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Abstract

Federated learning has become a pivotal distributed learning paradigm, involving
collaborative model updates across multiple nodes with private data. However,
handling non-i.i.d. (not identically and independently distributed) data and en-
suring model consistency across heterogeneous environments present significant
challenges. These challenges often lead to model performance degradation and
increased difficulty in achieving effective communication among participant mod-
els. In this work, we propose Confusion-Resistant Federated Learning via Consis-
tent Diffusion (CRFed), a novel framework designed to address these issues. Our
approach introduces a new diffusion-based data harmonization mechanism that
includes data augmentation, noise injection, and iterative denoising to ensure con-
sistent model updates across non-i.i.d. data distributions. This mechanism aims
to reduce data distribution disparities among participating nodes, enhancing the
coordination and consistency of model updates. Moreover, we design a confusion-
resistant strategy leveraging an indicator function and adaptive learning rate adjust-
ment to mitigate the adverse effects of data heterogeneity and model inconsistency.
Specifically, we calculate importance sampling weights based on the optimal sam-
pling probability, which guides the selection of clients and the sampling of their
data, ensuring that model updates are robust and aligned across different nodes.
Extensive experiments on benchmark datasets, including MNIST, FashionMNIST,
CIFAR-10, CIFAR-100, and NIPD, demonstrate the effectiveness of CRFed in im-
proving accuracy, convergence speed, and overall robustness in federated learning
scenarios with severe data heterogeneity.

1 Introduction
Federated Learning (FL) [McMahan et al., 2017b] has emerged as a powerful paradigm for dis-
tributed machine learning, enabling multiple clients to collaboratively train a shared model without
exchanging raw data. This approach addresses critical concerns around data privacy and security,
which are increasingly significant in various sectors such as healthcare [Antunes et al., 2022], fi-
nance [Chatterjee et al., 2023], and IoT [Li et al., 2020a, Pan et al., 2023, Yao et al., 2024]. How-
ever, one of the fundamental challenges in FL is dealing with non-independent and identically dis-
tributed (non-IID) data, which can significantly impair the performance and convergence of the
global model [Zhu et al., 2021].
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Figure 1: Problem illustration of federated learning on Non-i.i.d data.

As illustrated in Figure 1, FL on non-IID data often suffers from issues like divergent model up-
dates and inconsistent global models. Client models trained on heterogeneous data distributions
tend to diverge [Ye et al., 2023], making it difficult for the server to aggregate them into a coherent
global model. This divergence is due to inconsistencies in data sources [Xiao and Liu, 2024] and
distributions across clients [Duan et al., 2021]. This problem leads to reduced accuracy and slower
convergence rates, highlighting the need for effective solutions to handle data heterogeneity. Exist-
ing research has made significant strides in improving the robustness and efficiency of FL in non-IID
settings. Notable methods include FedProx [Li et al., 2020b], which adds a proximal term to handle
heterogeneity. Techniques such as MOON [Li et al., 2021b]and FedGen [Nguyen et al., 2021] in-
troduce sophisticated strategies like contrastive learning and data generation to mitigate the effects
of data heterogeneity. Despite these advancements, issues related to data distribution disparities and
model inconsistency persist, limiting the scalability and effectiveness of FL in real-world scenarios.

Given the critical gaps in existing FL approaches, particularly their limited robustness to severe
non-IID data distributions, there is a pressing need for more resilient and adaptive solutions. This
research is motivated by the necessity to enhance FL’s capability to handle heterogeneous data effi-
ciently. The primary objective of this study is to develop a novel FL framework, Confusion-Resistant
Federated Learning via Consistent Diffusion (CRFed), which integrates advanced mechanisms to ad-
dress data distribution disparities and enhance model consistency across clients.

Our contributions can be summarized as follows:
1. We propose a novel indicator function that dynamically adjusts sample weighting based

on loss values and uncertainties, facilitating a self-paced learning approach that prioritizes
more difficult samples over time.

2. Our framework employs a diffusion-based mechanism to harmonize data distributions, in-
volving iterative noise injection and denoising processes that align local data with the de-
sired distribution.

3. We implement a strategic client selection method based on the indicator function, ensuring
the inclusion of the most reliable clients, which enhances the robustness and consistency of
model updates.

4. Our extensive experimental evaluations demonstrate that CRFed achieves state-of-the-art
performance on benchmark datasets. CRFed outperforms existing methods significantly in
terms of accuracy and convergence speed under various non-IID settings.

2 Related Work

2.1 Non-IID Challenge in Federated Learning

The issue of non-IID data in FL was initially highlighted by FedAVG [McMahan et al., 2017a], and it
has since been demonstrated that this challenge can significantly hinder the convergence and overall
performance of the global model [Zhao et al., 2018, Li et al., 2019]. Numerous studies, categorized
as client-centric methods, have been proposed to tackle this problem by adjusting the local training
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objectives using insights from the global model and the local models of other clients [Wang et al.,
2021]. For instance, FedProx [Li et al., 2020b] introduced a proximal term to constrain local updates
by leveraging the global model. SCAFFOLD [Karimireddy et al., 2020] utilized control variates to
correct for local training drift, while FedDyn [Acar et al., 2021] introduced a dynamic regularizer
for parallelizing gradients among clients. MOON [Li et al., 2021b] applied contrastive learning to
minimize the discrepancy between model representations, thereby correcting local training.

