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Abstract

Sequence modeling faces challenges in capturing long-range dependencies across
diverse tasks. Recent linear and transformer-based forecasters have shown superior
performance in time series forecasting. However, they are constrained by their
inherent inability to effectively address long-range dependencies in time series data,
primarily due to using fixed-size inputs for prediction. Furthermore, they typically
sacrifice essential temporal correlation among consecutive training samples by
shuffling them into mini-batches. To overcome these limitations, we introduce
a fast and effective Spectral Attention mechanism, which preserves temporal
correlations among samples and facilitates the handling of long-range information
while maintaining the base model structure. Spectral Attention preserves long-
period trends through a low-pass filter and facilitates gradient to flow between
samples. Spectral Attention can be seamlessly integrated into most sequence
models, allowing models with fixed-sized look-back windows to capture long-
range dependencies over thousands of steps. Through extensive experiments on 11
real-world time series datasets using 7 recent forecasting models, we consistently
demonstrate the efficacy of our Spectral Attention mechanism, achieving state-of-
the-art results.

1 Introduction

Time series forecasting (TSF) stands as a core task in machine learning, ubiquitous in our lives through
applications such as weather forecasting, traffic flow estimation, and financial investment. Over
time, TSF techniques have evolved from statistical 15, |10, |18]] and machine learning approaches [2,
9., 120] to deep learning models like Recurrent Neural Networks [15 25| 141]] and Convolution based
Networks [12, 45]]. Following the success of Transformers [44] in various domains, Transformer-
based models have also become mainstream in the time series domain [23, 27, 136, 149, 54, 55| [56].
Recently, methodologies based on Multi-layer Perceptron have received renewed attention [[7} |8,
28, 52]. However, despite the advancements, long-term dependency modeling in TSF remains
challenging [53].

Unlike image models, where data are randomly sampled from the image distribution and are thus
independent of each other [16]], TSF models sample data from the continuous signal, dependent
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Figure 1: (a) Training data are sampled for each time step from continuous sequences, exhibiting
high temporal correlations. (b) Conventional approaches simply ignore this temporal information
with a shuffled batch. (c) We address the temporal correlation between the samples for the first time,
enabling the model to consider long-range dependencies that surpass the look-back window.

on the time variable ¢ as shown in Figure [Th. This leads to a high level of correlation between
each training sample, which consists of a fixed-sized look-back window before ¢ (as input) and
the subsequent prediction sequence after ¢ (as label). Therefore, the conventional approach of
shuffling the consecutive samples into mini-batches deprives the model of utilizing the crucial
inherent temporal correlation between the samples. This restricts the model’s consideration to only
a fixed-size look-back window for sequence modeling, limiting the ability to address long-range
dependencies (Figure[Ib).

Recent studies pointed out that simply increasing the look-back window leads to substantially detri-
mental effects such as increased model size and longer training and inference times [53]]. This is
particularly challenging for transformer forecasters, which exhibit quadratic time/memory complex-
ity [36l 44, |54]], and even for efficient models using techniques like Sparse Attention, which have
O(nlogn) complexity [23} 27, 55)]. Furthermore, if the commonly used look-back window of 96
is extended fivefold, the model can only utilize time steps of less than 500, making it difficult to
consider long-range dependencies spanning thousands or the entire dataset. Also, increasing the
look-back window may not be beneficial, often leading to decreased performance [S3], highlighting
the fact that current models are not sufficient in capturing long-range dependencies.

To address this limitation, we propose Spectral Attention, which can be applied to most TSF models
and enables the model to utilize long-range temporal correlations in sequentially obtained training
data. With the stream of consecutive training samples (Figure [T), Spectral Attention stores an
exponential moving average (EMA) of the activations with various smoothing factors at each time
step. This serves as a low-pass filter, inherently embedding long-range information over a thousand
steps. Attention is then applied to the stored EMA activations of various smoothing factors (low-pass
filters with different frequencies), enabling the model to learn which periodic trends to consider
when predicting the future, thereby enhancing its performance. Spectral Attention is even applicable
to models such as iTransformer [31]], which do not preserve the temporal order of time series data
internally.

We further extend Spectral Attention, where computations depend on the activation of the previous
timesteps, to Batched Spectral Attention, enabling parallel training across multiple timesteps. This
extension makes Spectral Attention faster and more practical and allows for the direct utilization
of temporal relationships among consecutive data samples within a mini-batch in the training base
model. In Batched Spectral Attention, the EMA is unfolded over time to perform Spectral Attention
simultaneously across multiple time steps. This unfolding allows gradients at time ¢ to propagate
through the Spectral Attention module to the previous time step within the mini-batch, achieving
effects similar to Backpropagation Through Time (BPTT) [47] and extends the model’s effective
input window.

Our approach preserves the base TSF model architecture and learning objective while enabling the
model to leverage long-term trends spanning thousands of steps. By effectively utilizing the temporal
correlation of training samples, our method allows gradients to flow back in time beyond the look-
back window, extending to the entire mini-batch. Also, our method requires little additional training
time and memory. We conducted experiments on 7 recent TSF models and 11 real-world datasets
and demonstrated consistent performance enhancement in all architecture, achieving state-of-the-art
results. We summarize the main contributions as follows:
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* We propose Spectral Attention, which addresses long-range dependencies spanning thou-
sands of steps through frequency filtering and attention mechanisms, leveraging the temporal
correlation among the consecutive samples.

* We propose Batched Spectral Attention, which enables parallel training across multiple
timesteps and expends the effective input window, allowing the gradient to flow through
time within the mini-batch.

» Batched Spectral Attention is applicable to most existing TSF models and practical in
real-world scenarios with minimal additional memory and comparable training time. Also,
it allows finetuning with a trained TSF model.

» Batched Spectral Attention demonstrates consistent model-agnostic performance improve-
ments, particularly showcasing superior performance on datasets with significant long-term
trend variations.

2 Related Works

Classic TSF models. Statistical TSF methods, such as ARIMA [35]], Holt-Winters [[18]], and
Gaussian Process [[10], assume that temporal variations adhere to predefined patterns. However,
their practical applicability is largely limited by the complex nature of real-world data. Machine
learning approaches, such as Support Vector Machines [4] and Random Forests [[14] have proven to be
effective even compared to early artificial neural networks [[13117,40]. Convolutional network-based
methods leverage convolution kernels to capture temporal variations sliding along the temporal
dimension [12}45]]. Recurrent neural network (RNN) grasp changes over time via state transitions
across different time steps. [25)41]]. However, RNN-based models exhibit limitations in modeling
long-range dependencies due to challenges such as vanishing gradients and error accumulation [30,
43]]. Recently, transformer and linear-based models have emerged as alternatives, demonstrating
superior performance compared to recurrent models [46) 53]

Transformer and Linear based models. Transformer-based models [44] address temporal rela-
tionships between time points using the attention. LogSparseTransformer [27], Reformer [23], and
Informer [S3]] have been proposed to make the Transformer architecture efficient, addressing the
quadratic time complexity. The Autoformer [49] incorporates series decomposition as an inner
block of Transformer and aggregates similar sub-series by utilizing the Auto-Correlation mechanism.
PatchTST [36]] introduces patching, a channel-independent approach that processes each variable sepa-
rately and focuses on cross-time attention. Crossformer [54] utilizes a channel-dependent approach to
learn cross-variate dependencies. This is achieved through the use of cross-time and cross-dimension
attention. iTransformer [31]] applies attention and FFN in an inverted way, where attention handles
correlations between channels and FFN handles the temporal information. Recently, to address
Transformers’ potential difficulties in capturing long-range dependencies [S3]], methodologies based
on the linear model and Multi-Layer Perceptron (MLP) structures have emerged. DLinear [53]]
utilizes the decomposition method introduced in Autoformer and predicts by adding the output of
two linear layers for each seasonal and trend element. TiDE [[/]] proposes an architecture based on
MLP residual blocks that combines information from dynamic and static covariates with a look-back
window for encoding, followed by decoding. TSMixer [8] performs forecasting by repeatedly mixing
time and features using an MLP. RLinear [28] comprises of a single linear layer with RevIN [21]] for
normalization and de-normalization.

