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Abstract

Large Language Models (LLMs) have shown significant problem-solving capabili-1

ties across predictive and generative tasks in chemistry. However, their proficiency2

in multi-step chemical reasoning remains underexplored. We introduce a new3

challenge: molecular structure elucidation, which involves deducing a molecule’s4

structure from various types of spectral data. Solving such a molecular puzzle,5

akin to solving crossword puzzles, poses reasoning challenges that require inte-6

grating clues from diverse sources and engaging in iterative hypothesis testing. To7

address this challenging problem with LLMs, we present MolPuzzle, a benchmark8

comprising 217 instances of structure elucidation, which feature over 23,000 QA9

samples presented in a sequential puzzle-solving process, involving three inter-10

linked sub-tasks: molecule understanding, spectrum interpretation, and molecule11

construction. Our evaluation of 12 LLMs reveals that the best-performing LLM,12

GPT-4o, performs significantly worse than humans, with only a small portion13

(1.4%) of its answers exactly matching the ground truth. However, it performs14

nearly perfectly in the first subtask of molecule understanding, achieving accuracy15

close to 100%. This discrepancy highlights the potential of developing advanced16

LLMs with improved chemical reasoning capabilities in the other two sub-tasks.17

Our MolPuzzle dataset and evaluation code are available at this link.18

1 Introduction19

Artificial intelligence (AI) is revolutionizing the field of chemistry, influencing diverse sectors such as20

industrial chemical engineering [1, 2], drug discovery [3], and chemistry education [4]. In particular,21

recent studies have highlighted the success of large language models (LLMs) in addressing predictive22

challenges in chemistry, including molecular property prediction [5], reaction prediction [6], and23

experiment automation [7]. These advancements suggest significant potential for AI to enhance24

efficiency and innovation across these critical areas.25

We introduce a new chemical challenge to AI, molecular structure elucidation. While this critical26

task has been explored in other contexts, it remains unexplored for large language models (LLMs),27
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Figure 1: A crossword puzzle (left), and a molecular structure elucidation puzzle (right)

extending beyond familiar predictive and generative domains such as property or reaction prediction,28

and representing a shift toward complex problem-solving. Analogous to solving a detailed cross-29

word puzzle, molecular structure elucidation can be seen as a molecular puzzle. It requires the30

integration of multifaceted data, iterative hypothesis testing, and a deep understanding of chemical31

cues, much like piecing together clues across a crossword grid to form a coherent solution. Fig. 132

illustrates the problem of molecular structure elucidation alongside its analogical counterpart, the33

crossword puzzle, highlighting the parallels in strategy and complexity between these two intellectual34

challenges.35

Just as a crossword puzzle requires figuring out words based on given clues and fitting them together36

in a grid, molecular structure elucidation involves deducing a molecule’s structure from various types37

of data such as nuclear magnetic resonance (NMR), infrared spectroscopy (IR), mass spectrometry,38

and others. Each type of data provides clues about different aspects of the molecular structure. In39

a crossword, we integrate clues from across different directions and hints to form words that fit40

together correctly. Similarly, in molecular structure elucidation, we need to integrate information41

from different spectroscopic methods to form a consistent picture of the molecule. For example,42

IR spectra reveal molecular vibrations and functional groups, NMR provides information about43

the framework of hydrogen and carbon atoms, while mass spectrometry can offer insights into the44

molecular weight and possible fragmentations.45

Nevertheless, molecular structure elucidation is a challenging and time-consuming task. Training46

undergraduate students in chemistry to solve these puzzles has been a part of the curriculum because47

determining the structure of molecules is a fundamental skill in the field. Typically, even a single48

molecule puzzle question on a final exam can take 10 to 15 minutes to solve [8], demanding49

considerable memory and processing skills from the students. In the domain of complex molecule50

research, the process of molecular deduction can become even more complex and time-consuming.51

Therefore, fully automating this process is highly beneficial for accelerating the design of new52

materials and drugs, as well as enhancing the efficiency of chemical research [9, 10]. However, it53

remains a challenging task due to the complexities involved in interpreting spectral data and solving54

intricate reasoning problems associated with molecular structures [11].55

In this work, we aim to present molecular structure elucidation in formats that LLMs can effectively56

process. By adapting this complex task to be compatible with LLMs, we explore their potential as57

promising tools in chemical research. If successful, LLMs could significantly accelerate scientific58

discovery in chemistry, transforming how we approach and solve intricate molecular puzzles.59

To achieve our objectives, we first introduce a novel dataset named MolPuzzle, which includes60

234 instances of structure elucidation challenges inspired by common chemistry tasks. Unlike61

datasets used in predictive or generative tasks, which typically consist of a collection of independent62

samples and are relatively straightforward to construct, each instance in the MolPuzzle dataset is63

uniquely complex. It is structured as a sequential process involving three interlinked sub-tasks:64

molecule understanding, spectrum interpretation, and molecule construction. These instances65

are accompanied by multimodal data, including images of IR, MASS, H-NMR, and C-NMR spectra,66

alongside their corresponding molecular formulas. Presenting such a complex, multimodal problem in67

a format that LLMs can effectively process presents a unique challenge. We, a team of AI researchers68
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and chemists, are dedicated to formulating the molecule puzzle instances in descriptive languages69

that are accessible to LLMs. Our focus is on ensuring the utility of these instances, as well as their70

comprehensive coverage over various scenarios and challenges that mimic real-world conditions. By71

doing so, MolPuzzle opens the door for LLMs to contribute meaningfully to the field of chemistry,72

potentially accelerating scientific discoveries and innovations.73

Second, we present our effort to automate the solving of molecular structure elucidation using LLMs.74

While certain sub-tasks, such as translating an IR spectrum into a molecular formula, may be solvable75

by encoder-decoder models [12], the comprehensive resolution of the entire molecular puzzle likely76

requires the advanced planning and reasoning capabilities of LLMs. We tested 11 state-of-the-art77

LLMs including GPT-4o, Gemini-pro, and Claude-3-opus. We also conducted a human baseline to78

compare the performance of humans and LLMs in solving the same puzzles. The key findings are:79