Despite their contributions, these methods fall short of fully resolving the core of the non-IID is-
sue and may experience performance limitations in scenarios with highly skewed data distributions
[Li et al., 2022]. Beyond client-side adjustments, the server also plays a role in mitigating the ad-
verse effects of non-IID data by calibrating the biased global model post-aggregation. For example,
CCVR [Luo et al., 2021] uses virtual representations from an approximated Gaussian mixture model
to correct the classifier. FedFTG [Zhang et al., 2022] employs data-free knowledge distillation to
refine the global model with the knowledge derived from local models. Additionally, strategies
such as client clustering [Ghosh et al., 2020, Long et al., 2023] and client selection [Zhang et al.,
2021, Wang et al., 2020], can be implemented by the server to alleviate the non-IID problem. IFCA
[Ghosh et al., 2020] iteratively estimates client cluster identities based on local empirical loss and
updates model parameters for each cluster via gradient descent.
2.2 Importance Sampling in Federated Learning
In federated learning (FL), data sampling strategies are vital for enhancing distributed training effi-
ciency. [Tuor et al., 2020] proposed selecting local training data based on user-end data correlation
analysis. This led to dynamic sampling strategies like [Li et al., 2021a], where training sample
importance is determined by model gradient magnitudes. Similarly, [Rizk et al., 2022] used gradi-
ent norms to derive sampling weights, minimizing theoretical convergence bounds. However, these
methods require immediate gradient computations, increasing local overhead, and assume convex
loss functions, which may not apply to deep learning models [Rizk et al., 2021]. Therefore, develop-
ing importance sampling methods suitable for deep learning-based FL remains an open challenge.

FL convergence can be theoretically analyzed due to the model aggregation mechanism [98, 101-
102, 150], with experimental validation for deep learning tasks [Wan et al., 2021]. Most studies rely
on theoretical derivations, limiting practical application. This study aims to use a diffusion model to
automate the modeling of optimal sampling strategies in FL.

3 Method

3.1 Overview

The CRFed framework, shown in Figure 2, addresses challenges posed by non-i.i.d. data in FL. Our
approach integrates a diffusion mechanism and a confusion-resistant strategy to ensure consistent
and robust model updates across heterogeneous data distributions. The core idea of CRFed is that
the performance of client i’s data on the global model reflects its contribution to the training process.
By using an optimal indicator function, we determine the optimal data sampling probability for each
client, enhancing training efficiency and model performance.

The framework comprises several key components: the current global model downloaded by clients
at time t; the Model Encoder and Meta-model, which process the global model and client-specific
data for the diffusion process; an indicator function, computed using client i’s data on the global
model; the Diffusion-based Data Harmonization Mechanism, which uses data augmentation, noise
injection, and probabilistic modeling to mitigate data distribution disparities; and the Distribution
Decoder, which aligns the denoised data distribution with the desired distribution.

3.2 Indicator Function and Meta-model

The Indicator Function Iλ(li, σi) is designed to measure the reliability of the i-th sample’s loss value
li and its associated uncertainty σi. The design is inspired by self-paced learning [Fan et al., 2017,
Castells et al., 2020], which adjusts the weights of samples based on their loss values, allowing for
a gradual learning process from easy to difficult samples. In the context of federated learning, this
means that each client should adopt a self-paced learning paradigm, sampling its data in a way that
allows the global model to learn from simple to complex tasks. The Indicator Function captures this
performance and is defined as follows:
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Figure 2: CRFed Framework. The process begins with the current global model, which is down-
loaded by clients. The model encoder processes the global model, and the meta-model is obtained.
This meta-model is then projected into a higher-dimensional space and concatenated with the in-
dicator function, forming the combined representation zi. The diffusion-based data harmonization
mechanism adds noise to this representation and iteratively denoises it to achieve the desired distri-
bution. The distribution decoder then aligns the denoised data distribution. Client i’s data is sampled
based on importance sampling weights wi, calculated as the ratio of the optimal sampling probabil-
ity P ∗

i to the original data distribution P0. This ensures that the sampled data aligns with the desired
distribution, following a curriculum learning approach that progresses from easy to difficult samples,
thus enhancing overall model performance.

Iλ(li, σi) = (li − τ)σi + λ(log σi)
2 (1)

where λ is a pre-set regularization coefficient. τ is a confidence threshold that determines the diffi-
culty of the sample based on its loss value. It can either be a fixed constant or a dynamically adjusted
weighted average during the training process.

The Indicator Function can be further explained using the following steps: for each client i, the loss
value li of each sample is calculated on the current global model, and the uncertainty σi of each
sample is estimated based on its difficulty. The Indicator Function Iλ(li, σi) is then used to assign
weights to the samples, with easier samples having lower weights and more difficult samples having
higher weights. This adaptive weighting mechanism ensures that the model focuses more on difficult
samples over time, leading to improved learning efficiency and robustness.
Theorem 3.1. In the CRFed framework, using the indicator function Iλ(li, σi) ensures stable and
convergent updates for heterogeneous federated learning. For an appropriately chosen learning rate
η, the model update rule for client i at iteration t,

θt+1 = θt − η

(
σ∗
i + (li − τ)k + 2λ

log σ∗
i

σ∗
i

k

)
∇θli, (2)

guarantees a decreasing step size, promoting convergence. Moreover, CRFed achieves a tighter
bound on update steps than FedAvg, indicating faster convergence under the same conditions.

The proof of Theorem 3.1 can be found in Appendix A.2.

Given the global model θ, the optimal uncertainty σ∗
i can be derived through the following theorem:

Theorem 3.2. The optimal uncertainty σ∗
i for a given loss value li is obtained by minimizing the

Indicator Function Iλ(li, σi). The solution is given by:

σ∗
i (li) = exp

(
−W

(
1

2λ
max

(
−2

e
, li − τ

)))
(3)

where W (·) is the Lambert W function.
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We rewrite the indicator function by setting σi = exi , reduce the derivative condition to a Lambert
W form under domain constraints, and thus obtain a closed-form solution for σ∗

i ; the complete
derivation is presented in Appendix A.3.

