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Abstract

Despite significant progress in robotics and embodied AI in recent years, deploy-
ing robots for long-horizon tasks remains a great challenge. Majority of prior
arts adhere to an open-loop philosophy and lack real-time feedback, leading to
error accumulation and undesirable robustness. A handful of approaches have
endeavored to establish feedback mechanisms leveraging pixel-level differences
or pre-trained visual representations, yet their efficacy and adaptability have been
found to be constrained. Inspired by classic closed-loop control systems, we pro-
pose CLOVER, a closed-loop visuomotor control framework that incorporates
feedback mechanisms to improve adaptive robotic control. CLOVER consists
of a text-conditioned video diffusion model for generating visual plans as ref-
erence inputs, a measurable embedding space for accurate error quantification,
and a feedback-driven controller that refines actions from feedback and initiates
replans as needed. Our framework exhibits notable advancement in real-world
robotic tasks and achieves state-of-the-art on CALVIN benchmark, improving by
8% over previous open-loop counterparts. Code and checkpoints are maintained at
https://github.com/OpenDriveLab/CLOVER.

1 Introduction
Robotics and embodied generalists have gained enormous achievements in recent years, with the
successful advancement of representation learning and visual generation in computer vision [1, 2, 3, 4],
large (vision-)language models [5, 6], policy learning [7, 8], etc. Remarkable behavior intelligence
has been demonstrated in diverse and complex single-task settings from picking up a Lego block to
solving a Rubik’s cube [9, 10]. However, deploying the robots for long-horizon manipulation tasks
remains a long-standing challenge [11, 12].

Some literature have attempted to tackle the problem with large language models, splitting a prolonged
job into detailed instructions for each minor movement [13, 14], or sub-goals. Though effective in
high-level descriptions, texts could still be inadequate for detailed portrayals of the environment
and robot state, leading to considerable issues under cross-morphology or multi-environments [15].
Therefore, recent efforts have started embracing vision as a universal medium to develop an embodied
agent capable of planning diverse tasks through imagination and execution [16, 15, 17]. These
approaches involve a generative model for predicting future videos or goal images, followed by a
goal-conditioned policy for translating the visual plan into actual actions. Despite success, they adhere
to an open-loop paradigm, i.e., proceeding with a fixed sequence of actions without verifying whether
the actual trajectory aligns with the planned one. For instance, when a robot is tasked to “grab a
Coke from the fridge”, current works assume that the predicted sub-goal is the visual image
of the door opening, and the robot should naturally achieve the state (sub-goal) prior to grabbing
the bottle. However, the lack of error measurement and real-time feedback leads to accumulative
deviation, undesirable robustness, and limited adaptability—particularly inadequate for long-horizon
tasks and dynamic environments [11, 18].
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Figure 1: Motivation. The proposed CLOVER is inspired by the classic closed-loop control in
automation systems (a). Our framework (b) employs a visual planner to predetermine a sequence
of sub-goals (Section 3.1). Then these goals guide the policy to generate actions with an error
measurement strategy (Section 3.2). Within the feedback loop, it automatically replans when the
sub-goal is infeasible, and adapts to to the next one upon achievement (Section 3.3).

We are inspired by the conventional closed-loop control system as depicted in Figure 1(a). It aims to
regulate physical quantities such as actuator velocity by enhancing control precision via a feedback
mechanism. Three major components are worth mentioning, the reference input defines desired
states which could comprise multiple stages for a prolonged task; the error measurement quantifies
bias between the observed state and the planned sub-goal; and the controller adjusts output to
reduce the deviation (error) [19]. In fact, several works have introduced analogous feedback in
robotics by measuring errors with pixel appearance [20, 21] or visual representations [22], e.g.,
CLIP features [23], and yet their performance and adaptability is limited, leaving accurate error
quantification modeling unexplored.

To this end, we propose CLOVER, a CLOsed-loop Visuomotor control framework with generative
Expectation for Robotic manipulation. As shown in Figure 1(b), analogy to the classic closed-loop
control system, the ingredients in our version are adapted accordingly. 1) Reference inputs. With
video frames as the interface describing desired states, a text-conditioned video diffusion model
generates future frames as reference inputs. To further facilitate the subsequent planning accuracy,
we endow the visual planner with the ability of depth map generation, and introduce optical flow
regularization to prioritize motion consistency. 2) Error measurement. Given the limitations of pixel-
wise metrics and the inadequacy of pre-trained visual representations, we propose the establishment
of a measurable embedding space to realize accurate and efficient error measurement between the
observed and planned states. Our state embeddings are trained using an explicit error modeling
approach, which yields a strong correlation with the process of converging towards or diverging from
target states. 3) Feedback-driven controller. We present a simple yet effective control framework,
comprising a controller and an error-aware adaptive control strategy. The controller is optimized
via an inverse dynamics objective [24] to achieve the predefined sub-goals. To address the issue
of a goal-oriented policy failing to consistently achieve the desired state, our proposed framework,
CLOVER, adopts an iterative refinement strategy. It continually adjusts its actions to minimize errors,
re-evaluates and replans if sub-goals are unrealistic. To sum up, our contributions are three folds:

• We introduce CLOVER, a generalizable closed-loop visuomotor control framework that incorpo-
rates a feedback mechanism to improve adaptive robotic control.

• We investigate the state-measuring attribute for latent embeddings and propose a policy by quanti-
fying feedback errors explicitly. The error quantification settles the construction of an execution
pipeline to resolve the challenge of handling uncertainties in video generation and task horizons.

