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Abstract

Large Language Models (LLMs) have shown significant problem-solving capabili-
ties across predictive and generative tasks in chemistry. However, their proficiency
in multi-step chemical reasoning remains underexplored. We introduce a new
challenge: molecular structure elucidation, which involves deducing a molecule’s
structure from various types of spectral data. Solving such a molecular puzzle,
akin to solving crossword puzzles, poses reasoning challenges that require inte-
grating clues from diverse sources and engaging in iterative hypothesis testing. To
address this challenging problem with LLMs, we present MolPuzzle, a benchmark
comprising 217 instances of structure elucidation, which feature over 23,000 QA
samples presented in a sequential puzzle-solving process, involving three inter-
linked sub-tasks: molecule understanding, spectrum interpretation, and molecule
construction. Our evaluation of 12 LLMs reveals that the best-performing LLM,
GPT-40, performs significantly worse than humans, with only a small portion
(1.4%) of its answers exactly matching the ground truth. However, it performs
nearly perfectly in the first subtask of molecule understanding, achieving accuracy
close to 100%. This discrepancy highlights the potential of developing advanced
LLMs with improved chemical reasoning capabilities in the other two sub-tasks.
Our MolPuzzle dataset and evaluation code are available at this

1 Introduction

Artificial intelligence (Al) is revolutionizing the field of chemistry, influencing diverse sectors such as
industrial chemical engineering [1, 2], drug discovery [3], and chemistry education [4]. In particular,
recent studies have highlighted the success of large language models (LLMs) in addressing predictive
challenges in chemistry, including molecular property prediction [5], reaction prediction [6], and
experiment automation [7]. These advancements suggest significant potential for Al to enhance
efficiency and innovation across these critical areas.

We introduce a new chemical challenge to Al, molecular structure elucidation. While this critical
task has been explored in other contexts, it remains unexplored for large language models (LLMs),
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1:{Down, It travels} ->shop, step, ship,...
2: {Down, Itfalls} -> rain, rock, roof,...

3: {Across, It swims} -> sword, shark, spray...
4:{Across, It plays}-> plunk, pipe, piano,...

Figure 1: A crossword puzzle (left), and a molecular structure elucidation puzzle (right)

extending beyond familiar predictive and generative domains such as property or reaction prediction,
and representing a shift toward complex problem-solving. Analogous to solving a detailed cross-
word puzzle, molecular structure elucidation can be seen as a molecular puzzle. It requires the
integration of multifaceted data, iterative hypothesis testing, and a deep understanding of chemical
cues, much like piecing together clues across a crossword grid to form a coherent solution. Fig. 1
illustrates the problem of molecular structure elucidation alongside its analogical counterpart, the
crossword puzzle, highlighting the parallels in strategy and complexity between these two intellectual
challenges.

Just as a crossword puzzle requires figuring out words based on given clues and fitting them together
in a grid, molecular structure elucidation involves deducing a molecule’s structure from various types
of data such as nuclear magnetic resonance (NMR), infrared spectroscopy (IR), mass spectrometry,
and others. Each type of data provides clues about different aspects of the molecular structure. In
a crossword, we integrate clues from across different directions and hints to form words that fit
together correctly. Similarly, in molecular structure elucidation, we need to integrate information
from different spectroscopic methods to form a consistent picture of the molecule. For example,
IR spectra reveal molecular vibrations and functional groups, NMR provides information about
the framework of hydrogen and carbon atoms, while mass spectrometry can offer insights into the
molecular weight and possible fragmentations.

Nevertheless, molecular structure elucidation is a challenging and time-consuming task. Training
undergraduate students in chemistry to solve these puzzles has been a part of the curriculum because
determining the structure of molecules is a fundamental skill in the field. Typically, even a single
molecule puzzle question on a final exam can take 10 to 15 minutes to solve [8], demanding
considerable memory and processing skills from the students. In the domain of complex molecule
research, the process of molecular deduction can become even more complex and time-consuming.
Therefore, fully automating this process is highly beneficial for accelerating the design of new
materials and drugs, as well as enhancing the efficiency of chemical research [9, 10]. However, it
remains a challenging task due to the complexities involved in interpreting spectral data and solving
intricate reasoning problems associated with molecular structures [11].

In this work, we aim to present molecular structure elucidation in formats that LLMs can effectively
process. By adapting this complex task to be compatible with LLMs, we explore their potential as
promising tools in chemical research. If successful, LLMs could significantly accelerate scientific
discovery in chemistry, transforming how we approach and solve intricate molecular puzzles.

To achieve our objectives, we first introduce a novel dataset named MolPuzzle, which includes
234 instances of structure elucidation challenges inspired by common chemistry tasks. Unlike
datasets used in predictive or generative tasks, which typically consist of a collection of independent
samples and are relatively straightforward to construct, each instance in the MolPuzzle dataset is
uniquely complex. It is structured as a sequential process involving three interlinked sub-tasks:
molecule understanding, spectrum interpretation, and molecule construction. These instances
are accompanied by multimodal data, including images of IR, MASS, H-NMR, and C-NMR spectra,
alongside their corresponding molecular formulas. Presenting such a complex, multimodal problem in
a format that LLMs can effectively process presents a unique challenge. We, a team of Al researchers
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69 and chemists, are dedicated to formulating the molecule puzzle instances in descriptive languages
70 that are accessible to LLMs. Our focus is on ensuring the utility of these instances, as well as their
71 comprehensive coverage over various scenarios and challenges that mimic real-world conditions. By
72 doing so, MolPuzzle opens the door for LLMs to contribute meaningfully to the field of chemistry,
73 potentially accelerating scientific discoveries and innovations.

74 Second, we present our effort to automate the solving of molecular structure elucidation using LLMs.
75 While certain sub-tasks, such as translating an IR spectrum into a molecular formula, may be solvable
76 by encoder-decoder models [12], the comprehensive resolution of the entire molecular puzzle likely
77 requires the advanced planning and reasoning capabilities of LLMs. We tested 11 state-of-the-art
78 LLMs including GPT-40, Gemini-pro, and Claude-3-opus. We also conducted a human baseline to
79 compare the performance of humans and LLMs in solving the same puzzles. The key findings are:
go 1) GPT-4o0 significantly outperforms other LLMs; 2) The best-performing LLM, GPT-40, performs
g1 significantly worse than humans, with only a small portion (1.4%) of its answers exactly matching
g2 the ground truth; and 3) GPT-40’s performance primarily collapses in the Stage-2 of spectrum
83 interpretation and gets worse in the Stage-3 of molecule construction, although it performs nearly
s+ perfectly in Stage-1 of molecule understanding (with accuracy close to 100%).

85 To summarize, our key contributions in this work are the presentation of:

86 * A new reasoning problem for AI community. As the focus of Al development has evolved
87 from solving predictive tasks and generative tasks to engaging in complex reasoning tasks—akin
88 to system 2 level thinking—we introduce a reasoning task centered around molecular structure
89 elucidation. This crucial problem from the field of chemistry sets a high benchmark for AI models
90 to reach. Solving this task requires AI models to possess the ability to interpret spectral images,
o1 engage in complex reasoning, and plan effectively across extended workflows. This not only
92 challenges the current capabilities of Al but also pushes the boundaries of what AI can achieve in
93 scientific domains, particularly in understanding and manipulating molecular structures.

94+ A new light of Al solutions for chemistry community. By proposing the MolPuzzle dataset,
95 we establish another bridge between the fields of Al and chemistry. This initiative leverages the
96 important capabilities of multimodal LLMs, providing the chemistry community with innovative
97 solutions to accelerate the process of structure elucidation. Our initial exploration serves as a
98 demonstration of the potential for these technologies. It sets the stage for further collaborative
99 efforts, inspiring researchers from both domains to collaboratively explore new frontiers in scientific
100 discovery.

101 The paper is organized as follows. Section 2 presents the related work. In Section 3, we elaborate
102 on the curation of the MolPuzzle dataset. In Section 4, we report the usage of multimodal LLMs in
103 solving MolPuzzle. In Section 5, we discuss the main findings and directions opened by this work. In
104 section 7, we discuss the broader impact of our work. Last, we summarize the study in Section 8 and
105 offer our conclusions.

s 2 Related Work

107 Molecular Structure Elucidation. Automated molecular structure determination has been re-
108 searched for decades [13, 14, 15, 16, 17], initially focusing on rule-based systems [18, 19] that
109 interpret spectral data using predefined chemical rules and expert knowledge. Notable examples
110 include SENECA [20], employing genetic algorithms on NMR data, and ACD/Structure Elucidator
111 [21], a commercial software integrating various spectral data. While effective for well-characterized
112 compounds, rule-based methods struggle with complex or novel molecules that deviate from es-
113 tablished patterns, and their proprietary nature limits benchmarking accessibility.Machine learning
114 approaches [22, 23, 24, 25, 26, 27, 28, 29] have also been explored. Early studies utilized neural
115 networks to assign infrared spectra to molecular structures [30], and recent advancements leverage
116 deep learning for complex datasets [31]. For example, Alberts et al. [12] used a transformer-based
117 model to predict SMILES strings from IR spectra, later extending this to NMR data analysis [27].
118 However, most existing research focuses on molecule elucidation using single-type spectrum data,
119 sufficient for simple molecules but inadequate for complex ones since each spectrum provides only
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partial structural information. Our study aims to leverage the reasoning and planning capabilities of
multimodal large language models (MLLMs) to integrate diverse spectral data, addressing challenges
in complex real-world chemistry tasks. We focus on solving the entire puzzle using multiple clues
rather than deciphering one word from a single clue.