For each sample indexed by i, we determine the optimal uncertainty σ∗
i as a function of its loss li.

Specifically, let Iλ(li, σi) be the indicator function defined before. Then, selecting σ∗
i that minimizes

Iλ(li, σi) induces an adaptive weighting scheme:

ωi(li) ∝
1

σ∗
i (li)

, (4)

ensuring that when li is relatively large, the corresponding optimal σ∗
i decreases, thus increasing

ωi(li) and emphasizing more difficult samples. Conversely, smaller li values lead to larger σ∗
i and

lower ωi(li), indicating that easier samples receive diminished focus. As a result, the distribution
defined by σ∗

i is optimally aligned with the current global model θt, conforming to the self-paced
learning principle.

Since Iλ(li, σi) can be regarded as quantifying each client’s contribution relative to θt, we embed
θt within the diffusion model as follows: using an autoregressive encoder E, we compress θt to
a meta-model ϕt = E(θt). Subsequently, ϕt is projected into a high-dimensional representation
P (ϕt), and concatenated with Iλ(li, σi) to form

zi = concat
(
P (ϕt), Iλ(li, σi)

)
. (5)

We then feed zi into the diffusion model, denoted by DiffusionModel(zi), to refine the data distri-
bution with respect to the global context. Further implementation details about the encoder E are
provided in Appendix A.4.

3.3 Diffusion-based Data Harmonization

The diffusion-based data harmonization mechanism is a critical component of the CRFed frame-
work, responsible for mitigating data distribution disparities and ensuring consistent model updates
across heterogeneous environments. The harmonization process is shown in Figure 3, which in-
volves adding noise to the data distribution and then iteratively denoising it to achieve the desired
distribution. The workflow of this mechanism can be divided into two main processes: the forward
diffusion process and the reverse denoising process.

Forward Diffusion Process Suppose that a training sample x0 is of a certain distribution, denoted
as q(x0). In the forward diffusion process, Gaussian noise with variance βt ∈ (0, 1) is added
gradually to the sample x0 for T steps, resulting in a latent sample xT ∼ N (0, I). The process is
defined as follows:

q(z1:T |zi) =
T∏

t=1

q(zt|zt−1), (6)

q(zt|zt−1) = N (zt;
√

1− βtzt−1, βtI). (7)

Using notations αt = 1− βt and ᾱt =
∏t

s=1 αs, the sample zt can be defined directly as:

zt =
√
ᾱtzi +

√
1− ᾱtϵ, ϵ ∼ N (0, I). (8)

Reverse Denoising Process The reverse denoising process aims to sample reversely from zT
through transition probabilities q(zt−1|zt) for timesteps T − 1 through 1, yielding a sample drawn
from q(zi). The transition q(zt−1|zt) is a Gaussian distribution, tractable when conditioned on zi:

q(zt−1|zt, zi) = N (zt−1; µ̃t(zt, zi), β̃tI), (9)

where the mean µ̃t and variance β̃t are calculated as:
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µ̃t(zt, zi) =
1
√
αt

(
zt −

1− αt√
1− ᾱt

ϵt

)
, (10)

β̃t =
1− ᾱt−1

1− ᾱt
βt. (11)

The reverse transition probability pθ(zt−1|zt) relies on the entire data distribution and is approxi-
mated through a neural network:

pθ(zt−1|zt) = N (zt−1;µθ(zt, t),Σθ(zt, t)), (12)

The detailed derivations and computations for these processes can refer to A.1. In the context of
federated learning, the reverse denoising process starts from the optimal indicator function I∗ ob-
tained in the forward diffusion process. By progressively denoising, we obtain the optimal sampling
probability for client i, ensuring that the final data distribution aligns with the desired distribution.
This minimizes the impact of data heterogeneity and ensures robust model updates across all clients.

3.4 Confusion-Resistant Strategy

The confusion-resistant strategy is designed to address the challenges posed by data heterogeneity
and model inconsistency in federated learning. It consists of three key components: client selection
based on the indicator function, data sampling using the diffusion-based harmonization mechanism,
and adaptive learning rate adjustment.

Client Selection Strategy To mitigate the adverse effects of data heterogeneity, we select clients
based on their indicator function Iλ(li, σi), which quantifies the reliability of their data. Clients with
the lowest indicator values, reflecting higher data reliability, are chosen for training. This approach
follows the curriculum learning paradigm, where lower values indicate better data:

Selected Clients = {i|Iλ(li, σi) ≤ γ}, (13)

where γ is a dynamically adjusted threshold ensuring the selection of the most suitable clients.

Data Sampling Strategy For each selected client, the optimal sampling probability P ∗
i is deter-

mined through the reverse denoising process, starting from the optimal indicator function I∗. This
ensures that the sampled data aligns with the desired distribution, enhancing the robustness of model
updates. The importance sampling weight wi is calculated as follows:

wi =
P ∗
i

P0
. (14)

where P0 is the original data distribution. Using wi, we sample the local training data (Dsampled
i =

Sample(Di, wi)). This sampling ensures the effective sampling probability aligns with P ∗
i .

The distribution decoder, which is implemented as an autoencoder, is then used to decode the de-
noised data distribution. The autoencoder is trained to map the denoised samples back to the desired
distribution, further ensuring that the data used for training is aligned with the ideal distribution.
Refer to the A.4 for more details of distribution decoder.

Adaptive Learning Rate Adjustment The learning rate ηi for each client is adjusted based on
the indicator function value, enhancing the influence of more reliable data:

ηi = η0 ·
Iλ(li, σi)

maxj Iλ(lj , σj)
, (15)

where η0 is the base learning rate.

