A.26 and A.27 -

|(αααt+1)i − α
∗
i | = |gi (αααt)− gi (ααα∗)|

=
∣∣∣∇gi (βββi)T (αααt −ααα∗)

∣∣∣ for βββi := (1− λi)αααt + λiααα
∗, λi ∈ (0, 1)

≤ ∥∇gi (βββi) ∥∥αααt −ααα∗∥ (A.44)

Note the induction hypothesis assumes that Eq A.34 is true for x = αααt. Since ∀i, λi ∈ (0, 1),
therefore Eq A.34 holds for all βββi as well. Squaring and adding Eq A.44 for i ∈ [d] and taking a
square-root, we have

∥αααt+1 −ααα∗∥ ≤ ∥αααt −ααα∗∥

√√√√ k∑
i=1

∥∇gi (βββi) ∥2

≤ ∥αααt −ααα∗∥

√√√√√ k∑
i=1

k∑
j=1

∂gi (yyy)
∂yj

∣∣∣∣∣
βββi

2

(A.45)

Let us consider the expression Gij :=
∂gi (yyy)

∂yj

∣∣∣∣∣
βββi

,∀i, j ∈ [k]. For the purpose of the subsequent

analysis, we define θ := ϵ ∥αααt −ααα∗∥. We divide the analysis into the following cases -

Case 1 : i = 1, j = 1

Using Lemma A.8,

|G11| =
∣∣∣∣ q′1 ((βββ1)1)

∥Bw (βββ1) ∥

[
1−

q1 ((βββ1)1)eee
T
1 B

TBqqq (βββ1)

∥Bqqq (βββ1) ∥2

]∣∣∣∣
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From Lemma A.9,

|q′1 ((βββ1)1)| ≤ |q
′
1 (α

∗
1)|+ c3 |(βββ1)1 − α

∗
1|

= |q′1 (α∗
1)|
(
1 + c3

|(βββ1)1 − α∗
1|

|q′1 (α∗
1)|

)
≤ |q′1 (α∗

1)|
(
1 + c3

∥αααt −ααα∗∥
|q′1 (α∗

1)|

)
≤ |q′1 (α∗

1)| (1 + θ)

and,

q1 ((βββ1)1) ≤ |q1 (α
∗
1) |+c2 |(βββ1)1 − α

∗
1|

= |q1 (α∗
1) |
(
1 + c2

|(βββ1)1 − α∗
1|

|q1 (α∗
1)

)
≤ |q1 (α∗

1) |
(
1 + c2

∥αααt −ααα∗∥
|q1 (α∗

1) |

)
≤ |q1 (α∗

1) |(1 + θ)

From Lemma A.10,

∥Bqqq (βββ1) ∥ ≥ (1− θ) |q1 (α∗
1)| ∥Beee1∥

From Lemma A.11 and θ ≤ 1
10 ,

−6θ ≤ 1−
q1 ((βββ1)1)eee

T
1 B

TBw (βββ1)

∥Bw (βββ1) ∥2
≤ 6θ

Therefore,

|G11| ≤ 6

(
1 + θ

1− θ

)
|q′1 (α∗

1)| θ
∥Beee1∥|q1 (α∗

1)|

≤ 7.5ϵ |q′1 (α∗
1)|

∥Beee1∥|q1 (α∗
1)|
∥αααt −ααα∗∥ , since θ ≤ 1

10

Case 2 : i = 1, j ̸= 1

Using Lemma A.8,

|G1j | =

∣∣∣∣∣∣
q′j

(
(βββ1)j

)
∥Bqqq (βββ1) ∥

q1 ((βββ1)1)eee
T
j B

TBqqq (βββ1)

∥Bqqq (βββ1) ∥2

∣∣∣∣∣∣
From Lemma A.9,∣∣∣q′j ((βββ1)j

)∣∣∣ ≤ c3 ∣∣∣(βββ1)j − α
∗
j

∣∣∣ ≤ c3 ∣∣∣(αααt)j − α∗
j

∣∣∣ , since α∗
j = 0

From Lemma A.10,

∥Bqqq (βββ1) ∥≥ (1− θ) |q1 (α∗
1)| ∥Beee1∥

From Lemma A.9,

|q1 ((βββ1)1)| ≤ |q1 (α
∗
1)|+ c2 |(βββ1)1 − α

∗
1|

= |q1 (α∗
1)|
(
1 + c2

|(βββ1)1 − α∗
1|

|q1 (α∗
1)|

)
≤ |q1 (α∗

1)| (1 + θ)