1) GPT-4o significantly outperforms other LLMs; 2) The best-performing LLM, GPT-4o, performs80

significantly worse than humans, with only a small portion (1.4%) of its answers exactly matching81

the ground truth; and 3) GPT-4o’s performance primarily collapses in the Stage-2 of spectrum82

interpretation and gets worse in the Stage-3 of molecule construction, although it performs nearly83

perfectly in Stage-1 of molecule understanding (with accuracy close to 100%).84

To summarize, our key contributions in this work are the presentation of:85

• A new reasoning problem for AI community. As the focus of AI development has evolved86

from solving predictive tasks and generative tasks to engaging in complex reasoning tasks—akin87

to system 2 level thinking—we introduce a reasoning task centered around molecular structure88

elucidation. This crucial problem from the field of chemistry sets a high benchmark for AI models89

to reach. Solving this task requires AI models to possess the ability to interpret spectral images,90

engage in complex reasoning, and plan effectively across extended workflows. This not only91

challenges the current capabilities of AI but also pushes the boundaries of what AI can achieve in92

scientific domains, particularly in understanding and manipulating molecular structures.93

• A new light of AI solutions for chemistry community. By proposing the MolPuzzle dataset,94

we establish another bridge between the fields of AI and chemistry. This initiative leverages the95

important capabilities of multimodal LLMs, providing the chemistry community with innovative96

solutions to accelerate the process of structure elucidation. Our initial exploration serves as a97

demonstration of the potential for these technologies. It sets the stage for further collaborative98

efforts, inspiring researchers from both domains to collaboratively explore new frontiers in scientific99

discovery.100

The paper is organized as follows. Section 2 presents the related work. In Section 3, we elaborate101

on the curation of the MolPuzzle dataset. In Section 4, we report the usage of multimodal LLMs in102

solving MolPuzzle. In Section 5, we discuss the main findings and directions opened by this work. In103

section 7, we discuss the broader impact of our work. Last, we summarize the study in Section 8 and104

offer our conclusions.105

2 Related Work106

Molecular Structure Elucidation. Automated molecular structure determination has been re-107

searched for decades [13, 14, 15, 16, 17], initially focusing on rule-based systems [18, 19] that108

interpret spectral data using predefined chemical rules and expert knowledge. Notable examples109

include SENECA [20], employing genetic algorithms on NMR data, and ACD/Structure Elucidator110

[21], a commercial software integrating various spectral data. While effective for well-characterized111

compounds, rule-based methods struggle with complex or novel molecules that deviate from es-112

tablished patterns, and their proprietary nature limits benchmarking accessibility.Machine learning113

approaches [22, 23, 24, 25, 26, 27, 28, 29] have also been explored. Early studies utilized neural114

networks to assign infrared spectra to molecular structures [30], and recent advancements leverage115

deep learning for complex datasets [31]. For example, Alberts et al. [12] used a transformer-based116

model to predict SMILES strings from IR spectra, later extending this to NMR data analysis [27].117

However, most existing research focuses on molecule elucidation using single-type spectrum data,118

sufficient for simple molecules but inadequate for complex ones since each spectrum provides only119
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partial structural information. Our study aims to leverage the reasoning and planning capabilities of120

multimodal large language models (MLLMs) to integrate diverse spectral data, addressing challenges121

in complex real-world chemistry tasks. We focus on solving the entire puzzle using multiple clues122

rather than deciphering one word from a single clue.123

Multimodal Benchmarks for LLMs. With the advancements in developing multimodal LLMs124

[32, 33, 34, 35, 36], a number of multimodal benchmarks have been curated. These benchmarks are125

crucial for evaluating and refining the capabilities of MLLMs to process and integrate diverse data126

types, such as text, images, and audio, for a cohesive understanding. Notably, a benchmark proposed127

by Yue et al. [37] assesses the reasoning abilities of MLLMs in various college-level subjects.128

Similarly, MathVista [38] explores MLLMs’ multimodal reasoning capabilities in mathematics,129

while Yin et al. [39] introduced LAMM, a dataset focusing on multimodal instruction tuning130

and the LabSafetyBench [36] assessed the reliability and safety awareness of LLMs in laboratory131

environments. Our research shifts the focus to the chemistry domain [6, 40]. To our knowledge, this132

study is the first to adopt a realistic chemistry task for MLLM processing and to conduct a thorough133

evaluation of these models’ proficiency in chemistry-related reasoning and image analysis. This134

specialized focus will enhance our understanding of MLLMs’ capabilities within a specific scientific135

domain.136

3 The MolPuzzle Dataset137

Existing benchmarks of chemical tasks primarily focused on predictive or generative tasks involving138

collections of independent samples that were relatively straightforward to construct. In contrast,139

our dataset, MolPuzzle, aims to characterize an intertwined assessment of chemistry reasoning and140

visual understanding, testing the application of AI-assisted technology towards broader scientific141

discovery. Our data collection process is rigorously designed and implemented by a team uniquely142

qualified for this task, consisting of esteemed researchers in chemistry and experienced AI specialists143

who have previously tackled complex chemistry problems. This collaboration ensures that the144

MolPuzzle dataset not only accurately reflects real-world chemical phenomena and challenges but is145

also structured in a way that optimally facilitates access and usability for LLMs.146

The basic principles guiding our data curation for the MolPuzzle dataset are: 1) ensuring compre-147

hensive coverage by including a wide range of tasks that synthesize visual context with chemical148

knowledge, facilitating thorough evaluations; 2) varying levels of difficulty to challenge LLMs149

and highlight their potential limitations; 3) ensuring robust assessment outcomes, i.e., the results150

are definitive and reliable; and 4) incorporating human expert analysis to identify strengths and151

weaknesses in model performance, significantly enhancing our understanding of LLMs capabilities.152

In this section, we outlined the construction process for the MolPuzzle dataset. We detailed the153

creation of puzzle tasks in three stages (3.1), as well as the QA pairs involved in these tasks (3.2).154

Examples are presented in Fig. 2.155

3.1 Task Construction156

Just like a word puzzle where each clue progressively reveals the final answer, the solution to a157

molecule puzzle is a SMILES string that captures the interconnected substructures of a molecule. We158

design our molecule puzzles so that solving one requires the accurate identification and integration of159

each substructural clue, gradually unveiling the complete SMILES representation of the molecule.160

This approach is inspired by the analytical strategies employed by chemists in the real world, who161

interpret spectral data and chemical properties to deduce the structures of unknown molecules. Our162

puzzle-building process mirrors this scientific exploration, arranging clues in a sequence from simple163

to complex, where each clue builds upon the insights gained from the previous one, requiring precision164

and careful thought at every stage. We next provide more details on our clue design methodology.165

The Initial Stage (Molecule Understanding). In designing a molecule puzzle, the first stage involves166

determining how many building blocks, or substructures, are available. This foundational step is167

crucial as it sets the stage for constructing the molecule’s complete structure, akin to identifying the168

key pieces in a complex jigsaw puzzle. Starting with the initial hint: A molecular formula, derived169

from a mass spectrum, indicates the exact types and numbers of atoms in a molecule (e.g., C15H22O2,170

