Generative Modelling of Structurally Constrained
Graphs

Manuel Madeira Clément Vignac
EPFL, Lausanne, Switzerland EPFL, Lausanne, Switzerland
manuel .madeira@epfl.ch

Dorina Thanou Pascal Frossard
EPFL, Lausanne, Switzerland EPFL, Lausanne, Switzerland

Abstract

Graph diffusion models have emerged as state-of-the-art techniques in graph gener-
ation; yet, integrating domain knowledge into these models remains challenging.
Domain knowledge is particularly important in real-world scenarios, where in-
valid generated graphs hinder deployment in practical applications. Unconstrained
and conditioned graph diffusion models fail to guarantee such domain-specific
structural properties. We present ConStruct, a novel framework that enables graph
diffusion models to incorporate hard constraints on specific properties, such as
planarity or acyclicity. Our approach ensures that the sampled graphs remain within
the domain of graphs that satisfy the specified property throughout the entire trajec-
tory in both the forward and reverse processes. This is achieved by introducing an
edge-absorbing noise model and a new projector operator. ConStruct demonstrates
versatility across several structural and edge-deletion invariant constraints and
achieves state-of-the-art performance for both synthetic benchmarks and attributed
real-world datasets. For example, by incorporating planarity constraints in digital
pathology graph datasets, the proposed method outperforms existing baselines,
improving data validity by up to 71.1 percentage points.

1 Introduction

Learning how to generate realistic graphs that faithfully mirror a target distribution is crucial for
tasks such as data augmentation in network analysis or discovery of novel network structures.
This has become a prominent problem in diverse real-world modelling scenarios, ranging from
molecule design [55] and inverse protein folding [86] to anti-money laundering [45] or combinatorial
optimization [76]. While the explicit representation of relational and structural information with
graphs encourage their widespread adoption in numerous applications, their sparse and unordered
nature make the task of graph generation challenging.

In many real-world problems, we possess a priori knowledge about specific properties of the target
distribution of graphs. Incorporating such knowledge into generative models is a natural approach
to enforce the generated graphs to comply with the domain-specific properties. Indeed, common
generative models, even when conditioned towards graph desired properties, fail to offer guarantees.
This may however become particularly critical in settings where noncompliant graphs can lead to
real-world application failures. Many of these desired properties are edge-related, i.e., constraints
in the structure of the graph. For example, in digital pathology, graphs extracted from tissue slides
are planar [26, 69]. Similarly, in contact networks between patients and healthcare workers within
hospitals, the degrees of healthcare workers are upper bounded to effectively prevent the emergence
of superspreaders and mitigate the risk of infectious disease outbreaks [32, 1]. In graph generation,

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

137218 https://doi.org/10.52202/079017-4360

Constrained Graph Discrete Diffusion Forward (1 step)

e TR gt G

o o o
o ©0©° e O ot‘ .%
e © o—=e

~_

Reverse (1 step)

Training Sampling Reverse (1 step)
, Forward (t steps) N N TN
t G GT GT— 1 GT— 1 e GO
o o o i
Projector
e O o © O @) (] ./X (]
o—o e © [¢] o
I Cross-entropy +
Posterior
GNNy GNNy

Figure 1: Constrained graph discrete diffusion framework. The forward process consists of an
edge deletion process driven by the edge-absorbing noise model, while the node types may switch
according to the marginal noise model. At sampling time, the projector operator ensures that sampled
graphs remain within the constrained domain throughout the entire reverse process. In the illustrated
example, the constrained domain consists exclusively of graphs with no cycles. We highlight in gray
the components responsible for preserving the constraining property.

diffusion models have led to state-of-the-art performance [79, 64, 7], in line with their success on
other data modalities [75, 29]. However, constrained generation still lags behind its unconstrained
counterpart: despite the remarkable expressivity of graph diffusion models, constraining them to
leverage specific graph properties remains a particularly challenging task [41].

In this paper, we propose ConStruct, a constrained graph discrete diffusion framework that induces
specific structural properties in generative models. Our focus lies on a broad family of structural
properties that hold upon edge deletion, including graph planarity or absence of cycles or triangles, for
example. ConStruct operates within graph discrete diffusion, where both node and edge types lie in
discrete state-spaces [79, 27, 64, 10]. Notably, ConStruct is designed to preserve both the forward and
reverse processes of the diffusion model within distribution with respect to a specified structural prop-
erty. To accomplish this, we introduce two main components: an edge absorbing noise model and an
efficient projector of the target property. The former casts the forward process as an edge deletion pro-
cess and the reverse process as an edge insertion process. Simultaneously, the projector ensures that
the inserted edges in the reverse process, predicted by a trained graph neural network, do not violate
the structural property constraints. We theoretically ground the projector design by proving that it can
retrieve the optimal graph under a graph edit distance setting. Additionally, we further enhance its effi-
ciency by leveraging incremental constraint satisfaction algorithms, as opposed to their full graph ver-
sions, and a blocking edge hash table to avoid duplicate constraint property satisfaction checks. These
two components enable a reduction in computational redundancy throughout the reverse process.

We empirically validate the benefit of promoting the match of distributions between the training and
generative processes in terms of sample quality and constraint satisfaction on a set of benchmark
datasets, outperforming unconstrained methods. We demonstrate the flexibility of ConStruct by
testing it with three distinct structural properties constraints: graph planarity, acyclicity and lobster
components. To further illustrate the utility of ConStruct to real-world applications, we evaluate the
performance of our model in generating biologically meaningful cell-cell interactions, represented
through planar cell graphs derived from digital pathology data. We focus on the generation of simple
yet medically significant tertiary lymphoid structures [44, 18, 58, 28, 69]. Our experiments demon-
strate a significant improvement in cell graph generation with ConStruct compared to unconstrained
methods [52], notably achieving an increase of up to 71.1 percentage points in terms of cell graph va-

https://doi.org/10.52202/079017-4360 137219

lidity. These results open new venues for innovative data augmentation techniques and novel instance
discovery, addressing a key challenge in digital pathology and real-world applications in general.!

2 Related Work

By decomposing the graph generation task into multiple denoising steps, graph diffusion models
have gained prominence due to their superior generative performance in the class of methods that
predict the full adjacency matrix at once (e.g., VAEs [40, 74, 78, 37], GANs [16, 42, 54], and
normalizing flows [48, 53, 47, 51]). Diverse diffusion formulations have emerged to address various
challenges in the graph setting, encompassing score-based approaches [60, 38, 85] and discrete
diffusion [79, 27, 64]. They have also been employed as intermediate steps in specific generative
schemes, such as hierarchical generation through iterative local expansion [7].

The explicit incorporation of structural information (beyond local biases typical of GNNs) has been
shown to be an important prior for enhancing the expressiveness of one-shot graph generative models.
For example, in the GAN setting, SPECTRE [54] conditions on graph spectral properties to capture
global structural characteristics and achieve improved generative performance. Graph diffusion
models are similarly amenable to conditioning techniques [79, 31], which, despite enabling the
guidance of the generation process towards graphs with desired properties, do not guarantee the
satisfaction of such properties. In contrast, autoregressive models can ensure constraint satisfaction
through validity checks at each iteration, effectively addressing this challenge. Although graph
diffusion models can leverage formulations that are invariant to permutations, thus avoiding the
sensitivity to node ordering that characterizes autoregressive approaches [87, 46, 14], they still lag
behind in ensuring constraint satisfaction.

Previous graph diffusion approaches to address this challenge can be categorized according to the
nature of the state spaces they assume. In the continuous case, aligned with successful outcomes
in other data modalities [12], PRODIGY [72] offers efficient guidance for pre-trained models by
relaxing adjacency matrices and categorical node features into continuous spaces, subsequently
finding low-overhead projections onto the constraint-satisfying set at each reverse step. This approach
can impose structural and molecular properties for which closed-form projections can be derived.
However, it does not guarantee constraint satisfaction, facing a trade-off between performance and
constraint satisfaction due to mismatched training and sampling distributions. This challenge arises
from the continuous relaxation approach, which, while effective within the plug-and-play controllable
diffusion framework, imposes an implicit ordering between states that can yield suboptimal graph
representations when remapping to the inherently discrete graph space. Additionally, the proposed
projection operators cannot be derived for some combinatorial constraints over the graph structure
that are frequently encountered in real-world scenarios, such as planarity and acyclicity.

Then, in discrete state-spaces, EDGE [10] leverages a node-wise maximum degree hard constraint
due to its degree guidance but it is limited to this particular property. Similarly, GraphARM [41],
a graph autoregressive diffusion model, allows for constraint incorporation in the autoregressive
manner. However, this method requires learning a node ordering, a task that is at least as complex
as isomorphism testing. Therefore, to the best of our knowledge, ConStruct consists of the first
constrained graph discrete diffusion framework covering a broad class of structural (potentially
combinatorial) constraints.

3 Constrained Graph Diffusion Models

We now introduce our framework on generative modelling for structurally constrained graphs. We
first present the graph diffusion framework and then focus on the new components for constrained
graph generation.

3.1 Graph Diffusion Models

We first introduce the mathematical notation adopted in the paper.

'Our code and data are available at https://github. com/manuelmlmadeira/ConStruct.

137220 https://doi.org/10.52202/079017-4360

https://github.com/manuelmlmadeira/ConStruct

po(G"1|GT)
Gt — thl Gt—l
o o o o O O

.o._._i. .(Q‘ ooo_’—. ot‘ .(Qa ot.

Projector(P, G*~1, G*)

Figure 2: Projector operator. At each iteration, we start by sampling a candidate graph G from
the distribution py(G*~1|G") provided by the diffusion model. Then, the projector step inserts in
an uniformly random manner the candidate edges, discarding those that violate the target property,
P, i.e., acyclicity in this illustration. In the end of the reverse step, we find a graph G*~! that is
guaranteed to comply with such property.

Notation We define a graph as G = (X, F), where X and E denote the sets of attributed nodes
and edges, respectively. We consider the node and edge features to be categorical and to lie in the
spaces X and £ of cardinalities b and c, respectively. Thus, x; denotes the node attribute of node @
and e;; the edge attribute of the edge between nodes i and j. With H* = {v = (vy,...,vx) | v; €

{0,1}, Zle v; = 1}, their corresponding one-hot encodings are then x; € H’ and e;; € HH1,
since we consider the absence of edge between two nodes as an edge type (“no edge” type). These
are stacked in tensors X € {0,1}"*? and E € {0, 1}»*"*(c+1) respectively. So, equivalently
to the set notation, we also have G = (X, E). Additionally, we define the probability simplex,

AF = {(Xo, A1y A1) €RF | > 0foralli, Y80 A =1},

We then recall the core components of generative models based on graph diffusion, a state-of-the-art
framework in several applications [38, 79]. Graph diffusion models are composed of two main
processes: a forward and a reverse one. The forward process consists of a Markovian noise model, g,
with T timesteps, that allows to progressively perturb a clean graph G to its noisy version G¢, where
t € {1,...,T}. This process is typically modelled independently for nodes and edges. The reverse
process consists of the opposite development, starting from a fully noisy, G, and iteratively refining
it until a new clean sample is generated. This process uses a denoising neural network (NN), the
only learnable part of the diffusion model. The NN is trained to predict a probability distribution
over node and edge types of the clean graph GG. After its training, we combine the NN prediction
with the posterior term of the forward process to find the distribution py(G*~1|G"), from where we
sample a one-step denoised graph. The reverse process results from applying this sampling procedure
iteratively until we arrive to a fresh new clean graph G°. Both processes are illustrated in Figure 1.

In some tasks, we are interested in generating instances of a specific class of graphs that conform
to well-defined structural properties and align with the training distribution. Importantly, these
structural properties do not fully define the underlying distribution; rather, the model must still learn
this distribution within the specific class of graphs. This approach becomes particularly crucial in
scenarios where we possess domain knowledge but lack sufficient data for an unconstrained model
to capture strict dependencies, allowing us to reduce the task’s hypothesis space. This need also
applies to many real-world applications, where generated graphs become irrelevant if they do not
meet certain conditions, as they may be infeasible or lack physical meaning (e.g., in drug design).
Despite the remarkable expressivity of graph diffusion models, incorporating such constraints into
their generative process remains a largely unsolved problem.

3.2 Constrained Graph Discrete Diffusion Models

We now introduce ConStruct, a framework that efficiently constrains graph diffusion models based on
structural properties. Constraining graph generation implies guaranteeing that such target structural
properties are not violated in the generated graphs. We build on graph discrete diffusion due to its
intrinsic capability to effectively preserve fundamental structural properties (e.g., sparsity) of graphs
throughout the generative process [64, 79, 27].

A successful way of imposing constraints to diffusion models in continuous state-spaces consists
of constraining the domain where the forward and reverse processes occur [50, 22, 23]. However,

https://doi.org/10.52202/079017-4360 137221

constraining domains over graphs, which are inherently discrete, poses a challenging combinatorial
problem. Instead, we propose to constrain the graph generative process with specific structural
properties. In our approach, we explore the broad class of graph structural properties that hold under
edge deletion, namely edge-deletion invariant properties.

Definition 3.1. (Edge-Deletion Invariance) Let P be a boolean-valued application defined on graphs,
referred to as a property. P is said to be edge-deletion invariant if, for any graph G and any subset
of edges E C E, it satisfies:

P(G) = True = P(G') = True, withG' = (X,E\ E).

Many properties that are observed in real-world scenarios are edge-deletion invariant. For example,
graph planarity is observed in road networks [83], chip design [8], biochemistry [73] or digital
pathology [36]. In evolutionary biology [25] or epidemiology [70], we find graphs that must not
have cycles. Additionally, if we consider the extensions of discrete diffusion to directed graphs (e.g.,
Asthana et al. [3]), there are several domains where graph acyclicity is critical: neural architecture
search, bayesian network structure learning [88], or causal discovery [67]. Also, maximum degree
constraints are quite common in the design of contact networks [32, 1]. Finally, it is worth noting
that Definition 3.1 is extendable to continuous graph-level features through a binary decision (e.g., by
thresholding continuous values into boolean values).

Provided that the training graphs satisfy the target structural properties, ConStruct enforces these
properties in the generated graphs by relying on two main components: an edge-absorbing noise
model and a projector. These two components are described in detail below.

3.3 Edge-deletion Aware Forward Process

Our goal is to design a forward process that yields noisy graphs that necessarily satisfy the target
property. This process is typically modelled using transition matrices. Thus, [th]ij = q(zt =

jlzt=! = i) corresponds to the probability of a node transitioning from type i to type j. Similarly,
for edges we have [Q%Lj = q(et = jle!=! = i). These are applied independently to each node and
edge, yielding ¢(G'|G'™1) = (X!71QY, E'=1Q;). Consequently, we can directly jump ¢ timesteps
in the forward step through the categorical distribution given by:

1(G"G) = (XQ%,EQY), (1

with Q% = Q% ... Q% and Q% = QL ... Qf;. Noising a graph amounts to sampling a graph from
this distribution. For the nodes, we use the marginal noise model [79] due to its great empirical
performance. Importantly, to preserve the constraining structural property throughout the forward
process, and, consequently, throughout the training algorithm (see Algorithm 1, in Appendix A.1),
we propose the utilization of an edge-absorbing noise model [4]. This noise model forces each edge
to either remain in the same state or to transition to an absorbing state (which we define to be the
no-edge state) throughout the forward process. This edge noise model poses the forward as an edge
deletion process, converging to a limit distribution that yields graphs without edges. Therefore, we
obtain the following transition matrices:

QY% =a'T+ (1 -a")1ym’ and
Qr = alpsI+ (1 — ajpg)1cel, @)
where o and oy ¢ transition from 1 to 0 with ¢ according to the popular cosine scheduling [59] and
ABS g pop g
the mutual-information-based noise schedule (a® = 1 — (T +t+ 1)~1) [4], respectively. The vectors

1, € {1}* and 1. € {1} are filled with ones, and m’;, € Ab and ey € HH! are row vectors
filled with the marginal node distribution and the one-hot encoding of the no-edge state, respectively.