Frequency-utilizing models. Using the frequency domain for TSF is a well-established approach [3|
42/ [19]. Conventional approaches leverage frequency information during the preprocessing stage [37]]
or decompose time series based on frequency filtering [39]. In deep TSF models, research has also
explored architectural advancements that are aware of the frequency information. SAAM [34], which
is applicable to RNNs, performs FFT and autocorrelation on the input signal. WaveFroM [51]] uses
discrete wavelet transform (DWT) to project time series into wavelet domains of various scales and
performs forecasting through graph convolution and dilated convolution. FEDformer [56]] adopts
a mixture-of-experts strategy to refine the decomposition of seasonal and trend components and
introduce sparse attention mechanisms in the frequency domain. TimesNet [48]] transforms 1D time
series into 2D tensors utilizing multi-periodicity by identifying dominant frequencies through Fourier
Transform, modeling temporal variations effectively. FreTS [52]] leverages frequency-domain MLPs
to achieve global signal analysis and compact energy representation, addressing the limitations of
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Figure 2: (a) Plug-in Spectral Attention (SA) module takes a subset of intermediate feature F' and
returns I with long-range information beyond the look-back window. The model is trained end-to-
end, and gradients flow through the SA module. (b) To capture the long-range dependency, SA stores
momentums of feature F' generated from the sequential inputs. Multiple momentum parameters
«; capture dependencies across various ranges. (¢) SA module computes F’ by attending multiple
low-frequency (M %) and high-frequency (F' — M “?) components and feature (F') using learnable
Spectral Attention Matrix (SA-Matrix)

point-wise mappings and information bottlenecks in conventional MLP-based methods. FITS [50]
employs interpolation within the complex frequency domain to construct a concise and robust
model. While these models leverage frequency information, they are limited in modeling long-range
dependencies, as the frequency conversion is confined to the look-back window. On the other hand,
our Spectral Attention is the first to achieve long-range dependency modeling beyond the look-back
window by incorporating consecutive data streams during model training.

3 Methods

Problem Statement. In multivariate time series forecasting, time series data is given Dr
{z1,...,27} € RT*N at time T with N variates. Our goal is, at arbitrary future time ¢ > T,
to predict future S time steps Y; = {x¢11, ..., Tr15} € R>*N To achieve this goal, TSF model f
utilizes length L look-back window as input X; = {x;_r11,...,7:} € REXN making prediction
P, = f(Xy), P € RSN,

Model is trained with the training dataset Dy = {(X¢,Y:)|L <t < T — S}. While conventional

methods typically randomly sample each X, Y from Dy to constitute the mini-batch, we utilize
sequential sampling to incorporate temporal correlations between samples into the learning process.

3.1 Spectral Attention

Spectral Attention (S A) can be applied to every TSF model that satisfies the aforementioned problem
statement. This base TSF model is represented by P = f(X), and S A can be applied to arbitrary
activation F' within the model. The base model can be reformulated as P = fo(F, FE) and F, E =
f1(X). F, E are intermediate state and SA module takes an arbitrary subset F as input and transforms
it into F’ of the same size; F' = SA(F), P! = fo(F’', E). The resulting SA plugged model fs4 is
depicted in Figure Zh.

With X, as the base model input, SA takes D-dimensional feature vector F; € R as input. SA
updates the exponential moving average (EMA) M; € RE*D of F} in its internal memory with the
K smoothing factors {a, ...,ax } € RE (o < -+ < ax) as shown in Figure.

M = g x MP 4+ (1 — o) x F} 1)
EMA retains the trend of features over long-range time periods based on the smoothing factor. It oper-

2

ates as a low-pass filter, with the -3db (half) cut-off frequency of freq.,: = %005’1 [1 — %] s
effectively preserving the trend over 6,000 period with oo = 0.999 .

To represent high-frequency patterns contrasting with the low-pass filtered long-range pattern M, we
generated H; € RE*P by subtracting M; from Fy}.

Hf,i — th _ MtK—k—l,i (2)
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Figure 3: BSA module takes a sequentially-sampled mini batch {X;,...X;p_1} and computes
the corresponding EMA momentums { M, ..My, p_1} over time. This is done via single matrix
multiplication enabling parallelization. We made the momentum parameter «; learnable, allowing
the model to directly learn the periodicity of the information essential for the future prediction.

S A contains learnable parameters: sa-matrix € R5+1xD 'which learns what frequency the model
should attend to for each feature. 2 x Hy, F}, 2 x M, are concatenated on dimension 0, resulting in
REE+1DXD “which is then weighted summed with sa-matrix on dimension 0, generating output F

(Figure 2k).
F] = sum(softmaz(sa-matrix,dim 0) - concat((2 x Hy, Fy,2 x M;),dim 0),dim 0) (3)

The sa-matrix is initialized so that so ftmax(sa-matrix) resembles a Gaussian distribution on axis
0. This results in symmetric value on axis 0 (sa-matrix® T1=% = sa-matrix® +1+%) and makes SA an
identity function on initialization (-.- H* + ME—F=1 = ),

F = SAini(F) 4

SA allows the model to attend to multiple frequencies of its feature signal, enabling it to focus
on either long-range dependencies or high-frequency patterns as needed and shift the feature F’
distribution on the frequency domain. By initializing S A as an identity function, the model can be
fine-tuned with the already trained base model, allowing efficient implementation.

3.2 Batched Spectral Attention

Batched Spectral Attention (BS A) enables batch training over multiple time steps. The main concept
involves unfolding EMA, which facilitates gradients to flow across consecutive samples in a mini-
batch, akin to BPTT. This enables efficient parallel training and promotes the model to extract
long-range information beneficial for future prediction, extending the effective look-back window.
The overall flow of BSA is depicted in Figure[3]

With mini-batch of size B, consecutive samples X[ ;1 5-1) = {X¢, .. Xsyp-1} € RE*SN are
given as input. Following aforementioned S A setting, BSA takes Fy; 4y p_1] = {F}, ... Fiyp_1} €
REXP a5 input. In the next step, BSA utilizes Fj; ;1 5_1] and the stored M; € R¥*? to generate
My44(0 < b < B) by unfolding the Equation[1]

ME, =af x M + (1 — aw)ah P X B 4+ (1= ag) x Fiyy_y 5)

This equation can be transformed to calculate M; ;) € RBHDXEXD i parallel as follows.
M[:t7,ktiB] = lower-triangle(A*) x concat((M}", F[:t7,it+B—1])’ dim 0) (6)
Ae RKX(B+1)X(B+1)7 Ak,p,q _ (1 - ak)[{q>0}a£fq (7

A refers to unfolding matrix and [ refers to indicator function. M, p is stored in BS A for the next
mini-batch input. F, is computed in parallel, similar to Equation and using F; 41 1)

[t,¢+B—1]
Bit.1+5-1)» and sa-matrix€¢ RCE+DXD_The lower-triangle function prevents gradients from the

past timestep from flowing into future models, aligning with the characteristics of time-series data.
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At the beginning of each training epoch, M, is initialized to Fy for all «, enhancing stability
for subsequent EMA accumulation. Since SA is proposed to address long-range dependencies
in training, it lacks sufficient information in the early stages when not enough steps have been
seen. Therefore, for the stability of training, we linearly warm up the learning rate for the first
1/(1 — max(smoothing factors)) timesteps at the beginning of each training epoch. The overall

training of both the base model and BSA is conducted according to Algorithm|[I]

In SA, the smoothing factors {a1, ...,ax}  Algorithm 1 Batched Spectral Attention (1 epoch)

€ RX were given as scalar values, whereas
in BSA, they are expressed by learnable
parameters. This is because BSA can uti-
lize additional past information in training
beyond the look-back window by incorpo-
rating a batch-sized time window, allowing
it to determine the extent of long-range de-
pendency required for training. To keep the
smoothing factors between 0 and 1, we ini-
tialized learnable parameters by applying an
inverse sigmoid to the initial smoothing fac-
tors and then applied a sigmoid function in
training.

So far, we assume the feature F' from the
base model as a vector. However, the out-
put of the intermediate layers of the model
is often represented as a tensor with two or
more dimensions. In real practice, we use
additional channel dimensions in BSA to
process the activation tensor, which acts as
applying multiple B.S' A modules simultane-
ously.

Input: Trained up to (£-1)th epoch
TSF model fy, BSA with sa-matrix, smoothing factors
Train data: D, = {(Xo, Y0), ..., (X¢r, Yir) }
Valid data: 0,4 = {(Xtr+1, Y'tr+1), ey (Xval7 Yval)}
mini-batch size: B
Train:
st=0,ed=B—1
initialize Mo in BS A with X and fo (:= fa0 - f10)
for X5t cq), Yst,eq) in Dy do {: train phase}
P[st,ed] — f29 -BSA- fl@ (X[st,ed])
L= Emse(P[st,ed]>Y[st,e(i])
Compute V£ and adjust learning rate
update fy, sa-matrix, smoothing factors
st+ = B, ed = min(ed + B, tr)
end for
st=tr+1l,ed=tr+ B
for X (st ca), Yst,ed) in Dyar do {: Validation phase}
P[st,ed] — f20 -BSA- fl@ (X[st,ed])
L= »Cmse(P[st,ed]?}/[st,ed])
accumulate £ and calculate validation loss L,q;
st+ = B, ed = min(ed + B,val)
end for
Output: Trained up to E th epoch
fo, sa-matrix, {oa, ..., ax }, Lyq for E th epoch

3.3 Consecutive dataset split

In the TSF scenario, the entire time series data {1, ...,xr, ,} is divided into train, validation,
and test sets in chronological order. Let T}, and T,,; denote the last time in the train and valida-
tion data respectively. Model training occurs using data for t in [1, 73], while model selection
for the best model can utilize data for t in [T},41, Tyq1]. The test set comprises predicting time
steps [Tyai+1,> Tendl, which are not accessible during training or validation. However, since each
training sample consists of the look-back window of size L and a prediction window of size S,
the training input samples are restricted to X[z 7, g). Validation samples and test input samples
range from X(7,, T,.,-5)> and from X(7, ., 7...,— 5], respectively. While this approach is plausible
for independent data like images, it is unnatural for sequential data, as it leaves unreachable gaps
(X7, —541,Ter—1]> X[Tya1—S+1,Tya1—1])» Undermining the consecutive characteristics. We filled the
missing gaps, making train, validation, and test sets consecutive so that our BS A model could update
momentum continuously. For fair evaluation, added samples were not used for either model training,
validation, or performance assessment. Detailed explanations of model validation and evaluation are
provided in Appendix [A.3] The full code is available at https:/github.com/DJLee1208/BSA_2024.