4

134724https://doi.org/10.52202/079017-4281



representing carbon, hydrogen, and oxygen), chemists can begin to deduce possible structures from171

the degree of saturation which is calculated based on the number of rings and multiple bonds172

present in the molecule, the potential for forming aromatic rings, or the presence of functional173

groups. The initial information provides a preliminary range of building blocks, which can later be174

selected and assembled to solve the molecular puzzle. To benchmark the capability of LLMs in this175

stage, we developed 26 unique templates (see Appendix A.2 for details), targeting key analytical tasks176

such as saturation identification, aromatic ring identification, functional group identification, and177

saturation degree calculation. This initiative produced 5,859 QA-format pairs, effectively evaluating178

the models’ capacity to understand and process molecular data. Details of these samples are reported179

in Appendix A.3.180

The Second Stage (Spectrum Interpretation). With the initial building blocks of the molecule181

identified from the molecular formula, the next critical step involves refining these components182

through detailed spectral analysis. Spectrum images such as IR, MASS, 1H-NMR, and 13C-NMR183

serve as new hints, each adding layers of information akin to clues in a complex puzzle. These184

spectral images are pivotal in confirming or revising the initial hypotheses about the molecule’s185

structure. For example, IR spectroscopy can verify the presence of specific functional groups, MASS186

spectrometry can provide the molecular MASS, molecule mass, and fragmentation patterns, and187

NMR techniques detail the arrangement of hydrogen and carbon within the molecule. By integrating188

these new hints, researchers can construct a more robust and experimentally accurate model of the189

molecule. This process not only theoretically validates each building block but also ensures they align190

perfectly with empirical data, leading to a comprehensive understanding of the molecular structure.191

Given the importance of spectral images in this analysis, we have developed specialized question192

templates to evaluate the proficiency of LLMs in interpreting these images. For instance, we created193

17 templates for IR and 12 for each of H-NMR, and C-NMR. Each template, such as ‘Analyze the194

IR spectrum’ includes specific queries designed to extract detailed insights, such as ‘What does195

the absorption in 3200-3600 suggest?’ This structure enables us to format the questions for Visual196

Question Answering (VQA), facilitating a systematic approach to query handling. Our method has197

successfully generated a significant repository of VQA format examples, comprising 3,689 for IR198

and 2,604 for each of MASS, H-NMR, and C-NMR. A detailed analysis of these tasks is available in199

Appendix A.4.200

The Final Stage (Molecule Construction). After completing the first two stages, we can assert that201

we have gathered the necessary building blocks to assemble the molecule. The assembly process will202

be guided by insights derived from NMR data. Specifically, 1H-NMR provides information about203

the hydrogen environment in the molecule, such as the number of hydrogen atoms, their types (e.g.204

aromatic), and their connectivity. Meanwhile, C-NMR provides detailed insights into the carbon205

framework, indicating whether carbon atoms are part of an aromatic ring or not. The assembly of the206

final molecular structure is an iterative process, during which functional groups are uncovered based207

on the specific hydrogen and carbon environments. The approach to assembling the final molecular208

structure is iterative. Starting with initial building blocks selected from the identified fragment pool,209

LLMs are prompted to select one structure from the pool step by step, based on the NMR guidance,210

until the maximum number of iterations is reached or the fragment pool is exhausted. This systematic211

addition ensures that each step in the assembly process not only fits with the previous structure212

but also aligns perfectly with the latest spectral data, driving us closer to the accurate molecular213

configuration. We created 27 task templates for each molecule to assess the capability of LLMs in214

comprehending NMR spectra. These templates include 5 questions about atom numbers and 22 tasks215

centered on functional groups, generating a total of 6,318 question-answer pairs. We sample both216

atom-related questions concerning the number of hydrogens and carbons, as well as those targeting217

functional groups. To reduce bias and ensure more balanced performance, we balance the distribution218

of labels in the answers—whether indicating the presence or absence of a functional group or specific219

environment. This ensures a more unbiased evaluation across the sampled tasks.220
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Figure 2: Examples of QA pairs in the 3 stages of MolPuzzle

3.2 QA Sample Derivation221

The QA samples for Stage 1 and Stage 2 are automatically generated using their respective question222

templates (see Appendix A.2) and RDKit [41]. RDKit is an open-source cheminformatics toolkit223

widely employed for handling chemical informatics data, including molecular structures and finger-224

prints. This toolkit plays a role in ensuring that the responses, based on the SMILES strings from225

each molecule puzzle, are accurate and chemically valid. The distribution of these QA samples across226

different categories is illustrated in Fig. 4. They form a diverse collection of samples for evaluating227

LLMs’ ability to understand molecular formulas and spectra.228

The fragment of each QA pair at Stage 3 is initially generated by LLMs, i.e., responding to the229

prompt ‘select one fragment...’. To validate the reliability of these automated generations of QA230

pairs, experts—two Ph.D. candidates from the chemistry department—manually and independently231

verified 50 samples, labeling the generated fragments as ‘correct’ or ‘wrong’. Their verification232

was consistent and demonstrated that 67.4% of examples have correct fragment pools in automated233

generation. To ensure the quality of derived QA pairs in Stage 3, these chemists manually corrected234

the fragments pool for each instance in the benchmark.235

Fig.3 reports the statistical distribution for the MolPuzzle dataset, which includes 217 puzzle instances236

(the reasoning of 217 different molecules). Since one puzzle can be solved by different paths, different237

numbers of QA samples are derived in three stages. We will next evaluate LLMs’ performance in238

solving each puzzle, as well as their capability to solve individual questions.239

Statistic Number
Total MolPuzzle Instances 217
Stage-1 QA samples 5,859
- Num. of molecule formula 176
- Max question length 128
- Average question length 94
Stage-2 QA samples 11,501
- Num. of spectrum images 868
- Max question length 340
- Average question length 264
Stage-3 QA samples 6,318
- Maximum Iteration 7
- Max question length 356
- Average question length 238

Figure 3: Statistic of the MolPuzzle dataset

Figure 4: Inner ring: sample distribution in 3 stages.
Outer ring: sample distribution across categories in
each stage. SI: saturation identification, SDC: satura-
tion degree calculation, FGI: functional group identifi-
cation, ARI: aromatic ring identification, SA: spectrum
analysis.
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4 Solving MolPuzzle by Multimodal Large Language Models240

The reasoning capabilities of foundation models in the chemistry domain remain underexplored.241