3.4 Structurally-Constrained Reverse Process

The reverse process of the diffusion model is fully characterized by the distribution pg(G!~1|G?).
We detail how to build it from the predictions of a denoising graph neural network, GNNjy, and the
posterior term of the forward process in Appendix A.2. Importantly, the latter imposes the reverse
process as an edge insertion process, yet does not necessarily ensure the target structural property. To
handle that, we propose an intermediate procedure for each reverse step. Provided a noisy graph G*

137222 https://doi.org/10.52202/079017-4360

at timestep ¢, we do not accept directly Gt—1, sampled from py(G*~1|G?), as the one step denoised
graph. Instead, we iteratively insert the newly added edges to G*~! in a random order, discarding

the ones that lead to the violation of the target property. Therefore, we only have G'~1 = GrLif
none of the candidate edges breaks the target property. We refer to the operator that outputs G*~!

provided G*~1 and G* by discarding the violating edges as the projector. Its implementation is
illustrated in Figure 2 and described in Algorithm 2, in Appendix A.3. Importantly, this procedure
merely interferes with the sampling algorithm (refer to Algorithm 3, in Appendix A.3) and ensures
that the diffusion model training remains unaffected, fully preserving its efficiency.

Despite its algorithmic simplicity, the design of our projector is theoretically motivated by the result
below. We denote the graph edit distance [68] with uniform cost between two graphs G; and G by
GED(G1, G2) (see Definition B.1).

Theorem 1. (Simplified) Let G'=1 = Projector(P, Gt=1, G*) be the set of all possible one-step
denoised graphs outputted by ConStruct. If we define G* as any optimal solution of:

minGec GED(ét_l, G), (3)

where C = {G € G|P(G) = True,G D G'} and G is the set of all unattributed graphs, then G*
can be recovered by our projector, i.e., G* € Gt~ 1.

The relationship between the projector, the candidate element G'~! (the instance we aim to project
onto a constrained set) and the specified target property P (defining the constrained set) can be
analogized to the conventional projection operator in continuous state spaces. However, while
projection in continuous spaces is typically straightforward, this is not the case for discrete state
spaces, where, for instance, there often lacks an inherent notion of order between different states. In
particular, projecting into an arbitrary subclass of graphs is a complex general combinatorial problem
to which there is no efficient solution. For example, finding the maximum planar subgraph of a
given graph is NP-hard [11]. Therefore, the novelty of our method is introduced by considering an
additional dependency on G*: to make such problem efficiently approachable, we use the previous
iterate, G*, which we know by construction that verifies the target property, as a reference. This
information is added into the optimization problem through the formulation of the set C'. Importantly,
this formulation is consistent with the designed noise for the diffusion model, as it complies with the
reverse process as an edge insertion process (i.e., Gt C G*~1). The complete version of this theorem
and extensions for specific constraints can be found in Appendix B.

Importantly, the utilization of the projector breaks the independent sampling of new edges since the
insertion of an edge now depends on the order by which we insert them at a given timestep. This sac-
rifices the tractability of an evidence lower bound for the diffusion model’s likelihood. In exchange, it
conserves all the sampled graphs throughout the reverse process in the constrained domain. Therefore,
the edge-absorbing noise model and the projector jointly ensure that the graph distributions of the
training and sampling procedures match, within the predefined constrained graph domain. With these
blocks in place, we are now able to both train and sample from the constrained diffusion model.

3.5 Implementation Improvements

We further enhance the efficiency of the sampling algorithm with the two improvements detailed
below.

Blocking Edge Hash Table Throughout the reverse process, we keep in memory the edges that
have already been rejected in previous timesteps (higher t). Therefore, once an edge is rejected,
it is blocked throughout the rest of the reverse process. This prevents the repetition of redundant
constraint satisfaction checks since we know a priori that inserting a previously rejected edge would
lead to constraint violation. We store this information in a hash table, where both the lookup and
update operations are O(1), causing minor overhead. Since we only perform the validity check, of
complexity O(V'), once for each edge - if it is a candidate edge, we either insert it or block it -, it
incurs a O(n?V') overhead throughout the full reverse process. Note that we lose any dependency
on the number of timesteps of the reverse process, which is typically the limiting factor in diffusion
models efficiency due to its required high values (T ~ 103).

Incremental Algorithms Our reverse process consists solely of edge insertion steps, making it well-
suited for the application of incremental algorithms. These algorithms efficiently check whether newly

https://doi.org/10.52202/079017-4360 137223

added edges preserve the target property by updating and checking smartly designed representations
of the graph. This approach contrasts with full graph counterparts, leading to significant efficiency
gains by reducing redundant computation. For instance, while the best full planar testing algorithm is
O(n) [30], its fastest known incremental test has amortized running time of O(«a/(q,n)), where q is
the total number of operations (edge queries and insertions), and « denotes the inverse-Ackermann
function [43] (often considered “almost constant” complexity). More details for different properties
in Appendix C.

At each reverse step, the denoising network makes predictions for all nodes and pairs of nodes.
This results in O(n?) predictions per step. Thus, the complexity of the sampling algorithm of the
underlying discrete diffusion model is O(n?T). In addition, the complexity overhead imposed by the
projector is O(NV'). Here, V represents the complexity of the property satisfaction algorithm and
N is the total number of times this algorithm is applied throughout the reverse process. So, in total,
we have O(n?T + NV). Our analysis in Appendix C shows that incremental property satisfaction
algorithms have notably low complexity. For instance, in cases like acyclicity, lobster components,
and maximum degree, we have V' = O(| Eydqea|)- Since the projector adds one edge at a time, we have
V = O(1). Additionally, since the blocking edge hash table limits us to perform at most one property
satisfaction check per newly proposed edge (either we have never tested it or it is already blocked), N
corresponds to the total number of different edges proposed by the diffusion model across the whole
reverse process. A reasonable assumption is that the model proposes N = O(|E|) edges throughout
the reverse process, with | E| referring to the number of edges of the clean graph. This is for example
true if the model is well trained and predicts the correct graph. Most families of graphs are sparse,
meaning that O(|E|/n?) — 0 as n — oo. For example, planar and tree graphs can be shown to
satisfy |E|/n? = O(1/n). Thus, we necessarily have N < n?. For these reasons, we directly find
O(NV) < O(n®T), highlighting the minimal overhead imposed by the projector compared to the
discrete diffusion model. This explains the low runtime overhead observed for ConStruct, as detailed
in Appendix D.3 (9% for graphs of the tested size). Therefore, we can conclude that asymptotically
O(n*T + NV) = O(n®T), i.e., the projector overhead becomes increasingly negligible relative to
the diffusion algorithm itself as the graph size increases, highlighting the scalability of our method.

4 Experiments

In this section, we first explore the flexibility of ConStruct to accommodate different constraints in
synthetic unattributed graph datasets. Then, we test its applicability to a real-world scenario with
digital pathology data.

4.1 Synthetic Graphs

Setup We focus on three synthetic datasets with different structural properties: the planar
dataset [54], composed of planar and connected graphs; the tree dataset [7], composed of con-
nected graphs without cycles (tree graph); and the lobster dataset [46], composed of connected
graphs without cycles, where no node is more than 2 hops away from a backbone path (lobster
graph). We follow the splits originally proposed for each of the datasets: 80% of the graphs are
used in the training set and the remaining 20% are allocated to the test set. We use 20% of the train
set as validation set. Statistics of these datasets are shown in Appendix E. As the graphs in these
datasets are unattributed, we can specifically isolate ConStruct’s capability of incorporating structural
information in comparison to previously proposed methods, which are described in Appendix E.2.
From here on, we use DiGress+ to denote the DiGress model with the added extra features described
in Appendix A.1 and HSpectre to refer to the model proposed by Bergmeister et al. [7].

Regarding performance metrics, we follow the evaluation procedures from Martinkus et al. [54]. We
assess how close the distributions of different graph statistics computed from the generated and test
sets are. To accomplish that, we compute the Maximum Mean Discrepancy (MMD)? for the node
degrees (Deg.), clustering coefficients (Clus.), orbit count (Orbit), eigenvalues of the normalized
graph Laplacian (Spec.), and statistics from a wavelet graph transform (Wavelet). To summarize this
set of metrics, we compute the ratios against the corresponding metrics from the training set and then
average them (Ratio). We also compute the proportion of generated graphs that are non-isomorphic to
each other (Unique), the proportion that are non-isomorphic to any graph in the training set (Novel),

2To align with previous literature, we actually compute MMD?.

137224 https://doi.org/10.52202/079017-4360

Table 1: Graph generation performance on synthetic graphs. We present the results over five sampling
runs of 100 generated graphs each, in the format mean + standard error of the mean. The remaining
values are retrieved from Bergmeister et al. [7] for the planar and tree datasets, and from Dai et al.
[14] and Jang et al. [34] for the lobster dataset. For the average ratio computation, we follow [7] and
do not consider the metrics whose train set MMD is 0. We recompute the train set MMDs according
to our splits but, for fairness, in the retrieved methods the average ratio metric is not recomputed.

Planar Dataset

Model Deg. | Clus. | Orbit | Spec. | Wavelet | Ratio| Validt Unique T Novelt V.UN. 1 Property 1
Train set 0.0002 0.0310 0.0005 0.0038 0.0012 1.0 100 100 0.0 0.0 100
GraphRNN [87] 0.0049 0.2779 1.2543 0.0459 0.1034 490.2 0.0 100 100 0.0 —
GRAN [46] 0.0007 0.0426 0.0009 0.0075 0.0019 2.0 97.5 85.0 25 0.0 —
SPECTRE [54] 0.0005 0.0785 0.0012 0.0112 0.0059 3.0 25.0 100 100 25.0 —
DiGress [79] 0.0007 0.0780 0.0079 0.0098 0.0031 5.1 71.5 100 100 71.5 —
EDGE [10] 0.0761 0.3229 0.7737 0.0957 0.3627 431.4 0.0 100 100 0.0 —
BwR [17] 0.0231 0.2596 0.5473 0.0444 0.1314 251.9 0.0 100 100 0.0 —
BiGG [14] 0.0007 0.0570 0.0367 0.0105 0.0052 16.0 62.5 85.0 425 5.0 —
GraphGen [24] 0.0328 0.2106 0.4236 0.0430 0.0989 210.3 7.5 100 100 7.5 —
HSpectre (one-shot) [7] 0.0003 0.0245 0.0006 0.0104 0.0030 1.7 67.5 100 100 67.5 —
HSpectre [7] 0.0005 0.0626 0.0017 0.0075 0.0013 2.1 95.0 100 100 95.0 —
DiGress+ 0.0008 +0.0001 0.0410 200033 0.0048 20.0004 0.0056 200004 0.0020 200002 3.6+02 76.4+13 100.0200 100.000 76.4 213 76.4 £13
ConStruct 0.0003 +0.0001 0.0403 200047 0.0004 200001 0.0053 200004 0.0009 200001 L.1z01 100.0x00 100.0200 100.000 100.0:00 100.0 x0.0
Tree Dataset
Train set 0.0001 0.0000 0.0000 0.0075 0.0030 1.0 100 100 0.0 0.0 100
GRAN [46] 0.1884 0.0080 0.0199 0.2751 0.3274 607.0 0.0 100 100 0.0 —
DiGress [79] 0.0002 0.0000 0.0000 0.0113 0.0043 1.6 90.0 100 100 90.0 —
EDGE [10] 0.2678 0.0000 0.7357 0.2247 0.4230 850.7 0.0 75 100 0.0 —
BwR [17] 0.0016 0.1239 0.0003 0.0480 0.0388 11.4 0.0 100 100 0.0 —
BiGG [14] 0.0014 0.0000 0.0000 0.0119 0.0058 52 100 87.5 50.0 75.0 —
GraphGen [24] 0.0105 0.0000 0.0000 0.0153 0.0122 332 95.0 100 100 95.0 —
HSpectre (one-shot) [7] 0.0004 0.0000 0.0000 0.0080 0.0055 2.1 82.5 100 100 82.5 —
HSpectre [7] 0.0001 0.0000 0.0000 0.0117 0.0047 4.0 100 100 100 100 —
DiGress+ 0.0002 +0.0001 0.0000 200000 0.0000 200000 0.0092 200005 0.0032 200001 13202 91.6:07 100.0:00 100.000 91.6:07 97.0 208
ConStruct 0.0003 +0.0001 0.0000 =0.0000 0.0000 200000 0.0073 200008 0.0034 200002 1.9:03 83.0«18 100.0200 100.0:00 83.0:18 100.0 +0.0
Lobster Dataset

Train set 0.0002 0.0000 0.0000 0.0070 0.0070 1.0 100 100 0.0 0.0 100
GraphRNN [87] 0.000 0.000 0.000 0.011 — — 100 — — = —
GRAN [46] 0.038 0.000 0.001 0.027 — — 88.0 — — — —
GraphGen [24] 0.548 0.040 0.247 — — — — — — — —
GraphGen-Redux [5] 1.189 1.859 0.885 — — — — — — — —
BiGG [14] 0.000 0.000 0.000 0.009 — — 100 — — — —
GDSS [38] 0.117 0.002 0.149 — — — 18.2 100 100 18.2 —
BwR [17] 0316 0.000 0.247 — — — 100 63.6 100 63.6 —
GEEL [34] 0.002 0.000 0.001 — — — 72.7 100 727 <727 —
HGGT [33] 0.003 0.000 0.015 — — — — — — — —
DiGress [79] 0.021 0.000 0.004 — — — 54.5 100 100 54.5 —
DiGress+ 0.0005 £0.0001 0.0000 20.0000 0.0000 200000 0.0114 200006 0.0093 200005 1.8 201 79.0 +1.1 98.0:07 96.6:06 69.4x12 76.8 £1.7
ConStruct 0.0003 +0.0001 0.0000 200000 0.0000 200000 0.0092 200000 0.0074 200004 13202 86.8+24 98.8:06 97.0x09 83.2:23 100.0 00

and the proportion of generated graphs that are valid (Valid). Graphs are considered valid if they are
planar and connected, trees, or lobster graphs, when the generative model is trained on the planar, tree,
or lobster dataset, respectively. We merge these three metrics through the proportion of generated
graphs that are simultaneously valid, unique and novel (V.U.N.).

Constraining Criteria Various constraining criteria are chosen for ConStruct according to the
structural properties of each dataset. For the planar dataset, we use planarity. For the tree dataset, we
impose the absence of cycles. For the lobster dataset, we constrain the graph domain to those graphs
whose connected components are lobsters. To check to what extent these criteria are verified by the
compared methods, we compute the proportion of generated graphs that comply with the selected
constraining criterion of the corresponding dataset (listed under the “Property" column in Table 1).