From Lemma A.11, ∣∣∣∣∣eeeTj BTBqqq (βββ1)

∥Bqqq (βββ1) ∥2

∣∣∣∣∣ ≤ (1 + 5θ)

|q1 (α∗
1) |
∥Beeej∥
∥Beee1∥
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Therefore,

|G1j | ≤ c3
(
1 + θ

1− θ

)
(1 + 5θ)

∥Beeej∥
|q1 (α∗

1) |∥Beee1∥2
∣∣∣(αααt)j − α∗

j

∣∣∣ ≤ 2c3
∥Beeej∥

|q1 (α∗
1) |∥Beee1∥2

∣∣∣(αααt)j − α∗
j

∣∣∣
Case 3 : i ̸= 1, j = 1

Using Lemma A.8,

|Gi1| =
∣∣∣∣ q′1 ((βββi)1)∥Bqqq (βββi) ∥

qi ((βββi)i)eee
T
1 B

TBqqq (βββi)

∥Bqqq (βββi) ∥2

∣∣∣∣
From Lemma A.9,

|q′1 ((βββi)1)| ≤ |q
′
1 (α

∗
1)|+ c3 |(βββi)1 − α

∗
1|

= |q′1 (α∗
1)|
(
1 + c3

|(βββi)1 − α∗
1|

|q′1 (α∗
1)|

)
≤ |q′1 (α∗

1)| (1 + θ)

From Lemma A.10,

∥Bqqq (βββi) ∥≥ (1− θ) |q1 (α∗
1)| ∥Beee1∥

From Lemma A.9,

|qi ((βββi)i)| ≤
c3
2
((βββi)i − α

∗
i )

2 ≤ c3
2
((αααt)i − α

∗
i )

2

From Lemma A.11, ∣∣∣∣eeeT1 BTBqqq (βββi)∥Bqqq (βββi) ∥2

∣∣∣∣ ≤ 1 + 5θ

|q1 (α∗
1)|

Therefore,

|Gi1| ≤
c3
2

(
(1 + θ) (1 + 5θ)

1− θ

)
|q′1 (α∗

1)|
|q1 (α∗

1)|
2 ∥Beee1∥

((αααt)i − α
∗
i )

2

≤ c3
|q′1 (α∗

1)|
|q1 (α∗

1)|
2 ∥Beee1∥

((αααt)i − α
∗
i )

2

≤ c3R
|q′1 (α∗

1)|
|q1 (α∗

1)|
2 ∥Beee1∥

|(αααt)i − α
∗
i |

≤ c2
|q′1 (α∗

1)|
|q1 (α∗

1)|
2 ∥Beee1∥

|(αααt)i − α
∗
i |

Case 4 : i ̸= 1, j ̸= 1, i = j

Using Lemma A.8,

|Gii| =
∣∣∣∣ q′i ((βββi)i)∥Bqqq (βββi) ∥

[
1−

qi ((βββi)i)eee
T
i B

TBqqq (βββi)

∥Bqqq (βββi) ∥2

]∣∣∣∣
From Lemma A.9,

|q′i ((βββi)i)| ≤ c3
∣∣(βββi)i − α∗

j

∣∣ ≤ c3 |(αααt)i − α∗
i |

From Lemma A.10,

∥Bqqq (βββi) ∥≥ (1− θ) |q1 (α∗
1)| ∥Beee1∥

From Lemma A.9,

|qi ((βββi)i)| ≤
c3
2
((βββi)i − α

∗
i )

2 ≤ c3
2
((αααt)i − α

∗
i )

2 ≤ c3R ∥αααt −ααα∗∥ ≤ c2 ∥αααt −ααα∗∥
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From Lemma A.11, ∣∣∣∣eeeTi BTBqqq (βββi)∥Bqqq (βββi) ∥2