Thus, our aim is to perform both qualitative and quantitative evaluations to systematically assess the242

reasoning and planning abilities of these models in visual chemistry contexts, using the MolPuzzle243

benchmark. We first conducted evaluation of a variety of LLMs for completing the individual tasks244

in each stage, including GPT-4o [42], GPT-3.5-turbo [43], Claude-3-opus [44], Gemini-pro [45],245

Galactica-30b [46], LLama-3-8B-Instruct [47], Vicuna-13B-v1.5 [48], Mistral-7B-Instruct-v0.3 [49],246

and in particular multimodal LLMs such as Gemini-pro-vision [45], LLava-Llama-3-8B [50], Qwen-247

VL-Chat [51], and InstructBlip-Vicuna-7B/13B [32]. Due to space limits, we present only selected248

results in Table 1 and report the complete list of results in Appendix B. We then assess LLMs’249

capability to solve the entire puzzles, specifically focusing on how effectively these models can derive250

the final molecular structure from provided hints (the questions in QA samples). The results are251

reported in Table 2.252

All tasks are evaluated in a zero-shot setting to determine the problem-solving capabilities of LLMs253

without prior fine-tuning on specific task data. The evaluation process consists of three steps:254

response generation, answer extraction, and score calculation. More details of the experimental255

settings including prompts and hyperparameters are presented in Appendix B.1.256

To gain an in-depth understanding of the performance of LLMs in comparison with human experts,257

particularly their failed cases, we invited six Ph.D. candidates in chemistry to solve the puzzles in258

MolPuzzle, and also assess LLMs’ results. More comprehensive details of this human baseline259

and evaluation process are presented in Appendix B.2. The reported performance, including human260

baselines, is presented as an average with standard deviation over all samples.261

4.1 LLMs’ Performance on Solving Molecule Puzzles262

4.1.1 Addressing individual QA tasks in three stages263

In Table 1, we report the performance of selected LLMs on conducting individual QA tasks in the three264

stages, including GPT-4o, GPT-3.5-turbo, Claude-3-opus (three top-performing proprietary models),265

Llama-3-8B-Instruct (the best performing open-source model), and the reference human baseline266

performance. In stage 2, the variant of Llama3 for a multimodal setting, LLava-Llama-3-8B, is used267

for handling spectrum image analysis. Since each task involves performing a question-answering268

task, we evaluate the performance using F1 and accuracy by comparing the LLMs’ answers with the269

ground truth. F1 scores are reported in Table 1, while the accuracy and performance of more LLMs270

can be found in Appendix B.271

The results of Stage 1 (in Table 1 and Appendix Table 3) show that the GPT-4o model excels in these272

tasks (achieving near-perfect F1 score in 3 out of 4 tasks). The high scores in SI, AI, and FI suggest273

that LLMs are able to succeed in relatively straightforward chemistry analysis tasks, performing274

comparably to human experts. However, open-sourced models like LLama3 have limitations in275

addressing these tasks, possibly due to their limited reasoning abilities in chemistry text-reasoning276

tasks. In addition, GPT-4o’s comparative performance to humans indicates significant advancements277

in the use of LLMs for complex scientific tasks, suggesting a promising future for leveraging advanced278

LLMs to improve the efficiency of scientific analysis and discovery.279

For the multimodal tasks of Stage 2, GPT-4o remains the top performer, though it exhibits intermediate280

performance in spectrum interpretation. The F1 scores for the four types of spectra average around281

0.6, indicating a moderate level of accuracy in this complex aspect of the challenge. This performance282

is notably less competitive compared to human baselines, which succeed in approximately 73-77% of283

the tasks across the four types of spectrum interpretation. This indicates that spectrum interpretation284

is inherently challenging. While GPT-4o has made significant strides in automated spectrum analysis,285

there remains considerable room for improvement to bridge the gap between its capabilities and286

human expertise. More details are presented in Appendix B.4.287

The results for Stage 3 indicate that the most advanced LLM, GPT-4o, significantly underperforms288

compared to the human baseline, with nearly a 40% difference. This might be caused by the fact that289
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Table 1: F1 scores (↑) of individual QA tasks in three stages. The best LLMs results are in bold font.
Tasks in stage 1 are SI-Saturation Identification, ARI-Aromatic Ring Identification, FGI-Functional
Group Identification, and SDC-Saturation Degree Calculation.

Stage 1 (Molecule Understanding) Tasks

Method SI ARI FGI SDC

GPT-4o 1.00±0.000 0.943±0.016 0.934±0.005 0.667±0.003
GPT-3.5-turbo 0.451±0.025 0.816±0.017 0.826±0.075 0.5±0.099
Claude-3-opus 0.361±0.009 0.988±0.015 0.934±0.001 0.856±0.016
Galactica-30b 0.826±0.248 0.347±0.000 0.467±0.005 0.000±0.000
Llama3 0.228±0.043 0.696±0.051 0.521±0.003 0.000±0.000
Human 1.00±0.000 1.000±0.000 0.890±0.259 0.851±0.342

Stage 2 (Spectrum Interpretation) Tasks

Method IR Interpretation MASS Interpretation H-NMR Interpretation C-NMR Interpretation

GPT-4o 0.656±0.052 0.609±0.042 0.618±0.026 0.639±0.010
LLava 0.256±0.026 0.101±0.021 0.118±0.008 0.254±0.015
Human 0.753±0.221 0.730±0.11 0.764±0.169 0.769±0.101

Stage-3 (Molecule Construction) Tasks

Method H-NMR Elucidation C-NMR Elucidation

GPT-4o 0.524±0.021 0.506±0.037
Llama3 0.341±0.015 0.352±0.017
Human 0.867±0.230 0.730±0.220

Table 2: The performance of LLMs and human baseline in solving MolPuzzle. The best LLM results
are in bold font. Acc. stands for the Accuracy of Exact Match.