Graph Generation Performance We present the results in Table 1. For the planar dataset,
ConStruct achieves nearly optimal performance, clearly outperforming all other methods. It is
actually the first method to achieve 100% V.U.N., indicating state-of-the-art performance. Moreover,
in terms of average ratio, it clearly outperforms all other methods, with the average ratio approaching
1, suggesting high sample quality. Regarding the lobster dataset, ConStruct exhibits a similar trend,
demonstrating superior performance compared to DiGress+. It leads to state-of-the-art results in both
average ratio and V.U.N. metrics. The lower novelty and uniqueness values (<100%) are attributed
to the dataset’s smaller size. In fact, we train both models on 64 examples (80% of the train set)
while generating 100 graphs in each run. Conversely, for the tree dataset, ConStruct is outperformed
by DiGress+ due to the marginally lower expressivity of the edge-absorbing noise model for this
particular case (see Appendix H.1 for details). As a sanity check, we observe that for all three datasets,
ConStruct ensures the constraining property for all generated graphs. However, the validity values
are below 100% (except for planar) since connectedness of the generated graph is not guaranteed. In

https://doi.org/10.52202/079017-4360 137225

Table 2: Graph generation performance on digital pathology graphs. We present the results for each
method over five sampling runs of 100 generated graphs each, in the format mean + standard error of
the mean.

Low TLS Dataset

Model Ratio | Conn.t Planar ¥ V.UN.?t £(0)) K(1)) K(2) 1 K(3)) K(4) 1 K(5)) TLS Valid 1

Train set 1.0 100 100 0.0 0.6928 0.0000 0.0000 0.0000 0.0000 0.0000 100

Baseline [52] 194.6 30 50.3 0.7 10.0 05 0.0200 0.6256 00228 0.2350 z0.0000 0.2350 200000 0.0470 z0.0470 0.0000 £0.0000 0.0000 +0.0000

GraphGen [24] 212.7+42 100.000 333 =:05 33.0x18 0.7354 200220 0.1880 200470 0.0470 z0.0470 0.0000 z0.0000 ~ 0.0000 +0.0000 0.0000 0.0000

BiGG [14] 132.0463 99.5 0.1 23.3 x06 0.8:02 0.6184 200437 0.1410 200576 0.0470 x0.0470 0.0470 200470 0.0470 200470 0.0470 x0.0470

SPECTRE [54] 427.0:43 953102 51.2x06 158412 0.2350 200000 0.0000 £0.0000 0.0000 =0.0000 0.0000 0.0000 0.0000 x0.0000 0.0000 £0.0000

DiGress+ 4.9 :10 96.0 0.7 19.8 18 18.6+18 0.7306 200371 0.1410 200576 0.0000 20.0000 0.0000 z0.0000 0.0000 0.0000 ~ 0.0000 =0.0000

ConStruct 4.4 03 98408 100.0z00 98.4:08 0.6781 100795 0.2350 200000 0.0940 200576 0.0000 z0.0000 0.0000 +0.0000 0.0000 0.0000 96.2 207
High TLS Dataset

Train set 1.0 100 100 0.0 0.4257 0.4512 0.4745 0.6395 0.7770 0.7663 100

Baseline [52] 354942 49.8 103 3.4 02 0.2202 03276 00023 0.3412 200070 0.3669 200172 0.5096 00157 0.6231 00176 0.6988 £0.0203 0.0 200
GraphGen [24] 559.1+98 100.000 48.106 47.4x16 0.3311z00158 0.3620 z00228 0.4613 200121 0.6034 200359 0.7500 00231 0.7523 z0.0346 16.9 206

BiGG [14] 307.7 +155 99.5 =01 10.1 +08 0.4:02 03706 x00225 0.4850 00361 0.5970 z0.0166 0.7151 200112 0.7494 200128 0.7515 200220 10.0 =08
SPECTRE [54] 938.1 +4.1 91.3 03 0.0 0.0 0.000 0.3190 200203 0.3585 z0.0279 0.4033 200230 0.5130 z0.0230 0.6039 x0.0127 0.6804 0.0137 0.0 z0.0
DiGress+ 10.5 06 97.8 s08 8.4 211 7812 0.3194 200034 0.3308 200041 0.3598 200096 0.4878 00155 0.6234 200305 0.6887 0.0250 6.6 209
ConStruct 6.4 206 99.8+02 100.0z00 99.8:02 0.3378 200048 0.3437 200104 0.3799 200112 0.5306 200150 0.6360 £0.0177 0.6798 £0.0436 88.0 z05

general, this property is not ensured by one-shot models and cannot be included as a constraining
property since it is not edge-deletion invariant.

4.2 Digital Pathology Cell Graphs

Setup In the next set of experiments, we explore digital pathology data. Due to the their natural
representation of relational data, graphs are widely used to capture spatial biological dependencies
from tissue images. We focus on cell graphs, whose nodes represent biological cells and edges
serve as proxies for local cell-cell interactions. We build these structures from the genomic and
clinical data available from the Molecular Taxonomy of Breast Cancer International Consortium
(METABRIC) molecular dataset [13, 66, 15]. Each node is attributed with one of the nine possible
phenotypes, which extensively characterizes a cell both anatomically and physiologically (more
details in Appendix F.2). Regarding edges, we followed the typical procedure for cell graphs in digital
pathology [36, 35, 2, 82]: first we employ Delaunay triangulation on the cell positions to construct the
graphs, followed by edge thresholding to discard long edges. Our focus lies on generating biologically
meaningful Tertiary Lymphoid Structures (TLSs), further described in Appendix F.3. Thus, we extract
non-overlapping 4-hop subgraphs centered at nodes whose class is “B” from the whole-slide graphs.
In terms of dimensionality, we obtain graphs with b = 9, corresponding to the 9 phenotypes detailed
in Appendix F.2, and ¢ = 1. We explore two datasets: one comprising graphs with high TLS content
and another consisting of graphs with low TLS content, based on domain-specific metrics (see
below). We provide their statistics in Appendix F.4. We open-source both of them, representing to
the best of our knowledge the first open-source digital pathology datasets specifically tailored for
graph generation. For the sake of comparison, besides ConStruct and DiGress+, we implement a
non-deep learning baseline method proposed in [52] for this setting, which essentially captures 1-hop
dependencies of cell graphs (see Appendix F.5). Additionally, we run BiGG [14], GraphGen [24],
and SPECTRE [54]. These are the methods that, besides DiGress, can handle attributed graphs and
attain non-zero V.U.N. for the planar dataset in Table 1, which we consider a proxy for performance
in the digital pathology datasets due to the structural similarities (i.e., planarity) between the datasets.

Metrics The TLS embedding, k = [ko, ..., x5] € RS, has been proposed to quantify the TLS
content in a cell graph [69, 52]. See Appendix F.3 for more details. Based on this metric, we define a
graph G to contain low TLS content if k1 (G) < 0.05 and high TLS content if k2 (G) > 0.05 [52]. To
evaluate the generative performance, we adopt the average ratio for structural graph statistics (Ratio)
and V.U.N. metrics used in Section 4.1. Here we consider a planar and connected graph as a valid
graph. Thus, we explicitly present the proportion of generated graphs that are connected (Conn.) and
(Planar). Furthermore, for a biologically meaningful evaluation of the generated cell graphs, we use
the domain metrics. We report the MMD between the distributions of the components of «. We also
consider the proportion of graphs that are planar, connected, and verify the low or high TLS content
condition (TLS Valid), depending on the train set used.

Constraining criterion We use graph planarity as target structural property for ConStruct, as cell
graphs are extracted from tissue slides using Delaunay triangulation, thus necessarily planar.

137226 https://doi.org/10.52202/079017-4360

Results ConStruct outperforms all baselines across all summary evaluation metrics (shown in light
gray in Table 2) for cell graph generation on both datasets. Unlike the synthetic datasets, here the
structural distribution is conditioned on the node types, which is inherently a more complex task. This
complexity contributes to the poor performance of the several unconstrained models. Constraining
the edge generation process allows to significantly alleviate this modelling complexity, highlighting
the benefits of ConStruct in such scenarios. We emphasize the substantial improvement in the V.U.N.
of the generated graphs, with values approaching 100% using our framework, which aligns with the
main motivation behind the proposed method. Interestingly, it also promotes the generation of more
connected graphs. Finally, the 1-hop baseline model, while capturing the node type dependencies
to some extent, as illustrated by the MMD on the components of x, completely fails to capture
structure-based dependencies.

Additionally, we carry out some experiments for molecular datasets in Appendix G: we explore the
utilization of planarity for constrained molecular generation and showcase how ConStruct can be
used for controlled generation. Finally, we explore likelihood-based variants of ConStruct, as well as
some ablations to the projector in Appendix H.

5 Limitations and Future Directions

In our work, we cover edge-deletion invariant properties. However, ConStruct can be easily extended
to also handle edge-insertion invariant properties (i.e., properties that hold upon edge insertion). This
extension can be useful in domains where constraints such as having at least n cycles in a graph are
important. To achieve this, we can simply "invert" the proposed framework: design the transition
matrices with the absorbing state in an existing edge state (instead of the no-edge state) and a projector
that removes edges progressively (instead of inserting them) while conserving the desired property.

In the particular context of molecular generation, Appendix G illustrates that, while purely structural
constraints can guide the generation of molecules with specific structural properties (e.g., acyclicity),
for general properties shared by all molecules (e.g., planarity) they are too loose. In contrast,
autoregressive models thrive in such setting due to the possibility of molecular node ordering (e.g.,
via canonical SMILES) and the efficient incorporation of joint node-edge constraints (e.g., valency).
Therefore, although it consists of a fundamentally different setting than the one considered in this
paper, incorporating joint node-edge constraints into ConStruct represents an exciting future direction.

Additionally, the induced sparsity created by the edge-absorbing noise model presents opportunities
for further exploitation. By leveraging this sparsity, future extensions of ConStruct could enhance
sampling efficiency and improve the underlying diffusion model’s scalability for generating larger
graphs.

6 Conclusion

In this paper, we introduced ConStruct, a framework that allows to integrate domain knowledge via
structural constraints into graph diffusion models. By constraining the diffusion process based on a
diverse set of geometric properties, we enable the generation of realistic graphs in scenarios with lim-
ited data. To accomplish that, we leverage an edge-absorbing noise model and a projector operator to
ensure that both the forward and reverse processes preserve the sampled graphs within the constrained
domain and, thus, maintain their validity. Despite its algorithmic simplicity, our approach overcomes
the arbitrarily hard problem of projecting a given graph into a combinatorial subspace in an efficient
and theoretically grounded manner. Through several experiments on benchmark datasets, we show-
case the versatility of ConStruct across various structural constraints. For example, in digital pathology
datasets, our method outperforms existing approaches, bringing the validity of the generated graphs
close to 100%. Overall, ConStruct opens new avenues for integrating domain-specific knowledge
into graph generative models, thereby paving the way for their application in real-world scenarios.

Acknowledgements
We thank Cédric Vincent-Cuaz, Nikolaos Dimitriadis, Vaishnavi Subramanian, Yiming Qin, Sevda

Ogiit, and Laura Toni for helpful discussions and feedback. We also thank Andreas Bergmeister and
Yunhui Jang for helping set up the code to reproduce their experiments.

https://doi.org/10.52202/079017-4360 137227

References

[1] Bijaya Adhikari, Bryan Lewis, Anil Vullikanti, José Mauricio Jiménez, and B Aditya Prakash.
Fast and near-optimal monitoring for healthcare acquired infection outbreaks. In PLoS Compu-
tational Biology, 2019. 1, 5

[2] David Ahmedt-Aristizabal, Mohammad Ali Armin, Simon Denman, Clinton Fookes, and
Lars Petersson. A survey on graph-based deep learning for computational histopathology. In
Computerized Medical Imaging and Graphics, 2022. 9, 27

[3] Rohan Asthana, Joschua Conrad, Youssef Dawoud, Maurits Ortmanns, and Vasileios Bela-
giannis. Multi-conditioned graph diffusion for neural architecture search. In Transactions on
Machine Learning Research (TMLR), 2024. 5

[4] Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow, and Rianne Van Den Berg. Struc-
tured denoising diffusion models in discrete state-spaces. In Advances in Neural Information
Processing Systems (NeurIPS), 2021. 5, 33

[5] Davide Bacciu and Marco Podda. Graphgen-redux: A fast and lightweight recurrent model for
labeled graph generation. In International Joint Conference on Neural Networks (IJCNN), 2021.
8,26

[6] Kaustav Bera, Kurt A Schalper, David L Rimm, Vamsidhar Velcheti, and Anant Madabhushi.
Artificial intelligence in digital pathology — new tools for diagnosis and precision oncology. In
Nature Reviews Clinical Oncology, 2019. 27

[7] Andreas Bergmeister, Karolis Martinkus, Nathanaél Perraudin, and Roger Wattenhofer. Efficient
and scalable graph generation through iterative local expansion. In International Conference on
Learning Representations (ICLR), 2023. 2, 3,7, 8, 24, 26

[8] Sandeep N Bhatt and Frank Thomson Leighton. A framework for solving vlsi graph layout
problems. In Journal of Computer and System Sciences, 1984. 5

[9] Nathan Brown, Marco Fiscato, Marwin HS Segler, and Alain C Vaucher. Guacamol: benchmark-
ing models for de novo molecular design. In Journal of Chemical Information and Modeling,
2019. 31

[10] Xiaohui Chen, Jiaxing He, Xu Han, and Li-Ping Liu. Efficient and degree-guided graph
generation via discrete diffusion modeling. In International Conference on Machine Learning
(ICML), 2023. 2, 3, 8, 26

[11] Markus Chimani, Ivo Hedtke, and Tilo Wiedera. Exact algorithms for the maximum planar
subgraph problem: New models and experiments. In Journal of Experimental Algorithmics
(JEA), 2019. 6

[12] Jacob Christopher, Stephen Baek, and Ferdinando Fioretto. Constrained synthesis with projected
diffusion models. ArXiv, 2024. https://arxiv.org/abs/2402.03559. 3

[13] Christina Curtis, Sohrab P Shah, Suet-Feung Chin, Gulisa Turashvili, Oscar M Rueda, Mark J
Dunning, Doug Speed, Andy G Lynch, Shamith Samarajiwa, Yinyin Yuan, et al. The genomic
and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. In Nature,
2012. 9,27

[14] Hanjun Dai, Azade Nazi, Yujia Li, Bo Dai, and Dale Schuurmans. Scalable deep generative
modeling for sparse graphs. In International Conference on Machine Learning (ICML), 2020.
3,8,9,26

[15] Esther Danenberg, Helen Bardwell, Vito RT Zanotelli, Elena Provenzano, Suet-Feung Chin,
Oscar M Rueda, Andrew Green, Emad Rakha, Samuel Aparicio, Ian O Ellis, et al. Breast tumor

microenvironment structures are associated with genomic features and clinical outcome. In
Nature Genetics, 2022. 9, 27

[16] Nicola De Cao and Thomas Kipf. Molgan: An implicit generative model for small molecular
grap. International Conference on Machine Learning (ICML) Workshops, 2018. 3

137228 https://doi.org/10.52202/079017-4360

https://arxiv.org/abs/2402.03559

[17] Nathaniel Lee Diamant, Alex M Tseng, Kangway V Chuang, Tommaso Biancalani, and Gabriele
Scalia. Improving graph generation by restricting graph bandwidth. In International Conference
on Machine Learning (ICML), 2023. 8, 26

[18] Marie-Caroline Dieu-Nosjean, Nicolas A Giraldo, Hélene Kaplon, Claire Germain, Wolf Her-
man Fridman, and Catherine Sautes-Fridman. Tertiary lymphoid structures, drivers of the
anti-tumor responses in human cancers. In Immunological Reviews, 2016. 2, 27

[19] Radoslav Dimitrov, Zeyang Zhao, Ralph Abboud, and Ismail Ceylan. Plane: Representation
learning over planar graphs. In Advances in Neural Information Processing Systems (NeurlPS),
2024. 31, 32