• Extensive experiments in simulation and real-world robots verify the effectiveness of CLOVER. It
surpasses prior state-of-the-arts by a notable margin (+8%) on CALVIN. The average length of
completed tasks on real-world long-horizon manipulation nearly doubles compared to RT-1.
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2 Related Work

Closed-loop mechanisms for robotics. Model-predictive control (MPC) is a classic and popular
approach for leveraging learned dynamics for robotic control and has gained great success in learning
robust closed-loop policies [25, 26, 27]. Nonetheless, many of these prior works require knowledge
about the system state in the planned future which is often infeasible. Visual foresight [20, 28]
integrates an auxiliary register network to calculate pixel distances between the current and goal
images, consequently providing feedback. And some methods [21, 29] utilize an additional detection
model with preset rules to estimate the current state. However, the adaptability of these methods is
constrained to single pick-and-pull tasks and does not cover long-horizon, multi-object manipulation
tasks. HiP [30] investigates the feasibility of decomposed language sub-goals and the consistency of
generated video plans through training with feedback. Like other visual planners [16, 15, 17], it lacks
a quantitative assessment of trajectory achievement during test-time execution. Inner Monologue [18]
leverages vision-language model to provide linguistic feedback for task success detection, but the
substantial size of this model hinders the efficiency during test-test execution. In contrast, CLOVER
constructs a measurable latent space from pixel observations and qualitatively measures deviations
from planned goals for each action, thereby incorporating real-time feedback. Furthermore, the
feedback mechanism is incorporated into long-horizon manipulation tasks.

Diffusion model as a visual planner. Recently, it is trending to utilize diffusion models as visual
planners to generate goal states. UniPi [15] seminally leverages internet data to train a text-conditioned
video generator and uses an inverse dynamics model to estimate ultimate actions. UniSim [17] creates
a universal video diffusion model for simulating interactions and training policies through generative
modeling. Ajay et al. [30] propose compositional foundation models for hierarchical planning,
including task decomposition, visual planning, and action inference. They also utilize an additional
classifier to deal with the uncertainty of generation quality. SuSIE [16] utilizes an image-editing
model as a high-level planner to set achievable sub-goals for a low-level controller, while ADVC [31]
infers actions from predicted video content with dense correspondences. Though prior techniques
can synthesize visually reasonable future sub-goals, one challenge is that the lack of consistency
constraints related to geometry and motion potentially diminishes the fidelity of generated videos for
policy prediction and increases generation instability. In our work, an RGB-D video prediction model
is introduced and constrained by the optical flow to enhance sub-goals’ reliability. Moreover, the
instability of visual plans from diffusion models is rarely discussed in the aforementioned literature.
Contrarily, at the core of CLOVER, we adopt an policy state estimation to detect unreachable plans
by measuring the distance between consecutive frames.

3 Methodology

We aim at building a generalizable framework that integrates the closed-loop philosophy into robotic
visuomotor control. The overall system is illustrated in Figure 1. Accordingly, in order to set the
desired value before execution, we introduce a visual planner that generates consecutive sub-goals
(Section 3.1). In Section 3.2, we detail the structure of our feedback-driven policy to decode actions,
and demonstrate how to measure the deviation from the current to the goal states. Finally, the overall
test-time execution pipeline of CLOVER is leveraged in Section 3.3.

3.1 Visual Planner
The visual planner is to produce a reliable sequence of future plans based on the initial observation
O0 and task descriptions cl. Inspired by previous successful attempts [15, 31, 17], we also employ
the prevailing conditional diffusion model to realize text-conditioned video generation [32]. Derived
from the image diffusion model of Imagen [33, 31], our model is designed to generate future videos
(i.e., predicted sub-goals) spanning predetermined time frames, denoted as {Ô1, Ô2, ..., ÔK}, with
K = 8. However, different from targets of high-resolution and meticulous structures for general
generative models, visual planners for robotic manipulations highlight the need to understand spatial
environments and robot movements. Therefore, designs of effectively integrating depth information
and leveraging optical flow’s regularization are introduced in CLOVER to generate geometry-aware
and temporally coherent futures, which we describe below.

Text-conditioned RGB-D video generation. In the framework of amalgamating video prediction
and goal-conditioned policy modules, generating a visual plan that precisely corresponds to the
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Figure 2: Architecture of our feedback-driven policy. 1) The state encoder takes in both current
observation along with the synthesized sub-goal. A shared multimodal encoder generates fused
RGB-D features, followed by two queries extracting informative features as the current and goal
embeddings respectively. 2) The discrepancy of the two state embeddings is explicitly modeled as
errors. 3) The resultant residual in error measurement is ultimately decoded to the final action.

task description is a prerequisite for accomplishing manipulation tasks. To encode language inputs,
we employ the tokenizer and encoder from CLIP [23] as the basis, following [34]. In addition to
the condition injection techniques outlined in Imagen [33], which integrate language embeddings
into the latent space of the diffusion model directly, our model further incorporates cross-attention-
based conditioning to enhance its language-following ability. Moreover, utilizing classifier-free
guidance [35], the visual planner demonstrates encouraging controllability and generalization, being
able to produce diverse and reasonable plans based on task descriptions (See analysis in Section 4.2).

For the vision inputs, robots operating in the 3D space face great challenges in learning from 2D
observations directly [36]. Therefore, considering the ease of acquisition of depth sensory nowadays
in robotics and its accurate spatial depiction of the environment, we incorporate geometric information
from depth maps to assist in manipulation. To predict RGB-D videos, we adopt a simple yet effective
way. Specifically, the RGB image and depth map are concatenated on the channel dimension and
embedded into a unified latent space throughout all layers of the model. Compared to devising distinct
branches for each modality, this yields satisfactory generation results with high consistency between
modalities in practice. Moreover, the straightforward approach opens the potential for pre-training
the diffusion model on large-scale RGB-only datasets to further enhance its capabilities [37, 38].

Latent regularization with optical flow. Besides the easy acquisition of the depth modality, the
robotic manipulation tasks also feature in their interaction dynamics, i.e., the moving robot arm
and interacted objects in the environment. Though existing works [16, 30] have utilized video
diffusion models for visual plan generation, they fall short in considering the essential gaps between
robot manipulation and general video data adequately, particularly the static camera position and
robot-initiated movements [39]. Drawing inspiration from the importance of motion cues in robot
manipulation, we propose to incorporate optical flow as an explicit regularization term to further
foster the classic video diffusion models for manipulation tasks. Specifically, following the end-to-end
optical flow estimation framework, RAFT [40], we first build the pixel-wise correspondence map
between the diffusion latent of two consecutive frames. This map is then utilized by subsequent
modules to iteratively refine the optical flow estimation through lookup and update operations. Given
the final estimation, our flow-based regularization term is formulated as:

Lreg =
1

K − 1

K−1∑
k=1

∥Ok+1 −W(Ok, F̂k→k+1)∥, (1)

where F̂k→k+1 is the estimated optical flow, W represents the wrapping function and {Ok, Ok+1}
are two consecutive frames in the ground-truth video. More details are provided in Appendix B.