Method Acc. (↑) Levenshtein (↓) Validity (↑) MACCS FTS (↑) RDK FTS (↑) Morgan FTS (↑)
GPT-4o 0.014±0.004 11.653±0.013 1.000±0.000 0.431±0.009 0.293±0.013 0.232±0.007

Claude-3-opus 0.013±0.008 12.680±0.086 1.000±0.000 0.383±0.050 0.264±0.040 0.241±0.037

Gemini-pro 0.000±0.000 12.711±0.196 1.000±0.000 0.340±0.017 0.208±0.002 0.171±0.007

Human 0.667±0.447 1.332±2.111 1.000±0.000 0.985±0.022 0.795±0.317 0.810±0.135

the reasoning ability required for these tasks is complex and multifaceted. When information con-290

verges, such as identifying equivalent hydrogen or ring arrangements, a comprehensive understanding291

of the NMR peaks and their corresponding structures is essential. See more details in Appendix B.5.292

4.1.2 Addressing entire molecule puzzles293

For solving the entire molecule puzzles, the evaluation is limited to the three most advanced mul-294

timodal LMMs: GPT-4o [42], Claude-3-opus [44], and Gemini-pro [45], due to the involvement295

of spectrum image analysis in Stage-2. The results of these models are reported in Table 2, along296

with those from the human baseline(see complete evaluation process is reported in Appendix C). To297

comprehensively evaluate the performance, we employ two different types of metrics. The first type298

of metric measures the chemical similarity between the ground-truth molecules and the generated299

molecules, assessed using FTS (Fingerprint Tanimoto Similarity) [52] in terms of MACCS [53],300

RDK [41], and Morgan [54]. Since the generated molecules are in SMILES string format, we also301

employ natural language processing metrics including the Accuracy of Exact Match [55], and Leven-302

shtein distance [56] (the minimum number of single-character editing required to transform one string303

into another). Finally, to evaluate whether constructed molecules are valid, we use RDKIT [41] to304

check the validity of constructed molecules and report the percentage of molecules that are confirmed305

as valid.306

The results in Table 2 show that the best-performed LLM, GPT-4o, is performing much worse than307

humans, indicating a huge gap between LLMs and humans in solving the molecule puzzles. It is308

worth noting that all the constructed molecules are valid, even though only a small portion of them309

(1.4%) exactly match the ground truth. Considering that the accuracy of the exact match is too strict,310
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we use FTS to analyze more about the chemical closeness of LLMs’ answer to the ground truth. A311

MACCS FTS of 0.431 suggests that the generated molecules maintain a significant level of structural312

similarity. This indicates that even if the answers are not perfect replicas of the ground truth, they313

can still be chemically valid and potentially useful as structured hypotheses that could be relived by314

human scientists.315

4.2 Success and Failure Analysis316

Figure 5: The target molecule contains four distinct non-aromatic hydrogen types, color-coded in
the ground truth NMR. However, the model-derived molecule shows hydrogen counts of 3, 3, and
1, differing from the ground truth. The mismatch between the hydrogen types in the green section
of the target molecule and the orange region of the predicted molecule results in incorrect fragment
selection and assembly.

The above analysis indicates that the most capable model, GPT-4o, performs nearly perfectly317

in Stage-1 of molecule understanding. However, its performance drops in Stage-2 for spectrum318

interpretation, and worsens further in Stage-3 for molecule construction. We investigate in-depth319

how GPT-4o eventually fails on most of the puzzles after progressing through the tasks of these three320

stages. With the help of human evaluators, we gathered all the intermediate steps involved in solving a321

molecule puzzle and engaged them to scrutinize these steps. Fig. 5 presents case studies that illustrate322

the iterative steps involved in Stage-3, showcasing the most common errors made by GPT-4o: the323

accumulation of errors in iterative steps, which can lead to catastrophic failures. Note that324

this stage focuses on selecting the correct fragments and assembling them step by step to form the325

final molecular structure. We find that GPT-4o can initially succeed in picking the correct fragment326

when the structure is comparatively simple. However, as the process progresses, it does no select327

structures that satisfy all the requirements indicated by the NMR data. This difficulty arises because328

the reasoning requirements expand dramatically as more information and additional constraints need329

to be incorporated. More qualitative examples can be found in Appendix C.1.330

5 Findings and Open Directions331

Our evaluation has revealed specific limitations of state-of-the-art LLMs in automating molecular332

structure elucidation. We urge further collaborative efforts from the AI and chemistry communities to333

design more effective solutions, especially for the tasks in Stage 2 and Stage 3. Based on our findings,334

we next present the open directions for future research and development.335

Development of Specialized Multimodal LLMs Spectrum Interpretation in Stage 2. As indi-336

cated in our results, the performance of LLMs notably declines beginning in Stage 2, where they337

struggle with the visual interpretation of 1H and 13C NMR spectra. This difficulty arises because338

NMR spectra feature sharp, unlabeled peaks with multiplicities that exhibit very small chemical shift339

differences, making them challenging for visual models to interpret. These multiplicities, however,340

contain crucial information about the chemical connectivity of molecular fragments. Similarly,341

closely spaced IR absorptions provide key insights for identifying functional groups. This presents a342

significant opportunity to develop specialized multimodal LLMs that can more effectively interpret343

these subtle and complex spectral details.344
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Development of New Strategies for Leveraging LLMs in Chemical-Related Planning and345

Reasoning. The failure analysis from Stage 3 has motivated us to explore more effective strategies346

for leveraging LLMs’ capabilities in planning and reasoning for fragment selection and assembly.347

Our first immediate approach was to employ the chain-of-thought technique [57], aiming to provide348

more structured reasoning and instructions for solving the molecular puzzle. However, despite349

implementing this method, the results were unsatisfactory, even performing worse than the zero-shot350

setting we initially reported in the paper. We plan to continue exploring this direction with different351

implementations and adjustments. A second approach involves utilizing LLMs as agents in a more352

dynamic and interactive manner. This strategy incorporates feedback loops, allowing the models353

to iteratively refine their responses based on new information or corrections. By doing so, we aim354

to mitigate the accumulation of errors in iterative steps and reduce the risk of catastrophic failures355

during the problem-solving process. In addition, we are investigating fine-tuning strategies to enhance356

the model’s ability to handle domain-specific tasks. This involves fine-tuning LLMs on curated357

chemical datasets that include detailed annotations of spectral data and molecular structures. The358

goal is to train the model to recognize subtle patterns and dependencies that are often missed in a359

general-purpose pre-trained model. By tailoring the model’s training to this domain, we expect to360

improve its reasoning and planning capabilities when interpreting complex spectra and assembling361

molecular fragments.362

6 Negative Societal Impacts363

Automating molecular elucidation using LLMs has significant benefits but also poses serious risks,364

especially regarding the creation of prohibited drugs. 1.)Facilitation of Illicit Drug Synthesis: LLMs365

could be used to design new synthetic drugs that evade current regulations, making it easier for illicit366

manufacturers to produce harmful substances. 2.)Lowering the Barrier to Entry: The technology367

could enable individuals with minimal expertise to create detailed molecular blueprints for prohibited368

drugs, increasing the potential for misuse. 3.) Regulatory Challenges: The rapid generation of novel369

compounds could overwhelm drug regulators, leading to delays in banning new synthetic drugs370

and complicating the control of harmful substances. 4.) Ethical and Legal Issues: Questions about371

responsibility and access to such powerful tools arise. Regulating who can use these technologies372

and for what purposes becomes crucial to prevent misuse.373

7 Broader Impact374

Our work has broad impacts across multiple dimensions. First, it offers valuable insights and375

recommendations for both AI researchers and chemists in academia and industry. These perspectives376

enhance the effective utilization of LLMs and guide future advancements in the field. Second,377

our approach to benchmarking and improving LLMs through real-world tasks like the MolPuzzle378

can also foster greater collaboration between computational scientists and chemists. By aligning379

