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Abstract

Humans excel at detecting and segmenting moving objects according to the Gestalt
principle of “common fate”. Remarkably, previous works have shown that human
perception generalizes this principle in a zero-shot fashion to unseen textures or
random dots. In this work, we seek to better understand the computational basis
for this capability by evaluating a broad range of optical flow models and a neuro-
science inspired motion energy model for zero-shot figure-ground segmentation
of random dot stimuli. Specifically, we use the extensively validated motion en-
ergy model proposed by Simoncelli and Heeger in 1998 which is fitted to neural
recordings in cortex area MT. We find that a cross section of 40 deep optical flow
models trained on different datasets struggle to estimate motion patterns in random
dot videos, resulting in poor figure-ground segmentation performance. Conversely,
the neuroscience-inspired model significantly outperforms all optical flow models
on this task. For a direct comparison to human perception, we conduct a psy-
chophysical study using a shape identification task as a proxy to measure human
segmentation performance. All state-of-the-art optical flow models fall short of
human performance, but only the motion energy model matches human capability.
This neuroscience-inspired model successfully addresses the lack of human-like
zero-shot generalization to random dot stimuli in current computer vision models,
and thus establishes a compelling link between the Gestalt psychology of human
object perception and cortical motion processing in the brain.
Code, models and datasets are available at https://github.com/mtangemann/
motion_energy_segmentation.

1 Introduction

Motion is a powerful cue that humans use to detect and segment visual objects. A striking example
are camouflaged animals, which are difficult to spot when stationary but become much easier to detect
when moving. Motion segmentation in humans is believed to be driven by the principle of common
fate [47, 48, 42], which posits that elements that move together, belong together. Remarkably, human
perception generalizes this principle in a zero-shot fashion to novel textures or moving random dots.
For example, the seminal work by Johansson [19] showed that humans can easily detect biological
motion from only few moving dots. More recently, Robert et al. [31] introduced random dot stimuli
called object kinematograms that preserve the motion in a video while ensuring that static appearance
cues are uninformative about the video contents (Fig. 1, example video in the supplemental material).
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Figure 1: We compare state-of-the-art optical flow estimators and a neuroscience inspired motion
energy model on a figure-ground segmentation task. For evaluation, we use random dot stimuli with
the same motion patterns as the original videos, but for which the appearance of each individual
frame is informative (example video in the supplemental material). The neuroscience inspired model
generalizes to these stimuli much better than state-of-the-art optical flow models.

Nevertheless, humans were able to classify the animals and objects in these videos based on motion
information alone.

In this work, we seek to understand the computational basis for appearance-agnostic motion perception
in humans which enables this zero-shot generalization to random dots. Recent advancements in
computer vision models for motion segmentation enable accurate segmentation of moving objects
in natural videos based on a combination of optical flow estimation networks with downstream
segmentation networks (e.g., [51]). However, it remains untested whether these models generalize
in a similar way as human perception. Since the motion estimation stage is critical for segmenting
moving objects, we focus on testing a broad range of state-of-the-art optical flow methods in
combination with a fixed segmentation network. Our analysis reveals that existing computer vision
approaches do not generalize in a human-like manner: Many high-performing models on natural
stimuli perform near chance level for random dots.

In the primate visual cortex, area MT is known to be involved in motion perception and interpretation.
Computational models for this area based on motion energy were proposed almost forty years ago
[1, 46] and since then have been shown to predict key characteristics of neural firing patterns [37].
Instead of matching deep features between two frames, these models rely on spatio-temporal filtering
in pixel space combined with a post-processing stage to resolve ambiguities. We demonstrate that
this mechanism can be successfully integrated with deep neural networks for motion segmentation
in realistic videos and reaches the performance of early deep learning based optical flow models on
the original, textured videos—which is remarkable considering that the motion energy model was
developed to explain the tuning of individual neurons and has several orders of magnitude fewer
parameters than typical optical flow networks. Crucially, the motion energy model substantially
outperforms all tested optical flow models in zero-shot generalization to moving random dots. In
a direct comparison with humans in a controlled psychophysics study, the motion energy based
approach is the only model that can match human capability.

In summary, our paper makes the following contributions:

• We show that a a broad range of state-of-the-art optical flow methods do not support
human-like motion segmentation that generalizes to random dot patterns.

• We demonstrate that a classical neuroscience model can be successfully integrated with deep
neural networks and generalizes to random dot stimuli.

• We conduct a psychophysical experiment to directly compare random dot motion segmenta-
tion in humans and machines. While state-of-the-art optical flow models fall short of human
performance, the motion energy model can match it.