Multimodal Benchmarks for LLMs. With the advancements in developing multimodal LLMs
[32, 33, 34, 35, 36], a number of multimodal benchmarks have been curated. These benchmarks are
crucial for evaluating and refining the capabilities of MLLMs to process and integrate diverse data
types, such as text, images, and audio, for a cohesive understanding. Notably, a benchmark proposed
by Yue et al. [37] assesses the reasoning abilities of MLLMs in various college-level subjects.
Similarly, MathVista [38] explores MLLMs’ multimodal reasoning capabilities in mathematics,
while Yin et al. [39] introduced LAMM, a dataset focusing on multimodal instruction tuning
and the LabSafetyBench [36] assessed the reliability and safety awareness of LLMs in laboratory
environments. Our research shifts the focus to the chemistry domain [6, 40]. To our knowledge, this
study is the first to adopt a realistic chemistry task for MLLM processing and to conduct a thorough
evaluation of these models’ proficiency in chemistry-related reasoning and image analysis. This
specialized focus will enhance our understanding of MLLMSs’ capabilities within a specific scientific
domain.

3 The MolPuzzle Dataset

Existing benchmarks of chemical tasks primarily focused on predictive or generative tasks involving
collections of independent samples that were relatively straightforward to construct. In contrast,
our dataset, MolPuzzle, aims to characterize an intertwined assessment of chemistry reasoning and
visual understanding, testing the application of Al-assisted technology towards broader scientific
discovery. Our data collection process is rigorously designed and implemented by a team uniquely
qualified for this task, consisting of esteemed researchers in chemistry and experienced Al specialists
who have previously tackled complex chemistry problems. This collaboration ensures that the
MolPuzzle dataset not only accurately reflects real-world chemical phenomena and challenges but is
also structured in a way that optimally facilitates access and usability for LLMs.

The basic principles guiding our data curation for the MolPuzzle dataset are: 1) ensuring compre-
hensive coverage by including a wide range of tasks that synthesize visual context with chemical
knowledge, facilitating thorough evaluations; 2) varying levels of difficulty to challenge LLMs
and highlight their potential limitations; 3) ensuring robust assessment outcomes, i.e., the results
are definitive and reliable; and 4) incorporating human expert analysis to identify strengths and
weaknesses in model performance, significantly enhancing our understanding of LLMs capabilities.

In this section, we outlined the construction process for the MolPuzzle dataset. We detailed the
creation of puzzle tasks in three stages (3.1), as well as the QA pairs involved in these tasks (3.2).
Examples are presented in Fig. 2.

3.1 Task Construction

Just like a word puzzle where each clue progressively reveals the final answer, the solution to a
molecule puzzle is a SMILES string that captures the interconnected substructures of a molecule. We
design our molecule puzzles so that solving one requires the accurate identification and integration of
each substructural clue, gradually unveiling the complete SMILES representation of the molecule.
This approach is inspired by the analytical strategies employed by chemists in the real world, who
interpret spectral data and chemical properties to deduce the structures of unknown molecules. Our
puzzle-building process mirrors this scientific exploration, arranging clues in a sequence from simple
to complex, where each clue builds upon the insights gained from the previous one, requiring precision
and careful thought at every stage. We next provide more details on our clue design methodology.

The Initial Stage (Molecule Understanding). In designing a molecule puzzle, the first stage involves
determining how many building blocks, or substructures, are available. This foundational step is
crucial as it sets the stage for constructing the molecule’s complete structure, akin to identifying the
key pieces in a complex jigsaw puzzle. Starting with the initial hint: A molecular formula, derived
from a mass spectrum, indicates the exact types and numbers of atoms in a molecule (e.g., C156H2205,
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171 representing carbon, hydrogen, and oxygen), chemists can begin to deduce possible structures from
172 the degree of saturation which is calculated based on the number of rings and multiple bonds
173 present in the molecule, the potential for forming aromatic rings, or the presence of functional
174  groups. The initial information provides a preliminary range of building blocks, which can later be
175 selected and assembled to solve the molecular puzzle. To benchmark the capability of LLMs in this
176 stage, we developed 26 unique templates (see Appendix A.2 for details), targeting key analytical tasks
177 such as saturation identification, aromatic ring identification, functional group identification, and
178 saturation degree calculation. This initiative produced 5,859 QA-format pairs, effectively evaluating
179 the models’ capacity to understand and process molecular data. Details of these samples are reported
180 in Appendix A.3.

181 The Second Stage (Spectrum Interpretation). With the initial building blocks of the molecule
182 identified from the molecular formula, the next critical step involves refining these components
183 through detailed spectral analysis. Spectrum images such as IR, MASS, 'H-NMR, and *C-NMR
184 serve as new hints, each adding layers of information akin to clues in a complex puzzle. These
185 spectral images are pivotal in confirming or revising the initial hypotheses about the molecule’s
186 structure. For example, IR spectroscopy can verify the presence of specific functional groups, MASS
187 spectrometry can provide the molecular MASS, molecule mass, and fragmentation patterns, and
188 NMR techniques detail the arrangement of hydrogen and carbon within the molecule. By integrating
189 these new hints, researchers can construct a more robust and experimentally accurate model of the
190 molecule. This process not only theoretically validates each building block but also ensures they align
191 perfectly with empirical data, leading to a comprehensive understanding of the molecular structure.
192 Given the importance of spectral images in this analysis, we have developed specialized question
193 templates to evaluate the proficiency of LLMs in interpreting these images. For instance, we created
194 17 templates for IR and 12 for each of H-NMR, and C-NMR. Each template, such as ‘Analyze the
195 IR spectrum’ includes specific queries designed to extract detailed insights, such as ‘What does
196 the absorption in 3200-3600 suggest?’ This structure enables us to format the questions for Visual
197 Question Answering (VQA), facilitating a systematic approach to query handling. Our method has
198 successfully generated a significant repository of VQA format examples, comprising 3,689 for IR
199 and 2,604 for each of MASS, H-NMR, and C-NMR. A detailed analysis of these tasks is available in
200 Appendix A.4.

201 The Final Stage (Molecule Construction). After completing the first two stages, we can assert that
202 we have gathered the necessary building blocks to assemble the molecule. The assembly process will
203 be guided by insights derived from NMR data. Specifically, ' H-NMR provides information about
204 the hydrogen environment in the molecule, such as the number of hydrogen atoms, their types (e.g.
205 aromatic), and their connectivity. Meanwhile, C-NMR provides detailed insights into the carbon
206 framework, indicating whether carbon atoms are part of an aromatic ring or not. The assembly of the
207 final molecular structure is an iterative process, during which functional groups are uncovered based
208 on the specific hydrogen and carbon environments. The approach to assembling the final molecular
209 structure is iterative. Starting with initial building blocks selected from the identified fragment pool,
210 LLMs are prompted to select one structure from the pool step by step, based on the NMR guidance,
211 until the maximum number of iterations is reached or the fragment pool is exhausted. This systematic
212 addition ensures that each step in the assembly process not only fits with the previous structure
213 but also aligns perfectly with the latest spectral data, driving us closer to the accurate molecular
214 configuration. We created 27 task templates for each molecule to assess the capability of LLMs in
215 comprehending NMR spectra. These templates include 5 questions about atom numbers and 22 tasks
216 centered on functional groups, generating a total of 6,318 question-answer pairs. We sample both
217 atom-related questions concerning the number of hydrogens and carbons, as well as those targeting
218 functional groups. To reduce bias and ensure more balanced performance, we balance the distribution
219 of labels in the answers—whether indicating the presence or absence of a functional group or specific
220 environment. This ensures a more unbiased evaluation across the sampled tasks.
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221 3.2 QA Sample Derivation

222 The QA samples for Stage 1 and Stage 2 are automatically generated using their respective question
223 templates (see Appendix A.2) and RDKit [41]. RDKit is an open-source cheminformatics toolkit
224 widely employed for handling chemical informatics data, including molecular structures and finger-
225 prints. This toolkit plays a role in ensuring that the responses, based on the SMILES strings from
226 each molecule puzzle, are accurate and chemically valid. The distribution of these QA samples across
227 different categories is illustrated in Fig. 4. They form a diverse collection of samples for evaluating
228 LLMs’ ability to understand molecular formulas and spectra.