[20] Vijay Prakash Dwivedi and Xavier Bresson. A generalization of transformer networks to graphs.
AAAI Conference on Artificial Intelligence Workshops, 2020. 17

[21] Kianoush Falahkheirkhah, Alex Xijie Lu, David Alvarez-Melis, and Grace Huynh. Domain
adaptation using optimal transport for invariant learning using histopathology datasets. In
Medical Imaging with Deep Learning, 2024. 27

[22] Nic Fishman, Leo Klarner, Valentin De Bortoli, Emile Mathieu, and Michael Hutchinson.
Diffusion models for constrained domains. In Transactions on Machine Learning Research
(TMLR), 2023. 4

[23] Nic Fishman, Leo Klarner, Emile Mathieu, Michael Hutchinson, and Valentin De Bortoli.
Metropolis sampling for constrained diffusion models. In Advances in Neural Information
Processing Systems (NeurIPS), 2023. 4

[24] Nikhil Goyal, Harsh Vardhan Jain, and Sayan Ranu. Graphgen: A scalable approach to
domain-agnostic labeled graph generation. In The Web Conference, 2020. 8, 9, 26

[25] T Ryan Gregory. Understanding evolutionary trees. In Evolution: Education and Outreach,
2008. 5

[26] Cigdem Gunduz, Biilent Yener, and S Humayun Gultekin. The cell graphs of cancer. In
Bioinformatics, 2004. 1, 27

[27] Kilian Konstantin Haefeli, Karolis Martinkus, Nathanaél Perraudin, and Roger Wattenhofer.
Diffusion models for graphs benefit from discrete state spaces. Learning on Graphs Conference
(LOG) Extended Abstracts, 2022. 2, 3, 4

[28] Beth A Helmink, Sangeetha M Reddy, Jianjun Gao, Shaojun Zhang, Rafet Basar, Rohit
Thakur, Keren Yizhak, Moshe Sade-Feldman, Jorge M Blando, Guangchun Han, Vancheswaran
Gopalakrishnan, Yuanxin Xi, Hao Zhao, Rodabe N Amaria, Hussein A Tawbi, Alexandria P
Cogdill, Wenbin Liu, Valerie S LeBleu, Fernanda G Kugeratski, Sapna Pradyuman Patel,
Michael A Davies, Patrick Hwu, Jeffrey E Lee, Jeffrey E Gershenwald, Anthony Lucci, Reetak-
shi Arora, Scott E Woodman, Emily Z Keung, Pierre olivier Gaudreau, Alexandre Reuben,
Christine N Spencer, Elizabeth M Burton, Lauren E Haydu, Alexander J Lazar, Roberta Zapas-
sodi, Courtney W Hudgens, Debora A Ledesma, Sufey Ong, Michael Bailey, Sarah Warren,
Disha Rao, Oscar Krijgsman, Elisa A Rozeman, Daniel S Peeper, Christian U Blank, Ton N M
Schumacher, Lisa H Butterfield, Monika A Zelazowska, Kevin M McBride, Raghu Kalluri,
James P Allison, Florent Petitprez, Wolf Herman Fridman, Catherine Sautes-Fridman, Nir Haco-
hen, Katayoun Rezvani, Padmanee Sharma, Michael T Tetzlaff, Linghua Wang, and Jennifer A
Wargo. B cells and tertiary lymphoid structures promote immunotherapy response. In Nature,
2020. 2, 27

[29] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In
Advances in Neural Information Processing Systems (NeurIPS), 2020. 2

[30] John Hopcroft and Robert Tarjan. Efficient planarity testing. In Journal of the ACM (JACM),
1974. 7, 23

[31] Han Huang, Leilei Sun, Bowen Du, and Weifeng Lv. Conditional diffusion based on discrete
graph structures for molecular graph generation. In AAAI Conference on Artificial Intelligence,
2023. 3

https://doi.org/10.52202/079017-4360 137229

[32] Hankyu Jang, Samuel Justice, Philip M Polgreen, Alberto M Segre, Daniel K Sewell, and
Sriram V Pemmaraju. Evaluating architectural changes to alter pathogen dynamics in a dialysis
unit: for the cdc mind-healthcare group. In IEEE/ACM International Conference on Advances
in Social Networks Analysis and Mining (ASONAM), 2019. 1, 5

[33] Yunhui Jang, Dongwoo Kim, and Sungsoo Ahn. Graph generation with K 2-trees. In Interna-
tional Conference on Learning Representations (ICLR), 2023. 8, 26

[34] Yunhui Jang, Seul Lee, and Sungsoo Ahn. A simple and scalable representation for graph
generation. In International Conference on Learning Representations (ICLR), 2023. 8, 26

[35] Guillaume Jaume, Pushpak Pati, Behzad Bozorgtabar, Antonio Foncubierta-Rodriguez, Florinda
Feroce, Anna Maria Anniciello, Tilman T Rau, Jean-Philippe Thiran, Maria Gabrani, and
Orcun Goksel. Quantifying explainers of graph neural networks in computational pathology. In
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020. 9, 27

[36] Guillaume Jaume, Pushpak Pati, Valentin Anklin, Antonio Foncubierta, and Maria Gabrani.
Histocartography: A toolkit for graph analytics in digital pathology. In International Conference
on Medical Image Computing and Computer-Assisted Intervention (MICCAI) Workshops, 2021.
5,9,27

[37] Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Junction tree variational autoencoder for
molecular graph generation. In International Conference on Machine Learning (ICML), 2018.
3

[38] Jaehyeong Jo, Seul Lee, and Sung Ju Hwang. Score-based generative modeling of graphs
via the system of stochastic differential equations. In International Conference on Machine
Learning (ICML), 2022. 3,4, 8, 26

[39] Laya Jose, Sidong Liu, Carlo Russo, Annemarie Nadort, and Antonio Di Ieva. Generative
adversarial networks in digital pathology and histopathological image processing: A review. In
Journal of Pathology Informatics, 2021. 27

[40] Thomas N Kipf and Max Welling. Variational graph auto-encoders. ArXiv, 2016. https:
//arxiv.org/abs/1611.07308. 3

[41] Lingkai Kong, Jiaming Cui, Haotian Sun, Yuchen Zhuang, B Aditya Prakash, and Chao Zhang.
Autoregressive diffusion model for graph generation. In International Conference on Machine
Learning (ICML), 2023. 2,3

[42] Igor Krawczuk, Pedro Abranches, Andreas Loukas, and Volkan Cevher. Gg-gan: A geomet-
ric graph generative adversarial network. OpenReview, 2020. https://openreview.net/
forum?id=qiAxL3Xgxlo. 3

[43] Johannes A La Poutré. Alpha-algorithms for incremental planarity testing (extended abstract).
In ACM symposium on Theory of Computing, 1994. 7, 23

[44] Hee Jin Lee, In Ah Park, In Hye Song, Su-Jin Shin, Joo Young Kim, Jong Han Yu, and Gyungyub
Gong. Tertiary lymphoid structures: prognostic significance and relationship with tumour-
infiltrating lymphocytes in triple-negative breast cancer. In Journal of Clinical Pathology, 2015.
2,27

[45] Xujia Li, Yuan Li, Xueying Mo, Hebing Xiao, Yanyan Shen, and Lei Chen. Diga: Guided
diffusion model for graph recovery in anti-money laundering. In ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, 2023. 1

[46] Renjie Liao, Yujia Li, Yang Song, Shenlong Wang, Will Hamilton, David K Duvenaud, Raquel
Urtasun, and Richard Zemel. Efficient graph generation with graph recurrent attention networks.
In Advances in neural information processing systems (NeurIPS), 2019. 3,7, 8, 24, 26

[47] Phillip Lippe and Efstratios Gavves. Categorical normalizing flows via continuous transforma-
tions. In International Conference on Learning Representations (ICLR), 2021. 3

137230 https://doi.org/10.52202/079017-4360

https://arxiv.org/abs/1611.07308
https://arxiv.org/abs/1611.07308
https://openreview.net/forum?id=qiAxL3Xqx1o
https://openreview.net/forum?id=qiAxL3Xqx1o

[48] Jenny Liu, Aviral Kumar, Jimmy Ba, Jamie Kiros, and Kevin Swersky. Graph normalizing
flows. In Advances in Neural Information Processing Systems (NeurIPS), 2019. 3

[49] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International
Conference on Learning Representations (ICLR), 2018. 24

[50] Aaron Lou and Stefano Ermon. Reflected diffusion models. In International Conference on
Machine Learning (ICML), 2023. 4

[51] Youzhi Luo, Keqiang Yan, and Shuiwang Ji. Graphdf: A discrete flow model for molecular
graph generation. In International Conference on Machine Learning (ICML), 2021. 3

[52] Manuel Madeira, Dorina Thanou, and Pascal Frossard. Tertiary lymphoid structures generation
through graph-based diffusion. In International Conference on Medical Image Computing and
Computer-Assisted Intervention (MICCAI) Workshops, 2023. 2,9, 27, 28, 29

[53] Kaushalya Madhawa, Katushiko Ishiguro, Kosuke Nakago, and Motoki Abe. Graphnvp: An
invertible flow model for generating molecular graphs. ArXiv, 2019. https://arxiv.org/
abs/1905.11600. 3

[54] Karolis Martinkus, Andreas Loukas, Nathana€l Perraudin, and Roger Wattenhofer. Spectre:
Spectral conditioning helps to overcome the expressivity limits of one-shot graph generators. In
International Conference on Machine Learning (ICML), 2022. 3,7, 8,9, 24, 26

[55] Rocio Mercado, Tobias Rastemo, Edvard Lindelof, Giinter Klambauer, Ola Engkvist, Hongming
Chen, and Esben Jannik Bjerrum. Graph networks for molecular design. In Machine Learning:
Science and Technology, 2021. 1

[56] Puria Azadi Moghadam, Sanne Van Dalen, Karina Chornenka Martin, Jochen K Lennerz,
Stephen S F Yip, Hossein Shahrabi Farahani, and Ali Bashashati. A morphology focused
diffusion probabilistic model for synthesis of histopathology images. In IEEE/CVF Winter
Conference on Applications of Computer Vision (WACV), 2022. 27

[57] Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen,
Gaurav Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural
networks. In AAAI Conference on Artificial Intelligence, 2019. 17

[58] Luis Munoz-Erazo, Janet L Rhodes, Valentine C Marion, and Roslyn A Kemp. Tertiary
lymphoid structures in cancer - considerations for patient prognosis. In Cellular & Molecular
Immunology, 2020. 2, 27

[59] Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic
models. In International Conference on Machine Learning (ICML), 2021. 5

[60] Chenhao Niu, Yang Song, Jiaming Song, Shengjia Zhao, Aditya Grover, and Stefano Ermon.
Permutation invariant graph generation via score-based generative modeling. In International
Conference on Artificial Intelligence and Statistics (AISTATS), 2020. 3

[61] Costantino Pitzalis, Gareth W Jones, Michele Bombardieri, and Simon A Jones. Ectopic

lymphoid-like structures in infection, cancer and autoimmunity. In Nature Reviews Immunology,
2014. 27

[62] Daniil Polykovskiy, Alexander Zhebrak, Benjamin Sanchez-Lengeling, Sergey Golovanov,
Oktai Tatanov, Stanislav Belyaev, Rauf Kurbanov, Aleksey Artamonov, Vladimir Aladinskiy,
Mark Veselov, et al. Molecular sets (moses): a benchmarking platform for molecular generation
models. In Frontiers in Pharmacology, 2020. 31

[63] Kristina Preuer, Philipp Renz, Thomas Unterthiner, Sepp Hochreiter, and Gunter Klambauer.
Fréchet chemnet distance: a metric for generative models for molecules in drug discovery. In
Journal of Chemical Information and Modeling, 2018. 31, 32

[64] Yiming Qin, Clement Vignac, and Pascal Frossard. Sparse training of discrete diffusion models
for graph generation. ArXiv, 2023. https://arxiv.org/abs/2311.02142. 2,3,4, 17

https://doi.org/10.52202/079017-4360 137231

https://arxiv.org/abs/1905.11600
https://arxiv.org/abs/1905.11600
https://arxiv.org/abs/2311.02142

[65] Sashank J Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of adam and beyond. In
International Conference on Learning Representations (ICLR), 2018. 24

[66] Oscar M Rueda, Stephen-John Sammut, Jose A Seoane, Suet-Feung Chin, Jennifer L Caswell-
Jin, Maurizio Callari, Rajbir Batra, Bernard Pereira, Alejandra Bruna, H Raza Ali, et al.
Dynamics of breast-cancer relapse reveal late-recurring er-positive genomic subgroups. In
Nature, 2019. 9, 27

[67] Pedro Sanchez, Xiao Liu, Alison Q O’Neil, and Sotirios A Tsaftaris. Diffusion models for causal
discovery via topological ordering. In International Conference on Learning Representations
(ICLR), 2022. 5

[68] Alberto Sanfeliu and King-Sun Fu. A distance measure between attributed relational graphs for
pattern recognition. In IEEE transactions on systems, man, and cybernetics, 1983. 6, 19

[69] Nadine S Schaadt, Ralf Schonmeyer, Germain Forestier, Nicolas Brieu, Peter Braubach, Katha-
rina Nekolla, Michael Meyer-Hermann, and Friedrich Feuerhake. Graph-based description of
tertiary lymphoid organs at single-cell level. In Public Library of Science (PLoS) Computational
Biology, 2020. 1, 2,9, 27, 28

[70] Claire Seibold and Hannah L Callender. Modeling epidemics on a regular tree graph. In Letters
in Biomathematics, 2016. 5

[71] Ahmed M Serag, Adrian Ion-Margineanu, Hammad Qureshi, Ryan McMillan, Marie-
Judith Saint Martin, James Diamond, Paul G O’Reilly, and Peter Hamilton. Translational
ai and deep learning in diagnostic pathology. In Frontiers in Medicine, 2019. 27

[72] Kartik Sharma, Srijan Kumar, and Rakshit Trivedi. Plug-and-play controllable graph generation
with diffusion models. In International Conference on Machine Learning (ICML), 2024. 3

[73] Howard E Simmons IIT and John E Maggio. Synthesis of the first topologically non-planar
molecule. In Tetrahedron Letters, 1981. 5

[74] Martin Simonovsky and Nikos Komodakis. Graphvae: Towards generation of small graphs
using variational autoencoders. In International Conference on Artificial Neural Networks
(ICANN), 2018. 3

[75] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsuper-
vised learning using nonequilibrium thermodynamics. In International Conference on Machine
Learning (ICML), 2015. 2

[76] Zhiqing Sun and Yiming Yang. Difusco: Graph-based diffusion solvers for combinatorial
optimization. In Advances in Neural Information Processing Systems (NeurlPS), 2024. 1

[77] Alex M Tseng, Nathaniel Diamant, Tommaso Biancalani, and Gabriele Scalia. Complex
preferences for different convergent priors in discrete graph diffusion. International Conference
on Machine Learning (ICML) Workshops, 2023. 33

[78] Clement Vignac and Pascal Frossard. Top-n: Equivariant set and graph generation without
exchangeability. In International Conference on Learning Representations (ICLR), 2021. 3, 32

[79] Clement Vignac, Igor Krawczuk, Antoine Siraudin, Bohan Wang, Volkan Cevher, and Pas-
cal Frossard. Digress: Discrete denoising diffusion for graph generation. In International
Conference on Machine Learning (ICML), 2022. 2, 3,4, 5, 8, 17, 26, 31, 32