These results establish a compelling link between the Gestalt psychology of human object perception
and cortical motion processing in the brain, showing that a motion energy approach can overcome the
lack of human-like zero-shot generalization to random dot stimuli in current computer vision models.
Integrating this mechanism with state-of-the-art optical flow methods is promising path towards more
robust motion estimation models.
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2 Related Work

Motion energy. Modelling motion perception in humans has been frequently approached using
motion energy models. These models exploit the fact that a moving pattern corresponds to oriented
edges when considering a video as a spatio-temporal volume [1, 46]. Several models have been
proposed that build on this principle, aiming to explain the tuning properties of neurons found in
visual areas V1 and MT [37, 15, 32, 28]. With few exceptions [41, 38], these models have not been
used as a motion estimation models in a computer vision context. Our work is the first to study
motion energy models for moving object segmentation.

Optical flow estimation. Optical flow traditionally has been formulated as an optimization problem
with the goal of finding good matches between two frames [16]. During recent years, optimization
based methods have been superseded by deep neural networks that frame optical flow estimation as
an end-to-end regression task. FlowNet [11] pioneered this approach with a CNN that optionally
includes an explicit temporal matching operation. Following works contributed better training data
and proposed coarse-to-fine architectures to predict optical flow [17, 39, 40] which lead to substantial
performance improvements. More recently, models that iteratively refine a high resolution optical
flow map [43, 18] and Transformer-based models [36, 53, 54] have further improved state-of-the-art.
Some works have compared optical flow models to human motion perception [56, 41], however not
in the context of motion segmentation.

Motion Segmentation. The typical approach to motion segmentation is using optical flow as
input for a downstream segmentation model. One classic line of work computes point trajectories
from optical flow and then clusters the trajectories to segment moving regions [6, 29, 20]. Classical
geometric approaches to motion segmentation have been combined with deep learning in later work
[4, 5]. More recently, purely deep learning based approaches have been able to improve state-of-the-
art [44, 9, 22, 23, 51]. To achieve high performance on classical motion segmentation datasets, the
optical flow based motion segmentation is typically combined with appearance based segmentation
[9, 52]. In this work, we evaluate generalization to random dot stimuli for which appearance is not
informative, so we focus on purely motion-driven approaches.

3 Methods

The aim of this work is to evaluate which computational models match the capabilities of humans for
zero-shot motion segmentation of random dot patterns. We follow the standard motion segmentation
approach in computer vision and first use a motion model to estimate the motion in an input video,
followed by a segmentation network that predicts the foreground mask. In order for models to
perform well on zero-shot segmentation of random dot patterns, it is critical that the motion estimator
used by the model generalizes well to these random dot stimuli. Ideally, the motion estimator would
be invariant to changes in texture. Therefore, we focus on the motion estimation stage by evaluating
a broad range of optical flow models in comparison to a neuroscience inspired motion energy model.
As a segmentation model, we use the same segmentation architecture for all motion estimators which
we train from scratch for every model.

3.1 Optical Flow Models

We use a range of optical flow models that includes all major deep learning based approaches to optical
flow estimation. FlowNet 2.0 [17] was the first CNN based model that reached the performance
of classical, optimization based methods. We consider three variants of the model using different
combinations of subnetworks. PWC-Net [39] introduced a multi-scale approach that combined
operations from classical approaches (such as cost volumes and warping), with components from
deep learning. Different from previous models, RAFT [43] is not based on a coarse-to-fine approach
but rather on iterative refinement of a high resolution optical flow map derived from multi-scale
correspondences. GMA [18] extends the RAFT architecture by introducing a Transformer-based
module to better handle occlusions, which have been shown to be difficult for previous models. More
recently, GMFlow [53, 54] and FlowFormer++ [36] have been proposed as fully Transformer-based
architectures for optical flow estimation.
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We use the implementations and checkpoints of these models from the MMFlow library [8], except
for FlowFormer++ and GMFlow for which we use the implementations and checkpoints provided by
the respective authors12. For each architecture, we consider checkpoints trained on different datasets
that are common in the field, including the FlyingChairs [11], FlyingThings3d [24], Sintel [7] and
KITTI [25, 26]. In total, we evaluate 40 optical flow models.

We apply the models to predict multi-scale optical flow, in order to match the multi-scale features
predicted by the motion energy model. All of the optical flow models internally use several scales to
predict optical flow. However, this representation is followed by non-trivial processing to combine
motion information across scales, so that using this internal representation directly would most likely
lead to inferior performance. Therefore we use the unmodified models and scale the final optical flow
prediction to the desired resolutions using bilinear interpolation.