The complete computational process(pseudocode) of CRFed is provided in the A.5.
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4 Experiments
4.1 Experiment Setup

Figure 3: The diffusion-based data harmonization
mechanism in CRFed framework. The process
involves a forward diffusion process where Gaus-
sian noise is added to the initial data distribution,
transforming it into a latent representation. This
is followed by a reverse denoising process that it-
eratively removes the noise, aligning the data dis-
tribution with the desired target distribution.

Datasets Our experiments are conducted
on four widely used benchmark datasets:
MNIST [LeCun et al., 1998], Fashion-
MNIST [Xiao et al., 2017], CIFAR-
10 [Krizhevsky et al., 2009], and CIFAR-
100 [Krizhevsky et al., 2009]. To simulate
Non-IID data scenarios, we utilize the Dirichlet
distribution [Yurochkin et al., 2019] to generate
non-IID partitions with varied concentration
parameters, β. Smaller values of β lead to
more imbalanced data distributions among
clients, thereby increasing levels of data het-
erogeneity. In our experiments, we set β to 0.5
to reflect this imbalance. In all experiments,
we simulate a federated learning environment
with 10 edge nodes, i.e., K = 10. For the
MNIST and FashionMNIST datasets, each
node has 600 data samples. For the CIFAR-10
dataset, each node has 500 data samples. For
CIFAR-100, the partitioning strategy remains
the same, ensuring that each client’s local
data distribution varies significantly, simulat-
ing real-world federated learning scenarios.
MNIST and FashionMNIST datasets consist of
grayscale images of size 28 × 28 pixels, with
10 classes. CIFAR-10 and CIFAR-100 contain
color images of size 32× 32 pixels.

Additionally, we use the NIPD dataset [Yin
et al., 2023], a benchmark specifically designed
for federated learning in person detection tasks
with Non-IID data. This dataset provides a real-
world non-IID scenario to test the generaliza-
tion of CRFed.

Competing Methods Apart from FedAvg [McMahan et al., 2017a], we compare the proposed
algorithm with several benchmarking FL algorithms specialized for solving the non-IID problem,
including FedProx [Li et al., 2020b], MOON [Li et al., 2021b], and FedGen [Nguyen et al., 2021].
We also compare our method against HFMDS-FL [Li et al., 2024], FRAug [Chen et al., 2023], G-
FML [Yang et al., 2023], FedCD [Long et al., 2023], FedNP [Wu et al., 2023], and FedDPMS [Chen
and Vikalo, 2023], which are recent state-of-the-art approaches addressing non-IID data issues in
federated learning.

Hyperparameter For local training, the settings are as follows: MNIST with E = 5, B = 10,
η = 5 × 10−3; FashionMNIST with E = 5, B = 100, η = 2 × 10−4; CIFAR-10 and CIFAR-
100 with E = 5, B = 100, η = 1 × 10−4. Momentum optimization with a coefficient of 0.5 is
applied. In the CRFed framework, key hyperparameters include maximum global rounds (TG) set
to 100, local training cycles (El) per global round set to 1, regularization coefficient (λ) set to 0.1,
dynamically adjusted confidence threshold (τ ), and client selection threshold (γ) initially set to 0.5.
These parameters are fine-tuned based on preliminary experiments to ensure training efficiency and
model performance. The experiments were conducted using an NVIDIA GeForce RTX 4060 GPU,
which has 8GB of VRAM. Detailed configurations of model structure are provided in A.6.

Evaluation metrics The primary evaluation metrics for our experiments focus on accuracy and
the number of training rounds needed to reach convergence, addressing the challenges posed by
non-IID data in federated learning. Accuracy is measured at the same training round across different
models to ensure fair comparison. Convergence is assessed by the number of rounds required to
achieve a target accuracy, which reflects the model’s stability and efficiency. For the NIPD dataset,
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we use mean Average Precision (mAP) as the evaluation metric. Following [Wang et al., 2020], all
reported results are averaged over five runs with different random seeds to account for variability.

4.2 Performance Comparison

Table 1: Test accuracy of CRFed and the competing methods on five datasets. We run five trials with
different random seeds and report the mean accuracy.

Scheme MNIST FashionMNIST CIFAR-10 CIFAR-100 NIPD (mAP)
FedAvg [McMahan et al., 2017a] 0.976 0.847 0.650 0.362 0.821
FedProx [Li et al., 2020b] 0.978 0.844 0.655 0.365 0.826
MOON [Li et al., 2021b] 0.980 0.846 0.674 0.372 0.836
FedGen [Nguyen et al., 2021] 0.982 0.862 0.672 0.369 0.841
HFMDS-FL [Li et al., 2024] 0.982 0.868 0.678 0.377 0.846
FRAug [Chen et al., 2023] 0.981 0.865 0.675 0.374 0.851
G-FML [Yang et al., 2023] 0.983 0.870 0.681 0.378 0.854
FedCD [Long et al., 2023] 0.982 0.867 0.677 0.376 0.861
FedNP [Wu et al., 2023] 0.982 0.869 0.680 0.377 0.863
FedDPMS [Chen and Vikalo, 2023] 0.983 0.876 0.680 0.386 0.871
CRFed 0.985 0.878 0.683 0.389 0.882

Accuracy comparison Table 1 presents the test accuracy of CRFed compared to several feder-
ated learning algorithms under a highly heterogeneous setting (β = 0.5). Our proposed method
shows notable improvements over FedAvg [McMahan et al., 2017a], with relative gains of 0.9%
on MNIST, 3.7% on FashionMNIST, 5.1% on CIFAR-10, 7.5% on CIFAR-100, and a significant
7.4% improvement in mAP on the NIPD dataset. This highlights CRFed’s robustness in handling
non-IID data distributions. CRFed consistently outperforms all other methods across the datasets,
underscoring its effectiveness in federated learning scenarios with severe data heterogeneity.