∣∣∣∣ ≤ (1 + 5θ)
∥Beeei∥

|q1 (α∗
1) |∥Beee1∥

Then,

qi ((βββi)i)eee
T
i B

TBqqq (βββi)

∥Bqqq (βββi) ∥2
≤ (1 + 5θ) ∥αααt −ααα∗∥ ∥Be

eei∥
∥Beee1∥

c2
|q1 (α∗

1) |

≤ (1 + 5θ) ∥αααt −ααα∗∥
∥B∥F
∥Beee1∥

c2
|q1 (α∗

1) |
≤ (1 + 5θ) ϵ ∥αααt −ααα∗∥
≤ 2θ

Therefore,

|Gii| ≤
c3 |(αααt)i − α∗

i |
(1− θ) |q1 (α∗

1)| ∥Beee1∥
≤ 2c3
|q1 (α∗

1)| ∥Beee1∥
|(αααt)i − α

∗
i |

Case 5 : i ̸= 1, j ̸= 1, i ̸= j

Using Lemma A.8,

|Gij | =

∣∣∣∣∣∣
q′j

(
(βββi)j

)
∥Bqqq ((βββi)) ∥

qi ((βββi)i)eee
T
j B

TBqqq ((βββi))

∥Bqqq ((βββi)) ∥2

∣∣∣∣∣∣
From Lemma A.9, ∣∣∣q′j ((βββi)j)∣∣∣ ≤ c3 ∣∣∣(βββi)j − α∗

j

∣∣∣
≤ c3

∣∣∣(αααt)j − α∗
j

∣∣∣
From Lemma A.10,

∥Bqqq (βββi) ∥≥ (1− θ) |q1 (α∗
1)| ∥Beee1∥

From Lemma A.9,

|qi ((βββi)i)| ≤
c3
2
((βββi)i − α

∗
i )

2 ≤ c3
2
((αααt)i − α

∗
i )

2 ≤ c3R

2
|(αααt)i − α

∗
i |

From Lemma A.11, ∣∣∣∣∣eeeTj BTBqqq (βββi)∥Bqqq (βββi) ∥2

∣∣∣∣∣ ≤ (1 + 5θ)

|q1 (α∗
1) |
∥Beeej∥
∥Beee1∥

Therefore,

|Gij | ≤
c23R

2

(
1 + 5θ

1− θ

)
∥Beeej∥

|q1 (α∗
1)|

2 ∥Beee1∥2
∣∣∣(αααt)j − α∗

j

∣∣∣ |(αααt)i − α∗
i | ≤

c23R ∥Beeej∥
|q1 (α∗

1)|
2 ∥Beee1∥2

∣∣∣(αααt)j − α∗
j

∣∣∣ |(αααt)i − α∗
i |

A.1.2.3 Putting everything together

Putting all the cases together in Eq A.45, we have ∥αααt+1−ααα∗∥
∥αααt−ααα∗∥ ≤ C ∥αααt −ααα

∗∥, where

C :=

√√√√√√√√√√
(

7.5ϵ |q′1 (α∗
1)|

∥Beee1∥|q1 (α∗
1)|

)2

+

(
2c3 ∥B∥F

|q1 (α∗
1) |∥Beee1∥2

)2

+

(
c2 |q′1 (α∗

1)|
|q1 (α∗

1)|
2 ∥Beee1∥

)2

+

(
2c3

|q1 (α∗
1)| ∥Beee1∥

)2

+

(
c23R

2 ∥B∥F
|q1 (α∗

1)|
2 ∥Beee1∥2

)2

Then we have, C ≤ 5∥B∥F

∥Be1∥2 max

{
c3

|q1(α∗
1)|
,

c22

|q1(α∗
1)|2

}
. For linear convergence, we require CR < 1,

which is ensured by the condition mentioned in Theorem 4.
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A.2 Additional experiments for noisy ICA

A.2.1 Experiments with super-gaussian source signals

Table 2 shows the Amari error in the presence of super-Gaussian signals. The signals are 1) a Uni-
form distribution U(−

√
3,
√
3), 2) Bernoulli

(
1
2 + 1√

12

)
, 3) Laplace(0, 0.05) (mean 0 and standard

deviation 0.05), 4) Exponential(5), and 5) and 6) a Student’s t-distribution with 3 and 5 degrees of
freedom, respectively. The Meta algorithm closely follows the best candidate algorithm even in the
presence of many super-Gaussian signals.