4 Experiments

We first evaluate BSA using state-of-the-art TSF models and various real-world time series forecasting
scenarios in section4.1} Next, to demonstrate that BSA effectively addresses long-range dependencies
and is robust to distribution shift, we perform experiments on synthetic signals of various frequencies
in section[4.2] Finally, we analyze the BSA’s performance variations depending on the insertion sites
within the base model, examine computation and memory costs, and conduct an ablation study in

section [4.3]

Datasets. We use eleven real-world public datasets: Weather, Traffic, ECL, ETT (4 sub-datasets;
hl, h2, m1, m2), Exchange, PEMSO03, EnergyData, and Illness [6} 26} 29, !49]]. In the Illness dataset,
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Table 1: Forecasting results averaged across prediction lengths S € {96, 192,336, 720} and three
seeds. Illness and Exchange datasets use different prediction lengths due to short data lengths. Higher
performance between the base model and BSA is bolded. The Avg. column shows the mean across
all datasets. Red indicates p-value < 0.05 in paired t-test. Abbreviations are as follows, We.; Weather,
Tr.: Traffic, Ehl: ETThl, Eh2: ETTh2, Em1l: ETTml, Em2: ETTm2, Ex.:Exchange, PE.: PEMSO03,
En.: EnergyData, I1.: Illness. Full results are provided in Appendix

Model Metric | We. Tr. ECL Ehl Eh2 Eml Em2 Ex PE. En. 1. | Avg.
e MSE [0244 0737 0227 0529 0349 0462 0248 0088 0436 0874 2849 | 0.640
oL ¢ MAE | 0308 0451 0325 0507 0406 0447 0332 0211 0502 0.683 L1111 | 0.480
near
! Bsa  MSE [ 0220 0.691 0217 0527 0341 0441 0221 0081 0384 0838 2797 | 0.614
MAE | 0281 0435 0316 0507 0398 0447 0310 0207 0464 0.667 1.114 | 0.468
vase  MSE [ 0248 0723 0231 0551 0309 0488 0220 0085 0992 0816 2637 | 0.664
oL MAE | 0274 0442 0319 0516 0370 0457 0307 0204 0740 0630 1013 | 0479
Heat Bsa  MSE [ 0237 0.665 0212 0545 0304 0475 0210 0085 0.674 0797 2605 | 0.619
MAE | 0267 0.404 0301 0517 0370 0453 0303 0203 0.607 0.622 1.005 | 0.459
e MSE [0240 0527 0195 0513 0310 0460 0234 0095 0259 0976 5073 | 0807
s MAE | 0.286 0322 0285 0506 0393 0450 0321 0232 0354 0735 1603 | 0499
e Bsa  MSE [ 0236 0.502 0192 0511 0308 0431 0241 0089 0229 0940 4930 | 0.783
MAE | 0292 0317 0287 0505 0387 0442 0326 0219 0324 0710 1.591 | 0.491
tae  MSE | 0260 0620 0203 0576 0386 0508 0247 0094 0232 0880 2719 0611
_— ¢ MAE | 0284 0333 0301 0545 0427 0482 0326 0219 0311 0662 0942 | 0.439
mesNet
e Bsa  MSE [ 0252 0624 0199 0569 0378 0499 0229 0094 0234 0861 2720 | 0.605
MAE | 0279 0335 0298 0540 0418 0476 0314 0219 0314 0.655 0938 | 0.435
vase MSE ‘0.256 0428 0.181 0542 0321 0466 0224 0091 0262 0833 2454 ‘ 0.551
MAE | 0277 0284 0272 0518 0380 0454 0314 0211 0345 0639 0.947 | 0422
iTransformer
Bsa  MSE | 0236 0428 0176 0537 0317 0466 0219 0090 0.198 0786 2540 | 0.545
MAE | 0268 0288 0270 0517 0378 0452 0310 0211 0298 0.619 0957 | 0.415
e MSE [0240 0565 0182 0517 0323 0485 0243 0220 0212 LI78 4946 | 0828
Cross ¢ MAE | 0292 0292 0276 0520 0402 0470 0342 0345 0299 0817 1518 | 0.507
OO T GA MSE [ 0227 0554 0186 0520 0317 0468 0245 0219 0201 1204 4.809 | 0814
MAE | 0.284 0288 0280 0522 0396 0469 0340 0340 0290 0823 1489 | 0.502
vae  MSE | 0255 0467 0198 0535 0317 0473 0220 0087 0361 0839 2016 | 0.524
— S MAE | 0278 0296 0286 0516 0375 0456 0310 0204 0413 0.642 0880 | 0423
t
ate ssa  MSE [ 0236 0467 0189 0539 0314 0458 0214 0086 0244 0788 1974 | 0.501
MAE | 0268 0297 0285 0520 0374 0451 0306 0202 0341 0.621 0866 | 0.412

the look-back window is set to 36, and the forecasting lengths are 24, 36, 48, and 60. For the other
datasets, the look-back window is set to 96, and the forecasting lengths are 96, 192, 336, and 720.
Train, validation, and test split ratio are 0.6, 0.2, 0.2 for the ETT dataset and 0.7, 0.1, 0.2 for the
Weather, Traffic, ECL, Exchange, PEMSO03, EnergyData, and Illness datasets. The Weather, Traffic,
and ECL datasets settings follow the TimesNet paper [48]. Details on datasets are provided in

Appendix

Baseline models. As a benchmark, we apply BSA to 7 recent or well-known forecasting models.
(1) Linear based models: DLinear [53]], RLinear [28]], FreTS [52] (2) Convolution based methods:
TimesNet [48]] (3) Transformer based methods: iTransformer [31]], Crossformer [54]], PatchTST [36]].
For each dataset, the model structure configuration is based on the Time-Series-Library [48]. Details
on the base model configurations are provided in Appendix

Training details. We first train the base model for more than 30 epochs (20 epochs for the Traffic
dataset) using Adam [22] to ensure that the validation MSE saturates, while also conducting an
extensive hyperparameter search. Then, we fine-tune with the BSA module attached to the pre-trained
base model. All experiments are based on the average values of three random seeds. We provide
further details in Appendix

4.1 Real world datasets

We demonstrate that BSA improves forecasting performance by providing the ability to address
long-range dependencies, regardless of the base model architecture. Table[]| presents the averaged
values over prediction lengths for both the base and the BSA applied model across 11 time series
datasets and 7 TSF models. We apply the BSA module at the beginning of the base model’s activation,
with the number of BSA channels matching the number of channels in the data (position 1 in Figure
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(a) SA-Matrix heat map (b) Weather-Temp.(°C)  (c) Weather-SWDR(W/m) (d) ETTh1-HULL
Figure 4: This figure illustrates the analysis of the SA-matrix of the DLinear model trained on the

720-step prediction task for the Weather and ETTh1 datasets. Panel (a) shows the heatmap of the
SA-matrix, and (b)-(d) show the attention and FFT graphs.

[7). BSA effectively improves MSE and MAE across all architectures. The average performance
gain, in terms of MSE, ranged from as low as 0.96% to as high as 7.2%, with linear-based models
demonstrating relatively high performance. Paired t-tests demonstrate statistically significant (p-value
< 0.05) improvements in most MSE and all MAE across various models. This result emphasizes the
model-agnostic versatility of BSA. Furthermore, BSA exhibited overall performance gain across all
datasets, with the enhancement being statistically significant in 82% of cases. BSA’s higher gain
on ETTm compared to ETTh, both derived from the same signal but with different sampling rates,
further indicates BSA’s effectiveness in handling long-range dependencies.

