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Figure 1: weights2weights (w2w) space enables controllable creation of new customized diffusion
models. We model a manifold of customized diffusion models as a subspace of weights that encodes
different instances of a broad visual concept (e.g., human identities, dog breeds, etc.). This forms
a space that supports inverting the subject (e.g., identity) from a single image into a model, editing
the subject encoded in the model, and sampling new models that encode new instances of the visual
concept. Each of these operations results in a new model that can consistently generate the subject.

Abstract

We investigate the space of weights spanned by a large collection of customized
diffusion models. We populate this space by creating a dataset of over 60,000
models, each of which is a base model fine-tuned to insert a different person’s
visual identity. We model the underlying manifold of these weights as a subspace,
which we term weights2weights. We demonstrate three immediate applications of
this space that result in new diffusion models – sampling, editing, and inversion.
First, sampling a set of weights from this space results in a new model encoding
a novel identity. Next, we find linear directions in this space corresponding to
semantic edits of the identity (e.g., adding a beard), resulting in a new model with
the original identity edited. Finally, we show that inverting a single image into this
space encodes a realistic identity into a model, even if the input image is out of
distribution (e.g., a painting). We further find that these linear properties of the
diffusion model weight space extend to other visual concepts. Our results indicate
that the weight space of fine-tuned diffusion models can behave as an interpretable
meta-latent space producing new models.1
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1Project page: https://snap-research.github.io/weights2weights
Code: https://github.com/snap-research/weights2weights
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Figure 2: The weights2weights space operates as a meta-latent space. Unlike a traditional
generative latent space, w2w space controls the model itself rather than single image instances. New
identity-encoding models can be sampled from the space and edited by linearly traversing along
semantic directions in weight space. Additionally, a single image can be inverted into the space to
produce a model that consistently generates that identity.

1 Introduction

Generative models have emerged as a powerful tool to model our rich visual world. In particular, the
latent space of single-step generative models, such as generative adversarial networks (GANs) [18, 28],
has been shown to linearly encode meaningful concepts in the output images. For instance, datasets
of latent vectors were used to discover linear directions in the GAN latent space encoding different
attributes (e.g., gender or age of faces) [20, 60]. Even earlier, datasets of images and keypoints were
leveraged to discover subspaces of facial shape and appearance [6, 53].

We aim to extend this even further, using datasets of model weights instead datasets of images or
latents. Can we discover such interpretable subspaces in the model weights themselves? Recently
introduced personalization approaches, such as Dreambooth [54] or Custom Diffusion [34], may
hint that this is the case. These methods aim to learn an instance of a subject, such as a person’s
visual identity. Rather than searching for a latent code that represents an identity in the input noise
space, these approaches customize diffusion models by fine-tuning on subject-specific images, which
results in identity-specific model weights. We therefore hypothesize that a latent space can exist in
the weights themselves.

To test our hypothesis, we fine-tune over 60,000 personalized models on individual identities to obtain
points that lie on a manifold of customized diffusion model weights. To reduce the dimensionality
of each data point, we use low-rank approximation (LoRA) [23] during fine-tuning and further
apply Principal Components Analysis (PCA) to the set of data points. This forms our final space:
weights2weights (w2w). Unlike traditional generative models like GANs, which model the pixel
space of images, we model the weight space of these personalized models. Thus, each sample in
our space corresponds to an identity-specific model which can consistently generate that subject.
We provide a schematic in Fig. 2 that contrasts a typical latent space with our proposed w2w space,
demonstrating the differences and analogies between these two representations. w2w space can be
thought of as a meta-latent space, enabling controllable creation of new models instead of just images
like a traditional latent space.

Creating this space unlocks a variety of applications that involve traversal in w2w (Fig. 1). First, we
demonstrate that sampling model weights from w2w space corresponds to a new model encoding a
novel subject. Second, we find linear directions in this space corresponding to semantic edits of the
identity. Finally, we show that enforcing weights to live in this space enables a diffusion model to
learn a subject given a single image, even if it is out of distribution.

We find that w2w space is highly expressive through quantitative evaluation on editing customized
models and encoding new identities given a single image. Qualitatively, we observe this space
supports sampling models that encode diverse and realistic identities, while also capturing the key
characteristics of out-of-distribution identities. We finally demonstrate that similar weight subspaces
exist for other visual concepts such as dog breeds and car types.
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Figure 3: Building weights2weights (w2w) space. We create a dataset of model weights where each
model is personalized to a specific identity using low-rank updates (LoRA). These model weights
lie on a weights manifold that we further project into a lower-dimensional subspace spanned by its
principal components. We train linear classifiers to find disentangled edit directions in this space.

2 Related Work

Image-based generative models. Various models have been proposed for image generation, includ-
ing variational autoencoders (VAEs) [31], flow-based models [12, 32, 49], generative adversarial
networks (GANs) [18], and diffusion models [22, 43, 62]. Within the realm of high-quality photo-
realistic image generation, GANs [25, 28, 29] and diffusion models [22, 43, 52, 63] have garnered
significant attention due to their controllability and ability to produce high-quality images. Leverag-
ing the compositionality of these models, methods for personalization and customization have been
developed which aim to insert user-defined concepts via fine-tuning [16, 34, 40, 54]. Various works
try to reduce the dimensionality of the optimized parameters for personalization either by operating
in specific model layers [34] or in text-embedding space [16], by training hypernetworks [55], and by
constructing a linear basis in text embedding space [73].

Latent space of generative models. Linear latent space models of facial shape and appearance
were studied extensively in the 1990s, using PCA-based representations (e.g. Active Appearance
Models [9], 3D Morphable Models [6]) as well as operating directly in pixel and keypoint space [53].
However, these techniques were restricted to aligned and cropped frontal faces. More recently,
generative adversarial networks (GANs), particularly the StyleGAN series [26, 27, 28, 29], have
showcased editing capabilities facilitated by their interpretable latent space. Furthermore, linear
directions can be found in their latent space to conduct semantic edits by training linear classifiers or
applying PCA [20, 60], among other methods for discovering semantic directions [8, 66]. Several
methods aim to project real images into the GAN latent space in order to conduct this editing [1, 3,
51, 64, 77]. Beyond the latent space, works such as [4] found that directions could be discovered in
the neuron activation space, suggesting the interpretability of weights.

Although diffusion models architecturally lack a GAN-like latent space, some works aim to discover
similar spaces in these models. This has been explored in the UNet bottleneck layer [35, 41], noise
space [10, 78], and text-embedding space [5]. Concept Sliders [17] explores the weight space for
semantic image editing by conducting low-rank training with contrasting image or text pairs.

Weights as data. Past works have exploited the structure within weight space of deep networks for
various applications. In particular, some have found linear properties of weights, enabling simple
model ensembling and editing via arithmetic operations [24, 56, 59, 69]. Other works create datasets
of neural network parameters for training hypernetworks [14, 19, 42, 55, 68], predicting properties of
networks [58], and creating design spaces for models [46, 47].

3 Method

We start by demonstrating how we create a manifold of model weights as illustrated in Fig. 3. We
explain how we obtain low-dimensional data points for this space, each of which represents an
individual subject from a broad class (i.e., identity). We then use these points to model a weights
manifold. Next, we find linear directions in this manifold that correspond to semantic attributes and
use them for editing the identities. Finally, we demonstrate how this manifold can be utilized for
constraining an ill-posed inversion task with a single image to reconstruct its identity.

3
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3.1 Preliminaries

In this section, we first introduce latent diffusion models (LDM) [52], which we will use to create
a dataset of weights. Then, we explain the approach for obtaining identity-specific models from
LDM via Dreambooth [54] fine-tuning. We finally present a version of fine-tuning that uses low-
dimensional weight updates (LoRA [23]). We will use the fine-tuned low-dimensional per-identity
weights as data points to construct the weights manifold in Sec. 3.2.