229 The fragment of each QA pair at Stage 3 is initially generated by LLMs, i.e., responding to the
230 prompt ‘select one fragment...’. To validate the reliability of these automated generations of QA
231 pairs, experts—two Ph.D. candidates from the chemistry department—manually and independently
232 verified 50 samples, labeling the generated fragments as ‘correct’ or ‘wrong’. Their verification
233 was consistent and demonstrated that 67.4% of examples have correct fragment pools in automated
234 generation. To ensure the quality of derived QA pairs in Stage 3, these chemists manually corrected
235 the fragments pool for each instance in the benchmark.

236 Fig.3 reports the statistical distribution for the MolPuzzle dataset, which includes 217 puzzle instances
237 (the reasoning of 217 different molecules). Since one puzzle can be solved by different paths, different
238 numbers of QA samples are derived in three stages. We will next evaluate LL.Ms’ performance in
239 solving each puzzle, as well as their capability to solve individual questions.

1. Identify molecule substructures
based on molecule formula

Prompt: As an expert organic chemist,
your task is to analyze the chemical
formula C6H1006 and determine the
potential molecular structures and the
degree of unsaturation. Utilize your

identify plausible molecular
substructure.

knowledge to systematically explore and

2. Refine the substructure pools
based on Spectrum images.

TR |
“L || |

b

20 o0

£ 001000

V )
Prompt: As an expert in organic chemistry, you are
tasked with analyzing potential molecular
structures derived from IR spectral data. Given the
molecular formula and an initial set of potential
fragment SMILES identified, your objective is to
explore and systematically determine plausible
molecular substructure that are consistent with the|
IR spectral data.

3. Select fragments from the pools
and assemble molecule iteratively

Initial selection:

Prompt: Selected one fragment from the list of
SMILES for the Initial structure for molecular
construction: Identify one specific fragment from|
the [pool of fragments ] provided: ensuring it's
consistent with both[ C13-NMR] and [H-NMR].

Iteration:

Prompt: Select one fragment from the provided
list of SMILES to add to the current molecule.
Identify a specific fragment from the [pool of
fragments]: , ensuring it is consistent with both
the [C13-NMR] and [H-NMR] spectra.

End: when run out of heavy atoms.

Answer: Carboxylic Acid (Yes)
degree of unsaturation = 2

Answer: ["C(=0)0", "C(=0)0C", "C=0",
"GO, "C1C01"]

Answer:
C1C(C(C(C(01)0)0)0)C(=0)0

(a). The Initial Stage

(b). The Second Stage

(c). The Final Stage

Figure 2: Examples of QA pairs in the 3 stages of MolPuzzle

Statistic

Number

C-NMR Elucidation 7

sDC
Total MolPuzzle Instances 217 H-NMg
Stage-1 QA samples 5,859 Elucidatioy, S\age-}/ 3
- Num. of molecule formula 176 /
- Max question length 128 o ‘ ~AR=
- Average question length 94 4@ /K
Stage-2 QA samples 11,501 £ oA
- Num. of spectrum images 868 7 Stage-2 W
- Max question length 340 /1,%’” o
- Average question length 264 2 R
Stage-3 QA samples 6,318
- Maximum Iteration 7 Figure 4: Inner ring: sample distribution in 3 stages.
- Max question length 356 Outer ring: sample distribution across categories in
- Average question length 238

Figure 3: Statistic of the MolPuzzle dataset
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each stage. SI: saturation identification, SDC: satura-
tion degree calculation, FGI: functional group identifi-
cation, ARI: aromatic ring identification, SA: spectrum
analysis.
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220 4 Solving MolPuzzle by Multimodal Large Language Models

241 The reasoning capabilities of foundation models in the chemistry domain remain underexplored.
242 Thus, our aim is to perform both qualitative and quantitative evaluations to systematically assess the
243 reasoning and planning abilities of these models in visual chemistry contexts, using the MolPuzzle
244 benchmark. We first conducted evaluation of a variety of LLMs for completing the individual tasks
245 in each stage, including GPT-40 [42], GPT-3.5-turbo [43], Claude-3-opus [44], Gemini-pro [45],
246 Galactica-30b [46], LLama-3-8B-Instruct [47], Vicuna-13B-v1.5 [48], Mistral-7B-Instruct-v0.3 [49],
247 and in particular multimodal LLMs such as Gemini-pro-vision [45], LLava-Llama-3-8B [50], Qwen-
248 VL-Chat [51], and InstructBlip-Vicuna-7B/13B [32]. Due to space limits, we present only selected
249 results in Table 1 and report the complete list of results in Appendix B. We then assess LLMs’
250 capability to solve the entire puzzles, specifically focusing on how effectively these models can derive
251 the final molecular structure from provided hints (the questions in QA samples). The results are
252 reported in Table 2.

253 All tasks are evaluated in a zero-shot setting to determine the problem-solving capabilities of LLMs
254 without prior fine-tuning on specific task data. The evaluation process consists of three steps:
255 response generation, answer extraction, and score calculation. More details of the experimental
256  settings including prompts and hyperparameters are presented in Appendix B.1.

257 To gain an in-depth understanding of the performance of LLMs in comparison with human experts,
258 particularly their failed cases, we invited six Ph.D. candidates in chemistry to solve the puzzles in
259 MolPuzzle, and also assess LLMs’ results. More comprehensive details of this human baseline
260 and evaluation process are presented in Appendix B.2. The reported performance, including human
261 baselines, is presented as an average with standard deviation over all samples.

262 4.1 LLMSs’ Performance on Solving Molecule Puzzles
263 4.1.1 Addressing individual QA tasks in three stages

264 In Table 1, we report the performance of selected LLMs on conducting individual QA tasks in the three
265  stages, including GPT-40, GPT-3.5-turbo, Claude-3-opus (three top-performing proprietary models),
266 Llama-3-8B-Instruct (the best performing open-source model), and the reference human baseline
267 performance. In stage 2, the variant of Llama3 for a multimodal setting, LLava-Llama-3-8B, is used
268 for handling spectrum image analysis. Since each task involves performing a question-answering
269 task, we evaluate the performance using F1 and accuracy by comparing the LLMs’ answers with the
270 ground truth. F1 scores are reported in Table 1, while the accuracy and performance of more LLMs
271 can be found in Appendix B.

272 The results of Stage 1 (in Table | and Appendix Table 3) show that the GPT-40 model excels in these
273 tasks (achieving near-perfect F1 score in 3 out of 4 tasks). The high scores in SI, Al, and FI suggest
274 that LLMs are able to succeed in relatively straightforward chemistry analysis tasks, performing
275 comparably to human experts. However, open-sourced models like LLama3 have limitations in
276 addressing these tasks, possibly due to their limited reasoning abilities in chemistry text-reasoning
277 tasks. In addition, GPT-40’s comparative performance to humans indicates significant advancements
278 in the use of LLMs for complex scientific tasks, suggesting a promising future for leveraging advanced
279 LLMs to improve the efficiency of scientific analysis and discovery.

280 For the multimodal tasks of Stage 2, GPT-40 remains the top performer, though it exhibits intermediate
281 performance in spectrum interpretation. The F1 scores for the four types of spectra average around
282 0.6, indicating a moderate level of accuracy in this complex aspect of the challenge. This performance
283 is notably less competitive compared to human baselines, which succeed in approximately 73-77% of
284 the tasks across the four types of spectrum interpretation. This indicates that spectrum interpretation
285 is inherently challenging. While GPT-40 has made significant strides in automated spectrum analysis,
286 there remains considerable room for improvement to bridge the gap between its capabilities and

287 human expertise. More details are presented in Appendix B.4.
288 The results for Stage 3 indicate that the most advanced LLM, GPT-40, significantly underperforms

289 compared to the human baseline, with nearly a 40% difference. This might be caused by the fact that
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Table 1: F1 scores (1) of individual QA tasks in three stages. The best LLMs results are in bold font.
Tasks in stage 1 are SI-Saturation Identification, ARI-Aromatic Ring Identification, FGI-Functional
Group Identification, and SDC-Saturation Degree Calculation.