3.2 Motion Energy Model

Motion energy models are based on the insight that a motion pattern in a video corresponds to a
spatio-temporal orientation when the video is considered as an x-y-t volume [1, 46]. The motion
at every pixel can therefore be estimated by using spatiotemporal filters that respond to a particular
motion direction and speed. This mechanism has important differences from the optical flow models
discussed before. All of the optical flow models compute deep features for two frames individually
and match these features between two frames to estimate motion. The spatio-temporal filters in
motion energy models on the other hand operate directly in pixel space. This approach leads to
more ambiguous matches, which are typically resolved by considering more than two frames, and a
postprocessing stage.

In this study, we build on the influential motion energy model by Simoncelli & Heeger [37]. In
addition to the oriented filters described above, this model introduced a second stage that implements
an intersection of constraints construction [13, 2] in order to resolve ambiguities of the linear filter
responses. This motion energy model can be implemented as a CNN with the architecture shown
in Figure 2. We derived the weights of the CNN from the the parameters of the original model
and verified that our PyTorch [30] implementation of the motion energy model equals the original
MATLAB implementation3 up to numerical differences. Following the original model, we apply
the model for five different input scales that are obtained by repeatedly blurring and downsampling
the input by a factor of two. To streamline the implementation, we do not scale the activations after
every layer and experimentally verified that this change does not affect downstream performance for
motion segmentation.

3.3 Segmention model

We use a coarse-to-fine segmentation network to predict per-pixel logits for the respective pixel
belonging to the foreground object (Figure 2). Input to the segmentation model are the multi-scale
motion energy maps or multi-scale optical flow maps as predicted by the models described earlier.
At each scale, the segmentation model consists of three components: The input projection layer
predicts motion features for each scale. The core of the network is a refinement CNN that aggregates
features across scales. At each scale, the refinement CNN concatenates the motion features from
the current scale with the refined representation from all previous scales and predicts the refined
representation for the current scale. Finally, the output projection layer predicts the segmentation
given the refined representation from the finest scale. All layers except for the output projection
are followed by a CELU nonlinearity [3] and instance normalization [45]. The parameters of the
components are shared across the stages, so that the network is essentially a recurrent neural network
that integrates information from coarsest to the finest scale in order to predict a segmentation.

3.4 Training

All models are trained on a synthetic video dataset that we generated using the Kubric library[14].
Each video shows a single moving object in front of a moving background. The 3D objects and

1https://github.com/XiaoyuShi97/FlowFormerPlusPlus
2https://github.com/autonomousvision/unimatch
3https://www.cns.nyu.edu/~lcv/MTmodel/
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Figure 2: (top) Our motion segmentation architecture: The motion estimation predicts multi-scale
optical flow or motion energy, the segmentation model predicts the moving foreground region.
(bottom left) The motion energy model is implemented as a CNN. The weights are chosen such
that the CNN is equivalent to the original model by [37]. (bottom right) The segmentation model
combines motion features across scale and predicts a binary segmentation at the input resolution.

backgrounds used for dataset generation are scans of everyday objects and scenes, resulting in highly
realistic renderings. We used 901 videos for training and 100 test videos, each having 90 frames at
30Hz. The training and test videos used different sets of object and backgrounds but are otherwise
sampled from the same distribution. The code and hyperparameters for generating videos, as well as
the rendered dataset, are publicly available4.

For all models, we freeze the weights of the motion estimator and only train the downstream
segmentation network. As common for binary motion segmentation, we use per pixel binary cross
entropy to the ground truth masks as loss. We use the Adam optimizer [21] with a learning rate
of 1e − 4 for all models and train for 40.000 steps using a batch size of 8. All models are trained
on NVIDIA GeForce RTX 2080 Ti GPUs with 12GB of VRAM. Depending on the computational
requirements of the motion model, training the segmentation model on a single GPU takes between 2
and 6 hours.

3.5 Zero-shot evaluation on random dot stimuli

We evaluate models on the original test videos as well as random dot stimuli generated for all test
videos based on the ground truth optical flow. We use the same procedure as [31] for generating
random dot stimuli using 500 dots with a lifetime of 8 frames, which matches the dot density and
lifetimes.

We apply all models using a shifting window approach for the full length videos, but excluding the
first and last four frames so that the window is fully contained within the video for all models. For
evaluation, we obtain a binary prediction by thresholding with 0.5 and measure performance by
computing IoU and F-Score for each frame individually and then averaging over the test set.

4https://github.com/mtangemann/motion_energy_segmentation
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4 Results

4.1 Zero-Shot Random Dot Segmentation

Table 1 summarizes the motion segmentation performances achieved when using different motion
estimators, both on the i.i.d. test set and the corresponding random dot stimuli. For a better overview,
we visualize the performances as measured by IoU in Figure 1 and in the appendix.