Latent diffusion models [52]. We will extract weights from latent diffusion models to create w2w
space. These models follow the standard diffusion objective [22] while operating on latents extracted
from a pre-trained Variational Autoencoder [15, 31, 50]. With text, the conditioning signal is encoded
by a text encoder (such as CLIP [44]), and the resulting embeddings are provided to the denoising
UNet model. The loss of latent diffusion models is:

Ex,c,ϵ,t[wt||ϵ− ϵθ(xt, c, t)||22], (1)

where ϵθ is the denoising UNet, xt is the noised version of the latent for an image, c is the conditioning
signal, t is the diffusion timestep, and wt is a time-dependent weight on the loss.

To sample from the model , a random Gaussian latent xT is deterministically denoised conditioned
on a prompt for a fixed set of timesteps with a DDIM sampler [63]. The denoised latent is then fed
through the VAE decoder to generate the final image.

Dreambooth [54]. To obtain an identity-specific model, we use the Dreambooth personalization
method. Dreambooth fine-tuning introduces a novel subject into a pre-trained diffusion model given
only a few images of it. During training, Dreambooth follows a two-part objective:

Ex,c,ϵ,t[wt||ϵ− ϵθ(xt, c, t)||22 + λwt′ ||ϵ′ − ϵθ(x
′
t, c

′, t′)||22], (2)

where the first term corresponds to the standard diffusion denoising objective using the subject-
specific data x conditioned on the text prompt “[identifier] [class noun]” (e.g., “[v] person”), denoted
c. The second term, weighted by λ, corresponds to a prior preservation loss, which involves the
standard denoising objective using the model’s own generated samples x′ for the broader class c′
(e.g., “person”). This prevents the model from associating the class name with the specific instance,
while also leveraging the semantic prior on the class.

Low Rank Adaptation (LoRA) [23]. Dreambooth requires fine-tuning all the weights of a model,
which is a high–dimensional space. We turn to a more efficient fine-tuning scheme, LoRA, that
modifies only a low-rank version of the weights. LoRA uses weight updates ∆W with a low intrinsic
rank. For a base model layer W ∈ Rm×n, the LoRA update for that layer ∆W can be decomposed
into ∆W = BA, where B ∈ Rm×r and A ∈ Rr×n are low-rank matrices with r ≪ min(m,n).
During training, for each model layer, only the A and B are updated. This significantly reduces the
number of trainable parameters. During inference, the low-rank weights are added residually to the
weights of each layer in the base model and scaled by a coefficient α ∈ R: W + α∆W .

3.2 Constructing the weights manifold

Creating a dataset of model weights. To construct the weights2weights (w2w) space, we begin
by creating a dataset of model weights θi. We conduct Dreambooth fine-tuning on latent diffusion
models in order to insert new subjects with the ability to control image instances using text prompts.
This training is done with LoRA in order to reduce the space of model parameters. Each model
is fine-tuned on a set of images corresponding to one human subject. After training, we flatten
and concatenate all of the LoRA matrices, resulting in a data point θi ∈ Rd which represents one
identity. After training over N different instances, we have our final dataset of model weights
D = {θ1, θ2, ..., θN}, representing a diverse array of subjects.

Modeling the weights manifold. We posit that our data D ⊆ Rd lies on a lower-dimensional
manifold of weights that encode identities. A randomly sampled set of weights in Rd, would
not be guaranteed to produce a valid model encoding identity as the d degrees of freedom can
be fine-tuned for any purpose. Therefore, we hypothesize that this manifold is a subset of the
weight space. Inspired by findings that high-level concepts can be encoded as linear subspaces of
representations [13, 37, 45, 48], we model this subset as a linear subspace Rm where m < d, and
call it weights2weights (w2w) space. We represent points in this subspace as a linear combination
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of basis vectors w = {w1, ..., wm}, wi ∈ Rd. In practice, we apply Principal Component Analysis
(PCA) on the N models and keep the first m principal components for dimensional reduction and
forming our basis of m vectors.

Sampling from the weights manifold. After modeling this weights manifold, we can sample a new
model that lies on it, resulting in a new model that generates a novel identity. We sample a model
represented with basis coefficients {β1, ..., βm}, where each coefficient βk is sampled from a normal
distribution with mean µk and standard deviation σk. The mean and standard deviation are calculated
for each principal component k from the coefficients among all the training models.

3.3 Finding Interpretable Weight Space Directions

We seek a direction n ∈ Rd defining a hyperplane that separates between binary identity properties
embedded in the model weights (e.g., male/female), similarly to hyperplanes observed in the latent
space of GANs [60]. We assume binary labels are given for attributes present in the identities encoded
by the models. We then train linear classifiers using weights of the models as data based on these
labels, imposing separating hyperplanes in weight space. Given an identity parameterized by weights
θ, we can manipulate a single attribute by traversing in a direction n, orthogonal to the separating
hyperplane: θedit = θ + αn. An edit operation in w2w spaee produces a new model with the original
subject edited, allowing the model to generate infinitely many new images of the edited subject.

3.4 Inversion into w2w Space

Traditionally, inversion of a generative model involves finding an input such as a latent code that
best reconstructs a given image [38, 70]. This corresponds to finding a projection of the input onto
the learned data manifold [77]. With w2w space, we model a manifold of model weights rather than
images. Inspired by latent optimization methods [1, 77], we propose a gradient-based method of
inverting a single identity from an image into our discovered space.

Given a single image x, we follow a constrained denoising objective:

max
θ

Ex,c,ϵ,t[wt||ϵ− ϵθ(xt, c, t)||22] s.t. θ ∈ w2w (3)

Specifically, we constrain the model weights to lie in w2w space by optimizing a set of basis
coefficients {β1, ..., βm} rather than the original parameters. Unlike Dreambooth, we do not employ
a prior preservation loss, since the optimized model lies in the subspace defined by our dataset of
weights, and inherits their priors.

4 Experiments

We demonstrate w2w space on the visual concept of human identities for a variety of applications.
We begin by detailing implementation details. Next, we use w2w space for 1) sampling new models
encoding novel identities, 2) editing identity attributes in a consistent manner via linear traversal in
w2w space, 3) embedding a new identity given a single image, and 4) projecting out-of-distribution
identities into w2w space. Finally, we analyze how scaling the number of models in our dataset of
model weights affects the disentanglement of attribute directions and preservation of identity.

4.1 Implementation Details

Creating an identity dataset. We generate a synthetic dataset of ∼65,000 identities using [67],
where each identity is associated with multiple images of that person. Each identity is based on
an image with labeled binary attributes (e.g., male/female) from CelebA [36]. Each set of images
corresponding to an identity is then used as data to fine-tune a latent diffusion model with Dreambooth.
Further details on this dataset and train/test splits are provided in Appendix E.

Encoding identities into model weights. We conduct Dreambooth fine-tuning using LoRA with
rank 1 on the identities. Following [56], we only fine-tune the query and value projection matrices in
the cross-attention layers. We utilize the RealisticVision-v51 checkpoint2 based on Stable Diffusion

2https://huggingface.co/stablediffusionapi/realistic-vision-v51
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1.5. Conducting Dreambooth fine-tuning on each identity training set results in a dataset of ∼65,000
weights θ where θ ∈ R100,000.

Finding semantic attribute directions. We utilize binary attribute labels from CelebA to train
linear classifiers on the dataset of model weights we curated. We run Principal Component Analysis
(PCA) on the ∼65,000 training models and project to the first 1000 principal components in order to
reduce the dimensionality. The orthogonal edit directions are calculated via the analytic least squares
solution on the matrix of projected training models D ∈ R65,000×1000, and then unprojected to the
original dimensionality of the model weights: θ ∈ R100,000.