Stage 1 (Molecule Understanding) Tasks

Method | SI | ARI | FGI | SDC

GPT-40 1.00-:0.000 0.943+0.016 0.934+0.005 0.667+0.003

GPT-3.5-turbo 0.451+0.025 0.816+0.017 0.826+0.075 0.54+0.099

Claude-3-opus 0.361+0.009 0.988-+0.015 0.934+0.001 0.856+0.016

Galactica-30b 0.826+0.248 0.34740.000 0.467+0.005 0.000+0.000

Llama3 0.228+0.043 0.696+0.051 0.521+0.003 0.000+0.000

Human 1.00=0.000 1.000+-0.000 0.890+0.259 0.85140.342
Stage 2 (Spectrum Interpretation) Tasks

Method | IR Interpretation | MASS Interpretation | H-NMR Interpretation | C-NMR Interpretation

GPT-4o0 0.656+0.052 0.609-+:0.042 0.618+0.026 0.639+0.010

LLava 0.256+0.026 0.101+0.021 0.118+0.008 0.254+0.015

Human 0.753+0.221 0.730+0.11 0.76440.169 0.769+0.101
Stage-3 (Molecule Construction) Tasks

Method | H-NMR Elucidation | C-NMR Elucidation

GPT-40 0.524+0.021 0.506+0.037

Llama3 0.341+0.015 0.352+0.017

Human 0.867+0.230 0.730+0.220

Table 2: The performance of LLMs and human baseline in solving MolPuzzle. The best LLM results
are in bold font. Acc. stands for the Accuracy of Exact Match.

Method | Acc. () | Levenshtein (|) | Validity (t) | MACCS FTS (1) | RDK FTS (1) | Morgan FTS ()
GPT-40 | 0.014:0.004 | 11.653:0.013 | 1.0004:0.000 |  0.431+0.009 | 0.293£0.013 | 0.232:0.007
Claude-3-opus | 0.013£0.008 | 12.68040.086 | 1.000+0.000 | 0.383+0.050 | 0.264+0.040 | 0.241+0.037
Gemini-pro | 0.000£0.000 | 12.71140.196 | 1.000-£0.000 | 0.340£0.017 | 0.208+0.002 | 0.171:£0.007
Human | 0.667+£0.447 | 133242111 | 1.000£0.000 | 0.985+0.022 | 0.795+£0317 | 0.810+0.135

290 the reasoning ability required for these tasks is complex and multifaceted. When information con-
291  verges, such as identifying equivalent hydrogen or ring arrangements, a comprehensive understanding
292 of the NMR peaks and their corresponding structures is essential. See more details in Appendix B.5.

293 4.1.2 Addressing entire molecule puzzles

294 For solving the entire molecule puzzles, the evaluation is limited to the three most advanced mul-
295 timodal LMMs: GPT-4o [42], Claude-3-opus [44], and Gemini-pro [45], due to the involvement
296 of spectrum image analysis in Stage-2. The results of these models are reported in Table 2, along
297 with those from the human baseline(see complete evaluation process is reported in Appendix C). To
2908 comprehensively evaluate the performance, we employ two different types of metrics. The first type
299 of metric measures the chemical similarity between the ground-truth molecules and the generated
so0 molecules, assessed using FTS (Fingerprint Tanimoto Similarity) [52] in terms of MACCS [53],
301 RDK [41], and Morgan [54]. Since the generated molecules are in SMILES string format, we also
s02 employ natural language processing metrics including the Accuracy of Exact Match [55], and Leven-
303  shtein distance [56] (the minimum number of single-character editing required to transform one string
so4 into another). Finally, to evaluate whether constructed molecules are valid, we use RDKIT [41] to
305 check the validity of constructed molecules and report the percentage of molecules that are confirmed
306 as valid.

307 The results in Table 2 show that the best-performed LLM, GPT-40, is performing much worse than
so8 humans, indicating a huge gap between LLLMs and humans in solving the molecule puzzles. It is
309 worth noting that all the constructed molecules are valid, even though only a small portion of them
310 (1.4%) exactly match the ground truth. Considering that the accuracy of the exact match is too strict,
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311 we use FTS to analyze more about the chemical closeness of LLMs’ answer to the ground truth. A
stz MACCS FTS of 0.431 suggests that the generated molecules maintain a significant level of structural
313 similarity. This indicates that even if the answers are not perfect replicas of the ground truth, they
314 can still be chemically valid and potentially useful as structured hypotheses that could be relived by
315 human scientists.

st 4.2 Success and Failure Analysis

Fragments pool [y
O... T
e © ol O o |0
: \ 7 |

Formula: CyoHq4 l

3
3H AL ARTTTTRTTTAC
— — O
Derived Molecule 1H @/ 9 Q p Q
2H 3H
Ground truth NMR: 0.87 (3H, t, J =6.5Hz), 1.30 (2H, tq, ) =6.6,6.5
Target Molecule 2H 2H Hz), 1.49 (2H, tt, J = 7.5, 6.6 Hz), 2.59 (2H,t, J =7.5Hz), ...

Figure 5: The target molecule contains four distinct non-aromatic hydrogen types, color-coded in
the ground truth NMR. However, the model-derived molecule shows hydrogen counts of 3, 3, and
1, differing from the ground truth. The mismatch between the hydrogen types in the green section
of the target molecule and the orange region of the predicted molecule results in incorrect fragment
selection and assembly.

317 The above analysis indicates that the most capable model, GPT-40, performs nearly perfectly
s1e  in Stage-1 of molecule understanding. However, its performance drops in Stage-2 for spectrum
319 interpretation, and worsens further in Stage-3 for molecule construction. We investigate in-depth
320 how GPT-40 eventually fails on most of the puzzles after progressing through the tasks of these three
321 stages. With the help of human evaluators, we gathered all the intermediate steps involved in solving a
322 molecule puzzle and engaged them to scrutinize these steps. Fig. 5 presents case studies that illustrate
323 the iterative steps involved in Stage-3, showcasing the most common errors made by GPT-4o: the
s24 accumulation of errors in iterative steps, which can lead to catastrophic failures. Note that
325 this stage focuses on selecting the correct fragments and assembling them step by step to form the
326 final molecular structure. We find that GPT-40 can initially succeed in picking the correct fragment
327 when the structure is comparatively simple. However, as the process progresses, it does no select
328 structures that satisfy all the requirements indicated by the NMR data. This difficulty arises because
320 the reasoning requirements expand dramatically as more information and additional constraints need
330 to be incorporated. More qualitative examples can be found in Appendix C.1.

31 5  Findings and Open Directions

332 Our evaluation has revealed specific limitations of state-of-the-art LLMs in automating molecular
333 structure elucidation. We urge further collaborative efforts from the Al and chemistry communities to
334 design more effective solutions, especially for the tasks in Stage 2 and Stage 3. Based on our findings,
335 we next present the open directions for future research and development.

sss  Development of Specialized Multimodal LLMs Spectrum Interpretation in Stage 2. As indi-
337 cated in our results, the performance of LLMs notably declines beginning in Stage 2, where they
ass  struggle with the visual interpretation of 1H and 13C NMR spectra. This difficulty arises because
339 NMR spectra feature sharp, unlabeled peaks with multiplicities that exhibit very small chemical shift
s40 differences, making them challenging for visual models to interpret. These multiplicities, however,
341 contain crucial information about the chemical connectivity of molecular fragments. Similarly,
s42  closely spaced IR absorptions provide key insights for identifying functional groups. This presents a
343 significant opportunity to develop specialized multimodal LLMs that can more effectively interpret
344 these subtle and complex spectral details.
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Development of New Strategies for Leveraging LLMs in Chemical-Related Planning and
Reasoning. The failure analysis from Stage 3 has motivated us to explore more effective strategies
for leveraging LLLMs’ capabilities in planning and reasoning for fragment selection and assembly.
Our first immediate approach was to employ the chain-of-thought technique [57], aiming to provide
more structured reasoning and instructions for solving the molecular puzzle. However, despite
implementing this method, the results were unsatisfactory, even performing worse than the zero-shot
setting we initially reported in the paper. We plan to continue exploring this direction with different
implementations and adjustments. A second approach involves utilizing LLMs as agents in a more
dynamic and interactive manner. This strategy incorporates feedback loops, allowing the models
to iteratively refine their responses based on new information or corrections. By doing so, we aim
to mitigate the accumulation of errors in iterative steps and reduce the risk of catastrophic failures
during the problem-solving process. In addition, we are investigating fine-tuning strategies to enhance
the model’s ability to handle domain-specific tasks. This involves fine-tuning LLMs on curated
chemical datasets that include detailed annotations of spectral data and molecular structures. The
goal is to train the model to recognize subtle patterns and dependencies that are often missed in a
general-purpose pre-trained model. By tailoring the model’s training to this domain, we expect to
improve its reasoning and planning capabilities when interpreting complex spectra and assembling
molecular fragments.