[80] Clément Vignac, Nagham Osman, Laura Toni, and Pascal Frossard. Midi: Mixed graph and
3d denoising diffusion for molecule generation. In Joint European Conference on Machine
Learning and Knowledge Discovery in Databases (ECML/PKDD), 2023. 31

[81] Zhengin Wu, Bharath Ramsundar, Evan N Feinberg, Joseph Gomes, Caleb Geniesse, Aneesh S

Pappu, Karl Leswing, and Vijay Pande. Moleculenet: a benchmark for molecular machine
learning. In Chemical Science, 2018. 31

137232 https://doi.org/10.52202/079017-4360

[82] Zhenqin Wu, Alexandro E Trevino, Eric Wu, Kyle Swanson, Honesty J Kim, H Blaize D’ Angio,
Ryan Preska, Gregory W Charville, Piero D Dalerba, Ann Marie Egloff, et al. Graph deep
learning for the characterization of tumour microenvironments from spatial protein profiles in
tissue specimens. In Nature Biomedical Engineering, 2022. 9, 27

[83] Feng Xie and David Levinson. Topological evolution of surface transportation networks. In
Computers, Environment and Urban Systems, 2007. 5

[84] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations (ICLR), 2019. 17

[85] Qi Yan, Zhengyang Liang, Yang Song, Renjie Liao, and Lele Wang. Swingnn: Rethinking
permutation invariance in diffusion models for graph generation. In Transactions on Machine
Learning Research (TMLR), 2024. 3

[86] Kai Yi, Bingxin Zhou, Yiqing Shen, Pietro Li0, and Yuguang Wang. Graph denoising diffusion
for inverse protein folding. In Advances in Neural Information Processing Systems (NeurIPS),
volume 36, 2024. 1

[87] Jiaxuan You, Rex Ying, Xiang Ren, William Hamilton, and Jure Leskovec. Graphrnn: Generat-
ing realistic graphs with deep auto-regressive models. In International Conference on Machine
Learning (ICML). PMLR, 2018. 3, 8, 26

[88] Muhan Zhang, Shali Jiang, Zhicheng Cui, Roman Garnett, and Yixin Chen. D-vae: A variational

autoencoder for directed acyclic graphs. In Advances in neural information processing systems
(NeurlIPS), 2019. 5

https://doi.org/10.52202/079017-4360 137233

- - U B N S

A Graph Discrete Diffusion Model

In this section, we further detail the design of the graph discrete diffusion model used to illustrate the
constraining framework of ConStruct.

A.1 Training Algorithm

The denoising neural network is trained using the cross-entropy loss between its predicted probabilities
for each node and edge types, p¢ = (p~, p¥) and the actual node and edge types of a clean graph,
G=(X,E):

L(p“,G) = CE (p*,X) + ACE (p*,E), @)
where) is an hyperparameter that is tuned to balance both loss terms.

As shown by Vignac et al. [79], the loss in Equation (4) is node permutation invariant. Thus, if we
also consider an equivariant architecture, the diffusion model is endowed of the desired equivariance
properties, allowing the model to dodge the node ordering sensitivity from which, for example,
autoregressive models suffer. For this reason, we adopt a Graph Neural Network, GNNy, as the
denoising neural network of our diffusion model. In particular, we employ the exact same denoising
network architecture of DiGress [79], a Graph Transformer [20].

Importantly, the edge-absorbing noise model used in ConStruct increases graph sparsity throughout
the forward trajectory. Consequently, beyond the distribution preserving guarantees, it also allows for
the efficient computation of extra features on the noisy graphs that otherwise the GNNg would not be
able to capture. Following Vignac et al. [79], these are fed as a supplementary input to the denoising
network (see Algorithm 1 and Algorithm 3), further enhancing its expressivity beyond the well-known
limited representational power of GNN architectures [84, 57]. More concretely, besides the spectral
(eigenvalues and eigenvectors of the Laplacian) and structural (number of cycles) features from
DiGress, we also consider some additional features. We add as graph features the degree distribution
and the node and edge type distributions. While the former enhances the positional information
within the graph, the latter helps in making more explicit to the model the prevalence of each class
in the dataset. Additionally, we add auxiliary structural encodings to edges to boost edge label
prediction. We compute the Adamic-Adar index to aggregate local neighborhood information and the
shortest distance between nodes to encode node interactions. Due to computational limitations, we
only consider information within a 10-hop radius for these computations. These additional features
were previously proposed by Qin et al. [64].

Provided such loss function and denoising neural network architecture, all the necessary elements are
in place for the training of the diffusion model, which is defined in Algorithm 1.

Algorithm 1: Training Algorithm for Graph Discrete Diffusion Model

Input: Graph dataset D

repeat

Sample G = (X, E) ~ D;

Sample t ~ U(1,...,T);

Sample G* ~ XQ¥ x EQY;

h+ f(G't); // Compute extra features
p%, pY < GNNy(G?, h);

loss «+ CE(p~,X) + ACE(p”, E);

optimizer. step(loss);

until convergence of GNNpy;

A.2 Parameterization of the Reverse Process

The distribution py(G*~1|G?) fully defines the reverse process. Under an independence assumption
between nodes and edges, this distribution can be modelled as:

po(GHGY) = T peai™M1GY) T pelel;'IGY). Q)

1<i<n 1<4,5<n

137234 https://doi.org/10.52202/079017-4360

To compute each of these terms, we use the GNNjy predictions through the following marginalization:

po(zi MG = > polal o = 2, G") p¥ (2), (6)
reX

where pX (z) denotes the GNNj predicted probability of node i being of type z. Similarly, for the
edges we have py (eﬁj_l|Gt) = e p.g(efj_1|eij =e,GY) }35(6). To compute the missing term in
Equation (6), we equate it to the posterior term of the forward process:

x[(Q%)' o x: QY

— 1 t ; =
po(x} i = 2,G") = { x[Qhx: it ga;le: =) >0,
0

(N

otherwise,

where ’ denotes transposition.

A.3 Sampling Algorithm

In this section, we first introduce the algorithm describing the proposed projector operator in Algo-
rithm 2. This projector is employed at each time step to keep the sampled graphs throughout the
reverse process within the constrained domain. The full sampling algorithm is shown in Algorithm 3.

Algorithm 2: Projector

Input: Constraining property P, noisy graph G* = (X*, E'), and candidate graph
Gt—1 — (thl’EAvtfl)

Gt—1 (thl’Et);
E « Et-1 \ Bt // Get candidate edges
repeat

Sample ¢/ ~ E’;

if P(G'~!.insert(e’)) then

| G''« G Linsert(¢) ; // Insert only valid edges

end

E' « E'"\{e};
until £/ = (;
10 return G*—1;

-

(=TI R N7 VR Y

Algorithm 3: Sampling Algorithm for Constrained Graph Discrete Diffusion Model

Input: Number of graphs to sample /N and constraining property P

1 fori=1to N do

2 Sample n from the training set distribution ; // Sample number of nodes
3 | Sample GT ~ gqx(n) x qr(n) ; // Sample from limit distribution
4 fort =T to1do

5 h+ f(Gt); // Compute extra features
6 ¥, p¥ < GNNy(G, h);

7 Gt1 ~ (GG 5 // Sample from distribution in Equation (5)
8 G'=! Projector(P, Gt~1, G*);

9 end

10 Store GO

11 end

https://doi.org/10.52202/079017-4360 137235

B Theoretical Analysis

In this section, we theoretically analyse the projector. We start by defining a notion of distance
between graphs [68].

Definition B.1. Let G and G be two unattributed graphs. The graph edit distance with uniform
cost, denoted by GED(G1, G2), is defined as:

k
GED (G1,G2) = min c(e;) = min aller,...,e 8
(! 2) (617'”7616)68(6117612)7;:21 (Z) (61,...,ek)Eg(G1,G2) ‘(! k)| ()
where E(g1, g2) denotes the set of edit paths that convert Gy into G (up to an isomorphism),
cle) = a > 0 is the uniform cost of each usual set of elementary graph edit operators and
|(e1, ..., er)| refers to the cardinality of the edit path.

Importantly, in this analysis we choose GED due to its permutation invariance properties. We only
define it over unattributed graphs for an objective evaluation as ConStruct only operates at the graph
structural level. Moreover, as our generative process imposes a fixed number of nodes throughout the
whole reverse process, the relevant elementary edits for GED are edge insertion and deletion.

Additionally, we use the notation G D G’ to denote that G’ = (X', E’) is a subgraph of G = (X, E),
i.e., that up to an isomorphism, we have £ D E’ and X = X'. For brevity, we slightly abuse notation
and also define the union between a graph, G = (X, F), and a set of edges, F’, to be the graph whose
edges result from the union of its edges with those of the set, i.e., GUE = G' = (X,EUFE’).
Similarly, we have G\ E' = G' = (X, E\ E).

The next results are organized in the following way: the first theorem proves that for any edge-
deletion invariant constraining property (Definition 3.1), our projector can retrieve a graph that
results from a projection onto the constrained set under the GED sense. Then, we prove that when
considering acyclicity as target structural property, the projector is guaranteed to output the optimal
(projected) samples. We finally show that this second property does not hold for all edge-deletion
invariant properties, giving counter-examples for the cases of planarity, maximum degree and lobster
components.

Theorem 1. Let:

* P be the edge-deletion invariant (Definition 3.1) constraining property of the projector;

o G" be a noisy graph obtained at timestep t;

« G be a sampled graph from pg(Gt—|G?), i.e., the one-step denoised candidate graph
directly proposed by the diffusion model when taking G* as input;

e G=1 = Projector(P, ét’l, GY) be the set of all possible final one-step denoised graph
outputted by ConStruct.

We define (G*, e*) any optimal solutions of the following optimization problem:

mingee GED(G'™, G) = min min al(er, ..., er)l,)
Gec (61,...,ek)eg((}t71’G)

where C = {G € G|P(G) = True,G D G'}, with G the set of all unattributed graphs. Then,
(G*, e*) can be recovered by our projector; i.e. G* € G'~1.

Proof. 1f Gt € C, the theorem is trivially verified since the output of the projector is directly Gt1,
as well as the solution of the minimization problem. Therefore, for the rest of the proof, we only

consider the case G*~! ¢ C.

Now, since the reverse process of the diffusion model is an edge insertion process, we have Gt—1 =
Gt U Eandidae O G*. Also, we notice that the projector amounts to randomly remove the edges that
are not in G* from G~ until we find a graph within the constraint set (equivalently, it entails adding
as many edges as possible to G* while ensuring that the graph remains within the constraint set).
Thus, it suffices to prove that for (G*, e*) we necessarily have an optimal edit path e* = (ef, ..., €})
from G~ to G* exclusively composed of edge deletions. In this case, our projector can necessarily
produce G*.

137236 https://doi.org/10.52202/079017-4360

Let (G*,e*) be such a solution, and define G, the graph resulting from the * first edits e, =

(e, ...,er) with i < k. We will prove by induction that, for all 1 < ¢ < k, e, is only composed of

< €y

edge deletions such that G* C G7,.

i=1:Since G!"! ¢ Cand G*~! D G, we have that P(G*~!) = False. As P is edge-deletion
invariant, inserting any set of edges F to G*~! implies that

P(G'™1) = False = P(G'"'UE) = False. (10)
Therefore, we have:

min GED(G*™1,G) = min GED(G' U Eeugidare, G U Eg) (11)

GeC (GtUEg)eC
= min a|Ecandidale \ EG| (12)

(GtUEg)eC
< min a|Ecandidate UE \ EG| (13)

(GtUEg)€eC
= min GED(G''UE,G'UEg) (14)

(GtUEg)eC
=min GED(G*"'UE, Q). (15)

GecC

Thus, we conclude that any edge insertions would take us further away from the constraint set.
Therefore, e} cannot represent an edge insertion. However, it could still be an edge deletion such
that G* ¢ G In this case, an extra edge insertion would be necessary to recover G* in G, which is
required since G* O G¢, i.e.,

: At—1 < mi *
IélelrchED(G ,G) _rélenchED(1G). (16)

Contrarily, if e} is an edge deletion such that G* C G|, we have:

. At—1 : *

since G' C G, C G'=1. Therefore, we verify the intended property for i = 1.

1 < i< k: Wehave G%_; ¢ C because P(G?,_;) = False. Otherwise G;_; would be the solution
since G* C G7_,. Hence for any set of inserted edges E,

. x < m x
min GED(G7;_,, ¢) < min GED(G; U E, G), (18)
implying that e} is an edge deletion. By the same token, if G* ¢ G, then necessarily an extra
insertion edit would be necessary to recover G* further in G*, so we have again:

. * < 1 *
gleug GED(anlaG) S IGnelIcl GED(G:WG), (]9)

which, as seen before, is suboptimal. Thus, €] is an edge deletion such that G* C G?,. By noticing
that G7;, = G*, we conclude our proof. This induction shows that only an edit path e* composed
of edge deletions such that all intermediate graphs contain G leads to an optimal projection w.r.t
GED. O

Critical analysis of the result in Theorem 1: See Section 3.4 for a critical analysis of this result.

In the following theorem we prove that the projector always picks the solution of the optimization
problem, i.e., that any element of G*~! is actually a solution of the optimization problem in Theorem
1. In this proof, we use the concept of connected component of a graph, i.e., a subgraph of the given
graph in which there is a path between any of its two vertices, but no path exists between any vertex
in the subgraph and any vertex outside of it. Therefore, any edge inserted between two nodes in the
same connected component leads to a cycle. Importantly, we trivially consider an isolated node as a
connected component.

Theorem 2. Under the same conditions of Theorem 1, if P returns true for graphs with no cycles, we
have:
G'! = argming .. GED(G' 1, G).

https://doi.org/10.52202/079017-4360 137237

Proof. Following the proof of Theorem 1, if we define again G-l =GtuU Fleandidate, W€ have:

min GED(G*™1,G) = min GED(G' U Eeangigae, Gt U Eg)
Gec (GtUEg)eC

Eg)e

= min | Ecandidate \ Ec|
{Ec| P(GtUEG)=True, Eg C Ecundidate }

= max |Ec|,
{Eg| P(G'UEg)=True, EG C Ecadidatc }

where the first equality is just a change of variables and the second comes from FE adidate 2 Fo»
as shown in Theorem 1. This shows that a solution to argmingcc GED(Gt’l, () maximizes the
number of edges added to G*. This is a general result under the conditions of Theorem 1 and not
specific for graphs with no cycles. We now want to show that any element of G~ is a solution to
this optimization problem.

We define |CCeangidae| @s the number of distinct connected components of G* reached by FEeandidate-
We remark that the considered graphs all have the same fixed number of nodes. A well-known result
for graphs without cycles is that, under the provided setting, the maximum number of edges from
Eandidate that we can insert is |CCeandidae| — 1, i.€., we sequentially insert an edge per pair of separate
connected components. Thus, we have:

max |EG| < |Cccandidate| - 1.
{EG‘ P(GtUEG)ZTruea EGCEcandidale}

On the other hand, the only edges from FE andidate that the projector rejects are the ones creating cycles.
This means that the refused edges would not reduce the number of separate connected components,
since they would connect vertices already in the same connected component. Thus, for a graph
Gprojector = G U Eprojector € G771, we necessarily have:

|Eprojector‘ > |CCcandidate| - 1,

which tightly matches the upper bound for the optimization problem seen above. Consequently,
| Eprojector] = |CCeandidate] — 1 and any Giprojector € G~ is necessarily solution of the optimization
problem, i.e.:

G'™! C argming.. GED(G'1, Q)

O

For other edge-deletion invariant properties, we provide examples of Gpjecior With a different
number of edges inserted by the projector, , in Figure 3. These are necessarily counter-

Eprojector
examples to what was proved in Theorem 2 for acyclic graphs (G'~! C argming GED(CA?tfl, Q@)).
Nevertheless, the opposite relation still holds from Theorem 1.