Table 2: Variation of Amari error with Sample Size for Heavy-Tailed distributions, averaged over 100
random runs. Noise power ρ = 0.001, number of sources k = 6.

Algorithm
n 200 500 1000 5000 10000

Meta 0.44376 0.25215 0.20222 0.11435 0.0838
CHF 1.10103 0.70823 0.52529 0.21344 0.09194
CGF 1.84266 1.51216 1.3702 0.84351 0.58753
PEGI 2.27873 1.86561 1.71474 1.33709 1.23322
PFICA 0.39237 0.25468 0.21222 0.12878 0.12347
JADE 0.70174 0.39246 0.28199 0.12652 0.09686
FastICA 0.66441 0.3869 0.28419 0.13215 0.09946

A.2.2 Image demixing experiments

In this section, we provide additional experiments for image-demixing using ICA. We mix images
using flattening and linearly mixing them with a 4× 4 matrix B (i.i.d entries ∼ N (0, 1)) and Wishart
noise (ρ = 0.001). Demixing is performed using the SINR-optimal demixing matrix (see Section 2)
and the results are shown in Figure A.1 along with their corresponding independence scores. The
CHF-based method recovers the original sources well, upto sign. The Kurtosis and CGF-based
method fails to recover the second source. This is consistent with their higher independence score.
The Meta algorithm selects CHF from candidates CHF, CGF, Kurtosis, FastICA, and JADE.

A.2.3 Image denoising experiments

In this experiment, we use the ICA-based denoising technique proposed in [38] to compare candidate
Noisy ICA algorithms and show that the Meta algorithm can pick the best-denoised image based on
the independence score proposed in our work.

We use the noisy MNIST dataset and further add entrywise Gaussian noise with variance proportional
to sin2(c1π(i + j))(c1 = 50) to the (i, j)th pixel. Training images are flattened to create a 784-
dimensional vector, and PCA is performed to reduce dimensionality to 25, on which subsequently ICA
is performed. The original and denoised images along with their independence score are shown in
Figure A.2. We note that CHF-based denoising provides qualitatively better results, while CGF-based
denoising provides the worst results. This is consistent with their corresponding independence scores.

A.3 Algorithm for sequential calculation of independence scores

In this section, we provide an algorithm for the computation of the independence score proposed in
the manuscript, but in a sequential manner. The detailed algorithm is provided as Algorithm 3. We
assume that we have access to a matrix of the form C = BDBT .

The power method (see Eq 3) essentially extracts one column of B (up to scaling) at every
step. [49] provides an elegant way to use the pseudo-Euclidean space to successively project the
data onto columns orthogonal to the ones extracted. This enables one to extract each column of the
mixing matrix. For completeness, we present the steps of this projection. After extracting the ith
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(a) Source Images

(b) Mixed Images

(c) Demixed Images using CHF-based contrast function (∆(ttt, F |P ) = 5.26× 10−3).

(d) Demixed Images using Kurtosis-based contrast function (∆(ttt, F |P ) = 2.48× 10−2)

(e) Demixed Images using CGF-based contrast function (∆(ttt, F |P ) = 4× 10−2).

(f) Demixed Images using FastICA (∆(ttt, F |P ) = 7.1× 10−3).

(g) Demixed Images using JADE (∆(ttt, F |P ) = 6.8× 10−3).

Figure A.1: Image-Demixing using ICA
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(a) Original Images

(b) CHF-based denoising (∆(ttt, F |P ) = 4.4× 10−6)

(c) Kurtosis-based denoising (∆(ttt, F |P ) = 1.7× 10−4)

(d) CGF-based denoising (∆(ttt, F |P ) = 9.2× 10−6)

(e) FastICA-based denoising (∆(ttt, F |P ) = 5.9× 10−6)