Table 2: Performance of top 5 models on CIFAR-100 and
NIPD datasets under different β values.

CIFAR-100 NIPD (mAP)

Scheme 0.1 0.3 0.5 0.1 0.3 0.5

FedDPMS 0.270 0.330 0.386 0.751 0.810 0.871
FRAug 0.268 0.328 0.374 0.746 0.800 0.851
G-FML 0.265 0.329 0.378 0.748 0.802 0.854
FedCD 0.275 0.333 0.376 0.750 0.808 0.861
CRFed 0.280 0.345 0.389 0.760 0.820 0.882

Effect of Data Heterogeneity We
analyze the impact of data hetero-
geneity on the performance of the
top 5 models by varying the Dirichlet
concentration parameter β. Table 2
shows the performance of these mod-
els on CIFAR-100 and NIPD datasets
for β values ranging from 0.1 to 0.5.
As expected, the performance gener-
ally decreases with smaller β values
due to increased data heterogeneity.
Table 2 indicates that as β decreases,
representing higher data heterogeneity, the performance of all models declines. CRFed consistently
outperforms other methods across different β settings, demonstrating its robustness in handling data
heterogeneity. Notably, the relative performance gap between CRFed and other methods widens as
β decreases, highlighting its efficacy in more challenging federated learning scenarios.

Figure 4: Effect of Increasing Edge Nodes

Effect of Increasing Edge Nodes Figure 4
presents the performance of the top 5 models
on CIFAR-100 and NIPD datasets as the num-
ber of edge nodes K increases from 10 to 100.
Across all models, performance generally im-
proves with higher K values, reflecting better
data utilization. Notably, CRFed shows the
most significant gains, with accuracy increasing
from 0.389 to 0.425 on CIFAR-100 and mAP
from 0.882 to 0.920 on NIPD. This demon-
strates CRFed’s superior scalability and effec-
tiveness in handling more edge nodes, mak-
ing it robust in federated learning environments
with increasing data sources.
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Figure 5: Test accuracy across federated training rounds for top 5 models on FMNIST, CIFAR-10,
and CIFAR-100 datasets.

Figure 6: Ablation study results on CIFAR-10,
CIFAR-100, and NIPD datasets. The bar charts
show the accuracy on CIFAR-10 and CIFAR-100
datasets, while the line plot represents the mAP on
the NIPD dataset.

Convergence Rate The convergence perfor-
mance of the top five models on FMNIST,
CIFAR-10, and CIFAR-100 datasets is depicted
in Figure 5. As observed, CRFed demon-
strates significantly faster and more stable con-
vergence compared to the competing methods
across all three datasets. This superior perfor-
mance is attributed to the diffusion-based data
harmonization mechanism, which effectively
aligns data distributions, and the confusion-
resistant strategy that selects reliable clients and
adaptively adjusts learning rates, ensuring effi-
cient and robust training even in highly hetero-
geneous environments.

4.3 Ablation Study

To evaluate the contribution of each component in the CRFed framework, we conduct an ablation
study by removing or altering specific components and observing the impact on model performance.
Removing the Indicator Function and using uniform sampling led to significant performance drops,
with CIFAR-10 accuracy falling from 0.683 to 0.661, CIFAR-100 from 0.389 to 0.365, and NIPD
mAP from 0.882 to 0.861. Excluding the Diffusion-based Data Harmonization (DDH) mechanism
resulted in reduced accuracy on CIFAR-10 (0.670), CIFAR-100 (0.373), and NIPD mAP (0.870),
highlighting its role in aligning data distributions. Replacing strategic client selection with random
selection markedly decreased performance, emphasizing the importance of reliable client selection.
Fixing the learning rate instead of adapting it slowed convergence and destabilized training. These
findings validate the theoretical and practical significance of our proposed components in improving
federated learning performance.

4.4 Comparison with Importance Sampling Methods

Previous importance sampling methods typically require prior analysis of the data relevance at each
client-side [Hsu et al., 2020, Tian et al., 2022] or necessitate deriving optimal sampling weights
based on assumptions such as the convexity of the loss function [Rizk et al., 2022, Zhu et al., 2024].
While these methods offer strong theoretical guarantees, they are somewhat limited in their adapt-
ability to real-world federated learning (FL) scenarios. For instance, both FedIR [Hsu et al., 2020]
and Harmony [Tian et al., 2022] assume that the server has knowledge of the local distributions of
all clients. Although this assumption does not violate the privacy-preserving principles of FL, it can
be challenging to obtain in real-world applications.

In contrast, our CRFed does not depend on these assumptions. Instead, it iteratively adjusts the data
distributions during the FL process itself, enabling the model to dynamically harmonize the diverse,
non-IID data across clients without requiring explicit distributional assumptions or centralized ac-
cess to all client data distributions. Guided by the indicator function, our CRFed can derive the
optimal sampling strategy for each local node.
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Moreover, as shown in Table 3, empirical experiments demonstrate that the diffusion model achieves
superior performance, outperforming other benchmark methods.

Table 3: The performance of different importance
sampling methods on CIFAR-100 under various β
values.

CIFAR-100

Method β = 0.1 β = 0.3 β = 0.5

ISFedAvg 0.232 0.285 0.305
ISFL 0.237 0.296 0.314
FedIR 0.258 0.311 0.352
Harmony 0.246 0.313 0.354
CRFed 0.280 0.345 0.389

It is worth noting that this comparison is not en-
tirely fair, as each importance sampling method
operates under different assumptions. For ex-
ample, ISFL requires a validation set to up-
date the empirical gradient Lipschitz constants
for each local model, while FedIR requires all
clients to upload the conditional distribution of
images given class labels to match the target
distribution. Nevertheless, our CRFed outper-
forms the others even under less restrictive con-
ditionsunlike ISFedAvg and ISFL, it does not
require assumptions about the loss function or
gradient variance, and unlike FedIR and Har-
mony, it does not require centralized access to all client data distributions before calculating the
importance sampling weights.