4.2 Sampling from w2w Space
Sampled Identity Nearest Neighbor

Figure 4: Identity samples from w2w space. We
show the samples from w2w space do not overfit
to nearest-neighbor identities, although they incor-
porate facial attributes from them. The identities
are diverse and consistent across generations.

We present images generated from models that
were sampled from the weights manifold (i.e.,
w2w Space) in Fig. 4. We follow the sampling
procedure from Sec. 3.2, and generate images
from the sampled model. As shown, each new
model encodes a novel, realistic, and consistent
identity. Additionally, we present the nearest
neighbor model among the training dataset of
model weights. We use cosine similarity on the
models’ principal component representations.
Comparing with the nearest neighbors shows
that these samples are not just copies from the
dataset, but rather encode diverse identities with
different attributes. Yet, the samples still demon-
strate some similar features to the nearest neigh-
bors. These include jawline and eye shape (top row), facial hair (middle row), and nose and eye shape
(bottom row). Appendix A includes more such examples.

4.3 Editing Subjects

We demonstrate how directions found by the linear classifiers can be used to edit subjects encoded in
the models. It is desired that these edits are 1) disentangled (i.e., do not interfere with other attributes
of the embedded subject and preserve all other concepts such as context) 2) identity preserving (i.e.,
the person is still recognizable) 3) and semantically aligned with the intended edit.

Baselines. We compare against a naïve baseline of prompting with the desired attribute (e.g., “[v]
person with small eyes”), and then Concept Sliders [17], an instance-specific editing method which
we adapt to subject editing. In particular, we train their most accessible method, the text-based slider,
which trains LoRAs to modulate attributes in a pretrained diffusion model based on contrasting text
prompts. We then apply these sliders to the personalized identity models.
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Figure 5: Qualitative comparison. w2w edits preserve identity while being disentangled and
semantically aligned. Concept Sliders [17] tends to exaggerate effects which induces artifacts and
degrades identity, while prompting the subject with the desired edit has unexpected effects.
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Table 1: Edits in w2w space preserve identity, are disentangled, and semantically aligned.
ID Score ↑ LPIPS ↓ CLIP Score ↑

Prompting Sliders w2w Prompting Sliders w2w Prompting Sliders w2w

Gender 0.39±0.08 0.33±0.09 0.45±0.09 0.30±0.05 0.39±0.09 0.31±0.03 1.98±0.78 3.50±0.68 4.13±0.59

Chubby 0.29±0.14 0.33±0.09 0.45±0.09 0.41±0.05 0.38±0.04 0.36±0.04 1.12±0.61 2.21±0.61 2.16±0.51

Eyes 0.52±0.06 0.53±0.04 0.72±0.05 0.32±0.03 0.30±0.02 0.19±0.02 0.17±0.17 0.01±0.22 0.59±0.19

Original + Flat Brows + Bangs + Straight Hair Original + Jawline + Eye Bags + Narrow Eyes

Figure 6: Composing edits in w2w space. Each column represents fixed seed samples from an edited
model. Multiple edits in w2w space minimally degrade the original identity or interfere with other
concepts, while maintaining edit appearance across different samples.

Evaluation protocol. We evaluate these three methods for identity preservation, disentanglement,
and edit coherence. To measure identity preservation, we first detect faces in the original generated
images and the result of the edits using MTCNN [74]. We then calculate the similarity of the
FaceNet [57] embeddings. We also use LPIPS [76] computed between the images before and after
the edit to measure the degree of disentanglement with other visual elements, and CLIP score [21], to
measure if the desired edit matches the text caption for the edit.

To generate samples, we fix a set of prompts and random seeds which are used as input to the held-out
identity models. Then, we choose a set of identity-specific manipulations. For prompt-based editing,
we augment the attribute description to the set of fixed prompts (e.g., “chubby [v] person"). For
Concept Sliders and w2w, we apply the weight space edit directions to the personalized model with a
fixed norm which determines the edit strength. The norm is calculated using the maximum projection
component onto the edit direction among the training set of model weights.

w2w edits are identity preserving and disentangled. We evaluate over a range of identity-specific
attributes and present three (gender, chubby, narrow eyes) in Tab. 1. Edits in w2w preserve the identity
of the original subject as measured by the ID score. These edits are semantically aligned with the
desired effect as indicated by the CLIP score while minimally interfering with other visual concepts,
as measured by LPIPS. We note that the CLIP score can be noisy in this setting as text captions can
be too coarse to describe attributes as nuanced as those related to the human face. We supplement
this with a user study presented in Appendix B.

Qualitatively, w2w edits make the minimal amount of changes to achieve semantic and identity-
preserving edits (Fig. 5). For instance, changing the gender of the man does not significantly change
the facial structure or hair, unlike Concept Sliders or prompting with text descriptions. Prompting has
inconsistent results, either creating no effect or making drastic changes. Concept Sliders tends to
make caricaturized effects, such as making the man cartoonishly chubby and baby-like.

Composing edits. Edit directions in w2w space can be composed linearly as shown in Fig. 6. The first
column represents samples from the original model, and each subsequent column represents samples
from the edited models. Each row shares the same fixed random generation seed. The composed edits
persist in appearance across different generations, binding to the identity. Furthermore, the edited
weights result in a new model, where the subject has different attributes while still maintaining as
much of the prior identity. This is in contrast to editing in a traditional latent space, where an edit
only corresponds to a single image. Additionally, as we operate on an personalized identity-specific
weight manifold, minimal changes are made to other concepts, such as scene layout or other people.
For instance, in Fig. 6, adding edits to the woman does not interfere with the person standing by her.
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Figure 7: Single image inversion reconstructs identity and enables editing in w2w space. We
present generated samples from the inverted models. These inverted identities can be composed in
novel contexts and edited using our discovered semantic directions in weight space. These edits
persist in appearance across generation seeds and prompts.

ProjectionInput ProjectionInput ProjectionInput

Figure 8: Projecting out-of-distribution identities. We show that our inversion method can convert
unrealistic identities into realistic renderings with in-domain facial features. Each image represents a
generated sample from the inverted model. The resulting identities can be composed in novel scenes,
such as playing tennis or rendered into other artistic domains.

4.4 Inverting Subjects

Evaluation protocol. We measure w2w space’s ability to represent novel identities by inverting a
set of 100 random FFHQ [28] face images. We follow our inversion objective from eq. 3. We then
provide a set of diverse prompts to generate multiple images and follow the identity preservation
metric from Sec. 4.3 to measure subject fidelity. Implementation details are provided in Appendix C.

We compare our results to two approaches that use Dreambooth with rank-1 LoRA. The first is trained
on a single image. The second is trained on multiple images of each identity. We generate such
images by following our identity dataset construction from Sec. 4.1. This approach can be viewed as
a pseudo-upper bound on modeling identity as it uses multiple images.

w2w space provides a strong identity prior. Inverting a single image into w2w space improves
on the single image Dreambooth baseline and closes the gap with the Dreambooth baseline that
uses multiple identity images (Tab. 2). Conducting Dreambooth fine-tuning with a single image in
the original weight space leads to image overfitting and poor subject reconstruction as indicated
by a lower ID score. In contrast, by constraining the optimized weights to lie on a manifold of
identity weights, w2w inversion inherits the rich priors of the models used to discover the space.
As such, it can extract a high-fidelity identity that is consistent and compositional across gener-
ations. We present qualitative comparisons against Dreambooth and single-image Dreambooth
in Appendix C. We additionally compare against other personalization methods in that section.

Table 2: w2w Inversion closes the gap
with Dreambooth.

Method Single-Image ID Score ↑
DB-LoRA × 0.69± 0.01
DB-LoRA ✓ 0.43± 0.03
w2w ✓ 0.64± 0.01

Inverted models are editable. Fig. 7 demonstrates that
a diverse set of identities can be faithfully represented in
w2w space. After inversion, the encoded identity can be
composed in novel contexts and poses. For instance, the
inverted man (rightmost example) can be seen posing with
a celebrity or rendered as a statue. Moreover, semantic ed-
its can be applied to the inverted models while maintaining
appearance across generations.