Original Random Dots
Motion Estimator Training Dataset IoU F-Score IoU F-Score

Motion Energy (ours) - 0.759 0.845 0.600 0.718
GMFlow Flying Things 3D 0.885 0.925 0.381 0.493

(2 scales, 6 refinements) Sintel 0.823 0.874 0.222 0.315
Mixed 0.823 0.874 0.069 0.106

FlowNet2 SD FlyingChairs 0.828 0.884 0.377 0.499
FlowNet2 CSS FlyingThings3D 0.837 0.896 0.351 0.469

FlyingChairs 0.735 0.818 0.252 0.359
PWC-Net FlyingThings3D 0.729 0.815 0.347 0.469

FlyingChairs 0.544 0.662 0.324 0.442
KITTI 0.600 0.715 0.121 0.193

FlowNet2 FlyingChairs 0.662 0.757 0.278 0.380
FlyingThings3D 0.821 0.877 0.154 0.241

FlowNet2 CS FlyingThings3D 0.800 0.867 0.269 0.374
FlyingChairs 0.669 0.760 0.247 0.359

GMFlow (2 scales) Flying Things 3D 0.704 0.793 0.267 0.373
Sintel 0.733 0.812 0.253 0.351
Mixed 0.743 0.822 0.210 0.300

GMFlow (1 scale) Mixed 0.843 0.897 0.225 0.308
Flying Things 3D 0.797 0.859 0.174 0.244

GMA (+P) KITTI 0.520 0.630 0.154 0.224
FlyingChairs 0.646 0.717 0.101 0.142
Mixed 0.895 0.932 0.054 0.078
FlyingThings3D 0.850 0.894 0.039 0.057

FlowFormer++ Flying Chairs 0.741 0.800 0.144 0.218
Flying Things 3D 0.901 0.935 0.119 0.182
Sintel 0.908 0.942 0.092 0.140
Flying Things 3D 0.902 0.938 0.072 0.113

GMA KITTI 0.579 0.679 0.143 0.214
FlyingChairs 0.643 0.724 0.134 0.194
FlyingThings3D 0.867 0.909 0.100 0.150
FlyingThings3D + Sintel 0.890 0.928 0.089 0.132
Mixed 0.890 0.927 0.077 0.109

GMA (P-only) FlyingChairs 0.663 0.743 0.138 0.207
KITTI 0.567 0.650 0.112 0.159
Mixed 0.881 0.920 0.093 0.141
FlyingThings3D 0.867 0.909 0.090 0.142

RAFT FlyingThings3D + Sintel 0.886 0.924 0.132 0.180
FlyingThings3D 0.869 0.909 0.116 0.172
Mixed 0.885 0.925 0.108 0.145
KITTI 0.506 0.600 0.107 0.147
FlyingChairs 0.647 0.718 0.100 0.147

Table 1: Model performances for the i.i.d. test videos and zero shot to the corresponding random dot
stimuli with the same motion patterns. For all motion estimators, the same segmentation network is
used to predict the figure-ground segmentation. Results are grouped by the motion estimation model
and ordered by the performance on the random dot stimuli.

Recent optical flow methods perform strongly on the original videos. FlowFormer++ works best
on our dataset with an IoU of 90.8%, closely followed by a GMA variant that reaches 89.5% IoU.
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These results parallel the strong performance of recent Transformer-based architectures on standard
optical flow benchmarks. The motion energy based model only achieves a performance of 75.9%
IoU and lags behind state-of-the-art optical flow models, but performs similar as earlier deep learning
based optical flow models. This result is remarkable when considering that the motion energy model
predates the deep learning models by several decades and has not been tuned for dense, end-to-end
motion prediction. Within each model, the checkpoints from the FlyingThings3d dataset tend to
perform best for the original videos. The FlyingThings3d dataset contains renderings of 3D objects
undergoing rigid motion, so arguably it is the most similar dataset compared to the one used in this
study.

Motion energy generalizes much better to random dots. The motion energy based model reaches
an IoU of 60.0%, which outperforms the performance of the second best model by more than 20
percentage points. Strikingly, the FlowFormer++ and GMA models that performed best on the
original videos generalize particularly bad to the random dot stimli (IoU < 10%). Overall, more
dated optical flow architectures such as FlowNet2 variants and PWC-Net tend to generalize better
to random dot stimuli than more recent approaches. An interesting exception is GMFlow, which
reached an IoU of 38.1% and performed best among all optical flow models. We do not observe a
clear effect of the training dataset.

We visualize model predictions in Figure 3. For the original videos, the quality of the predicted
optical flow varies but allows for a clear segmentation of the moving object. The object is also clearly
represented in the motion energy maps, with some feature maps responding highly to the background
and others to the moving object. The motion energy maps however tend to be noisier than the optical
flow predictions, which explains the lower performance of the motion energy model for the clean
videos.