3.2 Feedback-Driven Policy
As depicted in Figure 2, from current and desired visual inputs to the ultimate action output, our
policy can be divided into the following components: 1) State Encoding: Deriving informative
features from visual inputs and producing compact state embeddings that encode current and desired
sub-goal states; 2) Error Measurement: Formulating the deviation from current to goal state; 3)
Action Decoding: Decoding the deviation signal into the action a robot can actuate.

4

139005https://doi.org/10.52202/079017-4411



Zoom-in View

(a) CLIP Feature

High variability, low measurability

(b) State Embedding w/o
Error Measuring

(c) State Embedding (Ours)

High variability, high measurabilityLow variability, low measurability

Figure 3: Comparison on the measurement ability of different embeddings. We visualize the
cosine distance between embeddings of observations and generated sub-goals during a roll-out
process. (a) CLIP feature [23] and (b) state embeddings trained without error measuring do not hold
clear interrelations among frames. While (c) state embeddings obtained from our policy distribute
reasonably in the latent space which benefits measuring the errors in feedback loops.

State encoder. To begin with, we employ a multimodal encoder to transform raw pixel inputs
into enriched visual representations, which comprises two ViT-based [41] encoders for RGB and
depth respectively along with a multimodal feature fusion module. The feature fusion process uses
squeeze-and-excitation module [42] for channel-wise integration and selection. Subsequently, the
token aggregator adaptively selects critical information pertaining to manipulation from the sequence
of visual features, condensing them into a compact state embedding. Expressly, the token aggregator
is built upon a multi-head attention pooling [43] with a two-layer multi-layer perceptron (MLP)
performing nonlinear projection. Given fused RGB-D features {Ecur, Egoal} ∈ Rl×d corresponding
to current and goal inputs, respectively, this process can be specified as:

q̂ = MLP
[
MultiHeadAttn(Q = q,K = V = E)

]
, (2)

where q̂ ∈ {q̂cur, q̂goal} denotes state embeddings and q ∈ {qcur, qgoal} are queries initialized to extract
visual features E ∈ {Ecur, Egoal}. Here d is the hidden dimension size and l represents the visual
token length. We employ shared weights for encoding both states in parallel, with the exception that
two separately initialized queries are utilized to extract each state embedding. State encoder gives
rise to an information bottleneck, prioritizing the encoding of manipulation-relevant features while
filtering out irrelevant background details to ensure informativeness.

Error measurement. In conventional closed-loop control systems, the controller generates control
signals based on the error between the desired value and feedback signals [44]. Analogously, in
our visuomotor control pipeline, we explicitly model the discrepancy between the current and goal
states by performing element-wise subtraction of the two corresponding state embeddings. Despite
its simplicity, this approach has been proven effective in practice. It induces a strong prior that latent
actions formulate the transitions between latent states [8]. More importantly, the transitions can be
quantified and we note that not all embeddings hold the essential characteristics.

Notably, learning representations to distinguish among diverse instructions and visual states has
been a long-standing topic [45], while there exist few works exploring their quantitative metric
for action. In CLOVER, the measurement capability of state embeddings is observed by learning
to act from deviation signals, which is absent in pre-trained visual encoders or policy models
learned based on current observations solely, i.e., behavior cloning. As illustrated in Figure 3(c),
the cosine distance between state embeddings decreases together with the robot approaching each
predicted sub-goal. In the meantime, the distance to the previous sub-goal increases as proceeding
to the next one. Besides, the numerical range of the distance spans approximately from 0 to 0.9,
thereby providing a sufficient margin for distinguishing and identifying current states. On the
contrary, concerning visual representations generated by pre-trained encoders (i.e., CLIP features
in Figure 3(a)), there is a noticeable reduction in the range of value variations (within 6e-2) with
pronounced fluctuations, although the curves show similar patterns in general. This result stands
for all the pre-trained visual encoders we have studied, owing to the fact that manipulation-relevant
features will be overwhelmed by immaterial background information. Furthermore, we also test
employing state embeddings generated by our policy model but optimized without error measuring.
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The resulting embeddings capture the state propagation as evidenced by the significant numerical
variability (Figure 3(b)); however, they lack the capability to measure interrelations among sub-goals
and exhibit poor monotonicity when reaching each sub-goal. Next, we introduce how to elevate the
satisfactory error measuring feature for action decoding and adaptive feedback control autonomously.

Action decoder. To keep the framework concise and generalizable, we simply adopt an MLP to
decode action outputs from error signals. We consider the action space of a 7-DoF robotic arm,
encompassing the position of the end-effector aEE ∈ R6 and the gripper state agriper ∈ R1. Our
policy is learned with an Inverse Dynamics objective πϕ(a0|O0, Ok), where it infers action a0
based on current observation O0 and specified sub-goals Ok. To promote the transferability of our
framework, we exploit third-view RGB-D images as inputs only, with action labels as the training
targets. State information such as proprioception signals or gripper-view images are not applied to
facilitate manipulation. Please refer to Appendix B for further architectural and training details.

Algorithm 1: CLOVER: Test-time Execution
Input: Visual planner pθ; Policy πϕ; State encoding module gϕ(·); Cosine distance DC(·, ·).
Hyper parameters :Time limit T ; Distance threshold for replan and sub-goal transition {DR, DS}.