4.5 Out-of-Distribution Projection

w2w space captures out-of-distribution identities. We follow the w2w inversion method from
Sec. 4.4 to project images of unrealistic identities (e.g., paintings, cartoons, etc.) onto the weights
manifold, and present these qualitative results in Fig. 8. By constraining the optimized model to live
in w2w space, the inverted identities are converted into realistic renditions of the stylized identities,
capturing prominent facial features. In Fig. 8, notice how the inverted identities generate a similar
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Figure 9: Scaling dataset of models further dis-
entangles classifier directions. We highlight the
trend in disentanglement of three examples where
attributes may be strongly correlated among iden-
tities. As the number of models is increased, the
features are less entangled.
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Figure 10: Scaling the number of models im-
proves identity preservation. As the span
of w2w space increases, inversion can recon-
struct single-image identities more faithfully, ap-
proaching the pseudo-upper bound of multi-image
Dreambooth (DB-LoRA).

blonde hairstyle and nose structure in the first example, defined jawline and lip shape in the second
example, and head shape and big nose in the last example. As also shown in the figure, the inverted
identities can also be translated to other artistic domains using text prompts. We present a variety of
domains projected into w2w space in Appendix D.

4.6 Effect of Number of Models Spanning w2w Space

We ablate the number of models used to create w2w space and investigate the expressiveness of the
resulting space. In particular, we measure the degree of entanglement among the edit direction and
how well this space can capture identity.

Disentanglement vs. the number of models. We find that scaling the number of models in our
dataset of weights leads to less entangled edit directions in w2w space (Fig. 9). We vary the number
of models in our dataset of weights and reapply PCA to establish a basis. We then measure the
absolute value of cosine similarity (lower is better) between all pairs of linear classifier directions
found for CelebA labels. We repeat this as we scale the number of model weights used to train the
classifiers. We report the mean and standard deviation for these scores, along with three notable
semantic direction pairs. We observe a trend in decreasing cosine similarity. Notably, pairs such as
“Black Hair - Pale Skin,” “Young - Bald,” and “Male - Beard” which may correlate in the distribution
of identities, become less correlated as we scale our dataset of model weights.

Identity preservation vs. the number of models. We observe that as we scale the number of models
in our dataset of weights, identities are more faithfully represented in w2w space (Fig. 10). We follow
the same procedure as the disentanglement ablation, reapplying PCA to establish a basis based on
the dataset of model weights. Next, following Sec. 4.4, we optimize coefficients for this basis and
measure the average ID score over the 100 inverted FFHQ evaluation identities. As each model
in our dataset encodes a different instance of an identity, growing this dataset increases the span
of w2w space and its ability to capture more diverse identities. We plot the average multi-image
Dreambooth LoRA (DB-LoRA) ID score from Sec. 4.4, which is agnostic to our dataset of models.
This establishes a pseudo-upper bound on identity preservation. Scaling enables w2w to represent
identities given a single image with performance approaching that of traditional Dreambooth with
LoRA, which uses multiple images and trains in a higher dimensional space.

5 Extending to Other Domains

We extend our hypothesis of interpretable linear weight subspaces in diffusion models to other visual
concepts beyond human identities. We apply the weights2weights framework to form a subspace
for models encoding different dog breeds. To create a dataset for fine-tuning, we generate images
with Stable Diffusion based on each of the 120 dog classes from ImageNet [11]. We then conduct
Dreambooth fine-tuning on each set of dog breed images to create a dataset of 120 dog-encoding
models, subsequently applying PCA. To find edit directions, we use GPT-4 [2] to create labels for
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Small Large Van Sports Car

Figure 11: weights2weights linear subspaces can be created for other visual concepts. We follow
the same procedure of applying PCA and finding edit directions with linear classifiers on datasets of
models encoding dog breeds and models encoding car types.

each dog breed (e.g., wavy hair or not) and then train linear classifiers on the model weight principal
component projections like Sec. 3.3. We apply the same framework to different car categories using
models fine-tuned on images from a dataset of 197 different car types [33]. We present results for
traversing edit directions in these two subspaces in Fig. 11. Each column represents samples from an
edited model. Each row shares the same fixed random generation seed.

Our results provide further evidence that diffusion models can encode visual concepts linearly. This
enables the creation of new models in a controlled manner via simple interpolation. For instance,
in Fig. 11, we rewrite the model’s learned concept of a small golden retriever to make it bigger, or
the model’s encoding of a red van to make it a sports car. Additionally, unlike older PCA-based
methods [6, 53, 61, 65] which rely on aligned pixels or keypoints of human faces, weights2weights
can extend to other domains beyond human identities. We refer the reader to Appendix G for more
results of applying w2w space to other visual concepts.

6 Limitations

Inversion Input

Figure 12: weights2weights fails to capture iden-
tities with undersampled attributes.

As with any data-driven method, w2w space in-
herits the biases of the data used to discover
it. For instance, co-occurring attributes in the
identity-encoding models would cause linear
classifier directions to entangle them (e.g. gen-
der and facial hair). However, as we scale the
number of models, spurious correlations will
drop as evidenced by Fig. 9. These semantic
directions are also limited by the labels present
in CelebA. Additionally, the span of the w2w
space is dictated by the models used to create it.
Thus, w2w space can struggle to represent more
complex identities as seen in Fig. 12. Inversion
in these cases amounts to projecting onto the closest identity on the weights manifold. Despite this,
our analysis on the size of the model dataset reveals that forming a space using a larger and more
diverse set of identity-encoding models can mitigate this limitation.

7 Discussion and Broader Impact

We presented a paradigm for representing diffusion model weights as a point in a subspace defined
by other customized models – weights2weights (w2w) space. This enabled applications analogous
to those of a generative latent space – inversion, editing, and sampling – but producing model
weights rather than images, resulting in what we term a meta-latent space. We demonstrated these
applications on model weights encoding human identities and extended this space to other visual
concepts. Although these applications could enable malicious manipulation of real human identities
and model weights, we hope the community uses the framework to explore visual creativity as well
as utilize this interpretable space for controlling models for safety.

10

137343https://doi.org/10.52202/079017-4363



Acknowledgements

The authors would like to thank Grace Luo, Lisa Dunlap, Konpat Preechakul, Sheng-Yu Wang,
Stephanie Fu, Or Patashnik, Daniel Cohen-Or, and Sergey Tulyakov for helpful discussions. AD is
supported by the US Department of Energy Computational Science Graduate Fellowship. Part of
the work was completed by AD as an intern with Snap Inc. YG is funded by the Google Fellowship.
Additional funding came from ONR MURI.

References
[1] Rameen Abdal, Yipeng Qin, and Peter Wonka. Image2stylegan: How to embed images into the

stylegan latent space? In Proceedings of the IEEE/CVF international conference on computer
vision, pages 4432–4441, 2019.

[2] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni
Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4
technical report. arXiv preprint arXiv:2303.08774, 2023.

[3] David Bau, Hendrik Strobelt, William Peebles, Jonas Wulff, Bolei Zhou, Jun-Yan Zhu, and An-
tonio Torralba. Semantic photo manipulation with a generative image prior. ACM Transactions
on Graphics (TOG), 38(4):1–11, 2019.

[4] David Bau, Jun-Yan Zhu, Hendrik Strobelt, Bolei Zhou, Joshua B Tenenbaum, William T
Freeman, and Antonio Torralba. Gan dissection: Visualizing and understanding generative
adversarial networks. In International Conference on Learning Representations, 2019.