6 Negative Societal Impacts

Automating molecular elucidation using LLMs has significant benefits but also poses serious risks,
especially regarding the creation of prohibited drugs. 1.)Facilitation of Illicit Drug Synthesis: LLMs
could be used to design new synthetic drugs that evade current regulations, making it easier for illicit
manufacturers to produce harmful substances. 2.)Lowering the Barrier to Entry: The technology
could enable individuals with minimal expertise to create detailed molecular blueprints for prohibited
drugs, increasing the potential for misuse. 3.) Regulatory Challenges: The rapid generation of novel
compounds could overwhelm drug regulators, leading to delays in banning new synthetic drugs
and complicating the control of harmful substances. 4.) Ethical and Legal Issues: Questions about
responsibility and access to such powerful tools arise. Regulating who can use these technologies
and for what purposes becomes crucial to prevent misuse.

7 Broader Impact

Our work has broad impacts across multiple dimensions. First, it offers valuable insights and
recommendations for both Al researchers and chemists in academia and industry. These perspectives
enhance the effective utilization of LLMs and guide future advancements in the field. Second,
our approach to benchmarking and improving LLMs through real-world tasks like the MolPuzzle
can also foster greater collaboration between computational scientists and chemists. By aligning
Al technologies with traditional chemical research, these interdisciplinary efforts can accelerate
the discovery of new materials, drugs, and chemical processes, potentially leading to significant
advancements in healthcare and industry.

8 Conclusion

In this paper, we introduced MolPuzzle, a new benchmark challenge to advance our capabilities in
molecular structure elucidation. We evaluated state-of-the-art LLMs on this task, revealing their
strengths and limitations in handling complex chemical reasoning. Our analysis highlights significant
performance gaps, particularly in spectrum interpretation and molecule construction. These findings
not only suggest ways to improve LLM performance but also set the stage for transforming approaches
to chemical research. MolPuzzle serves as a critical step toward harnessing the potential of LLMs
in chemistry, fostering innovation and collaboration within the Al and chemistry communities to
enhance scientific inquiry and application.
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ss0 A MolPuzzle Benchmark Details

s61  This section complements Section 3 with a fine-grained summary of the dataset collection, results
s62 validation, and evaluation procedure, along with a fuller characterization of the task instances and the
563 corresponding prompts.

s64  A.1 Data Collection

s65 The initial molecules were selected by referencing the textbook Organic Structures from Spectra, 4th
se6 Edition, available as an online PDF on ResearchGate. We chose 234 molecules based on spectrum
s67 tasks involving IR, MS, I'H-NMR, and *C-NMR to reflect a difficulty level suitable for graduate
s68  students[8].

s69 To address copyright concerns, we excluded molecules with publicly available mass spectrometry
s70 (MS) spectra in open-source databases from our study. The remaining spectra were sourced from
571 public resources, notably the PubChem database[58]. For additional spectra that were not available,
572 we used simulation methods[59][29] and provided a Jupyter notebook to generate these data, ensuring
573 high-quality spectra for analysis. Our final dataset comprised 200 molecules.

s74 Given the challenges associated with NMR spectrum images, some spectra were obtained from
575 simulated data in text format for "H-NMR and '*C-NMR. This approach ensured clarity and accuracy
s76 in the evaluation of molecular structures.

577 To assess the multiple-stage abilities of LLMs, we designed a unique question-and-answer evaluation.
s78  This framework tested the LLMs’ capabilities in interpreting and integrating data from different types
579 of spectra, simulating real-world challenges. Details of this evaluation framework are provided in the
580 next section.

ss1 A.2 Template design

ss2  Each template was crafted to target specific skills within molecular understanding. For instance,
583  saturation identification challenges the models’ ability to discern the degree of saturation in a molecule,
ss4 which is crucial for understanding its chemical reactivity and stability. Aromatic ring identification
585 tests the models’ ability to recognize benzene-like structures, which are fundamental in organic
s86 chemistry due to their common occurrence and unique properties. Saturation degree calculation
587 pushes the models to apply quantitative analysis, requiring not just recognition but also computation
ses  based on molecular structures.

589 By diving deeper into the rationale behind each template and the kind of chemical knowledge they
s90 are designed to test, we can better appreciate how these tasks simulate real-world applications in
591 chemistry. This approach not only tests the models’ basic recognition abilities but also their capacity
592 to perform complex reasoning and apply theoretical knowledge practically. The template examples
503 arein A.3.
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s94 A.3 Stagel QA Samples
Table 3: QA samples for the molecule understanding task
Task Prompt
Question: Could the molecule with the formula C8H100 potentially be Saturated?
Saturation Identification .
Answer: No
Model response: No.
Question: Could the molecule with the formula C8H100 have aromatic rings?
Aromatic Ring Identification Answer: Yes
Model response: Yes.
Question:Could the molecule with the formula C6H1402 potentially contain a Amine group,
given the Degree of Unsaturation is 0.0?
Functional Group Identification
Answer: No
Model response: No, the molecule doesn’t contain Amine group
Question: Calculate the Degree of Unsaturation of the molecule with the formula C8H100?
Saturation Degree Calculation Answer: 4.0
Model response: 2
595 A.4 Stage2 QA Samples
IR Interpretation MASS Interpretation H-NMR Interpretation C-NMR Interpretation
p e pre—
! Ry
| M l s
i | I oo |
e T
P ion: E: ine the MASS Question: Examine the H-NMR Question: Examine the C-NMR
S:risatiI:s"l;r?agzsatl:‘:olr?:tsizic;::::of N- S:;s‘::?; tox:;;r:xn: ifthe spectrum to determine if the spectrum to determing ifthe '
H stretching around 3200-3600 cm™1? molecule could potentially contain molecule could potentially contain mule_c_ule could potentially contain
: specific fragments: Ether. specific functional groups: Phenol? specific fragments: Ester.
Answer: No Answer: No Answer: No Answer: No
Model response: No Model response: Yes Model response: No Model response: Yes
596 A.5 Stage3 QA Samples

Table 4: QA samples for the molecule construction task
Prompt

Task

Question: Calculate the number of different types of hydrogen atoms present in the molecule, based on the given H-NMR:

4.51-4.61 (4H, 4.56 (s), 4.56 (s)), 7.06-7.32 (10H, 7.13 (dddd, J = 7.9, 7.7, 1.8, 0.6 Hz), 7.13 (dddd, J = 7.9, 7.7, 1.8, 0.6 Hz),

7.25(dddd, J=17.9, 1.5, 1.3, 0.6 Hz), 7.25 (dddd, J = 7.9, 1.5, 1.3, 0.6 Hz), 7.26 (tt, J = 7.7, 1.5 Hz), 7.26 (tt, ] = 7.7, 1.5 Hz))
H-NMR Elucidation

Answer: 4
Model response: 3.

Question: Analyze the given C-NMR data and determine the number of different types of carbon atoms present in the molecule,
based on given C-NMR: 39.3 (1C, s), 63.4 (1C, s), 127.8 (1C, 5), 128.4 (2C, s), 128.8 (2C, 5), 134.2 (1C, 5).

C-NMR Elucidation Only output the number.

Answer: 6
Model response: 8

s7 B Evaluation Experiments

s8¢ B.1 Experimental Setting
s99 During our testing phase, we selected 100 questions and employed two distinct prompting strategies
600 with the large language model (LLM). Initially, the LLM was tasked with directly answering the

https://doi.org/10.52202/079017-4281 134736



601 questions. In a subsequent approach, the same queries were presented, but the model was prompted to
602 execute a chain-of-thought reasoning process before responding. Each question in our dataset begins
603 with a comprehensive description of the chemical context, along with specified answer formats and
604 detailed guiding rules. To ensure a balanced representation of each task category, for tasks in Stage 1,
605 the distribution ratio for Saturation Identification (SI), Functional Group Identification (FI), Aromatic
606 Ring Identification (AI), and Saturation Degree Calculation (SC) is set at 2:3:3:2. In Stage 2, we
607 have randomly selected 100 questions from each category of the spectrum. For Stage 3, we randomly
608 selected 100 questions focused on H-NMR and C-NMR analyses.

609 We carried out this evaluation over three rounds, analyzing responses using both accuracy and the
610 F1 score for tasks involving Saturation Identification (SI), Functional Group Identification (FI), and
611 Aromatic Ring Identification (AI). For Saturation Degree Calculation (SDC), which yields numerical
612 results, we assessed accuracy by comparing the count of correct matches to the ground truth data.
613 The detailed results are reported in Table A.3. To ensure that all results are presented in a way that
614 facilitates direct comparison, only those using similar evaluation metrics(Al, FI, Al) are included
615 in the main table. For the SI, Al, and FI tasks, we use the F1 score and Accuracy to evaluate their
616 performance since they are classification tasks. For the SDC task, the answer is a numerical number,
617 so we only use the accuracy score to measure the performance of the LLMs. This approach helps to
618 keep the evaluation coherent and focused on comparable data points.

619 B.2 Human Evaluation

620 To evaluate the performance of large language models (LLMs) on specialized tasks against expert
621 humans, we recruited six graduate students from chemistry department to solve the MolPuzzle
622 benchmark. These students, having recently completed a graduate-level course in Molecular Structural
623 FElucidation, represented a highly skilled group of human participants.