To understand how BSA addresses long-range dependencies, we conduct an internal inspection. In
Figure[da] we present the heat map of the trained SA-Matrix of the DLinear (Temperature(°C) channel,
Weather data). The positive x-axis corresponds to the log1¢ values of the periods preserved by the
low-pass filter, derived with the smoothing factor. Negative values correspond to high-frequency
components. The blue graph in Figure fb] represents the SA-Matrix averaged over the feature
dimension, illustrating the frequencies to which BSA attends overall. The red graph represents the
result of applying the Fast Fourier Transform (FFT) and denoising to the raw signal. The blue graph
skewed towards the low-frequency side indicates that the BSA effectively captures the long-range
trend of the data. Figure [c|depicts the graph for the SWDR (Short Wave Downward Radiation per
unit area, W/m) channel in the same SA-Matrix. While not identical to Figure b} it also exhibits
strong attention towards the low-frequency pattern. In contrast, Figure [4d] the FFT graph for the
HULL (High UseLess Load channel, ETTh1 data), shows that the signal itself lacks long-range
trends, resulting in the symmetric SA-Matrix. This result demonstrates that BSA operates as intended,
learning the low-frequency components of the signal for future prediction. We provided other graphs
and detailed information on the graph plotting method in Appendix [B.2]

4.2 Synthetic datasets

To further demonstrate that BSA learns long-range dependencies beyond the look-back window, we
add sine waves with periods of 100, 300, and 1000 to the natural data while maintaining the mean
and standard deviation (Refer to Appendix [C] for details on synthetic data generation). Figure[3]
illustrates the performance improvement of BSA over the iTransformer model on the ETTh1 and

(a) ETTh1 MSE (b) ETTh2 MSE
50
— 1000 1 — 1000
0 300 5o 300
— 100 — 100
—_0 __a0{=—0
8 S
Z Z 30
‘© 20 ‘©
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10 10
o{ —/ 0
96 192 336 720 96 192 336 720
Prediction Length Prediction Length

Figure 5: Results of the iTransformer model on synthetic (a) ETTh1 and (b) ETTh2 datasets. The
x-axis is the prediction length (96, 192, 336, 720), and the y-axis is the performance improvement
(%) compared to the base model. Each color represents the different periods of the sine wave added
to the natural data. O indicates original data and serves as the baseline.
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Figure 6: Attention and FFT graphs on LUFL channel of the original and synthetic ETTh1 data
(iTransformer, 720-step prediction). (a) is from the original data and (b)-(d) are from the synthetic
data created by adding sine waves with periods of 100, 300, and 1000, respectively. The red arrows
on the FFT graphs show the added synthetic signals. Full visualization is provided in Appendix @

ETTh2 datasets. The x-axis is the prediction length, and each line represents the period of the added
sine wave. Performance improvement is calculated as 100x (base MSE - BSA MSE) / base MSE.
While the base model with a 96-length look-back window is expected to learn the 100-period trend,
BSA outperformed it, especially for 96 and 192-step predictions (green line). The yellow line (period
300) shows nearly a 30% performance improvement across all prediction lengths. While the base
model fails to learn the long-range interactions within a period of 300, BSA captures and utilizes
the underlying trend. BSA also learns the 1000-period signal (red line) and demonstrates substantial
improvements, especially in long prediction-length (336, 720) tasks. These results show that BSA
effectively learns long-range patterns beyond the look-back window, essential for future prediction.

Figure[6]is generated from LUFL (Low UseFul Load) channel of ETTh1 data and with added sine
waves of periods 100, 300, and 1000. The red arrow shows the added synthetic trend in the FFT
graph (red line). As long-range trends are introduced, the attention graph (blue line) shifts from
resembling symmetric Gaussian to a low-frequency bias. Longer sine wave periods cause greater
shifts, prioritizing long-range information for predictions.

4.3 Analysis and ablation studies

Add & Norm

iTransformer DLinear _
MSE MAE MSE MAE Multi-Head

Attention

1] 0.2357 0.2682 0.2196 0.2815
2 1 0.2352  0.2681 - -
3102329 0.2654 - -
41 0.2508 0.2752 0.2327 0.2994
Query-5 | 0.2326 0.2671 - -

Key-6 | 0.2538 0.2762 - -
Value-7 | 0.2415 0.2702 - - Input Embedding

baseline | 0.2556 0.2766 0.2444  0.3084

Location

Decoder

Add & Norm

Table 2: Performance analysis on BSA insertion site. Each ~ Figure 7: Schematic diagram of the
number corresponds with the insertion site in Figure m BSA insertion site on Transformer.

The BSA module offers high flexibility as it can be applied to arbitrary activations of the base model.
In Table[2] we analyzed the performance changes by applying BSA at various locations within the
model. Each location corresponds to a number in the Transformer architecture depicted in Figure[7]
While we uniformly applied BSA to position 1 for the main result Table[T] the results in Table [2]
suggest the potential for further performance enhancement by applying BSA at appropriate locations.
Additionally, while there is variability depending on the placement, the performance consistently
remains higher compared to the baseline, demonstrating the stability of our method. We provided a
full result in Appendix [D.T}

BSA shows consistent performance improvement across varying look-back window (input) lengths.
Table [3|demonstrates BSA’s superiority for look-back window lengths of 48, 96, and 192. Notably,
while the baseline model’s performance drops significantly with shorter inputs, BSA maintains high
performance.
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Table 3: BSA’s performance improvement (%, de- Table 4. Computational cost increase with
noted with *) compared to base model across three  the BSA (%), averaged over 3 seeds and 4
input lengths {48, 96,192} (iTransformer, average  prediction lengths on the PEMSO03 dataset.
over 4 prediction lengths and 3 seeds). The full TN: TimesNet, iTF: iTransformer, CF: Cross-
result, including other models, is in Appendix former, PTST: PatchTST. The full result, in-
cluding other datasets, is in Appendix [D.3]

Input- Weather PEMS03 .

length | MSE*(%) MAE*(%) MSE*(%) MAE*(%) Increase (%) | TN  iTF CF PTST
48 12.08 521 2945 1735 Time 021 224 -204 -0.29
96 7.78 3.03 24.55 13.66 Memory 034 234 0.17 0.38
192 6.87 3.34 9.63 5.18 Parameter 0.16 4.88 196 225

We also demonstrate the impact of using BSA on the training time, peak memory, and the number of
model parameters. The extra computation required for BSA is constant with data length and linear
with a look-back window length (c.f. quadratic for the base model with transformer architecture).
Table [ demonstrates the computational cost of the BSA is quite small, showing less than a 5%
increase even with the large PEMSO03 dataset.

We conduct an ablation study on the three key compo- Table 5: Ablation study with 3 components
nents that constitute BSA (Table[5). “BPTT” refersto  in BSA (Weather data, 720-step prediction,
whether gradients can flow between samples within  jTransformer).

the mini-batch. Without BPTT, BSA learns similarly BPTT SFs LearnSF | MSE  MAE

to SA. “SFs” denotes whether to use multiple smooth- baseline 03551 03473
ing factors. Lastly, “Learn SF” indicates whether 0.3480 0.3452
the smoothing factor is treated as learnable. The v 0.3401 0.3452

0.3320 0.3395
v 0.3263 0.3358

results indicate that each component significantly
contributes to the performance improvement of BSA.

SNEN

v
v

5 Conclusion

Our study addresses the challenges in handling long-range dependencies inherent in time series data
by introducing a fast and effective Spectral Attention mechanism. By preserving temporal correlations
and enabling the flow of gradients between samples, this mechanism facilitates the model in capturing
crucial long-range interactions essential for accurate future predictions. Therefore, our research paves
the way for fixed-sized input models to effectively handle long-range dependencies extending far
beyond the input window. Through extensive experimentation, we demonstrated that our Spectral
Attention mechanism enhances performance across various base architectures, with its ability to
grasp long-term dependencies being the key factor behind this improvement. BSA effectively tackles
long-term fluctuations, complementing the base model’s capacity to manage intricate yet short-term
patterns. This integrated model holds promise for improving real-world application performance. For
instance, it could boost weather forecast accuracy by simultaneously capturing minute-by-minute
weather changes and seasonal variations. Moreover, when predicting deterioration from a patient’s
real-time data, it can consider medications with lengthy onset times. Our study has limitations: we did
not analyze the impact of BSA placement within the base model in detail. Also, BSA’s performance
gains may be limited when applied to datasets with only high-frequency information within the
look-back window. These issues should be addressed in future research.
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A Details on Datasets, Models, and Training

A.1 Details on datasets

Dataset Information. We conducted experiments on 11 real-world datasets to assess the performance
of baseline models and the proposed BSA method. The Weather dataset [49] includes 21 meteo-
rological factors acquired every 10 minutes in 2020 from the Weather Station of the Max Planck
Institute for Biogeochemistry. The Traffic dataset [49] records hourly road occupancy rates from 862
sensors on San Francisco Bay Area freeways, covering the period from January 2015 to December
2016. The ECL dataset [49]] captures the hourly electricity consumption of 321 clients. The ETT
dataset [55]] contains seven factors related to electricity transformers, spanning from July 2016 to
July 2018. It is divided into four sub-datasets: ETTh1 and ETTh?2 are recorded hourly, while ETTm]1
and ETTm?2 are collected every 15 minutes. The Exchange dataset [49]] comprises panel data of
daily exchange rates from eight countries, ranging from 1990 to 2016. Illness dataset [49] contains
weekly data on influenza-like illness (ILI) cases recorded by the U.S. Centers for Disease Control
and Prevention (CDC) from 2002 to 2021. The dataset tracks the proportion of ILI patients relative
to the overall number of patients seen during that period. PEMSO03 dataset [29] is a sub-dataset of
the PEMS dataset, which includes public traffic network data from California, recorded at 5-minute
intervals. The EnergyData dataset [6] comprises hourly end-use measurements gathered from 454
residential properties and 140 commercial establishments located in the Pacific Northwest. All these
public datasets were downloaded from the referenced sources in March 2024.