[5] Stefan Andreas Baumann, Felix Krause, Michael Neumayr, Nick Stracke, Vincent Tao Hu,
and Björn Ommer. Continuous, subject-specific attribute control in t2i models by identifying
semantic directions. arXiv preprint arXiv:2403.17064, 2024.

[6] Volker Blanz and Thomas Vetter. A morphable model for the synthesis of 3d faces. In
Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques,
SIGGRAPH ’99, page 187–194, USA, 1999. ACM Press/Addison-Wesley Publishing Co.

[7] Mingdeng Cao, Xintao Wang, Zhongang Qi, Ying Shan, Xiaohu Qie, and Yinqiang Zheng.
Masactrl: Tuning-free mutual self-attention control for consistent image synthesis and editing.
In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 22560–
22570, 2023.

[8] Anton Cherepkov, Andrey Voynov, and Artem Babenko. Navigating the gan parameter space
for semantic image editing. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 3671–3680, 2021.

[9] Timothy F Cootes, Gareth J Edwards, and Christopher J Taylor. Active appearance models. In
Computer Vision—ECCV’98: 5th European Conference on Computer Vision Freiburg, Germany,
June 2–6, 1998 Proceedings, Volume II 5, pages 484–498. Springer, 1998.

[10] Yusuf Dalva and Pinar Yanardag. Noiseclr: A contrastive learning approach for unsupervised
discovery of interpretable directions in diffusion models. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 24209–24218, 2024.

[11] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-
scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern
recognition, pages 248–255. Ieee, 2009.

[12] Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using real nvp. In
International Conference on Learning Representations, 2016.

[13] Nelson Elhage, Tristan Hume, Catherine Olsson, Nicholas Schiefer, Tom Henighan, Shauna
Kravec, Zac Hatfield-Dodds, Robert Lasenby, Dawn Drain, Carol Chen, et al. Toy models of
superposition. arXiv preprint arXiv:2209.10652, 2022.

11

137344 https://doi.org/10.52202/079017-4363



[14] Ziya Erkoç, Fangchang Ma, Qi Shan, Matthias Nießner, and Angela Dai. Hyperdiffusion:
Generating implicit neural fields with weight-space diffusion. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 14300–14310, 2023.

[15] Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for high-resolution
image synthesis. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 12873–12883, 2021.

[16] Rinon Gal, Yuval Alaluf, Yuval Atzmon, Or Patashnik, Amit Haim Bermano, Gal Chechik, and
Daniel Cohen-or. An image is worth one word: Personalizing text-to-image generation using
textual inversion. In The Eleventh International Conference on Learning Representations, 2022.

[17] Rohit Gandikota, Joanna Materzynska, Tingrui Zhou, Antonio Torralba, and David Bau. Concept
sliders: Lora adaptors for precise control in diffusion models. arXiv preprint arXiv:2311.12092,
2023.

[18] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in neural
information processing systems, 27, 2014.

[19] David Ha, Andrew M Dai, and Quoc V Le. Hypernetworks. In International Conference on
Learning Representations, 2016.

[20] Erik Härkönen, Aaron Hertzmann, Jaakko Lehtinen, and Sylvain Paris. Ganspace: Discovering
interpretable gan controls. Advances in neural information processing systems, 33:9841–9850,
2020.

[21] Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan Le Bras, and Yejin Choi. Clipscore: A
reference-free evaluation metric for image captioning. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Processing, pages 7514–7528, 2021.

[22] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances
in neural information processing systems, 33:6840–6851, 2020.

[23] Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu
Chen, et al. Lora: Low-rank adaptation of large language models. In International Conference
on Learning Representations, 2021.

[24] Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Wortsman, Ludwig Schmidt, Hannaneh Ha-
jishirzi, and Ali Farhadi. Editing models with task arithmetic. In The Eleventh International
Conference on Learning Representations, 2022.

[25] Minguk Kang, Jun-Yan Zhu, Richard Zhang, Jaesik Park, Eli Shechtman, Sylvain Paris, and
Taesung Park. Scaling up gans for text-to-image synthesis. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 10124–10134, 2023.

[26] Tero Karras, Miika Aittala, Janne Hellsten, Samuli Laine, Jaakko Lehtinen, and Timo Aila.
Training generative adversarial networks with limited data. Advances in neural information
processing systems, 33:12104–12114, 2020.

[27] Tero Karras, Miika Aittala, Samuli Laine, Erik Härkönen, Janne Hellsten, Jaakko Lehtinen,
and Timo Aila. Alias-free generative adversarial networks. Advances in neural information
processing systems, 34:852–863, 2021.

[28] Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative
adversarial networks. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 4401–4410, 2019.

[29] Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and Timo Aila.
Analyzing and improving the image quality of stylegan. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 8110–8119, 2020.

[30] Diederik P Kingma and Jimmy Ba. Adam: a method for stochastic optimization. In International
Conference on Learning Representations, 2014.

12

137345https://doi.org/10.52202/079017-4363



[31] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. International Confer-
ence on Learning Representations, 2014.

[32] Durk P Kingma and Prafulla Dhariwal. Glow: Generative flow with invertible 1x1 convolutions.
Advances in neural information processing systems, 31, 2018.

[33] Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for fine-
grained categorization. In Proceedings of the IEEE international conference on computer vision
workshops, pages 554–561, 2013.

[34] Nupur Kumari, Bingliang Zhang, Richard Zhang, Eli Shechtman, and Jun-Yan Zhu. Multi-
concept customization of text-to-image diffusion. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 1931–1941, 2023.

[35] Mingi Kwon, Jaeseok Jeong, and Youngjung Uh. Diffusion models already have a semantic
latent space. In The Eleventh International Conference on Learning Representations, 2022.

[36] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in
the wild. In Proceedings of the IEEE international conference on computer vision, pages
3730–3738, 2015.

[37] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed repre-
sentations of words and phrases and their compositionality. Advances in neural information
processing systems, 26, 2013.

[38] Ron Mokady, Amir Hertz, Kfir Aberman, Yael Pritch, and Daniel Cohen-Or. Null-text inversion
for editing real images using guided diffusion models. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 6038–6047, 2023.

[39] Chong Mou, Xintao Wang, Liangbin Xie, Yanze Wu, Jian Zhang, Zhongang Qi, and Ying Shan.
T2i-adapter: Learning adapters to dig out more controllable ability for text-to-image diffusion
models. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pages
4296–4304, 2024.

[40] Yotam Nitzan, Kfir Aberman, Qiurui He, Orly Liba, Michal Yarom, Yossi Gandelsman, Inbar
Mosseri, Yael Pritch, and Daniel Cohen-Or. Mystyle: A personalized generative prior. ACM
Transactions on Graphics (TOG), 41(6):1–10, 2022.

[41] Yong-Hyun Park, Mingi Kwon, Jaewoong Choi, Junghyo Jo, and Youngjung Uh. Understanding
the latent space of diffusion models through the lens of riemannian geometry. Advances in
Neural Information Processing Systems, 36:24129–24142, 2023.

[42] William Peebles, Ilija Radosavovic, Tim Brooks, Alexei A Efros, and Jitendra Malik. Learning
to learn with generative models of neural network checkpoints. arXiv preprint arXiv:2209.12892,
2022.

[43] Ryan Po, Wang Yifan, Vladislav Golyanik, Kfir Aberman, Jonathan T Barron, Amit Bermano,
Eric Chan, Tali Dekel, Aleksander Holynski, Angjoo Kanazawa, et al. State of the art on
diffusion models for visual computing. In Computer Graphics Forum, volume 43, page e15063.
Wiley Online Library, 2024.

[44] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning,
pages 8748–8763. PMLR, 2021.

[45] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with
deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434, 2015.

[46] Ilija Radosavovic, Justin Johnson, Saining Xie, Wan-Yen Lo, and Piotr Dollár. On network
design spaces for visual recognition. In Proceedings of the IEEE/CVF international conference
on computer vision, pages 1882–1890, 2019.