5 Conclusion
In conclusion, this study tackles the pressing challenge of handling non-i.i.d. data in federated learn-
ing environments. We propose the Confusion-Resistant Federated Learning via Consistent Diffusion
(CRFed) framework. This framework introduces a novel Indicator Function that dynamically adjusts
sample weighting, facilitating a self-paced learning paradigm that prioritizes more difficult samples
over time. Additionally, our diffusion-based data harmonization mechanism ensures consistent and
aligned data distributions through iterative noise injection and denoising processes, mitigating the
adverse effects of data heterogeneity. Our strategic client selection method, guided by the Indicator
Function, ensures that the most reliable clients are chosen for training, thus improving the robustness
and consistency of global model updates.

Despite the promising results, our approach has certain limitations. The reliance on complex diffu-
sion mechanisms and adaptive strategies may introduce computational overhead, which could be a
concern for resource-constrained environments. Future work should focus on optimizing the com-
putational efficiency of the CRFed framework and exploring its applicability to a broader range of
real-world federated learning scenarios [Zhang et al., 2023].
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A Appendix

A.1 Supplementary Explanation of the Diffusion-based Data Harmonization Mechanism

Forward Diffusion Process In the forward diffusion process, Gaussian noise with variance βt ∈
(0, 1) is added gradually to the sample x0 for T steps. The process is defined as:

q(z1:T |zi) =
T∏

t=1

q(zt|zt−1), (16)

q(zt|zt−1) = N (zt;
√

1− βtzt−1, βtI). (17)

Using notations αt = 1− βt and ᾱt =
∏t

s=1 αs, the sample zt can be defined directly as:

zt =
√
ᾱtzi +

√
1− ᾱtϵ, ϵ ∼ N (0, I). (18)

Reverse Denoising Process The reverse denoising process aims to sample reversely from zT
through transition probabilities q(zt−1|zt) for timesteps T − 1 through 1 to obtain a sample drawn
from q(zi). The transition q(zt−1|zt) is a Gaussian distribution, tractable when conditioned on zi:

q(zt−1|zt, zi) = N (zt−1; µ̃t(zt, zi), β̃tI), (19)

where the mean µ̃t and variance β̃t are calculated as:

µ̃t(zt, zi) =
1
√
αt

(
zt −

1− αt√
1− ᾱt

ϵt

)
, (20)

β̃t =
1− ᾱt−1

1− ᾱt
βt. (21)

The reverse transition probability pθ(zt−1|zt) relies on the entire data distribution and is approxi-
mated through a neural network:

pθ(zt−1|zt) = N(zt−1;µθ(zt, t),Σθ(zt, t)), (22)

where Σθ(zt, t) = β̃tI and the mean µθ(zt, t) depends on a noise sample ϵθ(zt, t) learned by a
neural network. The learning process is guided by the objective function:

L = Et,zi,ϵ

[
||ϵ− ϵθ(zt, t)||2

]
, (23)

while the output sample is obtained as:

zt−1 =
1
√
αt

(
zt −

1− αt√
1− ᾱt

ϵθ(zt, t)

)
+ σtz, (24)

where z ∼ N (0, I) if t > 1 and z = 0 otherwise.

A.2 Proof of Theorem 3.1

Proof. For convenience, define ωi = ωi(θt) = σ∗
i +(li−τ) k+2λ

log σ∗
i

σ∗
i

k, ,which can be regarded
as the effective weight term induced by the indicator function Iλ(li, σi). It appears in the local
update of client i. Hence, the update rule can be written as:

θt+1 = θt − η ωi∇θli. (25)

Meanwhile, we assume the local loss function li(θ) satisfies two common assumptions:
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1. L-smoothness (Lipschitz continuity of gradients): The gradient of li(θ) is L-Lipschitz,
i.e.,

‖∇li(θ1)−∇li(θ2)‖ ≤ L ‖θ1 − θ2‖ for all θ1, θ2. (26)

2. Bounded below: There exists a constant l∗i such that

li(θ) ≥ l∗i (27)

for all θ.

From L-smoothness, we have for the update from iteration t to t+ 1:

li(θt+1) ≤ li(θt) +
〈
∇li(θt), θt+1 − θt

〉
+

L

2
‖θt+1 − θt‖2. (28)

Using (25), we get
θt+1 − θt = −η ωi∇θli(θt). (29)

Substituting back yields

li(θt+1) ≤ li(θt) − η ωi ‖∇li(θt)‖2 +
L

2
η2 ω2

i ‖∇li(θt)‖2

= li(θt) −
(
η ωi −

L

2
η2 ω2

i

)
‖∇li(θt)‖2. (30)

If we ensure η ωi ≤ 1
L , or more conservatively η ωi ≤ 1

2L ,then

η ωi −
L

2
η2 ω2

i ≥
1

2
η ωi. (31)

Hence, (30) implies

li(θt+1) ≤ li(θt) −
1

2
η ωi ‖∇li(θt)‖2. (32)

Therefore, if η is chosen such that η ωi ≤ 1
2L , then li(θ) is guaranteed to decrease at every step,

forming a monotonically decreasing sequence.