Dataset split. We adhere to the data processing protocol and train-validation-test split used in Times-
Net [48], where the training, validation, and test datasets are sequentially separated in chronological
order. Our paper’s data split ratios for train, validation, and test set are as follows: (0.7, 0.1, 0.2) for
Weather, Traffic, ECL, Exchange, Ilnness, PEMSO03, and EnergyData datasets and (0.6, 0.2, 0.2) for
ETT. The details of datasets are provided in Table [6]

Forecasting setting. Following the approach in iTransformer [31], the look-back window length is
set to {96}, while the forecast lengths are {96, 192, 336, 720} for the Weather, Traffic, ECL, ETT,
PEMSO03, and EnergyData datasets. Forecasting lengths is only {96} for the Exchange dataset since
the dataset is too short, which causes biased best model selection with the validation set. For Illness
dataset, the look-back window length is {36} and the forecasting lengths are {24, 36, 48, 60}.

Table 6: Summary of Datasets. Channel denotes the number of time series variables (channels) for
each dataset. Pre-Train is the number of training epochs for baseline model saturation. Finetune
is the number of fine-tuning epochs for our method. Data Split means the number of time steps in
(Train, Validation, Test) data split respectively. Sampling Rate denotes how often the data samples
are collected. Type is to show the domain in which the data is acquired. We have indicated cases
where the data split count matches exactly with that used in TimesNet [48] by marking them with an
asterisk (*). For the ETT and the Exchange dataset, the length of the downloaded data differed from
the data length reported in TimesNet.

Dataset \ Channel Pre-Train Finetune Data Split Sampling Rate Type
Weather* 21 40 20 (36792, 5271, 10540) 10min Weather
Traffic* 862 20 20 (12185, 1757, 3509) Hourly Transportation
ECL* 321 30 20 (18317, 2633, 5261) Hourly Electricity
ETThl, ETTh2 7 30 30 (10357, 3485, 3485) Hourly Electricity
ETTml, ETTm2 7 30 20 (41713, 13937, 13937) 15min Electricity
Exchange 8 30 30 (5216, 761, 1518) Daily Economy
Illness 7 30 20 (692, 120, 226) Weekly Health
PEMSO03 358 30 20 (18250, 2623, 5242) Smin Transportation
EnergyData 28 30 20 (13719, 1975, 3948) Hourly Energy

A.2 Details on Model Implementations
Model configurations. In this section, we discuss the configurations of the baseline models and

specify where the BSA module was integrated into each baseline model. For each dataset, the base
model structure configuration was directly replicated from the Time-Series-Library [48] scripts
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when available. Where configurations were not provided, we adjusted them to align closely with the
available examples.

1. DLinear [53]]: The only hyperparameter for this baseline model is the (moving_average = 25)
for the series decomposition module from Autoformer [49]. We set the Individual to True so that
there are separate linear models for each number of input variables. The BSA module is implemented
at the very beginning of the forward pass right before series decomposition. The BSA module is
implemented for each channel, which is the number of input variables for this case.

2. iTransformer [31]: The hyperparameters for this baseline model are as follows:

(d_model = 512, d_ff = 512, dropout = 0.1, num_heads = 8, encoder_layers = 3, activation =
GELU [L1])) for the Weather, ECL, PEMSO03, and EnergyData datasets,

(d_model = 512, d_ff = 512, dropout = 0.1, num_heads = 8, encoder_layers = 4, activation = GELU)
for the Traffic dataset,

(d_model = 128, d_ff = 128, dropout = 0.1, num_heads = 8, encoder_layers = 2, activation = GELU)
for the ETT and Exchange datasets.

The BSA module is implemented at the beginning part of the forward pass right after normalization
from the Non-stationary Transformer [32] and right before the input embedding. The BSA module is
implemented for each channel, which is the number of input variables for this case.

3. Crossformer [54]: The hyperparameters for this baseline model are as follows:

(seg_len = 12, win_size = 2, factor = 3, d_model = 32, d_{f = 32, dropout = 0.1, num_heads = 8§,
encoder_layers = 2, activation = RELU [[1]) for the Weather and EnergyData dataset,

(seg_len = 12, win_size = 2, factor = 3, d_model = 128, d_{f = 128, dropout = 0.1, num_heads = 2,
encoder_layers = 2, activation = RELU) for the Traffic dataset,

(seg_len = 12, win_size = 2, factor = 3, d_model = 256, d_{f = 512, dropout = 0.1, num_heads = 8§,
encoder_layers = 2, activation = RELU) for the ECL and PEMSO03 dataset,

(seg_len = 12, win_size = 2, factor = 3, d_model = 512, d_ff = 2048, dropout = 0.1, num_heads = 8§,
encoder_layers = 2, activation = RELU) for the ETTh1 and ETTh2 datsets,

(seg_len = 12, win_size = 2, factor = 1, d_model = 512, d_ff = 2048, dropout = 0.1, num_heads = 8,
encoder_layers = 2, activation = RELU) for the ETTm1 and ETTm2 datasets,

(seg_len = 12, win_size = 2, factor = 3, d_model = 64, d_ff = 64, dropout = 0.1, num_heads = 8,
encoder_layers = 2, activation = RELU) for the Exchange dataset.

The BSA module is implemented at the very beginning of the forward pass, right before the input
embedding. The BSA module is implemented for each channel, which is the number of input variables
for this case.

4. PatchTST [36]: The hyperparameters for this baseline model are as follows:

(patch_len = 16, stride = 8, d_model =512, d_ff =2048, dropout = 0.1, num_heads =4, encoder_layers
= 2, activation = GELU [[11]]) for the Weather and EnergyData dataset,

(patch_len = 16, stride = 8, d_model = 512, d_{f = 512, dropout = 0.1, num_heads = 8, encoder_layers
=2, activation = GELU) for the Traffic dataset,

(patch_len = 16, stride = 8, d_model =512, d_ff =2048, dropout = 0.1, num_heads = 8, encoder_layers
=2, activation = GELU) for the ECL and PEMSO03 dataset,

(patch_len = 16, stride = 8, d_model =512, d_ff =2048, dropout = 0.1, num_heads = 8, encoder_layers
= 1, activation = GELU) for the ETTh1 datset,

(patch_len = 16, stride = 8, d_model =512, d_ff =2048, dropout = 0.1, num_heads =4, encoder_layers
= 3, activation = GELU) for the ETTh2, ETTm1, and ETTm?2 datsets.

The BSA module is implemented at the beginning part of the forward pass right after normalization
from the Non-stationary Transformer [32] and right before the patch embedding. The BSA module is
implemented for each channel, which is the number of input variables for this case.

5. TimesNet [48]]: The hyperparameters for this baseline model are as follows:

(top_k =5, num_kernels = 6, embed = ’timeF’, freq = ’h’, d_model = 32, d_ff = 32, dropout = 0.1,
encoder_layers = 2) for the Weather, ETTh2, ETTm?2, and EnergyData datasets,

(top_k = 5, num_kernels = 6, embed = "timeF’, freq = ’h’, d_model = 512, d_ff = 512, dropout = 0.1,
encoder_layers = 2) for the Traffic dataset,

(top_k = 5, num_kernels = 6, embed = "timeF’, freq = ’h’, d_model = 256, d_ff = 512, dropout = 0.1,
encoder_layers = 2) for the ECL and PEMS03 dataset,

(top_k = 5, num_kernels = 6, embed = ’timeF’, freq = "h’, d_model = 16, d_ff = 32, dropout = 0.1,
encoder_layers = 2) for the ETTh1 and ETTm1 datasets,
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(top_k = 5, num_kernels = 6, embed = ’timeF’, freq = ’h’, d_model = 64, d_ff = 64, dropout = 0.1,
encoder_layers = 2) for the Exchange dataset.

The BSA module is implemented at the beginning part of the forward pass right after normalization
from the Non-stationary Transformer [32] and right before the input embedding. The BSA module is
implemented for each channel, which is the number of input variables for this case.

6. FreTS [52]: The hyperparameters for this baseline model are as follows:

(embed_size = 128, hidden_size = 256, sparsity_threshold = 0.01, scale = 0.02) for all datasets. Based
on the paper, the channel-independent strategy is selected.

The BSA module is implemented at the very beginning of the forward pass, right before the token
embedding. The BSA module is implemented for each channel, which is the number of input variables
for this case.

7. RLinear [28]: The only hyperparameter for this baseline model is the (dropout = 0.1). We set the
Individual to True so that there are separate linear models for each number of input variables. The
BSA module is implemented at the beginning part of the forward pass right after normalization from
the RevIN [21] and right before the linear layer. The BSA module is implemented for each channel,
which is the number of input variables for this case.

A.3 Details on Training

Pre-training and Finetuning configurations. To show how our BSA module performs when added
to the baseline models, we saturated the models by greedy hyperparameter search.