The random dot stimuli exhibits the same motion as the original video, so the prediction of an ideal
motion estimator would be unchanged. The optical flow methods however fail to properly estimate
the motion of the foreground object. While some methods like FlowNet 2.0 and PWC-Net predict a
highly noisy motion pattern that roughly matches the location of the foreground object, many optical
flow estimators fail to detect the foreground motion at all. The motion energy on the other hand
looks highly similar for the random dot stimulus and the original video, allowing the motion energy
segmentation to generalize well in this case.

4.2 Ablation study

As an ablation study, we evaluated whether the performance of the motion energy segmentation model
can be improved by learning the parameters of the motion model. We tested different combinations
of layers in the motion energy CNN that are fixed, finetuned or trained from scratch and trained them
end-to-end with the segmentation model.

The results in table 2 show that the original weights of the model allow for the best generalization
to random dots. This is remarkable when considering that the weights of the motion energy model
have been originally selected to explain the tuning properties of individual neurons, but not for
image-computable motion estimation. Some of the configurations however outperformed the original
weights on the original videos. So while the network architecture allows for generalization in
principle, all our models trained by gradient descent converged to solutions that performed well on
the training data but did not generalize.

As a further ablation study, we removed or replaced layers of the motion energy model. The results
in the supplemental information suggest that the pooling and normalization layers are particularly
important for generalization to random dots. More details and further experiments are provided in the
supplemental information.

5 Human Machine Comparison

The previous results have revealed differences between different motion estimation models in terms
of generalization to random dots. While it is known that humans can recognize objects in random dot
stimuli without prior training [31], the ability to segment objects in moving random dot patterns has
not been quantified before. We therefore conduct a human subject study in order to directly compare
the zero-shot generalization to random dots in humans and machines.

7

137141 https://doi.org/10.52202/079017-4357



Figure 3: Example predictions for different motion estimators. The motion pattern in the random dot
stimulus is the same as in the original video. While the optical flow estimates are highly accurate for
the original videos, the models struggle with the random dot stimuli that exhibit the same motion.
The activations of the motion energy model model however generalize well to the random dot stimuli,
enabling to detect and segment the foreground object.

Original Random Dots
V1 Linear V1 Blur MT Linear MT Blur IoU F-Score IoU F-Score

fix fix fix fix 0.759 0.845 0.600 0.718
fix fix finetune fix 0.776 0.856 0.563 0.686
finetune fix finetune fix 0.804 0.873 0.468 0.599
fix fix scratch scratch 0.794 0.873 0.463 0.583
finetune fix scratch scratch 0.827 0.887 0.395 0.508
finetune finetune scratch cratch 0.600 0.717 0.162 0.246
scratch fix scratch fix 0.660 0.752 0.052 0.087
scratch scratch scratch scratch 0.593 0.702 0.027 0.048

Table 2: Comparison of using the original weights (fix), finetuning the original weights (finetung) or
training from scratch (scratch) for the layers of the motion energy model.

Due to the inherent difficulty in directly evaluating the segmentation perceived by humans, we
employed a shape identification task as a surrogate requiring segmentation (Figure 4). Each trial
involved a random target shape and a distractor shape from the Infinite dSprites dataset [12]. The
random dot stimulus shows the target shape moving linearly across the center of the image with
random motion direction and speed. After the video concluded, participants were shown clean
renderings of the target and distractor shapes and were required to select the shape that they perceived
in the random dot stimulus. Since the shape alternatives were unknown while the random dot stimulus
was shown, participants had to segment and memorize the shape in the random dot video and then
compare it to the shape choices afterward. Therefore, performing well on this task necessitates
sufficiently good segmentation of the moving shapes within the motion patterns of the random dot
stimuli.
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Figure 4: We compare humans and machines using a random dot shape identification task as a proxy
to measure segmentation in humans. Shown a video of random dots, participants have to respond
which of two shapes was perceived in the video. Humans outperformed all optical flow based models,
but not the motion energy based model for this task. More details are provided in the supplemental
material.

We performed the study in a controlled vision lab environment, where participants viewed the
experiment on a VIEWPixx 3D LCD monitor (1920x1080, 120Hz) with the distance fixed to 65cm
using a chin rest. The duration of all videos was 1s at a framerate of 30 Hz. Overall, we collected data
from N=13 subjects, of which we excluded one subject due to insufficient visual acuity (remaining:
N=12, 4 female, 8 male). Among the subjects where both trained vision scientists and naive subjects.