By the bounded-below assumption li(θ) ≥ l∗i , the loss cannot decrease indefinitely. Consequently,
{ li(θt)} converges. From a standard telescoping sum argument, at iteration T , we estimate the sum
of squared gradient norms:

T−1∑
t=0

∥∥∇li(θt)∥∥2 ≤ 2

η

T−1∑
t=0

li(θt)− li(θt+1)

ωi
≤

2
[
li(θ0)− l∗i

]
η mint{ωi(θt)}

. (33)

If mint{ωi(θt)} > 0 and η is properly chosen, then the average gradient norm goes to 0 as T →∞,
ensuring global convergence.

In FedAvg, the single-step update typically has the form θt+1 = θt − ηFedAvg∇θli(θt). In CRFed,
we have an additional factor ωi(θt). Thus the effective learning rate becomes ηeff = η ωi(θt). If
ωi(θt) ≤ 1 (which can be ensured by proper design of the indicator function in many scenarios),
then ηeff ≤ η, i.e., CRFed is more conservative (or adaptive) in its step size. This helps avoid large
updates caused by data heterogeneity and promotes more stable convergence. Consequently, CRFed
obtains a tighter convergence bound because it mitigates the gradient-directional deviation brought
on by heterogeneous data.
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A.3 Proof of Theorem 3.2

Proof. Recall that the Indicator Function is defined as Iλ(li, σi) = (li − τ)σi + λ (log σi)
2., we

wish to find the optimal σ∗
i that minimizes this function for a given li.

To simplify the differentiation, we introduce two transformations:

ci =
li − τ

λ
and xi = log σi. (34)

Hence, we have
σi = e xi . (35)

Under these new variables, the Indicator Function becomes

Iλ(li, σi) = (li − τ) e xi + λ (xi)
2 = λ

(
ci e

xi + x2
i

)
. (36)

Since λ > 0 is just a constant multiplier, minimizing Iλ is equivalent to minimizing
f(xi) = ci e

xi + x2
i . (37)

We now compute the derivative of f(xi) with respect to xi and set it to zero to find the critical points:
d

dxi

[
ci e

xi + x2
i

]
= ci e

xi + 2xi = 0. (38)

Rearrange this to isolate exponential terms:
ci e

xi = − 2xi. (39)
Note that this step implicitly assumes xi < 0 if the right-hand side is negative, depending on the
sign of ci. We proceed to manipulate this into a standard Lambert W form. Multiply both sides by
− 1

2 e
xi :

− 1
2 ci e

2 xi = xi e
xi . (40)

Let
y = xi e

xi . (41)
Then,

y = − 1
2 ci e

2 xi . (42)
Meanwhile, by definition of y,

y = xi e
xi . (43)

Hence, we arrive at
xi = −W

(
ci
2

)
=⇒ xi = −W

(
li−τ
2λ

)
, (44)

where W (·) is the Lambert W function, the inverse function of z 7→ z e z .

In practice, the argument of the Lambert W function must lie in a domain where the function is
real-valued. By restricting

li − τ ≥ − 2
e , (45)

we ensure that
li − τ

2λ
≥ − 1

e . (46)

Therefore, to handle the case when li − τ < − 2
e , we take

max
(
− 2

e , li − τ
)
, (47)

which ensures the Lambert W functions argument stays within the valid real domain. Consequently,
the solution for xi becomes

xi = −W
(

1
2λ max

(
− 2

e , li − τ
))

. (48)

Recalling σi = e xi , we conclude:

σ∗
i (li) = exp

(
−W

(
1
2λ max

(
− 2

e , li − τ
)))

. (49)
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A.4 Design and Training Details of the Model Encoder and Distribution Decoder

In the CRFed framework, both the model encoder and distribution decoder play crucial roles in ensur-
ing effective data harmonization and robust model updates. These components are implemented us-
ing autoencoder architectures, designed to compress and reconstruct data representations efficiently.

A.4.1 Model Encoder

The model encoder E is responsible for compressing the global model parameters θt into a lower-
dimensional meta-model representation ϕt. The encoder architecture comprises several fully con-
nected layers activated by ReLU functions, followed by a linear transformation layer to produce the
final compressed representation.

Mathematically, given the input global model parameters θt ∈ Rd, the encoder outputs a compressed
representation ϕt = E(θt) ∈ Rd′

, where d′ < d. The transformation is defined as follows:

h1 = ReLU(W1θt + b1)h2 = ReLU(W2h1 + b2)
...hk = ReLU(Wkhk−1 + bk)ϕt = Wouthk + bout

(50)

The training of the model encoder involves minimizing the mean squared error (MSE) between the
original model parameters and their reconstructions. The loss function is given by:

LE =
1

N

N∑
i=1

‖θti − θ̂ti‖2 (51)

where θ̂ti = E−1(E(θti)) and N is the number of samples. The optimization is performed using
the Adam optimizer with a learning rate η. The detailed architecture includes an input layer of size
d, hidden layers of sizes [128, 64, 32], and an output layer of size d′ = 16.

A.4.2 Distribution Decoder

The distribution decoder D aims to transform the denoised latent representations zt back into the
desired data distribution. Like the encoder, the decoder uses a series of fully connected layers with
ReLU activations, culminating in a linear layer to reconstruct the data.

Given the input latent representation zt ∈ Rd′
, the decoder outputs the reconstructed data x̂t =

D(zt) ∈ Rd. The transformations are defined as:

h1 = ReLU(W ′
1zt + b′1)h2 = ReLU(W ′

2h1 + b′2)
...hk = ReLU(W ′

khk−1 + b′k)x̂t = W ′
outhk + b′out

(52)

The training process for the distribution decoder also minimizes the MSE, defined as:

LD =
1

N

N∑
i=1

‖xti − x̂ti‖2 (53)

where x̂ti = D(zti) and N is the number of samples. The optimization employs the Adam optimizer
with a learning rate η. The architecture details include an input layer of size d′ = 16, hidden layers
of sizes [32, 64, 128], and an output layer of size d.

