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Abstract

We study the price of anarchy of first-price auctions in the autobidding world,
where bidders can be either utility maximizers (i.e., traditional bidders) or value
maximizers (i.e., autobidders). We show that with autobidders only, the price of
anarchy of first-price auctions is 1/2, and with both kinds of bidders, the price of
anarchy degrades to about 0.457 (the precise number is given by an optimization).
These results complement the recent result by Jin and Lu [2022] showing that the
price of anarchy of first-price auctions with traditional bidders is 1 − 1/e2. We
further investigate a setting where the seller can utilize machine-learned advice to
improve the efficiency of the auctions. There, we show that as the accuracy of the
advice increases, the price of anarchy improves smoothly from about 0.457 to 1.

1 Introduction

Autobidding, the procedure of delegating the bidding tasks to automated agents to procure advertise-
ment opportunities in online ad auctions, is becoming the prevalent bidding methods and contributing
to more than 80% of total online advertising traffic [Dolan, 2020]. Autobidding significantly simpli-
fies the interaction between the advertisers and the ad platform: instead of submitting bids for each
auction separately, the advertisers only need to specify their high-level objectives and constraints
and the automated agents bid on behalf of the advertisers. A popular autobidding strategy is value
maximization subject to a target return-on-investment (ROI) constraint, in which the autobidding
agents aim to maximize their value, such as the number of clicks/conversions, subject to a minimum
admissible ratio on the return-on-investment constraint. This type of bidders has been referred as
value maximizers by the recent line of research on autobidding [Deng et al., 2021, Balseiro et al.,
2021a].

As the behavior model of automated bidders is very different from the classic (quasi-linear) utility
maximizers maximizing the difference between value and payment, there has been a growing body of
literature revisiting the effectiveness of the existing mechanisms through the lens of the autobidding
world [Aggarwal et al., 2019, Deng et al., 2021, Balseiro et al., 2021a, Liaw et al., 2022, Babaioff
et al., 2021]. In particular, it is well-known that running the second-price auction against utility
maximizers results in socially optimal outcomes; however, Aggarwal et al. [2019] show that the
price of anarchy (PoA) [Koutsoupias and Papadimitriou, 1999], the ratio between the worst welfare
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in equilibrium and the socially optimal welfare, of running the second-price auction against value
maximizers is 1/2 (when the bidders do not adopt dominated strategies1).

In addition to the change in bidding methods, there has been an industry-wide change in auction
formats in recent years: shifting from the second-price auction to the first-price auction, especially
in the display ad markets, culminating in the move to the first-price auction from the Google Ad
Exchange in September 2019 [Paes Leme et al., 2020]. The shift towards the first-price auction in
combination with the increasing adoption of autobidding raises the question of understanding the
PoA of running the first-price auction in the autobidding world.

1.1 Our Results

In this paper, we characterize the PoA of running the first-price auction in the fully autobidding world,
where all bidders are value maximizers, and in the mixed autobidding world, where bidders could be
either value maximizers or utility maximizers. Our results complement the very recent result from Jin
and Lu [2022] showing that the PoA of running the first-price auction is 1− 1/e2 in a world without
autobidding, i.e., all bidders are utility maximizers. The results are summarized in Table 1 and we
also include the known results for second-price auctions for comparison.

Mechanism First-price auction Second-price auction
Full autobidding 1/2 1/2 [Aggarwal et al., 2019]

Mixed autobidding mint∈[0,1]
1+t ln t

2−t+t ln t ≈ 0.457 1/2 [Balseiro et al., 2021b]
No autobidding 1− 1/e2 ≈ 0.865 [Jin and Lu, 2022] 1 [Vickrey, 1961]

Table 1: Summary of PoAs in second-price and first-price auctions under full autobidding, mixed
autobidding, and no autobidding environments. We note that for the second-price auction, bidders are
assumed to not adopt dominated strategies; otherwise the PoA can be 0.

Our results demonstrate that in a full autobidding world, the PoA of running the second-price auction
and the first-price auction is the same, i.e, 1/2; however, in the mixed autobidding world with both
utility maximizers and value maximizers, the PoA of running the first-price auction is strictly less
than the PoA of running the second-price auction. It is worth highlighting that our PoA bound for
the first-price auction in the mixed autobidding world involves solving an optimization problem
mint∈[0,1]

1+t ln t
2−t+t ln t and it turns out that this is the right bound as we are able to construct an instance

matching this bound.