We evaluated all models on the same stimuli as human subjects. Given a random dot video, we
applied the respective model to segment the video and selected the shape option that better matched
the prediction as measured by IoU.

The results in Figure 4 show that all models based on optical flow are clearly outperformed by
humans. Many of the optical flow based models perform near chance level, while some models
reached a non-trivial performance. Overall, more recent optical flow models that perform very well
on the original videos appear to generalize worse to this task, with GMFlow [53, 54] being a noteable
exception. Different from the optical flow models, the motion energy based approach is the only
model to match and even outperform human performance. More detailed results in the supplemental
information show that the motion energy segmentation model performs on par with the highest
performing participants of the study.

6 Limitations

To allow for comparing a large number of motion estimation models with a reasonable computational
budget we made compromises for other modeling aspects. We limited the size of the segmentation
network to allow for efficient training but performed a control experiment to show that using a more
sophisticated segmentation network does not improve generalization (see supplemental information).
Moreover, we used the same training schedule for all models but ensured that our setting supports all
models adequately by visually inspecting the loss curves.

When comparing humans and machines we did not model several factors that are expected to influence
human performance, such as the impact of internal noise and attentional lapses. As common in
psychophysics experiments, several subjects reported making accidental errors for few examples
[50] which negatively affects performance. So even a model that perfectly replicates the motion
processing algorithm in humans is not expected to perfectly replicate human behavior in our setting.

7 Broader impact

This work is highly interdisciplinary, bridging state-of-the-art computer vision motion segmentation
algorithms with the principles of Gestalt psychology and the neuroscience of cortical motion pro-
cessing in the brain. By showing that a neuroscience-inspired motion energy model can outperform
conventional optical flow models in zero-shot generalization to random dot stimuli, the study high-
lights the potential for integrating biological insights into AI systems. Benefits of broader impact
include the development of more robust and human-like AI systems, educational value, and the
creation of AI systems that are more aligned with human cognition.
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8 Discussion

Computational models for motion estimation have a long history in both computational neuroscience
and computer vision. Shallow models based on spatio-temporal filtering in pixel space have been
able to predict neural activity in brain areas related to motion perception [37, 32] and are compatible
with a range of phenomena in human perception [57]. In computer vision, models based on matching
deep features between two frames have continuously improved performance over the last years and
are successfully applied in a range of downstream tasks. Despite these successes, our study reveals a
striking gap between deep optical flow networks and human perception: While humans generalize
the common fate Gestalt principle to zero-shot segmentation of random moving dots, the optical
flow models fail to generalize to these stimuli. Furthermore, we show that a classic motion energy
approach can be scaled to realistic videos while matching human generalization capabilities.

The great success of deep neural networks in computer vision has spawned interest in using DNNs
also as a model for human vision, in particular for core object recognition [55]. In the same spirit,
deep neural networks might be promising models for human motion perception [56]. While promising,
our study parallels findings for core object recognition that show striking differences between human
perception and DNNs [49]. For motion perception, however, we show that is possible to combine
classical models from computational neuroscience with the scalability of deep learning. Further
integration of these modeling traditions is a promising path towards image computable models of
human motion perception [41].

While closing the gap between human perception and machine vision is crucial for computational
neuroscience, we believe that computer vision likely profits from better alignment with human
vision as well. Humans still greatly outperform machines in terms of robustness and efficiency.
Our study suggests a substantial entanglement of motion estimation with appearance in DNNs,
which might also be linked to the lack of robustness observed in state-of-the-art motion estimators
[33, 34]. Computational principles that better match human vision should be considered as promising
candidates for addressing these issues.

Finally, we argue that deep learning based models as presented in our work have the potential to
greatly improve our understanding of motion perception in humans. Low-level mechanisms for
motion estimation and higher level processes for motion interpretation have been mostly studied
in isolation [27]. In our work we follow a more holistic approach by studying the effects motion
detection mechanisms on the perception of moving objects, which offers several unique opportunities.
First, it is not necessary for most downstream tasks to perfectly estimate the physically correct
motion. For example, segmenting moving objects does require precise information about object
boundaries while other mistakes are less critical. Studying motion estimation and interpretation jointly
allows to better understand viable compromises in estimation accuracy as the basis for more efficient
processing. Second, studying end-to-end models of motion estimation and interpretation advances our
understanding of how neural mechanisms give rise to behavior. DNNs are a particularly promising
modeling approach positioned in a “Goldilocks zone” regarding the trade-off between biological
plausibility and scalability to natural stimuli and tasks [10]. In this vein, our work establishes a
compelling link between cortical mechanisms for motion estimation and the Gestalt psychology of
human object perception.