(f) JADE-based denoising (∆(ttt, F |P ) = 4.6× 10−6)
Figure A.2: Image Denoising using ICA

column uuu(i), the algorithm maintains two matrices. The first, denoted by U , estimates the mixing
matrix B one column at a time (up to scaling). The second, denoted by V estimates B−1 one row at
a time. It is possible to extend the independence score in Eq 2 to the sequential setting as follows.
Let uuu(j) be the jth vector extracted by the power method (Eq 3) until convergence. After extracting ℓ
columns, we project the data using min(ℓ + 1, k) projection matrices. These would be mutually
independent if we indeed extracted different columns of B. Let C = BDBT for some diagonal
matrix D. For convenience of notation, denote Bi ≡ B(:, i). Set -

vvv(j) =
C†uuu(j)

uuu(j)
T
C†uuu(j)

(A.46)

When uuu(j) = Bj/∥Bj∥, vvv(j) =
(BT )−1D†eeej
eeeTj D

†eeej
∥Bj∥= (BT )−1eeej∥Bj∥. Let xxx denote an arbitrary

datapoint. Thus

U(:, j)V (j, :)xxx = Bjzj + U(:, j)V (j, :)ggg (A.47)

Thus the projection on all other columns j > ℓ is given by:

(I − UV )xxx =

k∑
i=1

Bizi −
ℓ∑
j=1

Bjzj + g̃gg =

k∑
j=ℓ+1

Bjzj + g̃gg
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Figure A.3: Mean independence score with errorbars from 50 random runs

where g̃gg = Fggg, where F is some k × k matrix. So we have min(ℓ, k) vectors of the form ziBi + g̃ggi,
and when ℓ < k an additional vector which contains all independent random variables zj , j > ℓ
along with a mean-zero Gaussian vector. Then we can project each vector to a scalar using unit
random vectors and check for independence using the Independence Score defined in 2. When ℓ = k,
then all we need are the j = 1, . . . , k projections on the k directions identified via ICA in Eq A.47.

As an example, we conduct an experiment (Figure A.3), where we fix a mixing matrix B
using the same generating mechanism in Section 5. Now we create vectors q which interpolate
between B(:, 1) and a fixed arbitrary vector orthogonal to B(:, 1). As the interpolation changes, we
plot the independence score for direction q. The dataset is the 9-dimensional dataset, which has
independent components from many different distributions (see Section 5).

This plot clearly shows that there is a clear negative correlation between the score and the dot product
of a vector with the column B(:, 1). To be concrete, when q has a small angle with B(:, 1), the
independence score is small, and the error bars are also very small. However, as the dot product
decreases, the score grows and the error bars become larger.

Algorithm 3 Independence Score after extracting ℓ columns. U and V are running estimates of B
and B−1 upto ℓ columns and rows respectively.

Input
X ∈ Rn×k, U ∈ Rk×ℓ, V ∈ Rℓ×k, Number of random projections M

k0 ← min(ℓ+ 1, k)
for j in range[1, ℓ] do
Yj ← X (U(:, j)V (j, :))

T

end for
if ℓ < k then
Yℓ+1 ← X

(
I − V TUT

)
end if
for j in range[1, M ] do
ttt← random unit vector in Rk
for a in range[1, k0] do
W (:, j)← Yjttt

end for
Let ααα ∈ R1,k0 represent a row of W
S̃ ← cov(W )

γ ←
∑
i,j S̃ij

βββ ←
∑
i S̃ii

s(j) = |Ê exp(
∑
j iαj) exp(−βββ)−

∏k0
j=1 Ê exp(iαj) exp(−γ)|

end for
Return mean(s), stdev(s)
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(a) (b)

(c) (d)

Figure A.4: Plots of the third derivative of the CGF-based contrast function for different datasets - Bernoulli(p =
0.5) A.4a, Uniform(U

(
−
√
3,
√
3
)
) A.4b, Poisson(λ = 1) A.4c and Exponential(λ = 1) A.4d. Note that the

sign stays the same in each half-line

We refer to this function as ∆(X,U, V, ℓ) which takes as input, the data X , the number of columns ℓ
and matrices U , V which are running estimates of B and B−1 upto ℓ columns and rows respectively.

A.4 More details for third derivative condition in theorem 3

Theorem 3 requires the condition “The third derivative of hX(u) does not change the sign in the half
line [0,∞) for the non-Gaussian random variable considered in the ICA problem.". In this section,
we provide sufficient conditions with respect to contrast functions and datasets where this holds.
Further, we also provide an interesting example to demonstrate that our Assumption 1-(d) might not
be too far from being necessary.