In addition to the above results, we further adopt the environment introduced by Balseiro et al.
[2021b], where the seller can leverage machine-learned advice that approximates the buyers’ values
for designing mechanisms. Balseiro et al. [2021b] show that as the advice gets more and more
accurate in predicting the buyers’ values, setting reserves based on the advice in the second-price
auction makes the PoA approaching 1. In our setting of using machine-learned advice in the first-price
auction, we prove that setting reserves based on machine-learned advice is also effective in improving
PoA in both full and mixed autobidding world, and the PoA approaches 1 as the quality of the
machine-learned advice increases.

1.2 Related Works

For first-price auction with utility maximizers, the price of anarchy has been extensively stud-
ied [Roughgarden et al., 2017]. In the complete-information setting with additive values, there is no
efficiency loss, i.e., the price of anarchy is 1 [Feldman et al., 2016]. For Bayesian settings, Feldman
et al. [2013] first showed that the price of anarchy is at least 1/2 for subadditive valuations and
Syrgkanis and Tardos [2013] showed that the price of anarchy is at least 1 − 1/e for submodular
valuations. These bound are shown to be tight for buyers with submodular valuations and subadditive
valuations [Christodoulou et al., 2016]. When agents’ values are independently distributed, the price
of anarchy was later improved to ≈ 0.743 by Hoy et al. [2018] and Hartline et al. [2014] gave a
concrete instance to establish an upper bound of ≈ 0.869. More recently, Jin and Lu [2022] show that

1When discussing the second-price auction, we assume the bidders do not adopt dominated strategies. In the
case when the bidders could adopt dominated strategies, the PoA of running the second-price auction can be 0.
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the price of anarchy for independently distributed values is exactly 1− 1/e2. Paes Leme et al. [2020]
provide models and analyses to explain why Display Ads market shifts to use first-price auctions.

Motivated by the emergence of autobidding in online advertising, there is a recent line of work
studying auction design for value maximizers in an autobidding world. Aggarwal et al. [2019] design
optimal bidding strategies in truthful auctions, show the existence of equilibrium, and prove welfare
price of anarchy results. Deng et al. [2021] and Balseiro et al. [2021b] show how boosts and reserves
can be used to improve the welfare efficiency guarantees given machine-learned advice approximating
buyers’ values. Balseiro et al. [2021a, 2022] give the characterization of the revenue-optimal auctions
under various information structure. Mehta [2022] and Liaw et al. [2022] study how randomized and
non-truthful mechanisms can help improve welfare efficiency for the case of two bidders. In particular,
Liaw et al. [2022] show that the PoA of running the first-price auction is 1/2 when restricting to
equilibria of deterministic bids. In this work, we consider general equilibria with randomized bidding
strategies. Deng et al. [2024] study the efficiency, as measured by the price of anarchy, of the
generalized second-price auction in the autobidding world, and give a parametrized bound. Liaw
et al. [2024] consider a setting with value maximizers only, which is similar to our “full autobidding”
setting. The main difference is that they focus on the effects of budget constraints on top of ROI /
ROS constraints. The high-level message there is that using the fractional optimum as the benchmark,
first-price auctions become much less efficient with budget constraints, but this efficiency loss can
be circumvented if we consider the (weaker) integral optimum as the benchmark. Gaitonde et al.
[2023] take a somewhat different perspective, and give a bidding dynamics that does not necessarily
converge, but on average achieves good welfare. Conitzer et al. [2022] study “pacing” in first-price
auctions, where constrained bidders optimize their bids in multiple auctions by choosing a single
multiplier, and bidding the product of this multiplier and their value in each auction. In contrast,
we do not restrict the strategy space of bidders in this paper. Feng et al. [2024] study a meta-game
in the context of autobidding, where human bidders strategically specify their constraints (e.g., the
target ROI). They show that such strategic selection does not hurt the welfare too much in first-price
auctions. For a more comprehensive overview, see, e.g. [Aggarwal et al., 2024].