1 t← 0, isub ← 0 ▷ Initialize the sub-goal selection index
2 while t ≤ T do
3 if Replan or t == 0 then
4 Ô1:K ∼ pθ(O1:K | O0, cl) ▷ Generate language-conditioned sub-goals (Section 3.1)
5 if max

k=1,...,K−1
{DC(gϕ(Ôk), gϕ(Ôk+1))} > DR then

6 Replan← True ▷Replan if sub-goals are unreachable
7 else
8 Replan← False
9 end

10 end
11 if DC(gϕ(O0), gϕ(Ôisub)) < DS then
12 isub ← isub + 1 ▷ Transition if the current sub-goal has been reached
13 end
14 Sample and Execute â ∼ πϕ(a0|O0, Ôisub) ▷ Predict and execute action (Section 3.2)
15 O0 ← Env(â) ▷ Update current observation
16 t← t+ 1
17 end

3.3 CLOVER

Equipped with the error quantification capability aforementioned, we have developed a closed-loop
visuomotor control framework with feedback, illustrated in Algorithm 1. Notably, our framework
distinguishes itself through two key aspects: 1) It can detect and address the instability of diffusion
models by initiating replanning when sub-goals are unreachable; 2) It achieves adaptive transitioning
between sub-goals based on the distance measurement. In contrast to previous literature such as
SuSIE [16] that sets up dataset-dependent hyperparameters to manually regulate sub-goal refreshing
(usually required to be consistent with the frame intervals during training) and thus potentially limit
their performance and scalability, our proposed CLOVER is agnostic to training details and adaptable
to visual planners with varying intra-frame intervals. We provide illustrative examples in Appendix A
to demonstrate the functionality of replanning and adaptive sub-goal transitions.

4 Experiments

4.1 Experimental Setup
Simulation tasks. We conduct the majority of our experiments using CALVIN [54], an evaluation
benchmark designed for long-horizon, language-conditioned manipulation. CALVIN consists of four
simulated environments (designated as A, B, C, and D), which differ in textures and object positions.
Each environment comprises a Franka Emika Panda robot situated beside a desk equipped with
various manipulable objects. We train policy models on demonstrations collected from environments
A, B, and C, and conduct zero-shot evaluations in environment D. The evaluation protocol involves
assessing model performance on a comprehensive set of 1,000 unique instruction chains, each
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Table 1: Long-horizon visuomotor control on CALVIN ABC→D. We report success rates along
with the average length of completed tasks (out of the whole 5 tasks) per evaluation sequence.
CLOVER outperforms all previous methods by a notable margin. Lang and All denote whether
models are trained only with the subset vision-language data. ∗Results reported by [16].

Method Type Train
episodes

Task completed in a row (%) ↑ Avg. Len. ↑1 2 3 4 5

MCIL [46]

Language-conditioned
Behaviour Cloning

All 30.4 1.3 0.2 0.0 0.0 0.31
HULC [47] All 41.8 16.5 5.7 1.9 1.1 0.67
RT-1 [48] Lang 53.3 22.2 9.4 3.8 1.3 0.90
RoboFlamingo [49] Lang 82.4 61.9 46.6 33.1 23.5 2.48
GR-1 [50] Lang 85.4 71.2 59.6 49.7 40.1 3.06

3D Diffuser Actor [51] Diffusion Policy Lang 92.2 78.7 63.9 51.2 41.2 3.27

UniPi∗ [15]
Planner + Executor

All 56.0 16.0 8.0 8.0 4.0 0.92
SuSIE [16] All 87.0 69.0 49.0 38.0 26.0 2.69
CLOVER (Ours) Lang 96.0 83.5 70.8 57.5 45.4 3.53

Table 2: Performances with real-world robot tasks. CLOVER achieves the best success rate and
superior generalization capability across the board.

Method Long-horizon task Single task
Sub-task 1 Sub-task 2 Sub-task 3 Avg. Len. ↑ Pour shrimp Stack bowls

ACT [52] 46.7 13.3 0.0 0.6 33.3 46.7
R3M [53] 53.3 20.0 0.0 0.7 46.7 53.3
RT-1 [48] 66.7 40.0 0.0 1.1 80.0 66.7

CLOVER (Ours) 93.3 86.7 26.7 2.1 80.0 86.7

Sub-task 1: lift up the pot lid  Sub-task 2: put the fish into the pot Sub-task 3: put the lid on the pot

Task A: pour the shrimp into the plate Task B: stack two bowl

Long-horizon task

Single task

Figure 4: Real-world robot setting. We propose a long-horizon task encompassing three consecutive
sub-tasks, where the failure of a prequel task will inevitably lead to failure of subsequent tasks. The
additional single tasks are designed to validate the generalizability of CLOVER of all aspects.

comprising five distinct tasks. The CALVIN benchmark provides an extensive dataset paired with
natural language annotations, thereby facilitating the training of a generalized and reliable visual
planner. Detailed implementation and training protocols are provided in Appendix B.

Real-world experiments. The real-robot experiments are conducted on the AIRBOT Play robotic
arm. We propose a long-horizon task comprising three consecutive sub-tasks and two additional
single tasks (“Pour shrimp into plate” and “Stack two bowls”, shown in Figure 4). The fish and pot
lid in sub-task 2 and sub-task 3, as well as the plate and bowl in two individual tasks, are randomly
placed to reflect position generalizability. All metrics are evaluated with 15 independent runs.

4.2 Main Results

Visuomotor control on CALVIN. Table 1 indicates that CLOVER achieves state-of-the-art perfor-
mance on CALVIN, significantly outperforming previous methods with similar “Planner + Executor”
pipelines. Without using gripper view images and proprio signals, our approach exceeds methods
employing GPT-style transformers with pretraining, such as RoboFlamingo [49] and GR-1 [50]. Note
that all previous methods follow the CALVIN standard evaluation protocol [54], where the simulator
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Table 3: Generalization evaluation. CLOVER excels under visual distractions and dynamic scenes,
while the success rate of baselines dramatically drops.

Setting Method Long-horizon task
Sub-task 1 Sub-task 2 Sub-task 3 Avg. Len. ↑

Visual
Distraction

ACT [52] 13.1 0 0 0.13
R3M [53] 20.0 0 0 0.20
RT-1 [48] 40.0 6.7 0 0.47
CLOVER (Ours) 73.3 66.7 6.7 1.47

Dynamic
Scene

RT-1 [48] 33.0 0 0 0.33
CLOVER (Ours) 80.0 53.3 20.0 1.53

returns the signal that marks the completion of the current task. However, such task completion sig-
nals are not accessible in real-world environments. In fact, by leveraging the advantageous properties
of our state embedding, we can determine the completion of a task autonomously without the signals.
We leave this exploration to Appendix A.