624 For the experiment, we randomly selected six questions from the MolPuzzle dataset for each stage of
625 the study. These questions were presented to the students in different formats according to the stage:
626 In Stages 1 and 2, the questions were simple Yes/No or required short answers. In Stage 3, to align
627 with the conventional methods chemists use to express chemical structures, students were asked to
628 upload images of their hand-drawn structures instead of using SMILES strings. These images were
620 manually compared to the ground truth to calculate scores.

630 We also imposed self-regulated time constraints to mirror the challenging nature of molecular
631 structural elucidation. Beyond individual stage evaluations, we presented each participant with a
632 complete molecule puzzle, consisting of a formula and four spectral images. The students were tasked
633 with solving these puzzles within a 20-minute time frame. Impressively, all participants successfully
634 submitted their solutions within the allotted period.

635 Our study included a component where human evaluators were involved to assess the performance
636 of the Al models. To ensure the protection and ethical treatment of all participants, we conducted a
637 thorough risk assessment. Potential risks identified included privacy concerns and the mental strain
638 of repetitive tasks. Mitigation strategies, such as ensuring anonymity and providing breaks, were
639 implemented to protect our evaluators.

640 The study was submitted for review and received approval from our Institutional Review Board (IRB).
e41 The IRB approval number is [insert approval number], which verifies that our protocols met all ethical
e42 guidelines for research involving human subjects. Throughout the project, we adhered strictly to
643 these protocols to ensure ongoing compliance with ethical standards.

e44+ B.3 Stagel

645 Molecule understanding requires comprehensive analysis and interpretation of molecular structures,
e46 with a focus on chemical properties and spectroscopic data. In our study, we created a dataset of
647 234 molecules and developed eight distinct question templates across four categories: Saturation
e4s Identification(SI), Functional Group Identification(FI), Aromatic Ring Identification(AI), and
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Saturation Degree Calculation(SC). These templates assess the ability to identify substructures,
compute saturation levels, and infer structural presence, incorporating concepts in the chemistry
reasoning process. Each question also necessitates a deep understanding of molecular bonding,
stereochemistry, and functional group identification. Responses were generated using the RDKit
library, ensuring precise and reliable answers grounded in established chemical informatics.

Table 3: The accuracy(1), F1 score(1)in 4 different molecule understanding categories, the best LLMs
are in bold font.

Model | ot | | Al | s€
| | F1 Acc | F1 Acc F1 Acc | Acc

GPT-40 - 1+0.0 1+0.0 0.943+0.016 0.944+0.015 0.93440.005 0.966+0.0 0.667+0.003
GPT-40 1+0.0 1+0.0 0.911+0.031  0.911+0.031 0.689+0.025 0.766+0.027 0.816+0.062
GPT-3.5 - 0.451+0.025 0.825+0.075 0.816+0.017 0.816+0.075 0.8264+0.075 0.683+0.016 0.5+0.099
GPT-3.5 0.448+0.026 0.816+0.008 0.798+0.025 0.800+0.027 0.5264+0.053 0.622+0.031 0.533+0.131
Claude-3-opus - 0.361+0.009 0.556+0.023 0.988+0.015 0.988+0.015 0.934+0.001 0.966+0.001 0.856+0.016
Claude-3 0.760+£0.189  0.903+0.046  0.878+0.025 0.867+0.001 0.547+0.112 0.843+0.081  0.90040.025
Gemini-pro - 0.285+0.020 0.399+0.040 0.77540.093 0.788+0.083 0.646+0.052 0.748+0.051  0.2004-0.004
Gemini-pro 0.391+£0.045 0.651+0.108 0.685+0.088 0.688+0.087 0.562+0.018 0.629+0.023  0.283+0.062
LLama3 - 0.367+£0.018  0.583+0.047 0.490+0.030 0.533+0.027 0.4724+0.133  0.588+0.0 0.040.0
LLama3 0.473+£0.011  0.899+0.040 0.384+0.026 0.533+0.0 0.570£0.035  0.799+0.047 0.017+0.001
Vicuna-13b - 0.031+£0.022  0.033+0.025 0.500+0.087 0.522+0.083 0.308+0.038 0.311+0.041  0.0+0.0
Vicuna-13b 0.380+£0.023  0.616+0.062 0.3424+0.006 0.522+0.157 0.5164+0.080 0.855+0.016 0.0+0.0
Mistral-7b - 0.221+0.014 0.283+0.025 0.384+0.005 0.500+0.0 0.319+0.014  0.322+0.157  0.0+0.0
Mistral-7b 0.433+£0.007 0.766+0.023  0.342+0.006 0.522+0.016 0.6014+0.102 0.877+0.031  0.0+0.0
B.4 Stage2
The Spectrum interpretation tasks mainly measure the capability of LLMs in analyzing images
related to identifying key substructures indicated by the spectrum plot. In this study, we utilize
four distinct types of spectral images: nuclear magnetic resonance (NMR), infrared spectroscopy
(IR), mass spectrometry, and others. Each type of data offers insights into various aspects of the
molecular structure. We’ve created specific question templates for each spectrum, targeting peak
and substructure identification factors. These templates are designed manually and emphasize the
intricate connection between the spikes or troughs in the figures and the structures of the molecules.
Responses were generated using the RDKit library to ensure correctness.
The findings from Stage 2 are presented in Table 4. We exclusively focus on the zero-shot learning
outcomes, as our observations indicate that implementing chain-of-thought prompting leads to a
deterioration in model performance. To address this limitation, we offer qualitative insights in C.1.
Table 4: The accuracy(?), F1 score(1) for IR, MASS spectrum, H-NMR, and C-NMR interpretation
tasks."-" means the results are not interoperable
Model | Stage-2 Tasks

IR Interpretation | MASS Interpretation | H-NMR Interpretation |  C-NMR Interpretation

Fl1 Acc Fl1 Acc Fl Acc Fl1 Acc
GPT-40 0.656+0.052  0.713£0.06  0.609+0.042 0.767-0.042 0.618=0.026 0.864-0.007 0.639+0.107 0.892-0.049
Claude-3-opus 0.440+£0.006 0.476+0.055 0.398::0.032 0.466+0.019 0.572+0.190 0.842+0.017 0.554£0.075 0.716:£0.042
Gemini-3-pro-vision | 0.194+0.002 0.11940.016 0.116+0.036 0.124+0.038 0.545+0.048 0.851+£0.062 0.492+0.016 0.619+0.044
LLaval.5-8b 0.256+0.026 0.414+0.044 0.101£0.021  0.104+026  0.118+£0.008 0.186+0.011 0.254+0015 0.472+0.023
Qwen-VL-Chat 0.243+0.027  0.39240.043 0.125+0.006 0.116+0.021 0.255+0.007 0.611+0.031 - -
InstructBLIP-7b 0.239+0.020 0.263+0.014 0.101£0.021  0.104+£0.26 - - 0.044+0.006  0.0640.023
InstructBLIP-13b | 0.239+0.020 0.263+0.014 0.101£0.021  0.104+£0.26 0.04740.014  0.067+0.025

B.5 Stage-3

Constructing a molecule involves a detailed analysis of NMR data, which is critical for understanding
its structure. H-NMR data are essential as they provide information about the hydrogen environments
within the molecule, including the number and types of hydrogen atoms (such as aliphatic or
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670 aromatic), as well as their connectivity. Conversely, C-NMR data offer in-depth insights into the
671 carbon framework, illustrating the distribution and linkage of carbon atoms within the molecule.
672 In our study, to evaluate the ability of large language models (LLMs) to interpret NMR data, we
673 generated 1,171 question-and-answer (QA) pairs. These pairs focus on key NMR interpretation tasks,
674 such as counting hydrogen atom types and identifying substructures, which are critical for accurate
675 analysis.