In the future, this work can be extended in several directions. While scaling remarkably well, the
original motion energy model is not able to match the performance of state-of-the-art optical flow
methods on natural scenes. We see integrating principles from computational neuroscience with
techniques from deep learning as a promising path towards closing this gap [41]. Moreover, training
the parameters of the CNN implementation of the motion energy model jointly with the segmentation
model did not lead to a generalizable solution. How humans learn generalizable motion perception
from data, or to which degree this capability is innate, are important questions for future research.
Finally, in the spirit of the neuroconnectionist research programme [10] we see our model as an
executable hypothesis for motion perception in the human brain. While matching human performance
in terms of generalization to moving random dots, this model might well fail to capture other aspects
of human motion perception. Further evaluating and extending models of motion perception to
capture a diverse range of phenomena is an exciting path towards a holistic understanding of human
perception.
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A Additional details about the results

For an additional overview, view visualize the segmentation performances on random dot stimuli as
reported in Table 1.
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Figure 5: Segmentation performances of the evaluated models on the random dot stimuli. Same data
as in Table 1.

B Additional experiments

B.1 Importance of components of the motion energy model

We conducted an additional ablation study in order to better understand which aspects of the motion
energy model are essential for generalization to random dot stimuli. We removed or replaced
individual layers as described in Table 3 and trained the ablated models from scratch using in the
same way as the baseline model.

The results in Table 2 hint at the normalization and pooling layers being important for generalization.
When the Gaussian pooling layers are removed completely, the performance on original videos
even slightly improves while the generalization to random dot stimuli is substantially reduced.
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Replacing the squaring-based nonlinear layers with ReLU layers, however, hardly changes the
model’s performance.

Original Random Dots
Condition IoU ↑ F-Score ↑ IoU ↑ F-Score ↑
Baseline 0.759 0.845 0.600 0.718

Replace RectifiedSquare → ReLU (MT) 0.753 0.838 0.609 0.725
Replace Square → ReLU (V1) 0.770 0.854 0.536 0.663
Remove MT Linear 0.768 0.856 0.481 0.609
Remove MT 0.770 0.854 0.451 0.583
Remove Blur (V1, MT) 0.801 0.872 0.421 0.540
Replace ChannelNorm → InstanceNorm (V1, MT) 0.592 0.703 0.230 0.340
Remove Normalization (V1, MT) 0.400 0.516 0.018 0.018

Table 3: Ablation study: Performance of the model on original videos and corresponding random dot
stimuli with various layers of the motion energy model removed or replaced. Results are ordered by
IoU on the random dot stimuli.

B.2 Multi-frame optical flow

The motion energy model uses a window of 9 frames as input, while typical optical flow methods
estimate correspondences between only two frames. To rule out the possibility that the results
observed in our paper are mainly explained by the different input window lengths, we perform an
ablation study in which we apply optical flow methods using the same 9 frame windows. For each
window, we compute the optical flow between the central frame, for which the segmentation has to
be predicted, to the 8 other frames in the window. The stacked optical flow fields are then used as the
input to the segmentation network.

The results in Table 4 and Figure 6 show some improvement on the original videos but an ever
wider gap to the motion energy model in terms of of generalization to random dots. The differences
between the motion energy and optical flow models therefore cannot be explained by the different
input lengths.

Figure 6: Performance of multi-frame optical flow based models on the original videos and corre-
sponding random dot videos.

B.3 Comparison with state-of-the-art motion segmentation

In our study we used a relatively small segmentation network downstream to the respective motion
estimator. State-of-the-art motion segmentation models typically target multi-object segmentation in
real world videos and therefore use more complex segmentation networks. In order to verify that the
results in our paper are not caused by using a smaller segmentation network, we evaluated the state
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Original Random Dots
Motion Estimator Training Dataset IoU F-Score IoU F-Score

Motion Energy (ours) - 0.759 0.845 0.600 0.718
FlowNet2 SD FlyingChairs 0.878 0.928 0.221 0.325
FlowNet2 FlyingChairs 0.808 0.868 0.209 0.300

FlyingThings3D 0.881 0.929 0.058 0.100
PWC-Net FlyingChairs 0.816 0.886 0.163 0.250

FlyingThings3D 0.825 0.886 0.137 0.221
KITTI 0.712 0.811 0.038 0.060

RAFT FlyingThings3D + Sintel 0.912 0.948 0.156 0.222
FlyingChairs 0.863 0.914 0.126 0.195
Mixed 0.896 0.934 0.117 0.164
FlyingThings3D 0.894 0.934 0.090 0.132
KITTI 0.714 0.794 0.031 0.053

FlowNet2 CS FlyingChairs 0.841 0.899 0.137 0.220
FlyingThings3D 0.847 0.904 0.075 0.129