Original setting

Dynamic scene

Visual distraction

Figure 5: Experiment setting of the
generalization evaluation. We place
entirely new objects absent from train-
ing, alongside the interaction object to
introduce visual distraction. We test
policies under dynamic conditions by
randomly placing and picking up a doll
to create unpredictable visual changes.

Figure 6 shows our diffusion model’s proficiency in instruction-
following, with "Slide down the switch" as a representative task
from the validation set and three others randomly proposed from
the CALVIN’s task pool. Our planner exhibits robust generaliz-
ability, producing reliable action trajectories for the subsequent
policy. More visualizations are given in Appendix D.

Manipulation with real-world robots. We present the evalua-
tions of real-world robotic tasks in Table 2. CLOVER surpasses
all baseline models by a considerable margin, especially on the
long-horizon manipulation metric (+1.0 on Avg. Len.). Note
that the lid knob is small and hard to grasp, which poses great
challenges to policies’ low-level precision. ACT [52] strug-
gles to adjust the gripper to the right position before it should
close in the first task, while CLOVER doubles the success rate.
Moreover, all three baselines we test fail on the last task, which
requires the robot to re-cover the pot lid that was previously
placed down in Task 1. In this scenario with high uncertainty,
CLOVER shows a success rate of 26.7%, indicating its stronger
robustness and position generalization capability.

We further study the generalizability of CLOVER under visual distractions and dynamic environments,
as inllustrated in Figure 5. Table 3 lists the results of the experiment. CLVOER remains performant
while manipulating under distractors, with the performance gap over baseline methods getting more
pronounced. We provide qualitative analysis as shown in the Appendix Figure 17. The visual
planner effectively disentangles background distractions with foreground movements and generates
appropriate plans. Additionally, the feedback-driven policy proves robust to dynamic scene variations,
yielding better generalizability over our leading baseline method, RT-1.

4.3 Discussion on Closed-loop v.s. Open-loop

Preliminaries. In this section, we conduct the “open-loop” experiments with the same diffusion and
policy model, but do not incorporate the feedback mechanism in Algorithm 1 to facilitate adaptive
replan and sub-goal transitioning, which is a common practice in previous works [16, 30, 15].

How does closed-loop work compared to open-loop? Figure 7(a) compares the manipulation
performance of open- and closed-loop execution. The proposed CLOVER, which adaptively selects
sub-goals by assessing the distance between current observations and given sub-goals, demonstrates
a significant performance improvement of +0.44 average completed task length on CALVIN. Incor-
porating adaptive replanning further boosts performance by detecting unreliable visual plans and
preventing error propagation. Notably, open-loop roll-out performance hinges on understanding the
training specifics of both the planner and executor. Synchronizing the time interval for sub-goal
transition with the frame intervals used during diffusion model training (∆t = 5 in our experiments)
is needed for optimal performance. Figure 7(a) illustrates the performance deterioration when these
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Slide down the switch Open the drawer

Pick up the red block on the tableClose the slider by pushing it left

Figure 6: Generated videos of diverse tasks conditioned on the same initial frame. CLOVER can
generate precise visual plans corresponding to the tasks, facilitating low-level executor guidance. We
downsample the video by 2 and exclude depth results in visualizations for simplicity.

(a) Closed-loop v.s. Open-loop (c) Robustness to distance threshold(b) Distribution of action steps

3.53

3.01
3.45

Figure 7: Analysis and comparisons on closed-loop and open-loop roll-out on CALVIN. (a)
Comparative analysis of performance (Avg. Len.) through varying step lengths in open-loop control.
Evaluations are conducted using identical models but employing different roll-out strategies. (b) The
distribution of action steps taken in closed-loop roll-out to achieve each sub-goal. (c) Examination of
the robustness of closed-loop control employing various visual encoders and distance thresholds.

settings are not properly aligned. Its distribution pattern aligns with the closed-loop roll-out step
distribution in Figure 7(b), supporting the necessity of adaptive steps for optimal performance.

Table 4: Error measurments with different rep-
resentations. Our method shows exceptional
cross-tasks robustness on CALVIN benchmark.

Method Task completed in a row (%) ↑ Avg.
Len. ↑1 2 3 4 5

CLIP [23] 72.4 46.8 25.0 13.7 5.1 1.63
LIV [55] 70.8 48.2 29.2 18.2 10.2 1.77

CLOVER 96.0 83.5 70.8 57.5 45.4 3.53

How generalizable is our feedback mecha-
nism? We investigate the effect of different
visual encoders across varying distance thresh-
olds (DS in Algorithm 1) used in policy models,
as depicted in Figure 7(c). A larger DS indi-
cates a higher error tolerance. It can be seen
that there is a consistent pattern across different
distance thresholds for all encoders, with peak
performance observed at DS = 0.02. Adopt-
ing VC-1 [56] demonstrates the highest perfor-
mance, while training a ViT-Base [41] encoder from scratch yields exceptional stability, with the
lowest result being 3.19. The results manifest the robustness of our feedback mechanism which is
independent of specific encoders and does not require customized hyperparameters for different policy
models. We compare the robustness of our error measurement scheme against other representations,
specifically the dense reward learning framework LIV [55] and CLIP features [23]. We maintain the
same model for both the visual planner and the low-level policy, with the exception of the measure-
ments used to determine sub-goal transitions and replanning. Our findings (as in Figure 3) indicate
that CLIP features and LIV exhibit a narrower range of values, prompting us to set DS to 2e − 3.
The results presented in Table 4 show that unreliable measurements can lead to performance that is
even worse than in the open-loop setting. Moreover, we do not incorporate additional contrastive
objectives as in LIV, but investigate the inherent properties of the inverse dynamics-based policy.