Overall, Theorem 1, Theorem 2, and the counter-examples in Figure 3 show that the problem that the
projector is addressing is not so trivial such that it can always output the optimal graph in the GED
sense for all the edge-deletion invariant properties. Nevertheless, our projector is still guaranteed to
produce graphs that meet the specified structural constraints.

137238 https://doi.org/10.52202/079017-4360

Constraint Gt Gt1 Gttt | Eprojector
@ 2
Planar
@ 1
° ° W 2
Maximum
Degree \ / \/ .
1
* —o—0—0
Lobst o000 9 -o-0-0 —o—o—o 6
obster : de o
Components ;)
o0 0 é-0-0
—o—o—0 5
*—0—0

Figure 3: Examples of different G*~! that can be yielded by Projector(P, G*~!, G*) for given P

(column “Constraint™), G, and Gt-1 (columns with the respective name) that lead to the insertion
of a different number of edges. For the maximum degree row, the example given considers that the

maximum allowed degree is 2. For the column G'~1, the dashed lines represent the candidate edges.
For the column G*~1, the green lines denote the actually inserted edges by the projector.

https://doi.org/10.52202/079017-4360 137239

C Incremental Algorithms

As discussed in Section 3.5, utilizing the projector in the edge insertion reverse process (i.e., Gt C
G~ 1) allows us to further enhance efficiency by leveraging incremental algorithms for graph property
satisfaction checking. These algorithms avoid performing a full property satisfaction check on the new
graph at each timestep. Instead, they assume that the previous graph (i.e., before the new edge was
added) already satisfies the target structural property. Incremental algorithms focus on verifying the
impact of the newly added edge by updating and checking only the affected parts of smartly designed
data structures. In other words, contrary to their full graph counterparts, incremental algorithms allow
for property satisfaction checks at a local level. This approach accelerates the property satisfaction
checking process by reducing redundant computation.

In this section, we discuss the incremental property satisfaction algorithms for the edge-deletion
invariant properties analysed throughout the paper. We also note that due to the combinatorial nature
of edge-deletion invariant properties, each property satisfaction algorithm is specific to the property
in question. There is no general efficient property satisfaction checker for all edge-deletion invariant
properties. Consequently, we address each property on a case-by-case basis.

Planar The best performing full property satisfaction algorithm known for planarity is O(n) [30],
while its fastest known incremental test has amortized running time of O(«(q,n)) [43] (“almost
constant” complexity), where q is the total number of operations (edge queries and insertions), and «
denotes the inverse-Ackermann function.

Acyclicity In generic undirected graphs (our case), the usual full tests via DFS/BFS have a com-
plexity of O(n + |E|), i.e., the algorithms have to traverse the full graph to reject the existence
of any cycle. However, for the dynamic case, given that G* has no cycles, we can only check if
the added edges, Eaq4ed, connect nodes already in the same connected component. This check can
be efficiently performed if we keep an updated hashtable that maps each node to the index of the
connected component it belongs at that iteration (an isolated node is a connected component) and
another one with all the nodes belonging to each connected component. Whenever there is a new
edge proposed, we check if the nodes are already in the same connected component. If not, we insert
the edge and update the two hashtables accordingly; otherwise, we reject the edge since it would
create a cycle. Therefore, the cycle check can be done in O(| Fagded|)-

Lobster Components Its global test involves removing twice the leaves of the graph and checking
if the remaining connected components are paths. This algorithm has a complexity of O(| E|). For the
incremental version, we can use a similar approach to that of the absence of cycles but additionally
check if the newly connected node is not more than two hops away from the path in its connected
component, as lobster graphs are specific instances of forest graphs. If, again, we keep track of the
paths of each connected component in a hashtable, we still get an incremental algorithm of complexity
O(| Eaddea|) for this property.

Maximum Degree The optimal full property satisfaction algorithm has a complexity of O(n) since
it has to perform a degree check across all nodes. The incremental version is naturally just a quick
check for nodes that are vertices of F,g4eq. Again, if we keep an updated hashtable with the degree of
each node, this can be quickly performed in O(| Fyddedl)-

137240 https://doi.org/10.52202/079017-4360

D Experimental Details

D.1 Training Details

As mentioned in Section 4, we follow the splits originally proposed for each of the unattributed
datasets (lobster [46], planar [54], and tree [7]): 80% of the graphs are used in the train set and the
remaining 20% are allocated to the test set. We use 20% of the train set as validation set. We note that
for the lobster dataset, the original splits provided in the open-source code from Liao et al. [46] use
the validation set as a subset of the train set, i.e., all the samples in the validation set are used to train.
In contrast, we follow Martinkus et al. [54]’s protocol, isolating completely the validation samples
from the train (again, 20% of the train split). In any case, the test splits are coincident between our
approach and the one from Liao et al. [46]. For the digital pathology datasets, we follow the same
protocol.

These splits and the hyperparameters used for each model are provided in the computational imple-
mentation of the paper as the default values for each of the experiments. For each configuration,
we save the five best models in terms of negative log likelihood and the last one (for ConStruct, we
compute the likelihood of the corresponding unconstrained model) and pick the best performing
model across those six checkpoints. Regarding the optimizer, we used the AMSGrad [65] version of
AdamW [49] with a learning rate of 0.0002 and weight decay of 1e-12 for all the experiments.

D.2 Resources

All our experiments were run in a single Nvidia V100 32Gb GPUs. We present the training times of
the diffusion model for each dataset in Table 3.

Table 3: Training times for the diffusion model in different datasets.

Dataset Training Time (h)
Planar 48

Tree 44
Lobster 50

High TLS 61

Low TLS 61

QM9 9.5
MOSES 335.5
GuacaMol 502

The baseline model for the digital pathology dataset does not use any GPU. It takes 0.6s to train and
2 minutes to sample from. The sampling times for ConStruct can be found in Appendix D.3. As the
order of magnitude of training times is significantly larger than the one of sampling times, Table 3
provides a good estimate of the total computational resources required for this paper.

D.3 Runtimes

A major advantage of our framework is that it does not interfere with the training of the diffusion
model, preserving its efficiency. Therefore, there is no overburden in the training time caused by
ConStruct. For this reason, in this section we only analyse the different sampling runtimes. In
particular, we track the sampling times of DiGress+ and the ones of ConStruct with and without the
efficiency boosting components described in Section 3.5 (edge blocking hashtable and incremental
property satisfaction algorithm).

Additionally, a natural procedure to ensure 100% constraint verification solely using DiGress+ is to
first directly perform unconstrained generation and then applying a validation process to filter out
the ones that do not verify the constraint. This a posteriori filtering requires a full graph property
check, run only once after the graph has been generated but that is thus more computationally
expensive when compared to their incremental versions employed by ConStruct. The complexity
comparison between a full graph property check ran only once vs an incremental check for each
added edge is property specific. However, the main bottleneck of the a posteriori filtering is that it

https://doi.org/10.52202/079017-4360 137241

wastes computational resources in case of graph rejection (i.e., in the case of a graph not verifying
the property, all the resources used in its generation and full graph property checking are wasted)
and requires restarting the sampling from zero again with an additional property check at the end.
Furthermore, this procedure has to be performed sequentially, since we can only check the graphs
constraint satisfaction after their generation. ConStruct avoids such redundancy and, thus, waste of
computation by generating property satisfying graphs by design: throughout the reverse process, we
know that the previous graph verified the property, so we can just check property satisfaction for the
newly added edges (via incremental algorithm) that have not been checked yet (via edge blocking
hashtable).

We compare the sampling runtimes of the aforementioned algorithmic variants in the table below.
We run this experiment for the tree dataset, where we use acylicity as target structural property. We
picked this dataset due to its simpler incremental check, described in Appendix C.

Table 4: Runtimes comparison. We performed five sampling runs for each method and present their
results in the format mean + standard error of the mean. For each run, we generated 100 graphs.
All our experiments were run in a single Nvidia V100 32Gb GPUs. ConStruct [efficient] uses the
edge blocking hashtable and the incremental version of the property satisfaction algorithm, while
ConStruct [baseline] does not. DiGress+ refers to regular unconstrained generation, while DiGress+
[rejection] applies a posteriori filtering of unconstrained generation until we get the intended amount
of graphs.

Dataset Sampling Time (s)
DiGress+ 266.0 0.1
DiGress+ [rejection] 310.7 55
ConStruct [efficient] 290.2 0.1
ConStruct [baseline] 349.0 0.3

By implementing the edge blocking hashtable and the incremental checker, we observe a significant
efficiency improvement: the additional runtime imposed by ConStruct over the unconstrained setting
decreases from 31% to 9%. This trend should hold for other datasets as far as both lookup and update
operations in hashtables (O(1)) and incremental property checks are more efficient than full-graph
constraint checks, which is the typical case.

ConStruct also outperforms the a posteriori filtering of unconstrained generation. In this case,
we used an unconstrained model that generates constraint satisfying properties 97% (DiGress+ in
Table 1 of the paper), therefore largely benefitting the unconstrained model. For example, if we
considered the digital pathology setting, where we can have only 6.6% (see Table 2, high TLS dataset,
DiGress+) of the generated graphs with the unconstrained model satisfying the constraint, the amount
of wasted computation would be dramatically larger, implying a much worse runtime. In such setting,
ConStruct would be approximately 12 times more efficient in generating valid graphs than DiGress+.
Additionally, this gap in sampling efficiency may become particularly critical in settings where the
amount of generated graphs is much larger, as is the case for molecular generation (two orders of
magnitude greater than in the settings with synthetic datasets, see Appendix G).

137242 https://doi.org/10.52202/079017-4360

E Synthetic Datasets

In this section, we provide further information about the unattributed synthetic datasets used in
Section 4.1.

E.1 Statistics

In Table 5, we provide the minimum, maximum, and average number of nodes, minimum, maximum,
and average number of edges, and the number of training, validation and test graphs used for each
synthetic unattributed dataset.

Table 5: Synthetic dataset statistics. #Train, # Val and #Test denote the number of graphs considered
in the train, validation and test splits, respectively.
Dataset Min. nodes Max. nodes Avg. nodes Min. edges Max. edges Avg. edges #Train #Val #Test

Planar 64 64 64 173 181 177.8 128 32 40
Tree 64 64 64 63 63 63 128 32 40
Lobster 11 99 50.2 10 99 49.2 64 16 20

E.2 Compared Methods

In Section 4, we compare ConStruct with several unconstrained graph generative models. We
consider:

* the two first widely adopted autoregressive models for graph generation, GraphRNN [87]
and GRAN [46];

* two spectrally conditioned methods: SPECTRE [54] is a GAN-based approach and HSpec-
tre [7] consists of an iterative local expansion method that takes advantage of a score-based
formulation for intermediate steps;

* we also compare to the original implementation of DiGress [79] without the additional
features described in Appendix A.1;

* GraphGen [24] is a scalable autoregressive method based on graph canonization through
minimum DFS codes. Importantly, this method is domain-agnostic and supports attributed
graphs by default;

* GraphGen-Redux [5] improves over GraphGen by jointly modelling the node and edge
labels;

* BwR [17] and GEEL [34] also explore more scalable graph representations via bandwidth
restriction schemes, which are then fed to other graph generation architectures;

» HDDT [33] leverages a K2—tree representation of graphs to capture their hierarchical
structure in an autoregressive manner,

* GDSS [38] is a purely score-based formulation for graph generation;

* BiGG [14] is a parallelizable autoregressive model that takes advantage of graph sparsity to
scale for large graphs;

* EDGE [10] is a degree-guided scalable discrete diffusion method (more details in Section 2).

https://doi.org/10.52202/079017-4360 137243

F Digital Pathology
In this section, we go through additional information related to the digital pathology datasets.

F.1 Digital Pathology Primer

Digital pathology consists of an advanced form of pathology that involves digitizing tissue slides
into whole-slide images (WSI), allowing for computer-based analysis and storage. Deep learning
approaches quickly integrated digital pathology processing methods, primarily focusing on extracting
image-level representations for tasks such as slide segmentation and structure detection. These
have also been used for downstream tasks such as cancer grading, or survival prediction [6, 71].
However, existing image-based approaches face challenges with the sizes of WSIs, requiring their
patching. This procedure raises a trade-off between the context and the size of the patch provided to
the model. Moreover, image-based deep learning lacks efficient representations of biological entities
and their relations, resulting in less interpretable models. Recently, entity-graph based approaches
have emerged as a promising alternative to evade such limitations [36, 2]. These graphs are built by
directly assigning nodes to biological entities and modelling their interactions with edges [26, 36],
providing enhanced predictive performance and interpretability [35, 82].

Importantly, most of the deep learning contributions in the digital pathology realm have been in the
discriminative setting. However, digital pathology could profoundly benefit from the development
of generative formulations in several dimensions: first, there is is a lack of high-quality annotated
samples, mostly due to their heavy ethical and privacy regulation. Besides, collecting these samples
is remarkably costly, both economically and in terms of time and labor required [36]. Most of
the discriminative approaches are also instance-based. The developed models then become highly
sensitive to distribution shifts, which is a common challenge across biomedical datasets, for instance
due to batch effects [21]. The development of generative models in digital pathology can address these
limitations by enabling both the generation of synthetic data and distribution-based characterisations
of the data. Even though some approaches have been carried out using image-based methods (e.g.,
GANss [39] or even diffusion models [56]), these lack the advantages of graph-based approaches.
To the best of our knowledge, graph-based generative modelling in digital pathology has only been
explored by Madeira et al. [52]. Despite the promising results for data augmentation settings, only an
off-the-shelf graph generative model (DiGress) is explored and in a proprietary dataset.

F.2 Building Whole-slide Cell Graphs

We build the whole-slide cell graphs from the genomic and clinical data available from the Molecular
Taxonomy of Breast Cancer International Consortium (METABRIC) molecular dataset®. This dataset
has been extensively used in previous breast cancer studies [66, 13, 15]. Using the single cell data,
we mapped 32 different annotated cell phenotypes to 9 more generic phenotypes in a biologically
grounded manner. We used the mapping detailed in Table 6. Therefore, each node is assigned to one
of the resulting nine possible phenotypes. We assume these phenotypes to extensively characterize a
cell both anatomically and physiologically.

Regarding edges, we followed the typical procedure for cell-graphs in digital pathology [36, 35, 2, 82]:
first we used Delaunay triangulation on the cell positions to build them. Then, we discard edges
longer than 25 pm. We note that we obtain different graphs than the ones considered by Danenberg
et al. [15]. In terms of dimensionality, we obtain graphs with b = 9 and ¢ = 1. We focus on the
generation of simple yet biologically meaningful structures, Tertiary Lymphoid Structures (TLSs),
further described in the next section. Thus, we extract 4-hop non-overlapping subgraphs centered at
nodes whose class is “B-cell" from the whole-slide graphs.

F.3 Tertiary Lymphoid Structures

Tertiary Lymphoid Structures (TLSs) are simple yet biologically meaningful structures. Structurally,
TLSs are well-organized biological entities where clusters of B-cells are enveloped by supporting
T-cells. Typically observed in ectopic locations associated with chronic inflammation [61, 69], these
structures have been linked to extended disease-free survival in cancer [28, 44, 18, 58, 69], thus

3Data retrieved from https://zenodo.org/records/7324285

137244 https://doi.org/10.52202/079017-4360

https://zenodo.org/records/7324285

Table 6: Mapping used to convert the original phenotypes to the adopted phenotypes.