AI technologies with traditional chemical research, these interdisciplinary efforts can accelerate380

the discovery of new materials, drugs, and chemical processes, potentially leading to significant381

advancements in healthcare and industry.382

8 Conclusion383

In this paper, we introduced MolPuzzle, a new benchmark challenge to advance our capabilities in384

molecular structure elucidation. We evaluated state-of-the-art LLMs on this task, revealing their385

strengths and limitations in handling complex chemical reasoning. Our analysis highlights significant386

performance gaps, particularly in spectrum interpretation and molecule construction. These findings387

not only suggest ways to improve LLM performance but also set the stage for transforming approaches388

to chemical research. MolPuzzle serves as a critical step toward harnessing the potential of LLMs389

in chemistry, fostering innovation and collaboration within the AI and chemistry communities to390

enhance scientific inquiry and application.391
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A MolPuzzle Benchmark Details560

This section complements Section 3 with a fine-grained summary of the dataset collection, results561

validation, and evaluation procedure, along with a fuller characterization of the task instances and the562

corresponding prompts.563

A.1 Data Collection564

The initial molecules were selected by referencing the textbook Organic Structures from Spectra, 4th565

Edition, available as an online PDF on ResearchGate. We chose 234 molecules based on spectrum566

tasks involving IR, MS, 1H-NMR, and 13C-NMR to reflect a difficulty level suitable for graduate567

students[8].568

To address copyright concerns, we excluded molecules with publicly available mass spectrometry569

(MS) spectra in open-source databases from our study. The remaining spectra were sourced from570

public resources, notably the PubChem database[58]. For additional spectra that were not available,571

we used simulation methods[59][29] and provided a Jupyter notebook to generate these data, ensuring572

high-quality spectra for analysis. Our final dataset comprised 200 molecules.573

Given the challenges associated with NMR spectrum images, some spectra were obtained from574

simulated data in text format for 1H-NMR and 13C-NMR. This approach ensured clarity and accuracy575

in the evaluation of molecular structures.576

To assess the multiple-stage abilities of LLMs, we designed a unique question-and-answer evaluation.577

This framework tested the LLMs’ capabilities in interpreting and integrating data from different types578

of spectra, simulating real-world challenges. Details of this evaluation framework are provided in the579

next section.580

A.2 Template design581

Each template was crafted to target specific skills within molecular understanding. For instance,582

saturation identification challenges the models’ ability to discern the degree of saturation in a molecule,583

which is crucial for understanding its chemical reactivity and stability. Aromatic ring identification584

tests the models’ ability to recognize benzene-like structures, which are fundamental in organic585

chemistry due to their common occurrence and unique properties. Saturation degree calculation586

pushes the models to apply quantitative analysis, requiring not just recognition but also computation587

based on molecular structures.588

By diving deeper into the rationale behind each template and the kind of chemical knowledge they589

are designed to test, we can better appreciate how these tasks simulate real-world applications in590

chemistry. This approach not only tests the models’ basic recognition abilities but also their capacity591

to perform complex reasoning and apply theoretical knowledge practically. The template examples592

are in A.3.593
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A.3 Stage1 QA Samples594

A.4 Stage2 QA Samples595

A.5 Stage3 QA Samples596

B Evaluation Experiments597

B.1 Experimental Setting598

During our testing phase, we selected 100 questions and employed two distinct prompting strategies599

with the large language model (LLM). Initially, the LLM was tasked with directly answering the600
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questions. In a subsequent approach, the same queries were presented, but the model was prompted to601

execute a chain-of-thought reasoning process before responding. Each question in our dataset begins602

with a comprehensive description of the chemical context, along with specified answer formats and603

detailed guiding rules. To ensure a balanced representation of each task category, for tasks in Stage 1,604

the distribution ratio for Saturation Identification (SI), Functional Group Identification (FI), Aromatic605

Ring Identification (AI), and Saturation Degree Calculation (SC) is set at 2:3:3:2. In Stage 2, we606

have randomly selected 100 questions from each category of the spectrum. For Stage 3, we randomly607

selected 100 questions focused on H-NMR and C-NMR analyses.608

We carried out this evaluation over three rounds, analyzing responses using both accuracy and the609

F1 score for tasks involving Saturation Identification (SI), Functional Group Identification (FI), and610

Aromatic Ring Identification (AI). For Saturation Degree Calculation (SDC), which yields numerical611

results, we assessed accuracy by comparing the count of correct matches to the ground truth data.612

The detailed results are reported in Table A.3. To ensure that all results are presented in a way that613

facilitates direct comparison, only those using similar evaluation metrics(AI, FI, AI) are included614

in the main table. For the SI, AI, and FI tasks, we use the F1 score and Accuracy to evaluate their615

performance since they are classification tasks. For the SDC task, the answer is a numerical number,616

so we only use the accuracy score to measure the performance of the LLMs. This approach helps to617

keep the evaluation coherent and focused on comparable data points.618

B.2 Human Evaluation619

To evaluate the performance of large language models (LLMs) on specialized tasks against expert620

humans, we recruited six graduate students from chemistry department to solve the MolPuzzle621

benchmark. These students, having recently completed a graduate-level course in Molecular Structural622

Elucidation, represented a highly skilled group of human participants.623

For the experiment, we randomly selected six questions from the MolPuzzle dataset for each stage of624

the study. These questions were presented to the students in different formats according to the stage:625

In Stages 1 and 2, the questions were simple Yes/No or required short answers. In Stage 3, to align626

with the conventional methods chemists use to express chemical structures, students were asked to627

upload images of their hand-drawn structures instead of using SMILES strings. These images were628

manually compared to the ground truth to calculate scores.629

We also imposed self-regulated time constraints to mirror the challenging nature of molecular630

structural elucidation. Beyond individual stage evaluations, we presented each participant with a631

complete molecule puzzle, consisting of a formula and four spectral images. The students were tasked632

with solving these puzzles within a 20-minute time frame. Impressively, all participants successfully633

submitted their solutions within the allotted period.634

Our study included a component where human evaluators were involved to assess the performance635

of the AI models. To ensure the protection and ethical treatment of all participants, we conducted a636

thorough risk assessment. Potential risks identified included privacy concerns and the mental strain637

of repetitive tasks. Mitigation strategies, such as ensuring anonymity and providing breaks, were638

implemented to protect our evaluators.639

The study was submitted for review and received approval from our Institutional Review Board (IRB).640