4.4 Ablation Studies
Ablations on the diffusion model (visual planner). We conduct a comparative analysis of the
high-level plan (video generation) quality. Results presented in Table 5 reveal that our method
outperforms AVDC [31] across all video generation metrics [57], both of which are built upon the
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Table 5: Comparison on video prediction. With optical flow-based regularization and architectural
modifications, CLOVER generates videos of higher quality and more accurately. †: Reproduced.

Method SSIM ↑ PSNR ↑ LPIPS ↓ FID ↓ RMSE (Depth) ↓ Avg. Len. (CALVIN) ↑

AVDC† [31] 0.837 20.76 0.086 12.74 - 1.42
CLOVER (w/o Flow Reg.) 0.848 21.42 0.076 12.38 0.084 3.26
CLOVER (Ours) 0.858 22.19 0.062 12.00 0.063 3.53

(a) Error Measuring (b) Multimodal Fusion (c) Robustnees to sampling steps

Figure 8: Ablations on the policy model: (a) error measuring mechanism and (b) multimodal fusion
module, with discussions on (c) robustness to different sampling steps when generating sub-goals.
We report success rates and the average length of completed tasks (divided by dash lines in each plot).

Imagen framework [33], alleviating the learning and generalization burden on the policy model.
Notably, AVDC struggles to generate visual plans consistent with the task description, resulting in
significant performance degradation on the CALVIN benchmark. Additionally, the optical flow-
based regularization not only brings a generation quality improvement across all aspects, but also
significantly accelerates the training convergence. Please refer to Appendix C for further analysis.

Ablations on the policy model. Besides the ablation of feedback mechanisms in Section 4.3, we
additionally evaluate the performance of CLOVER using various error measurement approaches,
illustrated in Figure 8(a). Policies learned with behavior cloning (BC, Figure 3(b)) and LCBC [58]
serve as baselines that do not employ error measurement, while CLOVER exceeds them by a notable
margin. Figure 8(b) demonstrates that incorporating geometry information from depth data leads to a
not trivial improvement on CALVIN, with convolution-based multimodal fusion modules achieving
the best performance. We also examine the robustness of our policy to generation quality by varying
the sampling steps of the diffusion model. As shown in Figure 8(c), increasing the sampling steps
generally provides generated videos with more details but shows diminishing returns. We set the
sampling step to 20 to strike a balance between performance and efficiency.

5 Conclusion
In this paper, we present a generalized closed-loop visuomotor control framework, termed CLOVER.
It comprises a visual planner that specifies desired sub-goals, a policy that executes actions as planned,
and a feedback-driven control strategy to realize long-horizon robotic tasks. CLOVER excels in both
simulation and real-world applications, showcasing the virtue of our feedback mechanism.

Limitation and future works. We validate CLOVER for simulation and real-world experiments by
training the models heavily on the corresponding data. However, emerging evidence suggests both
the diffusion models and IDM-based policies exhibit out-of-distribution generalizability [59, 60, 61].
Visual planner can be trained with actionless videos, and IDM can be learned data-efficiently with
random actions with corresponding observations. This points to the potential of our framework for
performing few-shot and long-horizon manipulations by pre-training on web-scale datasets.
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Supplementary

A Examples of Test-time Execution with Error Measurement
In this supplemental section, we provide examples of how our proposed deviation quantification helps
the autonomous test-time execution. In particular, as mentioned in Section 3.3, it can be adopted
for replanning when sub-goals are infeasible or unrealistic, and transitioning to the next desired
state when the robot reaches each sub-goal. In the meantime, we introduce the application of task
completion assessment, though not utilized directly for performance comparisons in CALVIN.

Sub-goal replan. We first show how to identify unreachable sub-goals to mitigate the uncertainty of
diffusion-based visual planners. Figure 9 gives examples of common cases showing the instability of
the diffusion model. We measure the cosine distance between the state embeddings of consecutive
frames generated by the model. Specifically, consistent and reasonable plans exhibit a stable intra-
frame distance, typically below 0.2, whereas inconsistencies are characterized by a significant increase,
often exceeding 1. Therefore, we set the distance threshold for replanning as DR = 1.0 under all
circumstances, which proves to work effectively in practice. The distinctive variation verifies the
sensitivity and virtue of the measuring ability of state embeddings. By adaptively detecting erroneous
plans and reinitializing generation, we prevent error propagation to the subsequent policy.

Threshold

Threshold

Case 1: Unreachability Detection

Case 2: Inconsistency Detection

Generated Sub-goals

Generated Sub-goals

Figure 9: Automatic identification of unreliable sub-goals generated. We set the distance threshold
for replanning as DR = 1.0 under all circumstances. Ideally, the distances between generated frames
remain consistent and relatively small, whereas significant variations occur during unstable generation.
Examining the distance within two adjacent frames, we can detect erroneous plans generated by the
diffusion model before passing them to the subsequent policy model for execution.

Sub-goal transition. Distinguished from previous works that adopt fixed action steps mentioned in
Section 4.3, our framework incorporates a predefined distance threshold DS (refer to Algorithm 1)
to facilitate adaptive transitioning between sub-goals upon achievement. In Figure 10, we illustrate
the distance variation between the current observation and selected goals during the roll-out process.
In our experimental setup, CLOVER dynamically adjusts the number of steps for approaching each
sub-goal, ranging from 1 to 7, and transitions to the next sub-goal once the distance falls below the
threshold DS . Notably, the distribution of generated goals in the latent space is uneven, and the policy
does not adhere to a fixed speed in reaching targets. This is evident from the varying starting distances
and changing slopes of the approach process for each sub-goal in Figure 10. These observations
further underscore the necessity of a feedback mechanism to enable the adaptive sub-goal transition
to mitigate error accumulation.
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Figure 10: Adaptive sub-goal transitions. The cosine distance between the current observation and
the selected sub-goals is plotted, with dashed gray lines indicating the transitions between sub-goals.
The distance threshold DS for sub-goal transitioning is set to 0.02. Our policy effectively reaches
each assigned sub-goal and minimizes errors through an adaptive number of action steps.