The hyperparameter search space for the base model is as follows: the possible learning rate is (0.03,
0.01, 0.003, 0.001, 0.0003), and the weight decay is (0.01, 0.003, 0.001, 0.0003, 0.0001, 0.00003).

The hyperparameter search space for BSA finetuning is as follows: the possible learning rate for the
SA-Matrix in the BSA module is (0.08, 0.05, 0.03, 0.01, 0.003, 0.001), learning rate for the rest of
the model, i.e. original modules, is (0.01, 0.003, 0.001, 0.0003, 0.0001, 0.00003, 0.00001), learning
rate for smoothing factor oy, is (none, 0.03, 0.01, 0.003, 0.001, 0.0001, 0.00001), initialization for
smoothing factor «y, is ([0.9, 0.99, 0.999], [0.9, 0.99, 0.999, 0.999], [0.9, 0.95, 0.992, 0.999], [0.8,
0.96, 0.992, 0.9984, 0.99968]).

Model selection Hyperparameter search is conducted based on the validation set. While models
trained using conventional sample shuffling evenly represent the entire time series distribution from
which the dataset is sampled, BSA learns data in chronological order. Consequently, the final model
tends to favor the distribution of the later part of the data. This can be seen as a mild version of
catastrophic forgetting, commonly occurring in continual learning. To mitigate this effect, we assigned
higher weights to the later samples during the validation process. The weights are represented by
0.5+0.5 x sin (§ x Zgéjgz ), continuously increasing from 0.5 for the first sample to 1.0 for the last
sample.

Optimization The whole code is implemented in PyTorch [38]]. Each experiment was conducted on
a single NVIDIA GeForce RTX 3090Ti or NVIDIA A40 or NVIDIA L40 GPU. The default batch
size for baseline model saturation is 64, while for our method—which involves fine-tuning after
integrating the BSA module—it is 256. If a baseline model is too heavy and results in GPU memory
overflow, the batch size is adjusted to fit within the available memory. We used the ADAM [22]
optimizer and L2 loss (MSE loss) for the model optimization. The baseline saturation training epoch
is set to 40 epochs for the Weather dataset, 20 epochs for the Traffic dataset, and 30 epochs for the
rest of the datasets. The finetuning epoch is set to 30 epochs for the ETTh1, ETTh2, and Exchange
datasets and 20 epochs for the rest of the datasets.

B Real world dataset experiments

B.1 Full experiment results

The experiments were conducted on a total of 11 public real-world datasets and 7 forecasting models.
The average results (MSE, MAE) of the experiments conducted with three random seeds 0, 1, and 2
are shown in Table[7] and the standard deviations are shown in Table[8] The values reported in Table/[T]
are labeled as Avg in Table|/| For the Exchange dataset, we only report experiments with a prediction
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Figure 8: The illustration compares the pre-denoising and post-denoising results alongside Brownian
noise. For (a) and (b), the y-axis represents amplitude, and the x-axis is on a negative log scale,
indicating that moving toward the right corresponds to lower frequencies. Conversely, in (c), the
y-axis represents decibels, and the x-axis is on a log scale, where moving toward the left corresponds
to lower frequencies.

length of {96}. Using prediction lengths of {192, 336, 720} causes improper best model selection
due to an insufficient number of validation samples. The empty results indicate that the training is
too heavy, and the results are not yet available. We expect to have the results ready by the rebuttal.

B.2 SA-Matrix and FFT visualization

To investigate how the SA-Matrix of BSA predominantly attends to specific frequency bands, we
employed the heatmaps, the Gaussian kernel density estimate graphs, and the FFT graphs as shown

in Figure[9] [I0] [T1} [12] [13]and [13]

The 2D heatmap depicts the learnable parameters of the SA-Matrix, defined as sa-matrixe
REE+DXD where K represents the number of smoothing factors and D represents the dimen-
sion of the input features. Consequently, the y-axis of the 2D heatmap matches the length of D, and
the x-axis corresponds to 2K 4 1, symmetrically arranged around zero. On the x-axis, positive values
indicate the low-frequency regions, while negative values represent the high-frequency regions.

The Gaussian kernel density estimate graphs intuitively reveal which frequency bands the SA-Matrix
predominantly attends to. The K smoothing factors were modified according to Equation [8|and
symmetrically arranged around zero, serving as the data points for kernel density estimation (KDE).
The weight values from each row of the SA-Matrix were converted to probabilities using the softmax
function, and the resulting outputs established a mapping of these weight values to data points
necessary for Gaussian KDE. This mapping facilitated the construction of the Gaussian KDE graph.
Subsequently, the overall probability density of the SA-Matrix was estimated by calculating the mean
across columns. Consequently, the y-axis of the graphs denotes the attention level of the SA-Matrix,
whereas the x-axis indicates the scalar indices, encompassing the range of the smoothing factors. To
better represent the variation in weight values across frequency bands, we adjusted the bandwidth
of the KDE function to 0.4, based on the product of the Gaussian kernel’s covariance factor and the
standard deviation of the sampled weights in the matrix.

1

m) ®)

ay, = log;o(

The FFT graph is depicted with a red line. FFT analysis was conducted for each variable to determine
if the fine-tuned SA-Matrix aligns with the frequencies exhibited by the dataset. To compare the
low-frequency parts, the negative log-scale was used on the x-axis, showing that progression to the
right indicates decreasing frequencies. The Gaussian filter with a fixed standard deviation of 5 was
utilized to smooth the signal’s amplitude.

The denoising phase was executed on the FFT output to analyze the correlation between the frequency
tendencies of the dataset and the manipulated weights in the SA-Matrix. Figure[§|c) depicts Brownian
noise, with the x-axis denoting frequency and the y-axis in decibels (dB). Both axes are configured
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Table 9: Full average results of three random seeds with prediction lengths S € {96, 192, 336, 720}
and a fixed lookback length 7" = {96} on synthetic data. The original results are from the public
datasets ETTh1 and ETTh2, as shown in Table[/| Synthetic datasets were created by adding sine
waves with periods of 100, 300, and 1000 to the original ETTh datasets. Gains mean performance
improvements by using our method.

iTransformer iTransformer

base BSA Gain(%) base BSA Gain(%)
MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
96 | 04316 0.4453 0.4277 04426 0909  0.605 96 | 02397 0.3278 0.2347 0.3236  2.062 1.260
ETThi 192 | 0.4906 0.4857 0.4809 0.4812 1973 0931 ETTh2 192 | 02950 0.3641 0.2901 0.3624 1.654  0.467
original 336 | 0.5451 0.5217 0.5401 05243 0908 -0.504 original 336 | 0.3316 0.3880 0.3271 0.3884 1.370 -0.103
720 | 0.6991 0.6174 0.6979 0.6204 0.172  -0.493 720 | 0.4160 0.4389 0.4144 0.4391 0364 -0.040
avg | 0.5416 05175 0.5367 05171 0.991 0.135 avg | 03206 03797 03166 03784 1362  0.396
96 | 0.3108 0.3889 0.2980 0.3800 4.111 2.286 96 | 0.1608 0.2738 0.1565 0.2724 2716  0.530
ETThi 192 | 0.3470 0.4172 0.3298 0.4062 4.968  2.635 ETTh2 192 | 0.1880 0.2993 0.1839 03009 2.198 -0.516
100 336 | 0.3825 0.4454 03719 0.4409 2.774 1.001 100 336 | 0.2098 0.3156 0.2070 0.3153 1.335  0.105
720 | 0.4825 0.5162 04784 0.5150 0.844  0.230 720 | 0.2580 0.3526 0.2558 0.3522 0.855  0.137
avg | 0.3807 0.4419 0.3695 0.4355 3.174 1.538 avg | 0.2042 0.3103 0.2008 0.3102 1.776  0.064
96 | 0.5350 0.5291 0.3674 0.4334 31.330 18.081 96 | 0.2646 0.3663 0.1711 0.2957 35319 19.272
ETThI 192 | 0.6278 0.5873 0.4156 0.4729 33.799 19.476 ETTh2 192 | 0.3219 0.4107 0.2189 0.3356 32.010 18.290
300 336 | 0.5741 0.5608 0.4217 0.4780 26.537 14.763 300 336 | 0.2971 0.3921 0.2287 0.3444 23.023 12.178
720 | 0.7036 0.6361 0.5273 0.5514 25.068 13.313 720 | 0.3669 0.4410 0.2804 0.3837 23.582 12.999
avg | 0.6101 0.5783 0.4330 0.4839 29.183 16.408 avg | 03126 0.4025 0.2248 0.3398 28.483 15.685
96 | 0.3370 0.4082 0.3295 0.4036 2225 1.135 96 | 0.1880 0.3003 0.1799 0.2927  4.305 2.529
ETThI 192 | 0.5019 0.5197 0.4392 04833 12487 6.992 ETTh2 192 | 0.3283 0.4108 0.2742 03745 16.489 8.842
1000 336 | 0.8177 0.6785 0.5441 0.5591 33.455 17.591 1000 336 | 0.6335 0.5958 0.4320 0.4856 31.820 18.492
720 | 1.2900 0.8721 0.6741 0.6411 47.742 26.484 720 | 1.1044 0.7933 0.4554 0.5046 58.760 36.389
avg | 0.7366 0.6196 0.4967 0.5218 23978 13.050 avg | 0.5636 0.5251 0.3354 0.4144 27.843 16.563

on a log scale. Converting the y-axis from decibels to amplitude is akin to implementing linear
scaling, which reveals a steeper rise in noise at lower frequencies. This noise generally arises in
the low-frequency bands of most real-world systems, such as electronic systems and environmental
sciences [24]]. Figure[8](a) shows that noise escalates within the low-frequency regions across vari-
ables, leading to the assumption that unique Brownian noise originates in each system. Consequently,
a linear approximation was used for the denoising function, which was performed manually. The
outcomes of this process are presented in Figure 8] (b).