A.4.3 Architectural Details

The model encoder and distribution decoder share a similar architectural approach, emphasizing
efficient compression and reconstruction through deep learning techniques. The key parameters for
both autoencoders are summarized as follows:

• Model Encoder:
– Input layer size: d
– Hidden layer sizes: [128, 64, 32]
– Output layer size: d′ = 16
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– Activation function: ReLU
– Learning rate: η = 0.001

– Batch size: 32
• Distribution Decoder:

– Input layer size: d′ = 16

– Hidden layer sizes: [32, 64, 128]
– Output layer size: d
– Activation function: ReLU
– Learning rate: η = 0.001

– Batch size: 32

These architectural and training details ensure that the CRFed framework can effectively handle non-
i.i.d. data distributions, facilitating robust and consistent model updates across federated learning
environments.

A.5 Pseudocode for CRFed

The complete computational process of CRFed is illustrated in Algorithm 1.

Algorithm 1 Confusion-Resistant Federated Learning via Consistent Diffusion (CRFed)
Require: Maximum global rounds TG, local training cycles El, client weights {πk}, local datasets
{Dk}, learning rate η0, indicator function threshold γ

1: Initialize global model parameters θ0
2: Initialize local model parameters {θk0} and importance sampling weights {wk

i ← 1}
3: Set t← 1
4: while t ≤ TG × El do
5: for each client k do
6: Sample local data Dsampled

i based on importance weights wk
i

7: Train local model θkt on Dsampled
i

8: end for
9: if t mod El == 0 then

10: Each client uploads local model {θkt } to the server
11: Server aggregates the global model: θ̄t ←

∑K
k=1 πkθ

k
t

12: for each client k do
13: Compute optimal indicator function I∗

14: Calculate optimal sampling probability P ∗
i = ReverseDenoise(I∗)

15: Calculate importance sampling weights wi =
P∗

i

P0

16: Sample new local data Dsampled
i based on updated importance weights wi

17: Train local model θkt on Dsampled
i

18: Update local model θkt ← θ̄t
19: Adjust learning rate: ηi = η0 · Iλ(li,σi)

maxj Iλ(lj ,σj)

20: end for
21: end if
22: t← t+ 1
23: end while
24: Output: Global model θ̄t, local models {θkt }

A.6 Detailed Model Structure

The detailed configuration of the models used in our experiments is provided below. Each table
outlines the layers and parameters for the respective datasets.

All weights are initialized with a normal distribution (mean 0, standard deviation 0.1) and biases
with a constant value of 0.1. These settings ensure that the models are well-prepared for training
and capable of achieving high performance on the respective datasets.
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Table 4: Model structure for MNIST and FashionMNIST datasets

Layer Type Output Channels/Units Additional Information
Input - - 28x28 grayscale images

1 Convolutional 16 5x5 filters, stride 1, padding ’SAME’
- Activation - ReLU
- Max Pooling - 2x2 window, stride 2
2 Convolutional 32 5x5 filters, stride 1, padding ’SAME’
- Activation - ReLU
- Max Pooling - 2x2 window, stride 2
3 Fully Connected 512 -
- Activation - ReLU
4 Fully Connected 10 Softmax

Table 5: Model structure for CIFAR-10 and CIFAR-100 datasets

Layer Type Output Channels/Units Additional Information
Input - - 32x32 RGB images

1 Convolutional 64 5x5 filters, stride 1, padding ’SAME’
- Activation - ReLU
- Max Pooling - 2x2 window, stride 2
2 Convolutional 64 5x5 filters, stride 1, padding ’SAME’
- Activation - ReLU
- Max Pooling - 2x2 window, stride 2
3 Fully Connected 1600 -
- Activation - ReLU
4 Fully Connected 512 -
- Activation - ReLU
5 Fully Connected 10 (CIFAR-10) / 100 (CIFAR-100) Softmax

In the NIPD dataset, we adopted the classic YOLOv3 [Redmon and Farhadi, 2018] model.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims in the abstract and introduction are supported by detailed
descriptions, empirical evaluations, and theoretical analysis provided in the body of the
paper (Sections 1, 3, and 4).
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The paper discusses the limitation in Section 5, addressing potential biases
from large language models.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

20

137514https://doi.org/10.52202/079017-4368



Answer: [Yes]
Justification: The paper includes a detailed proof for the convergence theorem in Section 3,
providing all necessary assumptions and a complete proof.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theo-

rems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper specifies the datasets used, the training and testing details, the
hyperparameters, and the evaluation metrics in Section 4, ensuring that the experiments
can be reproduced.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear

how to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The data and code is provided.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/

public/guides/CodeSubmissionPolicy) for more details.
• While we encourage the release of code and data, we understand that this might not

be possible, so No is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper provides comprehensive details on the training and testing setups,
including data splits, hyperparameters, and optimizer settings in Section 4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of

detail that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Since some baselines involve randomness using k-means, the paper did 95%
significance test using 10 repeated results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-

ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The paper provides details on the computational resources used, including the
type of GPUs and the total amount of compute required for the experiments, as mentioned
in Section 4.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research adheres to the NeurIPS Code of Ethics, ensuring transparency,
reproducibility, and consideration of ethical implications throughout the study.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: The paper discusses the potential positive impacts of improving clustering
techniques for various applications and mentions possible negative impacts such as biases
introduced by large language models and the risk of misuse in surveillance, along with
mitigation strategies in Section 5.
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Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper does not involve the release of data or models that have a high risk
for misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The paper properly credits the creators of the datasets and models used, and
mentions the licenses and terms of use, as detailed in Section 4.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
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• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the pack-

age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [Yes]

Justification: The new datasets and code introduced in the paper are well documented.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing or research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing or research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.
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