676 Despite observing moderate accuracy from the LLMs in Stage 2 of our testing, we enhanced the
677 quality of the QA pairs in Stage 3 by providing the LLMs with verified NMR data, generated by using
676 nmrdb[60]. This approach ensures that the data used is reliable and helps maintain the integrity of
679 our results. The findings from Stage 2 are presented in Table. We exclusively focus on the zero-shot
680 learning outcomes, as our observations indicate that implementing chain-of-thought prompting leads
681 to a deterioration in model performance. To address this limitation, we offer qualitative insights in

Table 5: The F1 score(1) for H-NMR, and C-NMR Structure Elucidation

Method | H-NMR Elucidation | C-NMR Elucidation
GPT-4o 0.524+0.021 0.506+-0.037
Claude-3-opus 0.395+40.008 0.31340.029
Gemini-pro 0.333+0.012 0.308+-0.031
Llama3 0.341+0.015 0.3524+0.017
Vicuna-13b 0.181+0.013 0.244+0.001
Mistral-7b 0.131+0.032 0.122+0.027
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es2 C Complete Molecule Elucidation Process

Algorithm 1 Fragment-Based Molecule Assembly Algorithm

Input: Fragment pool (SMILES strings), NMR description, Original molecular formula, Origi-
nal unsaturation degree
Output: Assembled molecule that satisfies molecular formula and NMR data

1: Initialize:

2 Set iteration count k < 0

3: Set remaining formula < Original molecular formula

4 Set remaining unsaturation < Original unsaturation degree

5: 1. Initial Fragment Selection:
6: Prompt LLM with fragment pool and NMR description to select an initial fragment
7. Extract and store the selected fragment

8: 2. Chemical Formula and Unsaturation Check:
9: Convert selected fragment to its chemical formula and unsaturation degree
10: Update remaining formula and unsaturation by subtraction

11: while remaining formula has multiple main atoms and k < 5 do
12: Increment iteration count k <— k + 1

13: 3. Iterative Fragment Assembly:
14: Prompt LLM to select additional fragments considering remaining formula and unsaturation

15: Concatenate selected fragments to form a potential molecule

16: 4. Molecule Validation and NMR Matching:

17: Validate the new molecule using RDKit for connectivity
18: if multiple valid molecules exist then

19: LLM ranks molecules based on NMR match

20: Select the molecule that best matches the NMR data
21: end if

22: 5. Subsequent Assembly and Adjustment:
23: After successful connection, update remaining formula and remaining unsaturation
24: end while

25: 6. Termination Conditions:

26: if no valid fragments can be selected or remaining formula is fully satisfied or & > 5 then
27: Terminate the assembly process

28: end if

29: 7. Final Output:

30: Record the final assembled molecule and intermediate stages

31: if final molecule fits original molecular formula and NMR data then
32: Return valid solution

33: else

34: Return no valid solution found

35: end if

es3  C.1 Qualitative Results
e84 In this section, we present several examples using GPT-4’s chain-of-thought (CoT) reasoning to

e85 facilitate a clearer understanding of the results. We have enlisted two Ph.D. candidates from the
686 chemistry department to evaluate these CoT outcomes. The analysis uses color coding to indicate the
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687 accuracy of the generated text: green signifies correct responses, red indicates incorrect ones, and
ess yellow denotes responses that are partially correct.

ess C.1.1 Stage 2 examples

IR Spectrum
(liquid film)
1 1 L L 1 1 L
4000 3000 2000 1600 1200 800
V (em’)
Question:

Examine the IR spectrum to determine if the
molecule could potentially contain specific
functional groups: Phenol. Look for the presence
of characteristic absorption bands and analyze the
wavenumbers and intensities of these peaks. This
analysis will help identify the functional groups and
key structural features within the molecule. You
should think step by step.

Col GPT-40

1. Identify the OH Stretching Vibration:

* Phenols typically exhibit a broad O-H stretching absorption band in the region of
3200-3600 cm™.

o In the provided IR spectrum, there is a broad absorption band centered around
3400 cm™, which is characteristic of an O-H stretch, indicative of a hydroxyl group.
2. Identify the C-H Stretching Vibration:

* Aromatic C-H stretching vibrations usually appear in the region of 3000-3100
cm™.

* The IR spectrum shows sharp peaks in this region, which are consistent with the
presence of aromatic C-H bonds.

3. Identify the C=C Stretching Vibration:

* Aromatic C=C stretching vibrations appear in the region of 1400-1600 cm™".
 The spectrum shows significant absorption bands around 1500-1600 cm™,
suggesting the presence of an aromatic ring.

4. Identify the C-O Stretching Vibration:

 For phenols, the C-O stretching vibration typically appears in the range of 1200-
1300 cm™.

* The spectrum shows absorptions in this region, which could correspond to the
C-O stretch of a phenol.

5. ine for iti Ch istic Absorptions:

¢ Phenols may also show additional bands due to aromatic ring vibrations in the
region of 600-900 cm™".

® The spectrum shows multiple absorptions in this region, further supporting the
presence of an aromatic ring.

Figure 6: Human annotated IR spectrum interpretation

100f 1o Mass Spectrum
80F x
Fe
60F g
FS M*
40F 5 134
20
] CioH1g
40 80 120 160 200 240 280
m/e
Question:

Examine the MASS spectrum to determine if the
molecule could potentially contain specific fragments:
Ether. Look into the number of fragments observed and
analyze the differences between the larger fragments.
This analysis will help identify the presence of key
structural features within the molecule? You should
think step by step

CoT GPT-40: 1.ldentify the Molecular lon Peak (M**):

» The molecular ion peak (M**) is observed at m/z = 134 .

This peak represents the molecular weight of the compound.
2. Identify Significant Fragment Peaks:

* The base peak (the most intense peak) is at m/z = 119.
This fragment is often very informative because it is the most stable
fragment.

« Other significant peaks are observed at various m/z values
(e.g., around 40, 60, 80, etc.).

3. Determine the Mass Difference Between Key Peaks:

» The difference between the molecular ion peak (134) and
the base peak (119) is 15. This suggests a loss of a CHz (methyl) group,
which is common in mass spectrometry fragmentation patterns.

4.ldentify Common Ether Fragmentation Patterns:

« Ethers typically show fragmentation patterns where the C-
O bond breaks, leading to fragments that indicate the presence of an ether.

» A common ether fragmentation involves the loss of an alkyl|
group adjacent to the oxygen, often observed as a mass loss of 15 (CH,),
29 (C;Hs), or 43 (CgH,).

5. Analyze the Presence of Ether Characteristic Peaks:

« Given the mass spectrum data, the loss of 15 units (m/z =
134 to m/z = 119) could suggest the presence of a methyl group, potentially
adjacent to an oxygen atom if an ether is present.

Figure 7: Human annotated MASS spectrum interpretation
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H NMR Spectrum
(200 MHz, DMSO-d6 solution)
Exchanges ‘ ‘
with D,0
residual H,0 |
in solvent
™S
L . \ \ L L . .
10 9 8 7 6 5 4 3 2 0
8 (ppm)

Question:

Examine the H-NMR spectrum to determine if the
molecule could potentially contain specific
functional groups: Aldehyde? Look for the
presence of characteristic absorption bands and
analyze the wavenumbers and intensities of these
peaks. This analysis will help identify the
functional groups and key structural features
within the molecule. You should think step by step

CoT GPT-40: Analyzing the provided A1H NMR spectrum gives us various insights
into the molecular structure of the compound in question. Here’s a step-by-step
analysis:
Chemical Shifts and Splitting Patterns
The spectrum shows peaks at different chemical shift regions, which can be
indicative of different types of hydrogen environments:
* Around 9.5 ppm: This is a typical region for aldehyde protons (CHO). The singlet
peak here suggests the presence of an aldehyde group.
* 7.0 to 8.0 ppm: These peaks typically indicate aromatic protons. The multiplicity
of these peaks suggests that there may be multiple aromatic rings or substituted
aromatic rings.
* 5.5 to 6.5 ppm: Peaks in this region are often associated with hydrogen atoms
attached to carbon atoms that are double bonded to other carbon atoms (e.g.,
vinyl protons) or to heteroatoms.
* Around 1.5 ppm: This region is characteristic of methyl groups (CHs) adjacent to
heteroatoms or double bonds.

and Relative
* The spectrum does not provide integration values, but typically, the area under
each peak corresponds to the number of equivalent protons contributing to that
signal.
Identification of Functional Groups
* Aldehyde Group: The presence of a sharp singlet peak at around 9.5 ppm
strongly suggests an aldehyde functional group.
* Aromatic Rings: The cluster of peaks from 7.0 to 8.0 ppm suggests the presence
of aromatic protons. The nature of splitting could indicate substitution patterns on
the aromatic ring.
* Vinyl or Alkene Groups: Peaks in the 5.5 to 6.5 ppm range could indicate the
presence of vinyl protons, suggesting a double bond adjacent to the aromatic ring
or another functional group.
* Methyl Groups: The peak at about 1.5 ppm suggests the presence of methyl
groups, possibly adjacent to a heteroatom or a double bond, influencing its
chemical shift.

Figure 8: Human annotated H-NMR spectrum interpretation

T T T T T T T T T T T

13C NMR Spectrum expansion |
(100.0 Mz, CDC, solution) 4Ll
DEPT chof ciif cib ‘ 140 130 ppm }

expanion |

proton decoupled | T solvent
‘
1 1 1 1 1 Il L 1 L 1 1 S B
200 160 120 80 40 0 3(ppm)
Question:

Examine the C-NMR spectrum to determine if the
molecule could potentially contain specific
fragments: Alcohol. Look into the number of
fragments observed and analyze the differences
between the larger fragments. This analysis will
help identify the presence of key structural
features within the molecule?

https://doi.org/10.52202/079017-4281

To determine if the molecule could potentially contain an alcohol group, we
need to analyze the *{13}C NMR spectrum step by step.