13

137346 https://doi.org/10.52202/079017-4363



[47] Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, and Piotr Dollár. Design-
ing network design spaces. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 10428–10436, 2020.

[48] Shauli Ravfogel, Yanai Elazar, Hila Gonen, Michael Twiton, and Yoav Goldberg. Null it out:
Guarding protected attributes by iterative nullspace projection. In Proceedings of the 58th
Annual Meeting of the Association for Computational Linguistics, pages 7237–7256, 2020.

[49] Danilo Rezende and Shakir Mohamed. Variational inference with normalizing flows. In
International conference on machine learning, pages 1530–1538. PMLR, 2015.

[50] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation
and approximate inference in deep generative models. In International conference on machine
learning, pages 1278–1286. PMLR, 2014.

[51] Daniel Roich, Ron Mokady, Amit H Bermano, and Daniel Cohen-Or. Pivotal tuning for
latent-based editing of real images. ACM Transactions on graphics (TOG), 42(1):1–13, 2022.

[52] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 10684–10695, 2022.

[53] Duncan A Rowland and David I Perrett. Manipulating facial appearance through shape and
color. IEEE computer graphics and applications, 15(5):70–76, 1995.

[54] Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein, and Kfir Aberman.
Dreambooth: Fine tuning text-to-image diffusion models for subject-driven generation. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
22500–22510, 2023.

[55] Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Wei Wei, Tingbo Hou, Yael Pritch, Neal Wadhwa,
Michael Rubinstein, and Kfir Aberman. Hyperdreambooth: Hypernetworks for fast personaliza-
tion of text-to-image models. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 6527–6536, 2024.

[56] Simo Ryu. Low-rank adaptation for fast text-to-image diffusion fine-tuning, 2023.

[57] Florian Schroff, Dmitry Kalenichenko, and James Philbin. Facenet: A unified embedding for
face recognition and clustering. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 815–823, 2015.

[58] Konstantin Schürholt, Dimche Kostadinov, and Damian Borth. Self-supervised representation
learning on neural network weights for model characteristic prediction. Advances in Neural
Information Processing Systems, 34:16481–16493, 2021.

[59] Viraj Shah, Nataniel Ruiz, Forrester Cole, Erika Lu, Svetlana Lazebnik, Yuanzhen Li, and
Varun Jampani. Ziplora: Any subject in any style by effectively merging loras. arXiv preprint
arXiv:2311.13600, 2023.

[60] Yujun Shen, Jinjin Gu, Xiaoou Tang, and Bolei Zhou. Interpreting the latent space of gans for
semantic face editing. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 9243–9252, 2020.

[61] Lawrence Sirovich and Michael Kirby. Low-dimensional procedure for the characterization of
human faces. Josa a, 4(3):519–524, 1987.

[62] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsuper-
vised learning using nonequilibrium thermodynamics. In International conference on machine
learning, pages 2256–2265. PMLR, 2015.

[63] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In
International Conference on Learning Representations, 2020.

14

137347https://doi.org/10.52202/079017-4363



[64] Omer Tov, Yuval Alaluf, Yotam Nitzan, Or Patashnik, and Daniel Cohen-Or. Designing an
encoder for stylegan image manipulation. ACM Transactions on Graphics (TOG), 40(4):1–14,
2021.

[65] Matthew Turk and Alex Pentland. Eigenfaces for recognition. Journal of cognitive neuroscience,
3(1):71–86, 1991.

[66] Andrey Voynov and Artem Babenko. Unsupervised discovery of interpretable directions in the
gan latent space. In International conference on machine learning, pages 9786–9796. PMLR,
2020.

[67] Kuan-Chieh Wang, Daniil Ostashev, Yuwei Fang, Sergey Tulyakov, and Kfir Aberman. Moa:
Mixture-of-attention for subject-context disentanglement in personalized image generation.
arXiv e-prints, pages arXiv–2404, 2024.

[68] Kuan-Chieh Wang, Paul Vicol, James Lucas, Li Gu, Roger Grosse, and Richard Zemel. Adver-
sarial distillation of bayesian neural network posteriors. In International conference on machine
learning, pages 5190–5199. PMLR, 2018.

[69] Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre, Rebecca Roelofs, Raphael Gontijo-Lopes,
Ari S Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith, et al. Model
soups: averaging weights of multiple fine-tuned models improves accuracy without increasing
inference time. In International conference on machine learning, pages 23965–23998. PMLR,
2022.

[70] Weihao Xia, Yulun Zhang, Yujiu Yang, Jing-Hao Xue, Bolei Zhou, and Ming-Hsuan Yang.
Gan inversion: A survey. IEEE transactions on pattern analysis and machine intelligence,
45(3):3121–3138, 2022.

[71] Guangxuan Xiao, Tianwei Yin, William T Freeman, Frédo Durand, and Song Han. Fastcom-
poser: Tuning-free multi-subject image generation with localized attention. arXiv preprint
arXiv:2305.10431, 2023.

[72] Hu Ye, Jun Zhang, Sibo Liu, Xiao Han, and Wei Yang. Ip-adapter: Text compatible image
prompt adapter for text-to-image diffusion models. arXiv preprint arXiv:2308.06721, 2023.

[73] Ge Yuan, Xiaodong Cun, Yong Zhang, Maomao Li, Chenyang Qi, Xintao Wang, Ying Shan,
and Huicheng Zheng. Inserting anybody in diffusion models via celeb basis. Advances in
Neural Information Processing Systems, 36, 2024.

[74] Kaipeng Zhang, Zhanpeng Zhang, Zhifeng Li, and Yu Qiao. Joint face detection and alignment
using multitask cascaded convolutional networks. IEEE signal processing letters, 23(10):1499–
1503, 2016.

[75] Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image
diffusion models. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pages 3836–3847, 2023.

[76] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unrea-
sonable effectiveness of deep features as a perceptual metric. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 586–595, 2018.

[77] Jun-Yan Zhu, Philipp Krähenbühl, Eli Shechtman, and Alexei A Efros. Generative visual
manipulation on the natural image manifold. In Computer Vision–ECCV 2016: 14th European
Conference, Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part V 14, pages
597–613. Springer, 2016.

[78] Ye Zhu, Yu Wu, Zhiwei Deng, Olga Russakovsky, and Yan Yan. Boundary guided learning-free
semantic control with diffusion models. Advances in Neural Information Processing Systems,
36, 2024.

15

137348 https://doi.org/10.52202/079017-4363



A Sampling

We present additional examples of models sampled from w2w space in Fig. 13. The sampled models
encode a diverse array of identities which are not copied from the dataset of model weights, as seen
by comparing them to the nearest neighbor models from the training set. However, there are attributes
borrowed from the nearest neighbors which visually appear in the sampled identity. For instance, the
sampled man in the first row shares a similar jawline to the nearest neighbor identity. The sampled
identities also demonstrate the same ability as the original training identities to be composed into
novel contexts. A variety of prompts are used in Fig. 13 and the identities are still consistent.

Sampled Identity Nearest Neighbor

Figure 13: Sampled identity-encoding models from w2w space and their nearest neighbor models.
The sampled identities share some characteristics with the nearest neighbors, but are still distinct.
These identities can also be composed into novel contexts like a standard customized diffusion model.
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B Model Editing in w2w Space

Qualitative Results. We display additional examples of applying edits in w2w space based on the
directions discovered using linear classifiers and CelebA labels. In Fig. 14, we demonstrate how the
strength of these edits can be modulated and combined with minimal interference. These edits are
apparent even in more complex scenes beyond face images. Also, the edits do not degrade other
present concepts, such as the dog near the man (top left example).