CGF-based contrast function. Consider the cumulant generating function of a random variable X ,
i.e. the logarithm of the moment generating function. Now consider the contrast function

gX(t) = CGF (t)− var(X)t2/2.

We first note that it satisfies Assumption 1(a)-(d). Next, we observe that it is enough for a distribution
to have all cumulants of the same sign to satisfy Assumption 1(d) for the CGF. For example, the
Poisson distribution has all positive cumulants. Figure A.4 depicts the third derivative of the contrast
function for a Bernoulli(1/2), Uniform, Poisson, and Exponential.

Logarithm of the symmetrized characteristic function. Figure A.5 depicts the third derivative
of this contrast function for the logistic distribution where Assumption 1(d) holds. Although the
Assumption does not hold for a large class of distributions here, we believe that the notion of having
the same sign can be relaxed up to some bounded parameter values instead of the entire half line, so
that the global convergence results of Theorem 3 still hold. This belief is further reinforced by Figure
A.6 which shows that the loss landscape of functions where Assumption 1(d) doesn’t hold is still
smooth.
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Figure A.5: Plots of the third derivative of the CHF-based contrast function for Logistic(0, 1) dataset.

A.4.1 Towards a necessary condition

Consider the probability distribution function (see [36]) f(x) = ke−
x2

2 (a+b cos(cπx)) for constants
a, b, c > 0. For f(x) to be a valid pdf, we require that f(x) ≥ 0, and

∫∞
−∞ f(x) dx = 1. Therefore,

we have, ∫ ∞

−∞
ke−

x2

2 (a+ b cos(cπx)) dx = 1 (A.48)

Noting standard integration results, we have that,∫ ∞

−∞
e−

x2

2 dx =
√
2π and

∫ ∞

−∞
e−

x2

2 cos(cπx) dx =
√
2πe−

c2π2

2 (A.49)

Therefore, k = 1
√
2π(a+be−

c2π2
2 )

. Some algebraic manipulations yield the following:

MGFf(x)(t) =
1

(a+ be−
c2π2

2 )
e

t2

2

(
a+ be−

c2π2

2 cos(cπt)
)

Therefore, ln(MGFf(x)(t)) = − ln(a+ be−
c2π2

2 ) + t2

2 + ln(a+ be−
c2π2

2 cos(cπt)).

We now compute the mean, µ, and variance σ2.

The mean, µ can be given as :

µ =

∫ ∞

−∞
f(x)x dx = 0 since f(x) is an even function.

The variance, σ2 can therefore be given as :

σ2 = k

(
a

∫ ∞

−∞
e−

x2

2 x2 dx+ b

∫ ∞

−∞
e−

x2

2 x2 cos(cπx) dx

)
Now, we note that

∫∞
−∞ e−

x2

2 x2 dx =
√
2π and

∫∞
−∞ e−

x2

2 x2 cos(cπx) dx = e−
c2π2

2

√
2π(1− c2π2)

Therefore,

σ2 = k
(
a
√
2π + be−

c2π2

2

√
2π(1− c2π2)

)
= 1− bc2π2e−

c2π2

2

a+ be−
c2π2

2

The symmetrized CGF can therefore be written as
symCGF (t) := ln(MGFf(x)(t)) + ln(MGFf(x)(−t))

= −2 ln(a+ be−
c2π2

2 ) + t2 + 2 ln(a+ be−
c2π2

2 cos(cπt))

Therefore, g(t) = symCGF (t)− (1− bc2π2e−
c2π2

2

a+be−
c2π2

2

)t2 can be written as :

g(t) = −2 ln(a+ be−
c2π2

2 ) + 2 ln(a+ be−
c2π2

2 cos(cπt)) +
bc2π2e−

c2π2

2

a+ be−
c2π2

2

t2
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Finally, g′(t) can be written as :

g′(t) =
d

dt

(
2 ln(a+ be−

c2π2

2 cos(cπt)) +
bc2π2e−

c2π2

2

a+ be−
c2π2

2

t2

)