The IRB approval number is [insert approval number], which verifies that our protocols met all ethical641

guidelines for research involving human subjects. Throughout the project, we adhered strictly to642

these protocols to ensure ongoing compliance with ethical standards.643

B.3 Stage1644

Molecule understanding requires comprehensive analysis and interpretation of molecular structures,645

with a focus on chemical properties and spectroscopic data. In our study, we created a dataset of646

234 molecules and developed eight distinct question templates across four categories: Saturation647

Identification(SI), Functional Group Identification(FI), Aromatic Ring Identification(AI), and648
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Saturation Degree Calculation(SC). These templates assess the ability to identify substructures,649

compute saturation levels, and infer structural presence, incorporating concepts in the chemistry650

reasoning process. Each question also necessitates a deep understanding of molecular bonding,651

stereochemistry, and functional group identification. Responses were generated using the RDKit652

library, ensuring precise and reliable answers grounded in established chemical informatics.653

Table 3: The accuracy(↑), F1 score(↑)in 4 different molecule understanding categories, the best LLMs
are in bold font.

Model CoT SI AI FI SC

F1 Acc F1 Acc F1 Acc Acc

GPT-4o - 1±0.0 1±0.0 0.943±0.016 0.944±0.015 0.934±0.005 0.966±0.0 0.667±0.003
GPT-4o ✓ 1±0.0 1±0.0 0.911±0.031 0.911±0.031 0.689±0.025 0.766±0.027 0.816±0.062
GPT-3.5 - 0.451±0.025 0.825±0.075 0.816±0.017 0.816±0.075 0.826±0.075 0.683±0.016 0.5±0.099
GPT-3.5 ✓ 0.448±0.026 0.816±0.008 0.798±0.025 0.800±0.027 0.526±0.053 0.622±0.031 0.533±0.131
Claude-3-opus - 0.361±0.009 0.556±0.023 0.988±0.015 0.988±0.015 0.934±0.001 0.966±0.001 0.856±0.016
Claude-3 ✓ 0.760±0.189 0.903±0.046 0.878±0.025 0.867±0.001 0.547±0.112 0.843±0.081 0.900±0.025
Gemini-pro - 0.285±0.020 0.399±0.040 0.775±0.093 0.788±0.083 0.646±0.052 0.748±0.051 0.200±0.004
Gemini-pro ✓ 0.391±0.045 0.651±0.108 0.685±0.088 0.688±0.087 0.562±0.018 0.629±0.023 0.283±0.062

LLama3 - 0.367±0.018 0.583±0.047 0.490±0.030 0.533±0.027 0.472±0.133 0.588±0.0 0.0±0.0
LLama3 ✓ 0.473±0.011 0.899±0.040 0.384±0.026 0.533±0.0 0.570±0.035 0.799±0.047 0.017±0.001
Vicuna-13b - 0.031±0.022 0.033±0.025 0.500±0.087 0.522±0.083 0.308±0.038 0.311±0.041 0.0±0.0
Vicuna-13b ✓ 0.380±0.023 0.616±0.062 0.342±0.006 0.522±0.157 0.516±0.080 0.855±0.016 0.0±0.0
Mistral-7b - 0.221±0.014 0.283±0.025 0.384±0.005 0.500±0.0 0.319±0.014 0.322±0.157 0.0±0.0
Mistral-7b ✓ 0.433±0.007 0.766±0.023 0.342±0.006 0.522±0.016 0.601±0.102 0.877±0.031 0.0±0.0

B.4 Stage2654

The Spectrum interpretation tasks mainly measure the capability of LLMs in analyzing images655

related to identifying key substructures indicated by the spectrum plot. In this study, we utilize656

four distinct types of spectral images: nuclear magnetic resonance (NMR), infrared spectroscopy657

(IR), mass spectrometry, and others. Each type of data offers insights into various aspects of the658

molecular structure. We’ve created specific question templates for each spectrum, targeting peak659

and substructure identification factors. These templates are designed manually and emphasize the660

intricate connection between the spikes or troughs in the figures and the structures of the molecules.661

Responses were generated using the RDKit library to ensure correctness.662

The findings from Stage 2 are presented in Table 4. We exclusively focus on the zero-shot learning663

outcomes, as our observations indicate that implementing chain-of-thought prompting leads to a664

deterioration in model performance. To address this limitation, we offer qualitative insights in C.1.665

Table 4: The accuracy(↑), F1 score(↑) for IR, MASS spectrum, H-NMR, and C-NMR interpretation
tasks."-" means the results are not interoperable

Model Stage-2 Tasks

IR Interpretation MASS Interpretation H-NMR Interpretation C-NMR Interpretation
F1 Acc F1 Acc F1 Acc F1 Acc

GPT-4o 0.656±0.052 0.713±0.06 0.609±0.042 0.767±0.042 0.618±0.026 0.864±0.007 0.639±0.107 0.892±0.049
Claude-3-opus 0.440±0.006 0.476±0.055 0.398±0.032 0.466±0.019 0.572±0.190 0.842±0.017 0.554±0.075 0.716±0.042
Gemini-3-pro-vision 0.194±0.002 0.119±0.016 0.116±0.036 0.124±0.038 0.545±0.048 0.851±0.062 0.492±0.016 0.619±0.044
LLava1.5-8b 0.256±0.026 0.414±0.044 0.101±0.021 0.104±0.26 0.118±0.008 0.186±0.011 0.254±0.015 0.472±0.023
Qwen-VL-Chat 0.243±0.027 0.392±0.043 0.125±0.006 0.116±0.021 0.255±0.007 0.611±0.031 - -
InstructBLIP-7b 0.239±0.020 0.263±0.014 0.101±0.021 0.104±0.26 - - 0.044±0.006 0.064±0.023
InstructBLIP-13b 0.239±0.020 0.263±0.014 0.101±0.021 0.104±0.26 - - 0.047±0.014 0.067±0.025