In Figs. 15 and 16, we demonstrate how multiple edits can be progressively added in a disentangled
fashion with minimal degradation to the identity. Additionally, since we operate in a subspace
of weight space, these edits persist with a consistent appearance across different generations. For
instance, even the man exhibits the edits as a painting in Fig. 15.

Bald

Be
ar

d

Age

Pa
le

Chubby

Bl
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k 
H

ai
r

Pointy Nose

Cu
rls

Figure 14: Multiple edits can be controlled in a continuous manner.
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Original +Chubby +Mustache +Big Eyes +Balding Original +Flat Brows +Bangs +Straight Hair +Old

Original +Chubby +Mustache +Big Eyes +Balding Original +Flat Brows +Bangs +Straight Hair +Old

Figure 15: Composing four different edits with minimal identity degradation. These edits bind to
the identity and persist in appearance across multiple generation seeds and prompts.
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Original +Pale +Small Lips +Male

Original +Pointy Nose +Eye Bags +Big Lips

Original +Cheekbones +Curls +Thick Brows

Figure 16: Additional examples of composing multiple edits. We provide more examples of
semantic edits based on labels available from CelebA.
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User Study. We present a two-alternative forced choice (2AFC) user study to evaluate the quality
of identity edits in Tab. 3. Twenty-five users were given ten sets of images. Each set contained a
randomly sampled original image of an identity, and then an image of that identity edited for an
attribute using Concept Sliders [17], w2w, and text prompting. Users were then asked to choose
between alternate pairs based on three criteria: identity preservation, alignment with the desired edit,
and disentanglement. Our results in Tab. 3 show that users have a strong preference towards w2w
edits. User instructions and an example question from the study are provided in Figs. 17, 18.

Table 3: User study on identity editing.
Method Win Rate (%) ↑
Sliders 28.4
w2w 71.6

Prompting 12.8
w2w 87.2

Figure 17: Instructions provided to users for the identity editing user study.

Figure 18: Example question from the identity editing user study.
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C Inversion

We present additional details on w2w inversion and comparisons against training Dreambooth LoRA
on a single image vs. multiple images.

Implementation Details: To conduct w2w inversion, we train on a single image following the
objective from eq. 3. We qualitatively find that optimizing 10,000 principal component coefficients
balances identity preservation with editability. This is discussed in Appendix F. We optimize for
400 epochs, using Adam [30] with learning rate 0.1, β1 = 0.9, β2 = 0.999 and with weight decay
factor 1e-10. For conducting Dreambooth fine-tuning, we follow the implementation from Hugging
Face 3 using LoRA with rank 1. To create a dataset of multiple images for an identity, we follow the
procedure from Sec. 4.4.

w2w inversion is more efficient than previous methods. Inversion into w2w space results in a
significant speedup in optimization as seen in Tab. 4, where we measure the training time on a
single NVIDIA A100 GPU. Standard Dreambooth fine-tuning operates on the full weight space
and incorporates an additional prior preservation loss which typically requires hundreds of prior
images. In contrast, we only optimize a standard denoising objective on a single image within a
low-dimensional weight subspace. Despite operating with lower dimensionality, w2w inversion
performs closely to standard Dreambooth fine-tuning on multiple images with LoRA.

Table 4: Inversion into w2w space balances identity preservation and efficiency.
Method Single-Image # Param Opt. Time (s) Identity Fidelity ↑
DB-LoRA × 99,648 220 0.69± 0.01
DB-LoRA ✓ 99,648 200 0.43± 0.03
w2w Inversion ✓ 10,000 55 0.64± 0.01

Qualitative Inversion Comparison. In Figs. 19 and 20, we present qualitative comparisons of w2w
inversion against Dreambooth trained with multiple images and a single image. Although mult-image
Dreambooth slightly outperforms w2w inversion in identity preservations, its samples tend to lack
realism compared to w2w inversion. We hypothesize that this may be due to using generated images
for prior preservation and training on synthetic identity images. Dreambooth trained on a single
image either generates an artifacted version of the original image or random identities. Notice how
inversion into w2w space is even able to capture key characteristics of the child although babies are
nearly to completely absent in the identites based on CelebA used to fine-tune our dataset of models.
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Figure 19: Inversion into w2w space preserves identity and realism. We compare against Dream-
booth fine-tuning with LoRA on multiple images and a single image.

3https://github.com/huggingface/peft
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Figure 20: Inversion into w2w space preserves identity and realism (cont.).
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Comparison against Single Image Personalization Methods. We compare w2w inversion to
single shot personalization methods Celeb-Basis [73] and IP-Adapter FaceID4 [72], following the
same evaluation protocol from Sec. 4.4. These quantitative results are presented in Tab. 5. While
Celeb-Basis optimizes in the input text embedding space for a given face image, IP-Adapter trains
light-weight adapters [39, 75] to condition generation on any input face image.

We further conducted a two-alternative forced choice (2AFC) user study on the perceptual quality
of w2w identity preservation. Twenty users were given ten sets of images. Each set contained a
randomly sampled original image of the identity, and then three random images generated using
IP-Adapter FaceID, Celeb-Basis, and w2w with the same random prompt. Users were then asked
to choose between alternate pairs based on three criteria: identity preservation, prompt alignment,
and diversity of generated images. Our results in Tab. 6 show that users found generations from w2w
models capture identity better while also generating more diverse images that better align with the
prompts.

Across both these metrics, w2w performs stronger than Celeb-Basis and IP-Adapter FaceID. Our
results indicate that operating in our weight subspace is highly expressive and flexible as it is able to
faithfully capture nuanced identity without overfitting to the input image. For instance, in Fig. 21,
w2w inversion enables diverse generation with various poses, facial expressions, and clothing while
maintaining identity.

Table 5: Single-shot personalization com-
parison.

Method ID Score ↑
Celeb-Basis 0.60± 0.02

IP-Adapter FaceID 0.62± 0.02
w2w 0.64± 0.01

Table 6: User study on identity inversion.
Method Win Rate (%) ↑

Celeb-Basis 13.4
w2w 86.6

IP-Adapter FaceID 22.8
w2w 77.2

Original “A photo of V1 person”

IP
-A
da
pt
er

C
el
eb
-B
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w
2w

Figure 21: Qualitative comparison of single-shot personalization methods.

4https://huggingface.co/h94/IP-Adapter-FaceID
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Below in Figs. 22 and 23, we provide the instructions provided to users for the identity inversion user
study in addition to an example question.

Figure 22: Instructions provided to users for the identity inversion user study.

Figure 23: Example question from the identity inversion user study.
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D Out of Distribution Projection

Additional examples of out-of-distribution projections are displayed in Fig. 24. A diverse array of
styles and subjects (e.g. paintings, sketches, non-humans) can be distilled into a model in w2w space.
After embedding an identity into this space, the model still retains the compositionality and rich
priors of a standard personalized model. For instance, we can generate images using prompts such
as “[v] person writing at a desk” (top example), “[v] person with a dog” (middle example), or “a
painting of [v] person painting on a canvas” (bottom example).

ProjectionInput

ProjectionInput

ProjectionInput

Figure 24: Projection into w2w space generalizes to a variety of inputs. A range of styles and
entities can be inverted into a realistic identity in this space. Once a model is obtained, it can be
prompted to generate the identity in a variety of contexts.
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E Identity Datasets

In Fig. 25, we present examples of synthetic identity datasets used to conduct our Dreambooth
fine-tuning as discussed in Sec 4. Each dataset is a set of ten images generated with [67] conditioned
on single CelebA [36] images associated with binary attribute labels. Note that we only display a
subset of images per identity in the figure. The same identity can occur multiple times in different
images in CelebA but have different appearances. So, creating these synthetic datasets reduces
intra-dataset diversity and creates a more consistent appearance for each subject. For instance, the
first two rows in the figure are the same identity, but look drastically different. So we instead treat
them as different identities associated with a different set of images.