GMA (+P) FlyingChairs 0.856 0.912 0.132 0.212
Mixed 0.900 0.936 0.114 0.179
FlyingThings3D 0.899 0.936 0.104 0.171

GMA FlyingChairs 0.864 0.917 0.131 0.212
Mixed 0.900 0.937 0.090 0.139
FlyingThings3D + Sintel 0.909 0.943 0.066 0.100
FlyingThings3D 0.903 0.943 0.060 0.098
KITTI 0.756 0.834 0.051 0.084

GMA (P-only) FlyingChairs 0.846 0.901 0.128 0.207
KITTI 0.766 0.847 0.092 0.155
FlyingThings3D 0.903 0.940 0.083 0.139
Mixed 0.912 0.947 0.077 0.117

FlowNet2 CSS FlyingChairs 0.850 0.908 0.084 0.141
FlyingThings3D 0.862 0.918 0.070 0.121

Table 4: Ablation study: We apply the optical flow estimators to a window of 9 frames by using the
central frame as references and computing optical flow to each of the 8 other frames. The stacked
optical flow fields are used as inpute for the segmentation network.

of the art OCLR model [51] in our setting. The OCLR model uses optical flow estimated by RAFT
[43], which we also included in our experiments. The segmentation network however uses a U-Net
architecture with Transformer bottleneck and was trained to segment multiple objects on a synthetic
dataset. We use the published weights and do not retrain the model on our data.

The results in Table 5 show that the model performs very well on the original data. OCLR outperforms
our motion energy based model and achieves a performance similar to the best optical flow based
models considered in this work. At the same time, the model does not generalize to the corresponding
random dot stimuli. These results provide further evidence that the low generalization to random dots
is not due to the architecture of the segmentation network or the RGB training data, but a property of
the motion estimator.

Model IoU (original) IoU (random dots)
OCLR 0.838 0.026
Motion Energy Segmentation 0.759 0.600

Table 5: Comparison of the state-of-the-art motion segmentation model OCLR, and our segmentation
model based on a motion energy model.
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C Additional details about the human subject study

C.1 Comparison of humans and machines by example difficulty

As a measure of task difficulty, we count the number of informative dots. A dot is informative, if it is
contained in either the target and distractor shape but not both (see Figure 7, left). Only these dots
allow discriminating between the different shapes.

We fitted psychometric curves for human participants and models as a function of the number of
informative dots, using the psignifit toolbox [35]. The results in Figure 7 confirm that only the motion
energy model is able to match the performance of human subjects, especially for stimuli with a
medium number of informative dots.

Figure 7: (left) As a measure of task difficulty, we count the number of informative dots that allow
discriminating betwen the two shape alternatives. (right) Psychometric curves for humans, the motion
energy based model and the four best optical flow models for the task as in 8.
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Figure 8: Comparison of the human and model performances for the random dot shape matching
task.
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C.2 Screenshots of the experiment

Figure 9: Screenshots from the human subject study on random dot shape identification. (top left)
Instructions that were shown prior to the experiment. (top right) We showed 20 training trials during
which subjects could familiarize themselves with the task. (bottom left) The training was followed by
500 test trials. A video with the random dot stimuli was shown first. (bottom right) Once the video
finished playing, the two shape options were shown below.

19

137153 https://doi.org/10.52202/079017-4357



NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We clearly state the main contributions of our work in both the abstract and
the introduction. All mentioned results are supported by the experimental data presented in
the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The paper includes a separate section that discusses the limitations of our work
in detail, including limitations due to computational constraints.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: The paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We describe the models, data and evaluation protocol used in the paper in
detail. Additionally, the code, pretrained models and the contributed dataset are publicly
released.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: All code and data for the paper is publicly released.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Hyperparameters and training details are explicitly reported with the descrip-
tion of the models.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Due to space constraints we did not include further statistical information in
the main table. However we included a Figure showing the same data with error bars in the
supplemental material.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We reported the computational resources of our models with the description of
the training details.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have read the code of ethics and conform to it in every respect.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We are discussing potential broader impacts of our work in a dedicated section.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.

23

137157 https://doi.org/10.52202/079017-4357

https://neurips.cc/public/EthicsGuidelines


• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper does not pose such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We used the Kubric generator with the built-in asset library and a range of
pretrained models. We cited the sources of all data and implementations that we used.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The synthetic data we generated for the paper is described in the paper, and
published with the code used to generate it.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [Yes]

Justification: Screenshots of the experiment are included in the supplemental material.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [Yes]

Justification: The study in this paper does not pose any particular risk on participants. IRB
approval exists.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

25

137159 https://doi.org/10.52202/079017-4357

paperswithcode.com/datasets


• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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