C Synthetic dataset experiments

We constructed synthetic datasets by adding sine waves with periods of 100, 300, and 1000 to each
channel (variable) of the ETTh1 and ETTh2 datasets. The scale of the sine wave is set to the standard
deviation value of each channel. The phases of the sine waves for each channel are randomly sampled
from a uniform distribution from 0 to 27 to make decorrelated sine waves. The full results are
reported in Table[9]

C.1 SA-Matrix and FFT visualization

As illustrated in Figure @ the LUFL, MULL, OT, and LULL channels are organized into columns,
with each graph positioned within rows that correspond to the periods added to the dataset. Figure[T4]
(a) shows the SA-Matrix from the iTransformer model fine-tuned with a 720 prediction length on
the ETTh1 data that does not include added sine waves. From (b) to (d), the models were trained
with synthetic datasets increasingly augmented with sine waves at periods of 100, 300, and 1000. As
the number of added periods increases, there is a shift in the SA-Matrix weight distribution toward
low-frequency patterns in each channel.

D Analysis and Ablation Studies

D.1 BSA insertion site analysis

Table |10{shows the full results for different BSA module insertion sites in the iTransformer [31] and
DLinear [53] models on the Weather Dataset. Table [2]is from the average value of Table[T0} The
BSA module insert position can be found in Figure[7]
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Table 10: Full results for different BSA module locations for iTransformer [31]] and DLinear [53] on
the Weather dataset. Positions 1 and 4 are the only available options for the DLinear Model.

iTransformer
base 1 2
MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
96 | 0.1706  0.2096 0.1598 0.2037 0.1589 0.2027 0.1538 0.1990 0.1667 0.2077 0.1545 0.1999 0.1676 0.2080 0.1582 0.2011
192 | 0.2203 0.2544 02052 0.2466 0.2034 0.2463 0.1996 0.2441 0.2149 0.2526 0.2003 0.2451 0.2206 0.2548 0.2110 0.2504
weather 336 | 0.2762 0.2952 0.2526 0.2856 0.2510 0.2846 0.2528 0.2837 02719 0.2940 02519 0.2855 0.2756 0.2948 0.2534 0.2854
720 | 03551 03473 0.3252 0.3371 0.3277 0.3386 0.3255 0.3349 0.3497 03465 0.3238 0.3380 0.3513 0.3472 0.3434 0.3440
Avg | 02556 02766 0.2357 0.2682 02352 0.2681 0.2329 0.2654 02508 0.2752 0.2326 0.2671 0.2538 0.2762 0.2415 0.2702
Dlinear
base 1 2 3
MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
96 | 0.1630  0.2363 0.1565 0.2306 0.1519  0.2203
192 | 0.2091 0.2832 0.1985 0.2724 0.1912  0.2601
weather 336 | 0.2634 03271 0.2590 0.3251 0.2375  0.2993
720 | 03421 03868 0.3167 0.3697 0.2979  0.3463
Avg | 0.2444 03084 0.2327 0.2994 0.2196 0.2815
D.2 BSA variable input lengths analysis

Table 11: Full result for the performance of the base model and BSA according to changes in Input
length. Experiments were conducted on Weather and PEMS03 data using DLinear, RLinear, and
iTransformer models.

Dlinear

RLinear

base

MSE

MAE

BSA

MSE

MAE

base

MSE

MAE

BSA

MSE

MAE

iTransformer

base

MSE

MAE

BSA

MSE

MAE

Weather
48

96
192
336
720

Avg

0.2187
0.2477
0.3086
0.3817
0.2892

0.2950
0.3203
0.3696
0.4204
0.3513

0.1616
0.1994
0.2460
0.3085
0.2289

0.2332
0.2715
0.3094
0.3585
0.2932

0.1898
0.2315
0.2897
0.3699
0.2702

0.2322
0.2654
0.3064
0.3566
0.2902

0.1783
0.2206
0.2768
0.3579
0.2584

0.2233
0.2583
0.2980
0.3499
0.2824

0.2054
0.2490
0.3075
0.3831
0.2862

0.2271
0.2695
0.3099
0.3595
0.2915

0.1713
0.2178
0.2716
0.3459
0.2517

0.2124
0.2541
0.2947
0.3442
0.2763

Weather
96

96
192
336
720
Avg

0.1630
0.2091
0.2634
0.3421
0.2444

0.2363
0.2832
0.3271
0.3868
0.3084

0.1519
0.1912
0.2375
0.2979
0.2196

0.2203
0.2601
0.2993
0.3463
0.2815

0.1656
0.2119
0.2679
0.3465
0.2480

0.2108
0.2512
0.2911
0.3412
0.2736

0.1594
0.2013
0.2541
0.3315
0.2366

0.2065
0.2444
0.2823
0.3338
0.2667

0.1706
0.2203
0.2762
0.3551
0.2556

0.2096
0.2544
0.2952
0.3473
0.2766

0.1598
0.2052
0.2526
0.3252
0.2357

0.2037
0.2466
0.2856
0.3371
0.2682

Weather
192

96
192
336
720
Avg

0.1514
0.1952
0.2492
0.3324
0.2321

0.2208
0.2660
0.3100
0.3771
0.2934

0.1466
0.1856
0.2315
0.2958
0.2149

0.2138
0.2530
0.2914
0.3436
0.2754

0.1522
0.1963
0.2502
0.3285
0.2318

0.1982
0.2383
0.2785
0.3313
0.2616

0.1471
0.1898
0.2393
0.3111
0.2218

0.1960
0.2360
0.2733
0.3242
0.2574

0.1650
0.2098
0.2625
0.3356
0.2432

0.2100
0.2510
0.2903
0.3410
0.2731

0.1521
0.2023
0.2428
0.3089
0.2265

0.2008
0.2450
0.2810
0.3291
0.2640

PEMS03
48

96
192
336
720

Avg

0.5159
0.5673
0.5056
0.5524
0.5353

0.5565
0.5921
0.5437
0.5811
0.5684

0.4340
0.4646
0.4018
0.4398
0.4351

0.5021
0.5287
0.4767
0.5047
0.5031

1.2342
1.7909
1.2898
1.5496
1.4661

0.8375
1.0790
0.8454
0.9620
0.9310

1.0040
1.3785
1.0455
1.3303
1.1896

0.7564
0.9286
0.7490
0.8777
0.8279

0.4214
0.4010
0.4196
0.4699
0.4280

0.4518
0.4454
0.4485
0.4848
0.4576

0.2934
0.2551
0.3084
0.3507
0.3019

0.3715
0.3513
0.3801
0.4100
0.3782

PEMS03
96

96
192
336
720
Avg

0.4405
0.4658
0.3973
0.4420
0.4364

0.5097
0.5259
0.4669
0.5048
0.5018

0.4121
0.3876
0.3461
0.3922
0.3845

0.4875
0.4677
0.4317
0.4703
0.4643

1.0366
1.0995
0.8227
1.0101
0.9922

0.7815
0.7937
0.6434
0.7432
0.7405

0.6789
0.7128
0.5861
0.7194
0.6743

0.6359
0.6326
0.5408
0.6184
0.6069

0.2213
0.2687
0.2479
0.3093
0.2618

0.3226
0.3566
0.3303
0.3716
0.3453

0.1569
0.1865
0.1979
0.2488
0.1975

0.2689
0.2949
0.2957
0.3330
0.2981

PEMSO03
192

96
192
336
720

Avg

0.3904
0.3156
0.3078
0.3588
0.3432

0.4570
0.3932
0.3903
0.4370
0.4194

0.2660
0.2543
0.2650
0.3221
0.2768

0.3698
0.3552
0.3641
0.4110
0.3750

0.4078
0.3290
0.3276
0.3991
0.3659

0.4618
0.3916
0.3890
0.4418
0.4211

0.2674
0.2581
0.2723
0.3467
0.2861

0.3609
0.3394
0.3495
0.4038
0.3634

0.1463
0.1637
0.1738
0.2226
0.1766

0.2569
0.2641
0.2680
0.3000
0.2723

0.1218
0.1450
0.1623
0.2091
0.1596

0.2323
0.2484
0.2596
0.2924
0.2582

Table [TT]shows the full results of the performance of the base model and BSA according to changes
in Input length. Experiments were conducted on Weather and PEMSO03 data using DLinear [53]],
RLinear [28]], and iTransformer [31]] models. Table3]in the main text shows the summarized results.