Original Phenotype Mapping Phenotype

CK8-18MCXCL 12" Epithelial
HER2*
MHCMCD15%
CK8-18MER®

C KIOERIO
CKloERmed
CK8-18* ERM
CKmed ERlo
MHC I & 1M
Basal

Ep CD57+
MHC 1"CD57*
ERMCXCLI12*
Ep Ki67"

CK*+ CXCL12*
CD15*

Endothelial Endothelial

Macrophages & granulocytes ~Macrophages/Granulocytes
Macrophages
Granulocytes

Fibroblasts Fibroblast
Fibroblasts FSP1+

Myofibroblasts Myofibroblast
Myofibroblasts PDPN ™

CD4+ T cells T
CD471 T cells & APCs
CD8™* T cells

Treg & T

B cells B

CD57+ Marker

Ki67+

CD38™ lymphocytes CD38+ Lymphocyte

constituting an important indicator for medical prognosis in cancer. Since these are small structures
when compared with the size of whole-slide graph, we extract non-overlapping 4-hop subgraphs
centered at nodes whose class is “B”, corresponding to B cells, from the WSI graphs. This procedure
is illustrated in Figure 4.

As mentioned in Section 4.2, the TLS content of a cell graph can be quantified using the TLS
embedding, k = [k, ..., Ks5] € RS [69, 52]. This TLS-like organization metric considers only edges
between B and T-cells and classifies them into several categories: o edges link two cells of the same
type, while +; edges connect a B to a T-cell, where j is the number of B-cell neighboring the B-cell
vertex (see Figure 4). Therefore, the entry ¢ of x is defined as the proportion of its v edges whose
index is larger than 4:

K_U?)__|EéT|—|E%J-§:§:o|EHﬂ
' |Egt| — [Eal 7

(20)

where |Egt|, | Es|, and | E., | correspond to the number of edges whose both vertices are B or T-cells,
of a edges and of y; edges in a given graph, G. Note that, by definition, the entries of « take values
between 0 and 1 and are monotonically non-increasing with s.

https://doi.org/10.52202/079017-4360 137245

Fibroblast @ Macrophages/Granulocytes —a " o—m — %
@ Myofibroblast Marker — % —m —u
D38+ Lymphocyte Endothelial

is cell subgraph,
we can then compute the TLS embedding based on the classification of the edges into different
categories, shown on the right. We can observe a cluster of B-cells surrounded by some support
T-cells, characteristic of a high TLS content.

F.4 Statistics of digital pathology datasets

In this section we provide the statistics for the low and high TLS content datasets. In Table 7, we
provide their structural statistics and, in Table 8, the prevalence for each of the nine phenotypes (after
mapping) across all the nodes in the datasets. In Figure 5, we provide their entry-wise distributions
for the TLS embedding, .

Table 7: Digital pathology datasets statistics. Here, we report the same stats as in Table 5. #Train,
#Val and #Test denote the number of graphs considered in the train, validation, and test splits,
respectively.

Dataset Min. nodes Max. nodes Avg. nodes Min. edges Max. edges Avg. edges #Train #Val #Test

High TLS 20 81 57.9 39 203 143.8 128 32 40
Low TLS 20 81 51.7 37 204 123.7 128 32 40

Table 8: Prevalence (in %) of the different cell phenotypes for the digital pathology datasets.

Dataset B CD38+ Lymphocyte Endothelial ~Epithelial ~Fibroblast Macrophages/Granulocytes Marker Myofibroblast T
High TLS 393 1.9 4.6 9.4 4.4 6.3 0.6 72 26.4
Low TLS 7.7 24 5.9 334 17.7 8.4 0.2 9.9 14.1

F.5 Baseline Method for Digital Pathology

The non-deep learning method used as baseline for the digital pathology dataset follows Madeira
et al. [52]. This model learns three distributions by counting the frequencies of given events in the
train dataset. In particular:

* Categorical distribution for the number of nodes, where the probability of sampling a given number
of nodes is the same as its proportion in the train dataset, Diin, i.€.:

{G € Dyuin : | X| =k}
|Dtrain| ’
* Categorical distribution for the cell phenotypes, where the probability for each cell phenotype
corresponds to its marginal probability in the dataset:
{v € X : Ph(v) = ply; }|
26D 1 X ’

where Ph(v) refers to the phenotype of node v, and ph, denotes the specific phenotype labeled as
1. These consist of the phenotypes described in Appendix F.2 with a fixed (arbitrary) order.

P(X| = k) = |

P(Ph(v) = ph,) = 2=CEDua

* Bernoulli distribution for the edge type (no edge vs edge) conditioned on the phenotypes of its two
vertices, again computed based on its marginal distribution in the train set.
D GeDu {(V1,02) € C(G) : (v1,02) € B}
P(Edge | Ph(v1) = ph,,Ph(re) =ph,) = main ;
’ 2 GeDyun €G]

where C(G) = {v; € X : Ph(v;) = ph;} x {v2 € X : Ph(vz) = ph;} for 1 < ph; < ph; <9.

137246 https://doi.org/10.52202/079017-4360

Low TLS High TLS

#(0) r(0)
10 i 5
0 T T T T 0 T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
k(1) k(1)
20] 9
0 T T T T 0 -
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
K(2) K(2)
20]
2
0 T T T T 0 -
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
K (3) K(3)
20
5
0 T T T T 0 T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
K(4) K(4)
20
10
0 T T T T 0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
K (5) K(5)
20
10
0 0
0.0

0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Figure 5: Distributions of the TLS embedding entries for the low TLS (left) and the high TLS (right)
datasets.

To sample a new graph, we first sample a number of nodes for the graph from the first distribution.
Then, for each of those nodes sample a cell phenotype from the second distribution. Finally, between
every pair of cells, we sample an edge type given the two phenotypes previously sampled from the
third distribution. This sampling algorithm is described in Algorithm 4.

Algorithm 4: Sampling Algorithm for the Digital Pathology Baseline

Input: Number of graphs to sample NV
1 fori =1to N do

2 | Sample | X| ~ P(|X]); // Sample number of nodes
3 forn = 1to | X|do

4 | X[n] ~ P(Ph(v)); // Sample node phenotypes
5 end

6 for1 <i<j<9do

7 | Eli,j] ~ P(Edge | Ph(X[i]),Ph(X[j])) : // Sample edges
8 end

9 Store G = (X, E);

10 end

https://doi.org/10.52202/079017-4360 137247

G Molecular Datasets

G.1 Exploring Planarity

In this section, we show the results for 3 molecular datasets: QM9 [81], MOSES [62] and Gua-
caMol [9]. Importantly, for QM9 and GuacaMol, we include formal charges as additional node labels,
since this information has been shown beneficial for diffusion-based molecular generation [80]. For
MOSES, such information is not available.

The metrics used to evaluate generation were:

* FCD - Fréchet ChemNet Distance [63], similar to Fréchet Inception Distance (FID) but for
molecules, represented as SMILES. This metric evaluates the similarity between the gener-
ated and test molecule sets, providing an indicator for the sample quality in unconstrained
settings;

» Uniqueness - proportion of not repeated molecules across all the generated molecules;

* Novelty - proportion of generated molecules that are not in the train set;

* Valid - proportion of generated molecules that are valid. This metric evaluates sample
validity.

In particular, we explore planarity as target structural property in the molecular setting, as previously
suggested by recent works in discriminative tasks [19]. Therefore, we also include the proportion of
planar molecules from the generated set as an evaluation metric. As a remark, QM9 and MOSES
are exclusively composed of planar molecules. GuacaMol contains 3 non-planar molecules out of
1273104 molecules in the train set and 3 non-planar molecules out of 238706 molecules in the test
set. We considered these non-planar examples negligible in model training/evaluation, thus fully
preserving the original dataset. The validation set has 79568 planar molecules. The results are shown
in Table 9.

Table 9: Graph diffusion performance on molecular generation. The constraining property used for
ConStruct is planarity. We performed five sampling runs for each method and present their results in
the format mean + standard error of the mean. For each run, we generated 10000, 25000, and 18000
generated molecules for QM9, MOSES, and GuacaMol, respectively, following the protocol from
Vignac et al. [79]. Note that for MOSES and GuacaMol, we do not report their benchmarking metrics,
as we focus on an overview comparative analysis of the two methods, DiGress+ and ConStruct. The
FCD is computed using the official implementation from Preuer et al. [63].

QM09 Dataset
Model FCD | Unique T Novel 1 Validt Planarity 1

DiGress+ 0.2090 x0.0068 96.0 0.1 36.6 01 99.0 200 99.7 +0.1
ConStruct 0.3443 00061 96.1 z0.1 40.1 202 98.5 0.0 100.0 +0.0

MOSES Dataset
Model FCD | Unique T Novel Validt Planarity 1

DiGress+ 0.5447 z00080 100.0 x00 93.5:01 87.5 101 100.0 0.0
ConStruct 0.6068 00045 100.0 200 93.7 z01 84.1 z0.1 100.0 z0.0

GuacaMol Dataset
Model FCD | Unique T Novel T Valid{ Planarity 1

DiGress+ 0.9663 z0.0063 100.0 200 100.0 x00 84.7 02 99.9 +0.0
ConStruct 1.0538 200045 100.0 z00 100.0 +00 81.9 +0.1 100.0 +0.0

We only observe an incremental improvement in the planarity satisfaction of the output graphs of
ConStruct, since DiGress+ learns to almost always generate planar graphs. As a consequence, the
constrained model ends up being marginally less expressive than the unconstrained one, as extensively
discussed in Appendix H.1. This impacts both sample quality and sample validity. In fact, while
for the discriminative setting, the main aim is to design fully expressive architectures for classes of

137248 https://doi.org/10.52202/079017-4360

graphs as broad as possible, e.g., PlanE [19] for planar graphs, in constrained generation this is not
the case. As exemplified, planarity is too loose of a constraint, since the atoms composing molecules
typically have low degrees and it becomes highly unlikely for the unconstrained diffusion model to
violate planarity. This ends up slightly harming the performance of the constrained generative model
without bringing the benefits of increased validity, as observed in Section 4.

As a side note for the interested reader, the low values of novelty for QM9 are a result of the nature of
this dataset, which consists of an exhaustive enumeration of small molecules satisfying a given set of
properties [78, 79]. Therefore, there is small room for the generation of new molecules within such
space.

G.2 Controlled Molecular Generation

In many real world scenarios, we want to generate molecules to target different goals, ranging from
specific drug interactions to particular material properties. In such cases, we are not interested in
generating any realistic molecules, but in obtaining molecules that are endowed with given properties
matching our specific objectives. Constrained graph generation appears as a promising research
direction to accomplish such tasks, as the generated molecules will necessarily verify the enforced
properties by design. In this section, we explore how to use ConStruct to successfully address such
challenge.

One relevant property of molecules is acyclicity. In molecules, this structural property dictates
distinct chemical characteristics compared to their cyclic counterparts. In fact, acyclic molecules
are frequently encountered in natural products and pharmaceuticals, where their linear structures con-
tribute to enhanced solubility, bioavailability, and metabolic stability. Additionally, acyclic molecules
offer simplified synthetic routes and reduced computational complexity in modeling studies.

We explore the generation of acyclic molecules by picking the absence of cycles as constraining
property for ConStruct. Importantly, in contrast to all the experiments in the paper, we do not train
with only graphs that verify the property. Instead, we use the two models trained in the unconstrained
setting (from previous section): one with edge-absorbing transitions (ConStruct) and another with
marginal edge transitions (DiGress+). We then sample from these models using the absorbing noise
model and the projector for acyclicity. The results are presented in Table 10.

Table 10: Controlled graph diffusion for acyclic molecules. The constrained property used is
acyclicity. Constrained DiGress+ denotes a model that was trained with a marginal noise model, but
where the sampling is performed using the edge-absorbing noise model and projector. Both models
were trained in the full QM9 dataset. We performed five sampling runs for each method and present
their results in the format mean + standard error of the mean. For each run, we generated 10000
molecules, following the protocol from Vignac et al. [79]. The FCD is computed using the official
implementation from Preuer et al. [63].

QM9 Dataset
Model Unique T Novelf{ Validt Acyclicity 1
Constrained DiGress+ 80.7 0.1 64.7 02 81.3 203 100.0 0.0
ConStruct 79202 68.8x01 99.8 00 100.0 +0.0

We observe that both methods output only acyclic molecules, which is a necessary consequence of
the utilization of the projector. As the set of acyclic molecules is a subset of the set of unconstrained
molecules, we verify some repetition among the generated samples. This leads to a decrease in the
values of uniqueness for both models when compared to the unconstrained setting. Most remarkably,
while the validity of the molecules generated by the model trained with the marginal noise model is
significantly lower than the observed one for the unconstrained sampling setting, ConStruct preserves
its high validity values (even higher than in the unconstrained setting). This result validates the
foundation upon which ConStruct is laid: with the marginal noise model, the forward process
distribution does not match the reverse one when employing the projector, harming the molecular
validity of the generated instances. In contrast, the edge-absorbing noise model of ConStruct allows
the forward and reverse processes to match, staying in distribution.

https://doi.org/10.52202/079017-4360 137249

H Variants of ConStruct - Performance Analysis and Extensions

In this section, we perform some ablations to ConStruct/DiGress+ to further analyse its performance
and explore methodological extensions to the proposed method.

H.1 Performance Analysis

From Table 1, we observed that, for the specific case of the tree dataset, DiGress+ outperforms
ConStruct. To explain why, we start by noting that approximately 97% of the graphs generated by
DiGress+ already comply with the target structural property. This value indicates that DiGress+ had
access to sufficient data and it is sufficiently expressive to learn the dependencies of tree graphs
almost perfectly, leaving little room for improvement with ConStruct. In contrast, for the lobster and
planar datasets, the corresponding values of DiGress+ are significantly lower, hinting the pertinence
of ConStruct in such scenarios.

However, this observation alone does not explain the slight performance gap. To investigate further,
we ran DiGress+ with an edge-absorbing noise model but without projector, designating it as DiGress+
[absorbing] in Table 11. We observe a significant decrease in performance with this modification.
This suggests that it is the choice of the noise model that is hindering ConStruct’s performance for
this dataset. In fact, ConStruct outperforms DiGress+ [absorbing], emphasizing the relevance of the
projector step. In any case, we remark that we did not adjust the variance schedule beyond the one
proposed by Austin et al. [4], leaving room for potential improvement in this aspect. Importantly, we
observe a dataset dependency of performance by applying the same modified model to the planar
dataset (again, see Table 11), where it exhibits a significantly better average ratio compared to
DiGress+. This observation aligns with recent research indicating that there is no clear evidence that
an optimal noise model can be deduced a priori from dataset statistics [77].

H.2 A Posteriori Modifications

An advantage of our setting is that the projector merely interferes with the sampling algorithm,
avoiding to affect the efficiency of the diffusion model training. Otherwise, if we were to directly
block the model’s predictions, it would require a constraint satisfaction check for each potentially
added edge at every forward pass, resulting in a prohibitive computational overhead.

In constrast, we could also consider the opposite setting: only applying a posteriori modifications to
graphs generated by the unconstrained model. Two possible alternatives emerge:

* DiGress+ [rejection] - we reject the final samples generated by the unsconstrained model
that do not satisfy the provided constraint. While we should expect a good performance from
this approach, it wastes computational resources as it requires discarding the rejected graphs
and restarting the whole sampling process until we get the desired amount of generated
graphs.