Step-by-Step Analysis of the *{13}C NMR Spectrum:
1. Identify the Chemical Shifts:

. *{13}C NMR chemical shifts can help identify the type of carbon
atoms present in the molecule. Alcohol carbons typically appear in specific

regions:

. Carbons attached to hydroxyl groups (C-OH) typically resonate
between 50-80 ppm.

2. Examine the DEPT Spectrum:

. DEPT (Distortionless Enhancement by Polarization Transfer)
spectra differentiate between CH, CH,, and CH, groups.

. CH and CH, groups appear as positive peaks (upward), while
CH, groups appear as negative peaks (downward).

3. Identify Key Peaks in the Spectrum:

. Look for peaks in the region of 50-80 ppm, which could indicate
the presence of carbons bonded to an oxygen atom (C-OH).

. Compare the DEPT spectrum to identify whether these peaks

correspond to CH (upward peaks) or CH, (downward peaks).
Detailed Analysis:

1. Chemical Shifts in the Range of 50-80 ppm:

. The spectrum shows peaks in the region of 50-80 ppm. These
peaks could correspond to carbons bonded to an oxygen atom, indicating a
potential alcohol group.

Figure 9: Human annotated C-NMR spectrum interpretation
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s90 C.1.2 Stage 3 examples

CoTl GPT-40

1. Identify the Chemical Shifts and Corresponding Carbon Types:

* 8 39.3 (1C, s): This chemical shift is typically associated with aliphatic carbons, such as
those in a methyl or methylene group adjacent to electronegative atoms.

* § 63.4 (1C, s): This chemical shift is usually indicative of a carbon atom bonded to an oxygen
atom, such as in an alcohol or ether group.

As an expert organic chemist, your task is to

analyze and determine the potential structures « §127.8 (1C, s): This shift falls within the region typical for aromatic carbons.

that can be derived from a given NMR data. ;i:ﬁ:{:é:ﬁ;;,:;zf;: shifts are also within the aromatic region and suggest two equivalent

Ana|yZe the giVen C_NMR data and determine * § 128.8 (2C, s): Similarly, these shifts suggest two more equivalent aromatic carbon atoms.
. * 8 134.2 (1, s): This shift is also indicative of an aromatic carbon, possibly a substituted one

the number of different types of carbon atoms or part of a double bond adjacent to an aromatic ring.

present in the molecule based on giVen C_NMR: 2. Count the Number of Distinct Carbon Environments:
1 « Aliphatic Carbon: 1 carbon at § 39.3
[ 6 39'3 (1c’ s)’ 63'4 (1 c’ s)’ 127'8 (1 c’ s)’ 128'4 » Carbon-Oxygen (Alcohol/Ether) Carbon: 1 carbon at & 63.4
(zc, S), 128.8 (zc, S)l 134,2 (1c, s)']_ YOU shou]d * Aromatic Carbons: 1 carbon at § 127.8, 2 equivalent carbons at § 128.4, 2 equivalent
think Step-by-step carbons at § 128.8, 1 carbon at § 134.2

3. Summarize the Types of Carbon Atoms:
 Aliphatic carbon (single): 1 type (1 carbon)
* Carbon bonded to oxygen: 1 type (1 carbon)
* Aromatic carbons:

1 type at § 127.8 (1 carbon)

* 1 type at § 128.4 (2 equivalent carbons)

¢ 1 type at § 128.8 (2 equivalent carbons)

* 1typeat 6 134.2 (1 carbon)

Figure 10: Human annotated H-NMR Elucidation

Col GPT-40

1. Identify the Chemical Shifts and Corresponding Hydrogen Types:

* § 2.23 (3H, s): This singlet indicates 3 equivalent hydrogen atoms. These are likely part of a
methyl group (CHs) that is not split by neighboring hydrogens.

« §3.79 (3H, s): This singlet also indicates 3 equivalent hydrogen atoms, suggesting another

As an exper‘l Ol’ganic Chemist, your task is to methyl group (CHs), possibly adjacent to an electronegative atom like oxygen (e.g., methoxy
. : group -OCH;).

analyze and de?ermlne the p.OtentlaI StrUCtures * §7.04 (2H, ddd, J = 8.3, 1.3, 0.4 Hz): This complex splitting pattern (doublet of doublet of

that can be derived from a given NMR data. doublets) indicates 2 equivalent hydrogen atoms in an aromatic environment, with coupling

Generate the number Of dif'fel’ent typeS of constants suggesting interactions with neighboring hydrogens.

. * §7.97 (2H, ddd, J = 8.3, 1.6, 0.4 Hz): Another complex splitting pattern, also indicating 2
hydrogen atoms present in the molecule based equivalent hydrogen atoms in an aromatic environment, with similar coupling constants
on giVen H NMR- [l6 2 23 (SH s) 3 79 (SH S) indicating interactions with neighboring hydrogens.

- - . y Oy 9 39y

2. Determine the Number of Different Types of Hydrogen Environments:

7.04 (2H, ddd, J =8.3, 1.3, 0.4 Hz), 7.97 (2H, + Aliphatic Hydrogens:

_ » H * 3 equivalent hydrogens at & 2.23 (likely CH; group)
gggJ J = 83’ 1 '6’ 0.4 HZ) ] You should think * 3 equivalent hydrogens at & 3.79 (likely CHs group, possibly part of a methoxy group)
step by step. * Aromatic Hydrogens:

2 equivalent hydrogens at § 7.04

« 2 equivalent hydrogens at 6 7.97

* The molecule has a total of 4 distinct types of hydrogen atoms:

* Methyl group hydrogens:

« 3 equivalent hydrogens at § 2.23 (CHs)

* 3 equivalent hydrogens at & 3.79 (likely part of a methoxy group, -OCHs)
* Aromatic hydrogens:

* 2 equivalent hydrogens at § 7.04

* 2 equivalent hydrogens at § 7.97

Figure 11: Human annotated C-NMR Elucidation

691 Based on the observation in spectrum interpretation, it is safe to say that the GPT-40 model has a
692 basic grasp of the concept and the task at hand, but their deficiency mainly resides in obtaining fully
693 correct information from the spectrum images and also they lack in-depth understanding. As for the
694 problems in Stage 3, although the GPT-40 outputs are mostly correct, they are too general which
695 shows the poor understanding of GPT-40 models in solving this intricate task. The stage 3 task can
696 be roughly broken down into 3 subtasks: obtaining the correct information from the spectrum image,
697 deducing the correct structural information from the spectral information, and finally translating this
698 structural information into a correct molecular structure. GPT-40 models seem to perform well in the
699 second subtask, and moderately for simple structures in the third subtask but seem to be especially
700 struggling with the first subtask in the case of NMR spectra. This indicates the gap in current LLMs
701 in fully interpreting data therefore more advanced models and approaches should be developed to
702 tackle the problem.
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C.1.3 Complex Molecules

In addition to presenting molecules extracted from textbooks, we also demonstrate how the large
language model (LLM) handles complex molecular structures. As illustrated in Figure 12, complex
molecules typically have a larger pool of fragments. This expansion results in a greater number
of valid elucidation paths, complicating the selection process for an appropriate starting point.
Successfully navigating this enlarged pool necessitates an in-depth understanding of each fragment’s
properties and the associated, more intricate NMR data. In this context, LLMs may struggle because
they often lack the nuanced chemical intuition and detailed analytical capabilities that human experts
possess. Such limitations can lead to inaccuracies in interpreting complex interactions within NMR

spectra, making LLMs less reliable.

Fragment pool:

0 ~

o]
)J\O/ AO

)J\OH

Target Molecule

H_NMR: 1.85-1.97 (5H, 1.91 (q, J =7.3Hz),1.91(q, J
=7.3Hz),1.91(s)), 2.39-2.51 (2H, 2.45 (t, J =7.4 Hz),
2.45(t, ) =7.4Hz)),4.29 (1H,t, ) =7.3 Hz)

o o o O

® ®

NH,

® ®

Figure 12: Complex molecule Structure Elucidation
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D Compute Resources

For the execution of various models in our experiments, distinct compute resources were utilized
based on the model’s accessibility and computational requirements. Specifically, for models like
Claude 3, GPT, and Gemini, we employed API calls to facilitate their operation, leveraging the
existing infrastructure provided by their respective platforms. This approach allowed us to access
these models without the need for local computational resources, thereby streamlining the process.
Conversely, for all other open-sourced models employed in our study, we conducted the experiments
locally using an NVIDIA A100 GPU. This high-performance computing unit was chosen due to its
advanced capabilities in handling extensive computations and large model requirements efficiently.
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