= − 2bcπe−
c2π2

2 sin(cπt)

a+ be−
c2π2

2 cos(cπt)
+

2bc2π2e−
c2π2

2

a+ be−
c2π2

2

t

g′′(t) can be written as :

g′′(t) = −2bc2π2e−
c2π2

2
a cos(cπt) + be−

c2π2

2

(a+ be−
c2π2

2 cos(cπt))2
+

2bc2π2e−
c2π2

2

a+ be−
c2π2

2

and g′′′(t) can be evaluated as:

g′′′(t) = 2bc3π3e−
c2π2

2 sin(cπt)

(
a2 − 2b2e−c

2π2 − abe− c2π2

2 cos(cπt)
)

(a+ be−
c2π2

2 cos(cπt))3

Lets set a = 2, b = −1, c = 4
π . Then, we have that the pdf, f(x) = ke−

x2

2 (2 − cos(4x)) =

ke−
x2

2 (1 + 2 sin2(2x)). The corresponding functions are :

E[exp(tX)] =
1

(2− e−8)
e

t2

2

(
2− e−8 cos(4t)

)
g(t) := symCGF (t)− var(X)t2 = −2 ln(2− e−8) + 2 ln(2− e−8 cos(4t))− 16e−8

2− e−8
t2

g′(t) =
8e−8 sin(4t)

2− e−8 cos(4t)
− 32e−8

2− e−8
t

g′′(t) = 32e−8 2 cos(4t)− e−8

(2− e−8 cos(4t))2
− 32e−8

2− e−8

g′′′(t) = −128e−8 sin(4t)

(
4− 2e−16 + 2e−8 cos(4t)

)
(2− e−8 cos(4t))3

Closeness to a Gaussian MGF: It can be seen there that g′′′(t) changes sign in the half-line. However,
the key is to note that the MGF of this distribution is very close to that of a Gaussian and can be made
arbitrarily small by varying the parameters a and b. This renders the CGF-based contrast function
ineffectual. This leads us to believe that Assumption 1(d) is not far from being necessary to ensure
global optimality of the corresponding objective function.

A.5 Surface plots of the CHF-based contrast functions

Figure A.6 depicts the loss landscape of the Characteristic function (CHF) based contrast function
described in Section 3.3 of the manuscript. We plot the value of the contrast function evaluated at

B−1uuu, uuu = 1√
x2+y2

(
x
y

)
for x, y ∈ [−1, 1]. As shown in the figure. We have rotated the data so

that the columns of B align with the X and Y axes. The global maxima occur at uuu aligned with the
columns of B.
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(a) (b)

(c) (d)

Figure A.6: Surface plots for zero-kurtosis (A.6c and A.6d) and Uniform (A.6a, A.6b) data with n = 10000
points, noise-power ρ = 0.1 and number of source signals, k = 2.
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Our main contributions are the Meta algorithm for non-parametric selection of
the best noisy ICA algorithm for a given distribution, along with 2 new contrast functions of
independent interest.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: In the Experiments (Section 5, there are some noise/sample-size regimes where
other algorithms may perform slightly better than our proposed contrast functions, but we
show that even then our diagnostic can pick out the best algorithm.
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• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: Every theorem statement mentions the assumptions and the location of the
proof in the Appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Section 5 provides extensive details of the experimental setup.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
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• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We make the code for our experiments available.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
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Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Section 5 provides extensive details of the experimental setup.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Figure 1 and 2(a) show error bars and error distribution respectively. Fig-
ure 2(b),(c) show the mean over 100 runs, similar to [49]

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Our experiments were performed on a single Macbook Pro M2 2022 CPU
with 8 GB RAM.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.

41

132687 https://doi.org/10.52202/079017-4217



• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We abide by the NeurIPS Code of Ethics in our work.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [No]
Justification: This paper presents work whose goal is to advance the field of Machine
Learning. There are many potential societal consequences of our work, none of which we
feel must be specifically highlighted here.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We do not release any models with a risk for misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
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• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: MATLAB implementations (under the GNU General Public License) can be
found at - FastICA and JADE. The code for PFICA was provided on request by the authors.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets to require documentation or licensing.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: We only use publicly available datasets in Section 5.
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: We do not have experiments with crowdsourcing or human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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