For evaluating identity edits from Sec. 4.3, we hold out 100 identities, which results in leaving
out ∼1000 models since multiple models may encode different instances of the same identity. For
instance, if we left out the model encoding the identity in the first row of Fig. 25 for evaluation, the
model encoding the second row identity would also be left out since it encodes the same identity but
a different instance.

CelebA Prior Generated Dataset Examples

Figure 25: Fine-tuning on synthetic examples allows Dreambooth fine-tuning to distill a con-
sistent identity. The left column shows a CelebA image used to condition generation of a set of
identity-consistent images in the right column associated with that identity using [67]. The consistent
appearance of the identity enables a more consistent identity encoding.
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F Principal Component Basis

In this section, we analyze various properties of the Principal Component (PC) basis used to define
w2w Space. We investigate the distribution of PC coefficients and the effect of the number of PCs on
identity editing and inversion.

Distribution of PC Coefficients. We plot the histogram of the coefficient values for the first three
Principal Components in Fig. 26. They appear roughly Gaussian. Next, we rescale the coefficients
for these three components to unit variance for visualization purposes. We then plot the pairwise
joint distributions for them in Fig. 27. The circular shapes indicates roughly diagonal covariances.
Although the joint over other combinations of Principal Components may exhibit different properties,
these results motivate us to model the PCs as independent Gaussians, leading to the w2w sampling
strategy from Sec. 3.2.

Number of Principal Components for Identity Editing We empirically observe that training
classifiers based on the 1000 dimensional PC representations (first 1000 PCs) of the model weights
results in the most semantically aligned and disentangled edits directions. We visualize a comparison
for the “goatee" direction in Fig. 28. After finding the direction, we calculate the maximum projection
component onto the edit direction among the training set of model weights. This determines the edit
strength. As seen in the figure, restricting to the first 100 Principal Components may be too coarse
to achieve the fine-grained edit, instead relying on spurious cues such as skin color. Training with
the first 10,000 Principal Components suffers from the curse of dimensionality and the discovered
direction may edit other concepts such as eye color or clothes. Finding the direction using the first
1000 Principal Components achieves the desired edit with minimal entanglement with other concepts.

Number of Principal Components for Identity Inversion We qualitatively observe that inversion
using the first 10,000 Principal Components balances identity preservation while not overfitting to the
source image. We visualize a comparison in Fig. 29, where each column has a fixed seed and prompt.
Optimizing with the first 1000 PCs underfits the identity and does not generate a consistent identity.
Inversion with the first 20,000 Principal Components overfits to the source image of a face shot,
which results in artifacted face images despite different generation seeds and prompts. Optimizing
with the first 10,000 Principal Components enjoys the benefits of a lower dimensional representation
than the original LoRA parameter space (∼100,000 trainable parameters), while still preserving
identity and compositionality. This is supported quantitatively by Fig. 30, which shows the average
ID score for 100 inverted FFHQ identities optimized over a varying number of principal components.

Figure 26: Histogram of principal component coefficients. The first three principal component
coefficients appear approximately Gaussian.

Figure 27: Pairwise joint histogram of principal component coefficients. We rescale the first three
principal component coefficients and plot the pairwise joint distributions for visualization purposes.
Given that the marginals are roughly Gaussian, the circular appearance of the joint suggests pairwise
independence for the first three components.
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Original T=1000 T=800 T =600
+Chubby+Goatee

Original 100 PCs 1000 PCs 10000 PCs

Figure 28: Edit results with varying number of Principal Components. Training classifiers to
find semantic weight space directions with the first 1000 Principal Components achieves the most
semantically aligned and disentangled results.

Inversion with 20000 PCs

Inversion with 1000 PCs

Inversion with 10000 PCs

Input

Figure 29: Identity inversion results with varying number of principal components. We optimize
the coefficients for the first 1000, 10, 000, and 20, 000 Principal Component. Each column indicates
a fixed generation seed and prompt. Inversion with the first 10, 000 components balances parameter
efficiency, realism, and identity preservation without overfitting to the single image.
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Figure 30: Identity preservation vs. number of principal components used for w2w inversion.
We optimize the coefficients for the first N principal components up to 20,000 and measure the
average ID score for 100 inverted FFHQ identities.
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Visualizing Principal Components. We provide a visualization of traversals along a set of principal
components in Fig. 31. The principal components change attributes of the identity, although various
semantic attributes are entangled. For instance, the first PC appears to change age, hair color, and hair
style. The second PC appears to change gender and skin complexion. The third PC seems to change
age, skin complexion, and facial hair. This motivates our use of linear classifiers to find separating
hyperplanes in weight space and disentangle these attributes.

Figure 31: Traversal along the first three principal components in w2w space. The directions
encode various entangled identity attributes such as age, gender, and facial hair.
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G weights2weights for Other Visual Concepts

We find that similar subspaces can be created for other visual concepts beyond human identites. For
instance, we apply the weights2weights framework to create two subspaces for models encoding
different dog breeds and models encoding car types. We present examples of editing these models in
Fig. 32. This suggest the generality of weights2weights and linear subspaces within diffusion model
weights.

Figure 32: Applying weights2weights edits on dog-encoding models and car-encoding models.
We create two datasets of model weights and apply PCA to define two separate weight subspaces.
We then train linear classifiers to find semantic edit directions.
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H Multi-Concept Merging

Multiple models living in w2w space cannot be merged since they live in the same weight subspace.
So, merging will lead to interpolation of the identities. However, w2w models can be merged with
models lying approximately orthogonal to the subspace. This merging can be done adding the weights.
We present an example of merging a model living in w2w space with a model fine-tuned to encode
“Pixar" style in Fig. 33.

Figure 33: Merging w2w models with non-identity models. Here, another model is fine-tuned to
map V2 to “Pixar” style. The two models are merged with simple addition.

I Timestep Analysis

Edits in w2w space correspond to identity edits with minimal interference with other visual concepts.
Although not a focus, image editing is achieved as a byproduct. For further context preservation,
edits in w2w Space can be integrated with delayed injection [7, 17, 35, 71], where after T timesteps,
the edited weights are used instead of the original ones. We visualize this in Fig. 34. Larger T in the
range [700, 1000] are helpful for more global attribute changes, while smaller [400, 700] can be used
for more fine-grained edits. However, by decreasing the timestep T , the strength of the edit is lost in
favor of better context preservation. For instance, the dog’s face is better preserved in the second row
at T = 600, although the man is not as chubby compared to other T .

Original T=1000 T=800 T =600
+Chubby

Figure 34: Injecting edited weights at varying timesteps. Using the edited weights at a smaller
timestep T better preserves context at the expense of edit strength and fidelity.

31

137364 https://doi.org/10.52202/079017-4363



NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Experiments in the paper back up the claims made in the abstract and introduc-
tion.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: There is a dedicated limitations section in Sec. 6 detailing failure cases.
Computational efficiency is addressed in Sec. C and scale is addressed in Sec. 4.6. Privacy
and fairness is addressed in Sec. 7.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]

Justification: There are no theoretical results in the submission.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Secs. 3, 4 and the Appendix detail all necessary steps to reproduce the results.
We plan to release the model weights we trained.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Code, data, and weights can be found through the project page at: https:
//snap-research.github.io/weights2weights/

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We present data splits, hyperparameters, etc. in Secs. 3, 4, and the Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Confidence intervals are reported for the results in the experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The appendix details the compute resources used.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The authors have read the NeurIPS Code of Ethics and confirm that the paper
conforms with it.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Broader impacts has a dedicated section in Sec. 7.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This work utilizes pretrained models and well-established datasets that already
have proper safeguards in place.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The original creators of assets are either cited or linked.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: No assets are being submitted.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [Yes]
Justification: Screenshots and instructions are provided for both identity editing and identity
inversion user studies.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Potential risks are not applicable.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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