Involve the switch to turn off the bulb

Place the red block in the drawer

Open the drawer

Figure 11: Task completion score given by our value function. As the robot approaches each sub-
goal and eventually completes the task described in the text, the learned value function monotonically
increments, which could be helpful for task completion assessment.

Task completion assessment. All previous methods follow the standard evaluation protocol of
CALVIN [54], where the simulator updates the observation after each action roll-out and returns a
signal marking the completion status of the current task. The long-horizon manipulation tasks in
CALVIN consist of a sequence of five consecutive sub-tasks. Consequently, the completion status
of the current sub-task serves as a valuable signal for policies to progress to the subsequent one.
However, such signals are not accessible in real-world environments.

To fully exploit the advantageous properties of our state embedding as introduced in Section 3.2,
we also explore using them to facilitate end-of-task assessment. Since we model latent actions for
each step with the deviation of current and sub-goal embeddings, it is natural to exploit the deviation
between the embeddings of the task’s initial and final states to represent the latent action for the entire
task. Inspired by LIV [55], we introduce a contrastive objective for language and state embeddings to
establish a dense (value) reward, where a high reward for the current state represents an approaching
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status of the entire task. Specifically, we use the subtraction of the randomly sampled intermediate
state and initial state embeddings as the negative example, while the subtraction of final and initial
embeddings as the positive example. We then compute the InfoNCE loss [62] with the encoded text
goal to align image and language goals. Intuitively, a current state closing to the ground-truth final
state resembles the overall text descriptions. Notably, the training process is built upon the pretrained
policy and text encoders, with only a lightweight projector trained to align modalities. Figure 11
presents examples of using this reward design to assess a task’s completion status. Such characteristic
demonstrates its potential as a task completion judge.
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Figure 12: The architecture of our visual planner. We augment the original UNet proposed
in Imagen [33] with casual temporal attention to improve intra-frame consistency and additional
cross-attention-based language conditioning. Combining a lightweight ContextNet introduced in
RAFT [40], we estimate optical flows with a correspondence map of diffusion latent embeddings.

B Implementation Details

B.1 Model Architecture
Visual planner. Figure 12 depicts the detailed architecture of our visual planner. Following [15, 31],
we adopt a video diffusion model to generate synthesized sub-goals. Considering diffusion models
are generally computationally expensive, we down-scale the model size to achieve a balance between
the efficiency for robot manipulation tasks and high fidelity for video generation.

The visual planner needs to generate temporally coherent and consistent videos (sub-goals) to guide
the subsequent executor. In line with previous studies on video generation [59, 31, 63], we concatenate
the input condition frame O0 to all the future frames O1:K to ensure coherency. Furthermore, to
foster better temporal consistency and causal reasoning ability, causal temporal attention is adopted to
encourage the full exploitation of historical information for predicting future interactions. Combining
this with the factorized spatial-temporal convolution [64] in AVDC [31], our visual planner can
faithfully reason about temporal causalities with improved training and inference efficiency.

To perform optical flow estimation F̂k→k+1 with diffusion latents we employ an additional context
network to encode context information from the k-th frame following RAFT [40]. In contrast to
utilizing an external flow estimation model directly [31, 65], our approach incurs a minimal parameter
overhead of 0.7M during training, with the optical flow estimation component being discarded during
test-time control.

Feedback-driven policy. We leverage the off-the-shelf pre-trained visual encoders (i.e., VC-1 [56],
CLIP [23], and DINO [66]) to imbue the training process with visual priors. As for depth, we
intuitively adopt a transformer-based encoder (ViT-Small [41]) to align multi-modal information in
the latent space. To ensure compatibility with various pre-trained visual encoders, the input and patch
size of the depth encoder are adapted to be consistent with the visual token length, thereby facilitating
the widespread adoption of our policy. For fusing RGB (FRGB ∈ Rl×dRGB ) and depth features
(FDepth ∈ Rl×dDepth ), we simply concatenate them on channels followed by a 3×3 convolutional layer
to integrate spatial local information and reduce the channel dimension to dRGB. It is then followed
by a Squeeze-and-Excitation module [42] as channel attention to select important fused features.
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(a) SSIM ↑ (b) FID ↓ (c) RMSE (Depth) ↓

Figure 13: Quantitative performance of video diffusion model with and without the flow-based
regularization term. The optical flow-based regularization endows the video diffusion model with
more efficient training convergence and notable performance improvement on CALVIN.

For the subsequent token aggregator, we set the number of attention heads [67] to 12 in the multi-head
attention module, and multiply the channel width by 4 in the MLP to enhance the representation
capacity. The action decoding head is a three-layer MLP with ReLU as the activation function.

B.2 Training Protocol
Visual planner. Our diffusion model-based planner can be factorized as pϕ(O1:K | O0, cl), with cl
presenting the condition given by the language. During the training process, it acts as a denoising
function ϵϕ predicting noises applied on future video frames O1:K [68]. Given the noise scheduling
βt, the training objective of the diffusion model is:

Ldiff =
1

K

K∑
k=1

∥ϵ− ϵϕ(
√
1− βt ·Ok +

√
βt · ϵ | t, cl)∥2, (3)

where the noise ϵ ∈ {ϵRGB, ϵDepth} is drawn from a multivariate standard Gaussian distribution, and t
represents a randomly selected diffusion step. Specifically, we sample noises separately for RGB and
depth from two independent distributions. We further adopt the min-SNR weighting strategy [69]
to speed up convergence. Combining the flow-based regularization term in Section 3.1, the final
optimization objective of the visual planner can be formulated as:

Lplanner = Ldiff + λLreg, (4)

where λ is a balancing factor and is set to 0.1 by default. In our experiments on the CALVIN [54]
benchmark, we train the diffusion model for 300k iterations with a learning rate of 1e-4. Models are
trained on a system equipped with 8 A100 GPUs with the batch size set as 32. We adopt the AdamW
optimizer without weight decay. Besides, we track an exponential moving average (EMA) of the
model parameters with a decay rate of 0.999 and use the EMA parameters at test time. For real-world
experiments, we tune the diffusion model for 50,000 iterations on 50 collected demonstrations. Due
to hardware limitations, we are not able to collect depth data in a real environment, so the model
generates RGB images only.