B.5 Stage-3666

Constructing a molecule involves a detailed analysis of NMR data, which is critical for understanding667

its structure. H-NMR data are essential as they provide information about the hydrogen environments668

within the molecule, including the number and types of hydrogen atoms (such as aliphatic or669
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aromatic), as well as their connectivity. Conversely, C-NMR data offer in-depth insights into the670

carbon framework, illustrating the distribution and linkage of carbon atoms within the molecule.671

In our study, to evaluate the ability of large language models (LLMs) to interpret NMR data, we672

generated 1,171 question-and-answer (QA) pairs. These pairs focus on key NMR interpretation tasks,673

such as counting hydrogen atom types and identifying substructures, which are critical for accurate674

analysis.675

Despite observing moderate accuracy from the LLMs in Stage 2 of our testing, we enhanced the676

quality of the QA pairs in Stage 3 by providing the LLMs with verified NMR data, generated by using677

nmrdb[60]. This approach ensures that the data used is reliable and helps maintain the integrity of678

our results. The findings from Stage 2 are presented in Table. We exclusively focus on the zero-shot679

learning outcomes, as our observations indicate that implementing chain-of-thought prompting leads680

to a deterioration in model performance. To address this limitation, we offer qualitative insights in681

Table 5: The F1 score(↑) for H-NMR, and C-NMR Structure Elucidation

Method H-NMR Elucidation C-NMR Elucidation

GPT-4o 0.524±0.021 0.506±0.037
Claude-3-opus 0.395±0.008 0.313±0.029
Gemini-pro 0.333±0.012 0.308±0.031

Llama3 0.341±0.015 0.352±0.017
Vicuna-13b 0.181±0.013 0.244±0.001
Mistral-7b 0.131±0.032 0.122±0.027
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C Complete Molecule Elucidation Process682

Algorithm 1 Fragment-Based Molecule Assembly Algorithm

Input: Fragment pool (SMILES strings), NMR description, Original molecular formula, Origi-
nal unsaturation degree
Output: Assembled molecule that satisfies molecular formula and NMR data

1: Initialize:
2: Set iteration count k ← 0
3: Set remaining formula← Original molecular formula
4: Set remaining unsaturation← Original unsaturation degree

5: 1. Initial Fragment Selection:
6: Prompt LLM with fragment pool and NMR description to select an initial fragment
7: Extract and store the selected fragment

8: 2. Chemical Formula and Unsaturation Check:
9: Convert selected fragment to its chemical formula and unsaturation degree

10: Update remaining formula and unsaturation by subtraction

11: while remaining formula has multiple main atoms and k < 5 do
12: Increment iteration count k ← k + 1

13: 3. Iterative Fragment Assembly:
14: Prompt LLM to select additional fragments considering remaining formula and unsaturation
15: Concatenate selected fragments to form a potential molecule

16: 4. Molecule Validation and NMR Matching:
17: Validate the new molecule using RDKit for connectivity
18: if multiple valid molecules exist then
19: LLM ranks molecules based on NMR match
20: Select the molecule that best matches the NMR data
21: end if

22: 5. Subsequent Assembly and Adjustment:
23: After successful connection, update remaining formula and remaining unsaturation
24: end while

25: 6. Termination Conditions:
26: if no valid fragments can be selected or remaining formula is fully satisfied or k ≥ 5 then
27: Terminate the assembly process
28: end if

29: 7. Final Output:
30: Record the final assembled molecule and intermediate stages
31: if final molecule fits original molecular formula and NMR data then
32: Return valid solution
33: else
34: Return no valid solution found
35: end if

C.1 Qualitative Results683

In this section, we present several examples using GPT-4’s chain-of-thought (CoT) reasoning to684

facilitate a clearer understanding of the results. We have enlisted two Ph.D. candidates from the685

chemistry department to evaluate these CoT outcomes. The analysis uses color coding to indicate the686
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accuracy of the generated text: green signifies correct responses, red indicates incorrect ones, and687

yellow denotes responses that are partially correct.688

C.1.1 Stage 2 examples689

Figure 6: Human annotated IR spectrum interpretation

Figure 7: Human annotated MASS spectrum interpretation
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Figure 8: Human annotated H-NMR spectrum interpretation

Figure 9: Human annotated C-NMR spectrum interpretation
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C.1.2 Stage 3 examples690

Figure 10: Human annotated H-NMR Elucidation

Figure 11: Human annotated C-NMR Elucidation

Based on the observation in spectrum interpretation, it is safe to say that the GPT-4o model has a691

basic grasp of the concept and the task at hand, but their deficiency mainly resides in obtaining fully692

correct information from the spectrum images and also they lack in-depth understanding. As for the693

problems in Stage 3, although the GPT-4o outputs are mostly correct, they are too general which694

shows the poor understanding of GPT-4o models in solving this intricate task. The stage 3 task can695

be roughly broken down into 3 subtasks: obtaining the correct information from the spectrum image,696

deducing the correct structural information from the spectral information, and finally translating this697

structural information into a correct molecular structure. GPT-4o models seem to perform well in the698

second subtask, and moderately for simple structures in the third subtask but seem to be especially699

struggling with the first subtask in the case of NMR spectra. This indicates the gap in current LLMs700

in fully interpreting data therefore more advanced models and approaches should be developed to701

tackle the problem.702

23

134743 https://doi.org/10.52202/079017-4281



C.1.3 Complex Molecules703

In addition to presenting molecules extracted from textbooks, we also demonstrate how the large704

language model (LLM) handles complex molecular structures. As illustrated in Figure 12, complex705

molecules typically have a larger pool of fragments. This expansion results in a greater number706

of valid elucidation paths, complicating the selection process for an appropriate starting point.707

Successfully navigating this enlarged pool necessitates an in-depth understanding of each fragment’s708

properties and the associated, more intricate NMR data. In this context, LLMs may struggle because709

they often lack the nuanced chemical intuition and detailed analytical capabilities that human experts710

possess. Such limitations can lead to inaccuracies in interpreting complex interactions within NMR711

spectra, making LLMs less reliable.712

Figure 12: Complex molecule Structure Elucidation
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D Compute Resources713

For the execution of various models in our experiments, distinct compute resources were utilized714

based on the model’s accessibility and computational requirements. Specifically, for models like715

Claude 3, GPT, and Gemini, we employed API calls to facilitate their operation, leveraging the716

existing infrastructure provided by their respective platforms. This approach allowed us to access717

these models without the need for local computational resources, thereby streamlining the process.718

Conversely, for all other open-sourced models employed in our study, we conducted the experiments719

locally using an NVIDIA A100 GPU. This high-performance computing unit was chosen due to its720

advanced capabilities in handling extensive computations and large model requirements efficiently.721
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