* DiGress+ [projection] - we only apply the projector to the final samples generated by the
unconstrained method. For example, in the case of planarity as target property, we could
find the maximal planar subgraphs of the generated samples. This method would necessarily
provide a more efficient sampling procedure (as we only execute the projector step once).

We provide the results in synthetic graphs for both methods in Table 11. We observe that DiGress+
[rejection] attains great V.U.N. values, as expected. Nevertheless, we analyse its alarming compu-
tational inefficiencies in Appendix D.3. Additionally, we see that DiGress+ (projection) achieves
worse performance than ConStruct. We attribute this result to the fact that such a scheme fails to
inform the generative model about the constraining condition throughout the reverse process, thus
not harnessing the full expressivity of the diffusion model. We also attribute the anomalously good
performance of this method for the tree dataset to the optimal properties of the projector in such case
(see Theorem 2).

Finally, considering the two extreme cases described above (blocking edges at every forward pass vs
a posteriori modifications), we conclude that ConStruct finds itself in a sweet spot in the trade-off
between additional computational burden and constraint integration into the generative process.

137250 https://doi.org/10.52202/079017-4360

H.3 Likelihood-based constrained generation

We also consider two variants of ConStruct where the projector is no longer independent from the
diffusion model. Instead, we use the associated likelihoods to each of the sampled candidate edges at
a given time step ¢, py (eﬁj_1 |G), to define an order by which we add the edges. Therefore, instead of
uniformly sampling them at random, we propose two methods of integrating such information:

* Deterministic: we add the edges with higher pg(eﬁjfl |G") first.

* Stochastic: we sample without replacement from the set of candidates edges, where the
probability of sampling each of them is proportional to the respective pg (eﬁj_1 |GY).

We present the results for these likelihood-based variants of ConStruct in Table 11. As we can
observe, for all the analysed datasets, the three ConStruct variants are statistically equivalent in terms
of performance. In terms of efficiency, there is no meaningful difference among the three methods:
even though the uniformly random sampling does not have to access ;o(e';;1 |G*), nor sort the order of
the corresponding edges, the computational overburden of these operations is negligible. We remark
that the theoretical analysis performed in Appendix B also holds for the stochastic likelihood-based
variant, but not for the deterministic one, as the latter is not able to select any permutation from the
candidate edges with non-zero probability: up to the degenerate cases where different candidate
edges have the same p(efj_1 | GY), it always selects candidate edges by the same order.

Table 11: Graph generation performance on synthetic graphs. DiGress+, ConStruct are retrieved
from Table 1, from which we follow the same experimental protocol. DiGress+ [absorbing] denotes
DiGress+ with an edge-absorbing noise model. DiGress+ [rejection] refers to the baseline that
rejects the unconstrainedly generated graphs that do not satisfy the constraint and resamples until the
intended number of valid graphs is reached, while DiGress+ [projection] directly applies the projector
on unconstrainedly generated graphs. ConStruct [model - det] and ConStruct [model - stoch] denote
the deterministic and stochastic likelihood-based variants of ConStruct.

Planar Dataset

Model Deg. | Clus. | Orbit | Spec. | Wavelet | Ratio] Valid? Unique T Novelt V.UN. 1 Property T
Train set 0.0002 0.0310 0.0005 0.0038 0.0012 1.0 100 100 0.0 0.0 100
DiGress+ 0.0008 20.0001 0.0410 £0.0033 0.0048 +0.0004 0.0056 0.0004 0.0020 z00002 3.6:02 764213 100.0200 100.0z00 76.4 =13 76.4 +13
ConStruct 0.0003 200001 0.0403 +0.0047 0.0004 +0.0001 0.0053 0.0004 0.0009 z00001 1.1 201 100.0200 100.0200 100.0z00 100.000 100.0 200
DiGress+ [absorbing] 0.0006 200002 0.0383 +0.0041 0.0028 00005 0.0050 00002 0.0010 z0.0001 2.4 202 424 :10 100.0z00 100.0200 424 x10 424 510
DiGress+ [rejection] 0.0008 z0.0001 0.0418 x0.0035 0.0022 0.0001 0.0054 200004 0.0019 z0.0001 2.6202 100.0 200 100.000 100.0200 100.0=z00 100.0 z0.0
DiGress+ [projection] 0.0003 00001 0.0347 00030 0.0013 00002 0.0056 00003 0.0015 00001 1.6:0.1 100.0+00 100.0z00 100.000 100.000 100.0 z0.0
ConStruct [model - det] 0.0004 200001 0.0416 z0.0040 0.0005 z0.0002 0.0050 200003 0.0009 00001 1.3 02 100.0+00 100.0 200 100.0z00 100.0 z0.0 100.0 0.0
ConStruct [model - stoch] ~ 0.0004 z0.0001 0.0404 00038 0.0005 00002 0.0050 00003 0.0009 z0.0001 1.2 201 100.000 100.000 100.000 100.000 100.0 200
Tree Dataset

Train set 0.0001 0.0000 0.0000 0.0075 0.0030 1.0 100 100 0.0 0.0 100
DiGress+ 0.0002 z0.0001 0.0000 s0.0000 0.0000 £0.0000 0.0092 00005 0.0032 200001 13202 91.6:07 100.0z00 100.0:00 91.6:07 97.0 208
ConStruct 0.0003 z0.0001 0.0000 s0.0000 0.0000 200000 0.0073 00008 0.0034 z00002 19203 83.0:18 100.0z00 100.000 83.0s18 100.0 0.0
DiGress+ [absorbing] 0.0004 z0.0002 0.0000 x0.0000 0.0000 0.0000 0.0079 200006 0.0034 z0.0002 2.3:05 728=:06 100.0z00 100.0=200 72.8 206 85.6 +1.4
DiGress+ [rejection] 0.0002 z0.0001 0.0000 00000 0.0000 z0.0000 0.0093 z0.0004 0.0032 00000 1.4:03 100.0x00 100.0x00 100.0:00 100.000 100.0 0.0
DiGress+ [projection] 0.0002 z0.0001 0.0000 z0.0000 0.0000 z0.0000 0.0092 200004 0.0031 00001 1.3 02 94.0 203 100.0 200 100.0 200 94.0 203 100.0 0.0
ConStruct [model - det] 0.0003 200001 0.0000 z0.0000 0.0000 0.0000 0.0076 00008 0.0034 z00001 19203 83.2 1.7 100.0 z00 100.0 200 83.2 £1.7 100.0 0.0

ConStruct [model - stoch] 0.0004 z0.0001 0.0000 x0.0000 0.0000 z0.0000 0.0072 200008 0.0034 00001 1.9 03 83.2:1.7 100.0 z00 100.0 z00 83.2 x1.7 100.0 0.0
Lobster Dataset

Train set 0.0002 0.0000 0.0000 0.0070 0.0070 1.0 100 100 0.0 0.0 100

DiGress+ 0.0005 00001 0.0000 +0.0000 0.0000 00000 0.0114 00006 0.0093 z0.000s 18201 79.0211 980207 96.6+06 69.4+12 76.8 x17
ConStruct 0.0003 200001 0.0000 +0.0000 0.0000 £0.0000 0.0092 00009 0.0074 z00004 1.3:02 86824 98.8+06 97.0:09 83.2:23 100.0 200
DiGress+ [rejection] 0.0006 z0.0001 0.0000 z0.0000 0.0000 0.0000 0.0130 00010 0.0106 z0.0006 2.1=202 100.0 200 96.4 202 95.6 08 93.6 208 100.0 0.0
DiGress+ [projection] 0.0006 20.0001 0.0000 z0.0000 0.0000 0.0000 0.0109 z0.0006 0.0098 0.0005 2.0 0.1 77.8 +12 98.2 106 96.6 +0.6 73.6 1.0 100.0 0.0
ConStruct [model - det] 0.0003 200001 0.0000 00000 0.0000 0.0000 0.0093 200008 0.0075 z0.0003 1.2 20.1 87.0 223 98.8 0.6 97.0 09 834 222 100.0 0.0

ConStruct [model - stoch] 0.0003 z0.0001 0.0000 z0.0000 0.0000 +0.0000 0.0093 200008 0.0075 200003 1.2 0.1 87.0 23 98.8 +0.6 97.0 0.9 83.4 222 100.0 0.0

https://doi.org/10.52202/079017-4360 137251

I Visualizations

In this section, we provide several visualizations of the final generated graphs, comparing them to the
ones observed in the different datasets. We also visually expose the effect of the projector in different
timesteps.

I.1 Graphs generated by ConStruct

Here we visually compare the graphs from the different datasets to the ones generated by ConStruct.

L.1.1 Synthetic Datasets

We provide plots of the sampled graphs from ConStruct for the different datasets: planar in Figure 6,
tree in Figure 7, and lobster in Figure 8.

Figure 6: Uncurated set of dataset graphs (top) and generated graphs by ConStruct (bottom) for the
planar dataset.

* %
..
. - :,-] ooe® L4
L4
3 [‘\". .
RN % P 1
- " a
. e
X . ° 7 .
) » - /
s A P . «
. . . o .
e oo
. :_," o
&
ad —o ..
. A L]
_ "ot Y %
.
. g b e ¥ :’
o ? o
* 4 > * ¥ Y
Y - s * v
. S 3)
¢ To— 2N
e ¢ M o o)
o . AN \
. 7 Se F 2
¢ %o r's ° e, A
. L}

Figure 7: Uncurated set of dataset graphs (top) and generated graphs by ConStruct (bottom) for the
tree dataset.

137252 https://doi.org/10.52202/079017-4360

Figure 8: Uncurated set of dataset graphs (top) and generated graphs by ConStruct (bottom) for the
lobster dataset.

I.1.2 Digital Pathology
We provide plots of the sampled graphs from ConStruct for the low TLS content dataset in Figure 9

and for the high TLS content dataset in Figure 10. We also provide several snapshots throughout the
reverse process of ConStruct in Figure 11 to illustrate it as an edge insertion procedure.

Figure 9: Uncurated set of dataset graphs (top) and generated graphs by ConStruct (bottom) for the
low TLS dataset. The phenotype color key is presented in Figure 4.

Figure 10: Uncurated set of dataset graphs (top) and generated graphs by ConStruct (bottom) for the
high TLS dataset. The phenotype color key is presented in Figure 4.

https://doi.org/10.52202/079017-4360 137253

Figure 11: Reverse processes for generation of low (top) and high (bottom) TLS content graphs using
ConStruct. We start from a graph without any edge on the left (¢ = T) and progressively build the
graph, as a consequence of the absorbing noise model. The node types switch along the trajectory
due to the marginal noise model. On the right, we have a fresh new sample ({ = 0). The phenotypes
color key is presented in Figure 4.

L2 Visualizing Intermediate Graphs (Before and After Projector)

In this section, we provide some visualizations of intermediate graphs obtained throughout the reverse
process for three different datasets: planar, tree, and lobster. In Figure 12, we highlight the effect of
the projector in rejecting the candidate edges that lead to property violation.

J Impact Statement

The primary objective of this paper is to enhance graph generation methodologies by enabling the
integration of hard constraints into graph diffusion models. Although this problem holds signifi-
cance for several real-world applications, including digital pathology and molecular generation, as
exemplified in the paper, as well as protein design, the potential implications extend to advances
in biomedical and chemical research. This development has the capacity to yield both positive and
negative societal outcomes. Nonetheless, despite the potential for real-world impact, we currently do
not identify any immediate societal concerns associated with the proposed methodology.

For the particular case of the digital pathology setting, while the generated graphs are able to mimic
clinically relevant structures, they remain too small to have any direct clinical impact. Pathologists
use whole-slide images for informed decisions, whose corresponding cell graphs typically comprise
a total number of nodes 3 to 4 orders of magnitude above the graphs generated at this stage.

137254 https://doi.org/10.52202/079017-4360

t=110 t =83 t =56 t=29 t=1

el

el

t=110 t=76 t=57 t=28 t=1

t= 110 t=84 t=58 =30 t=1

Figure 12: Visualizations of intermediate graphs throughout the reverse process. The notation follows
the one of the rest of the paper: we obtain G*~! after applying the projector on G'=1, which in turn
is obtained from G? through the diffusion model. From the new edges obtained in G, we color
them in green when they do not break the constraining property and in red otherwise. We can observe
that the red edges are rejected. To better emphasize the edge rejection by the projector, we do not
use a fully trained model and use a trajectory length, T', smaller than usual, resulting in less accurate
edge predictions.

https://doi.org/10.52202/079017-4360 137255

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: All the claims found in the abstract and introduction are properly supported
in Sections 3 and 4. Additionally, proofs for the theoretical claims are in Appendix B and
experimental extensions in Appendices D.3, G and H.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

 The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We explicitly outline the assumptions underlying our approach in Section 3.2.
We discuss the limitations and potential further improvements and extensions in Section 5.
Besides, we discuss in detail the performance limitations of our approach in Appendix H.1.
Finally, we also discuss computational efficiency and scalability of the proposed method in
Section 3.5 and appendices C, D.2 and D.3

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms

and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to

address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

137256 https://doi.org/10.52202/079017-4360

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We provide a simplified version of the theoretical guarantees of the proposed
method in Section 3.4. The full versions of our theoretical results, where the required
assumptions are clearly stated, are provided in Appendix B.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Regarding the proposed method, we first describe it in Section 3. Further
detailed information on the method and its algorithmic implementation in Appendix A.
Additional information on the experimental setup (dataset splitting procedure, the model
selection criteria, and optimizer) are provided in Appendix D.1. For the new datasets, we
extensively describe their construction process in Appendix F. We also provide the model
checkpoints. Based on this information, both the results and newly generated datasets are
reproducible.

Guidelines:

» The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.
While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

https://doi.org/10.52202/079017-4360 137257

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The provided repository includes the newly proposed datasets and code to
download all additional datasets used. It also allows for reproducing the experimental results,
with clear instructions on how to set up the required environment and the commands needed
to replicate the various experiments described in the paper.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

 Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We describe the training details in Appendix D.1. Additionally, the data splits
and the optimal hyperparameter configuration for each of the experiments can be found in
the provided code.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment Statistical Significance

137258 https://doi.org/10.52202/079017-4360

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We provide all our results in terms of graph generation performance in the
format “mean =+ standard error of the mean", contrarily to what has been common practice
in the graph generation community until this point. As stated in the paper, the dispersion
metric (standard error of the mean) is computed across several runs.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

e If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We provide detailed information about the used resources in Appendix D.2.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We preserved anonymity in our submission. Our submission abides by the
NeurIPS Code of Ethics.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

https://doi.org/10.52202/079017-4360 137259

https://neurips.cc/public/EthicsGuidelines

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We discuss potential positive and negative societal impacts in Appendix J.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The release of our data and models does not pose a direct risk of misuse.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

137260 https://doi.org/10.52202/079017-4360

Answer: [Yes]

Justification: We cite all the works from where code and/or data was retrieved both in the
paper and in the repository provided. For the particular case of the newly generated datasets,
we cite the original open-source dataset from where we built upon, respecting their license
terms.

Guidelines:

* The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
13. New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We provide extensive information about the new datasets in Appendix F. The
code is properly organized and commented.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

 The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: No crowdsourcing or human subjects were involved in the experiments con-
ducted for this paper.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

https://doi.org/10.52202/079017-4360 137261

paperswithcode.com/datasets

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)

approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: No crowdsourcing or human subjects were involved in the experiments con-
ducted for this paper.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

137262 https://doi.org/10.52202/079017-4360