D.3 BSA computational cost analysis

Table[T2] presents a comprehensive analysis of BSA’s computational cost. We measured the model
training time (sec/lstep), peak memory usage (GB), and the number of parameters (M) for both the
base model and the model with BSA applied. The experiments were conducted using the lightweight
Weather dataset with 21 channels and the heavy PEMSO03 dataset with 358 channels. Tests were
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Table 12: Full result for the model training time (sec/1 step), peak memory usage (GB), and the
number of parameters (M) for both the base model and the model with BSA applied. The experiments
were conducted using the lightweight Weather dataset with 21 channels and the heavy PEMS03
dataset with 358 channels. Tests were performed on Timesnet, iTransformer, Crossformer, and
PatchTST models.

| TimesNet | iTransformer | Crossformer | PatchTST

Time (sec/lstep) | base BSA  gain(%) | base BSA gain(%) | base BSA gain(%) | base BSA gain(%)
96 | 0.066 0.070 5.37 0.024 0.029 20.71 0.076  0.079 3.58 0.045 0.046 1.52
192 | 0.076 0.072  -4.56 0.024 0.025 3.92 0.072  0.078 8.28 0.046  0.048 3.01
Weather 336 | 0.081 0.078 -3.30 | 0.025 0.027 8.05 0.077  0.080 3.66 0.050 0.052 5.12
720 | 0.104 0.107 2.47 0.025 0.033  30.74 | 0.075 0.080 6.50 0.048  0.049 2.88
Avg | 0.082 0.082 0.00 0.024 0.028 15.86 | 0.075 0.079 5.50 0.047 0.049 3.13
96 | 1.160 1.147 -1.06 0.077 0.080 3.96 0.163 0.162  -0.95 0.878 0.877  -0.10
192 | 1.791 1.717  -4.12 0.079 0.082 3.69 0296 0.290 -1.98 0.889 0.882 -0.74
PEMS03 336 | 2.374 2.502 5.40 0.097 0.096 -1.26 0.492  0.485 -1.45 0.881 0.883 0.27
720 | 4397 4.425 0.63 0.115 0.118 2.57 0965 0.929 -3.78 0.908 0.902 -0.57
Avg | 2430 2.448 0.21 0.092  0.094 2.24 0479 0466  -2.04 0.889 0.886  -0.29

Memory (GB) | base BSA gain(%) | base BSA gain(%) | base BSA gain(%) | base BSA gain(%)
96 | 043 043 004 | 020 025 2465 | 027 028 285 | 159 160 036
192 | 057 058 1.8 | 021 032 5408 | 048 049 LIl 1.60 161 047
Weather 336 | 079 081 215 | 022 029 3093 | 087 088 081 1.63 163 030
720 | 138 137 007 | 025 030 1957 | 228 228 024 | 168 168 025
Avg | 079 080 082 | 022 029 3231 | 097 098 125 | 1.62 163 035
96 | 579 601  3.66 | 357 3.68 304 | 723 725 032 | 2540 2552 046
192 | 732 759 374 | 365 375 276 | 1224 1226 022 | 2549 2560 044
PEMS03 336 | 1026 10.01 -246 | 3.80 389 230 | 1996 19.98 0.10 |2561 2571  0.38
720 | 17.07 1646  -3.58 | 4.18 423 127 | 4234 4236 005 | 2595 2602 024
Avg | 1011 1002 034 | 3.80 3.89 234 | 2044 2046 017 | 2561 2571 038

Parameters (M) | base BSA gain(%) | base BSA gain(%) | base BSA gain(%) | base BSA  gain(%)
96 | 1.354 1.368 1.05 4.848 4.852 0.08 0.283  0.301 6.41 9.46 948 0.15
192 | 1.363 1.381 1.34 4.897 4.897 0.00 0.291 0.313 7.62 10.05 10.07 0.18
Weather 336 | 1.377 1.391 1.03 4971 4971 0.00 0.302 0.317 4.67 10.94 10.96 0.17
720 | 1414 1.433 1.29 5.168 5.172 0.08 0.333 0.347 4.24 13.30  13.32 0.14
Avg | 1.377 1.393 1.18 4971 4973 0.04 0.302  0.320 5.73 10.94 10.96 0.16
9 | 151.6 1519 0.16 4.834 5.076 5.00 10.69 10.94 2.26 946  9.71 2.55
192 | 151.6 1519 0.16 4.883 5.125 4.95 1145 11.69 2.11 10.05 10.30 2.40
PEMS03 336 | 151.6 1519 0.16 4957 5.199 4.87 12.57 12.81 1.92 1094 11.18 221
720 | 151.7 1519 0.16 5.154  5.396 4.69 1558 15.82 1.55 13.30 13.54 1.82
Avg | 151.6 1519 0.16 4.957  5.199 4.88 12.57  12.81 1.96 1094 11.18 2.25

performed on Timesnet [48]], iTransformer [31]], Crossformer [54]], and PatchTST [36] models. Linear
models were excluded from the experiments as they are very lightweight and their training cost is not
an issue. Table @ in the main text shows the summarized results.

D.4 Pre/Post BSA activation signal visualization

Figure 16| demonstrates the transition between pre-activation F' (left) and post-activation F (right)
during the inference process. The figure shows the spectrum of randomly sampled activations from
the DLinear model trained with a 720 prediction length on the SWDR (W/m) channel of the weather
dataset. The x-axis signifies timesteps while the y-axis indicates frequency. To enhance visibility
in the low-frequency region, y-axis values below 0.1 are presented in a log scale, whereas values
above 0.1 are depicted in a linear scale. A darkening in the high-frequency region is observed from
pre-activation to post-activation, suggesting that the activations may undergo a denoising effect in the
high-frequency areas as they pass through the SA-Matrix.
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Figure 11: The kernel density estimate graphs of the SA-Matrix from the iTransformer model
finetuned with a 720 prediction length on the Weather Data and FFT graphs of the data.
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Figure 12: The kernel density estimate graphs of the SA-Matrix from the DLinear model finetuned
with a 720 prediction length on the ETTh1 dataset and FFT graphs of the data.
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Figure 13: The kernel density estimate graphs of the SA-Matrix from the DLinear model finetuned
with a 720 prediction length on the ETTm1 dataset and FFT graphs of the data.
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Figure 14: The kernel density estimate graphs of LUFL, MULL, OT, and LULL channels of the
SA-Matrix from the iTransformer model with a 720 prediction length on the original and synthetic
ETThl data. Row (a) represents the original data, while rows (b) - (d) display synthetic datasets.
These datasets were generated by adding sine waves with periods of 100, 300, and 1000, respectively.
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Figure 15: The kernel density estimate graphs of the SA-Matrix from the iTransformer model
finetuned with a 720 prediction length on the ETTm1 dataset and FFT graphs of the data.
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Figure 16: Illustration of the SWDR (W/m) channel of the Pre-Activation (left) and Post-Activation
(right) through SA-Matrix from the DLinear model trained with a 720 prediction length on the

weather dataset.
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NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and precede the (optional) supplemental material. The checklist does NOT
count toward the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

¢ You should answer [Yes] , ,or [NA] .

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way,
we acknowledge that the true answer is often more nuanced, so please just use your best judgment
and write a justification to elaborate. All supporting evidence can appear either in the main paper
or the supplemental material provided in the appendix. If you answer [Yes] to a question, in the
justification please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading “NeurIPS paper checklist',
* Keep the checklist subsection headings, questions/answers and guidelines below.
* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer:[Yes]

Justification: The paper’s contributions and scope are well-explained throughout the abstract
and introduction, and the entire paper is written to provide a consistent and comprehensive
conclusion.

Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: Our paper discusses the limitations and future research directions to address
them in the conclusion section[3l

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

 The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: Our paper proposes a new model architecture and demonstrates its superiority
through a practical approach with extensive experiments rather than theoretical proofs.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Our paper provides detailed information to reproduce all experiments. Addi-
tionally, the complete experiment code will be provided.
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Guidelines:

» The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: https://github.com/DJLee1208/BSA_2024
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
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* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Our paper provides detailed information about the experiments, including data
splits, hyperparameters, how they were chosen, and the type of optimizer, in the main text
and the appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: In the main results, we used a paired t-test to demonstrate the superiority of
our methodology and reported the p-value.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We reported the types and number of GPUs used in the experiments, as well as
the packages used for training.
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Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Yes, the research conducted in the paper fully conforms to the NeurIPS Code
of Ethics in every respect. We have ensured that all ethical guidelines and standards have
been meticulously followed throughout the study.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Our paper discusses the potential broader impacts of our research in the
conclusion.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
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12.

13.

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA] .

Justification: Our model does not pose such risks, and therefore, safeguards for responsible
data or model release were not applicable.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Yes, we have properly credited the creators or original owners of assets used
in the paper, including publicly available models and packages, with accurate citations.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: This paper does not include new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.
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* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This paper does not involve crowdsourcing.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
* Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer:|[NA]
Justification: This paper does not involve research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
* Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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