For test-time execution, the DDIM sampler [70] is employed, with 20 sampling steps to strike a
balance between efficiency and quality. The text guidance weight is set to 4 for generating visual
plans that align with linguistic descriptions.

Feedback-driven policy. To optimize the policy model, we leverage mean squared error and binary
cross-entropy loss to supervise the end-effector’s position aEE ∈ R6 and gripper state agripper ∈ R1,
respectively. In each training episode, two frames with an interval ranging from 1 to kmax = 5 are
sampled as inputs to enhance the model’s robustness. We train the policy on ABC training split
of CALVIN for 10 epochs with a batch size of 128. Only the relative cartesian action of a single
timestamp is used for training. The training process takes around 10 hours on 8 A100 GPUs.

C Extended Ablation Studies
Optical flow based regularization. We investigate the effect of optical flow-based regularization in
model convergence, besides the results reported in Table 5. As depicted in Figure 13, our analysis

18

139019https://doi.org/10.52202/079017-4411



Table 6: Modeling Inverse Dynamics with different visual encoders. CLVOER achieves promising
results on CALVIN with different visual encoders of varying sizes. ∗: Trained from scratch.

Encoders Params. Task completed in a row (%) ↑ Avg. Len. ↑1 2 3 4 5

ViT-S∗ [41] 22M 96.0 80.2 64.4 52.6 41.4 3.35
ViT-B∗ [41] 86M 96.6 83.8 67.6 55.0 43.2 3.46
CLIP [23] 86M 94.0 81.2 68.0 56.2 43.4 3.43
DINOv2 [66] 307M 94.8 80.4 67.0 55.4 43.8 3.41

VC-1 [56] 86M 96.0 83.5 70.8 57.5 45.4 3.53

Figure 14: Visualization on attention maps of the policy model. The policy model demonstrates
the ability to direct attention towards the end-effector and the object it interacts with, without the
need for explicit supervision during the learning process.

illustrates the impact on model performance across different training phases. The regularization
significantly boosts the model’s convergence, evidenced by consistently improved metrics. Notably,
the visual planner trained with 10k iterations outperforms its 100k iterations counterpart in terms of
SSIM and RMSE. Furthermore, the final model, trained over 200k iterations, demonstrates superior
video quality with a 0.38 decrease in FID and 0.02 in RMSE. By leveraging the pixel-space correlation
to regularize the diffusion model’s latent space representations, the regularization term encourages
the model to focus on movement and interaction dynamics, leading to improved convergence and
performance on manipulation videos.

Generalization to different visual encoders. In Table 6, we report detailed statistics regarding
experiments of different visual encoders for our feedback mechanism in Figure 7(c), under the default
distance threshold setting. Notably, training a 22M parameters ViT-Small model [41] from scratch
already yields satisfactory results. VC-1 [56], which is trained on tons of robotics data, provides the
policy with a better visual prior and brings the best performance. In general, we hypothesize that the
performance bottleneck of the framework still lies in the visual planner, while IDM-based policies
are easier to learn and generalize.

D Extended Visualizations

Attention maps of our policy. As discussed in Section 3.3, the state embeddings extracted by the
token aggregator distribute reasonably in the latent space and exhibit decent measurement capabilities.
We plot attention maps that show the tokens chosen by the token aggregator of the policy model in
Figure 14 to provide additional explanation for the observation. As visualized, our model focuses
on information essential for action execution, specifically the end-effector and the object it interacts
with. One thing worth noting is that it is not explicitly supervised with any form of affordance.

Qualitative analysis. We also provide qualitative examples of the generated videos paired with
corresponding tasks in both CALVIN and real-world environments, in Figure 15 and Figure 16,
respectively. Our proposed visual planner can reason feasible sub-goals with high temporal coherence.
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push right the blue block

Open the drawer

Pick up the pink block from the sliding cabinet

Turn off the yellow light

Figure 15: Visualization on generated RGB-D visual plans. Our model can generate reliable
sub-goals with high consistency between RGB and depth.

Lift up the pod lid

Put fish into the pod

Put the lid on the pod

Figure 16: Visualization on visual plans in real-world environments.
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(b.1) Visual distraction

(b.2) Object variation

Object variation

Visual distraction

Original setting

(a) Experiments setting

Figure 17: The predicted visual plan and actual robot execution in real-world experiments. Our diffusion-
based visual planner (up row in each case) can still generate reasonable plans in new scenarios to facilitate
successful manipulation (bottom row in each case).

E Broader Impact
CLOVER contributes to the field of robotics by addressing the limitations of open-loop systems
and providing a simple yet robust baseline for closed-loop control. This advancement can inspire
further research into adaptive control strategies, error modeling, and real-time feedback mechanisms,
pushing the boundaries of robot learning and embodied intelligence. All our models are trained on
publicly available data that is free of private and sensitive information.

F License of Assets
CALVIN [54] is an open-source simulator which is under the MIT License. The reimplemented
methods for performance comparison including ACT [52], R3M [53], and AVDC [31] are all under
the MIT License. The pretrained visual encoders adopted, i.e., VC-1 [56], CLIP [23], and DINO [66]),
are under the CC BY-NC-SA 3.0 US license, MIT license, and Apache License 2.0, respectively.

Our source code and trained models will be publicly available under Apache License 2.0.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state the claims to reflect the contributions
and scope of the paper.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: See Section 5.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: This paper does not include theory assumptions or proofs.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide detailed implementation parameters and architectures in Sec-
tion 4.1, Appendix B.1, and Appendix B.2. We will also open-source the code and models
for reproducibility.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We will release the code and models.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: See Section 4.1 and Appendix B.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The success rates of our algorithm in simulated environments and real-world
robotic experiments are obtained after multiple trials as specified in Section 4.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide experimental training details in Appendix B.2.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The authors have thoroughly reviewed and conformed the NeurIPS Code of
Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: See discussions in Appendix E.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have cited the corresponding papers throughout our paper and specified
their licenses in Appendix F.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We will release code and models under Apache License 2.0 (Appendix F).

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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