2 Preliminaries

Ad auctions. Following prior work on autobidding, we consider a setting with n bidders [n] and
m auctions [m], where each bidder participates in all auctions simultaneously. We generally use i
to index bidders, and j to index auctions. Each bidder i has a value vi,j ≥ 0 for winning in each
auction j. We consider first-price auctions — arguably the most common and well-known auction
format — as the auction mechanism throughout the paper. That is, each bidder i submits a bid
bi,j in each auction j. In each auction j, the bidder with the highest bid wins and is charged the
winning bid as the payment. For the existence of equilibrium in the first-price auction, we assume
ties are broken in favor of the bidder with the higher value within an auction, which is a standard
assumption in the literature [Maskin and Riley, 2000].2 If multiple bidders have the same value,
then ties are broken in favor of the bidder with the smallest index.3 We let xi,j = xi,j({bi′,j}i′) be
the indicator variable indicating that i wins in auction j. Then, the value each bidder i receives in
auction j is vali,j = vali,j({bi′,j}i′) = xi,j({bi′,j}i′) · vi,j , and the payment i makes in auction j is
pi,j = pi,j({bi′,j}i′) = xi,j({bi′,j}i′) ·bi,j . We remark that bidders may employ randomized bidding
strategies, in which case {bi,j}, {xi,j}, {vali,j} and {pi,j} are all random variables. Throughout
the paper, we omit the dependence of xi,j , vali,j and pi,j on {bi′,j}i′ whenever it is clear from the
context. For brevity, we write vi = {vi,j}j , bi = {bi,j}j , etc.

Utility maximizers and value maximizers. We consider two types of bidders: traditional (quasi-
linear) utility maximizers and (ROI-constrained) value maximizers. In the rest of the paper, we use
Bu to denote the set of utility maximizers and Bv the set of value maximizers, where we always
have Bu ∩ Bv = ∅ and Bu ∪ Bv = [n]. For each bidder i, let vali =

∑
j vali,j be the total value

2Maskin and Riley [2000] assume ties are broken with a second-round second-price auction among the
highest bidders to guarantee the existence of equilibrium in the presence of discrete values. This tie-breaking
rule is equivalent to favoring the bidder with the higher value for standard utility maximizers, while the two
tie-breaking rules can be different for value maximizers. We choose the one without the additional definition of
second-round second-price auction for simplicity.

3Our positive results are oblivious to tiebreaking, i.e., they remain valid no matter what tiebreaking rule is
used.
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i receives from all auctions, and pi =
∑

j pi,j be the total payment i makes. Fixing other bidders’
bidding strategies, a utility maximizer i bids in a way such that the total quasi-linear utility, i.e.,
vali − pi, is maximized, without additional constraints. On the other hand, a value maximizer i bids
in a way such that the total value vali that i receives is maximized, subject to the ROI constraint
that the ratio between the total value vali and the total payment pi is at least some predetermined
threshold. Without loss of generality we assume this threshold is 14, i.e., we require the total payment
pi is at most the total value vali for each value maximizer i. Formally, fixing other bidders’ bids, a
value maximizer i solves the following optimization problem to determine their bids {bi,j}j :

maximize E [vali]

subject to E [vali − pi] ≥ 0.

Here, the expectations are taken over the randomness introduced by bidders bidding randomly. We
note that when deciding how to bid, i can observe the distributions, but not the realizations, of the
other bidders’ bids.

Equilibria and the price of anarchy. The focus of this paper is on the efficiency of the first-price
auction in equilibrium. That is, when each bidder i’s bidding strategy bi is optimal for that bidder’s
objective, given all other bidders’ bidding strategies {bi′}i′ ̸=i (or b−i for brevity). In other words,
each bidder’s strategy is a best response to other bidders’ strategies. Note that since each bidder i
cannot observe the realizations of other bidders’ bids, all bidders’ bids {bi}i must be independent. The
way we measure efficiency is through the classical notion of the price of anarchy (PoA) [Koutsoupias
and Papadimitriou, 1999], i.e., the ratio between the welfare resulting from the worst equilibrium
possible, and the optimal welfare. Formally, given a problem instance of (n, m, Bu, Bv , {vi,j}), we
are interested in the instance-wise PoA defined as follows:

PoA(n,m,Bu, Bv, {vi,j}) = inf
{bi}i form an equilibrium

∑
i E[vali]∑

j maxi vi,j
.

Our goal is to pin down the PoA of the first-price auction, which is the infimum of the instance-wise
PoA taken over all instances of the problem. We assume

∑
j maxi vi,j > 0 in order for the PoA to

be well-defined.

Equilibrium bidding behavior of value maximizers. In this paper, we do not put further re-
strictions on bidders’ equilibrium bidding behavior, such as no-overbidding. This is in contrast to
some prior work: In prior work, since overbidding is a dominated strategy for utility maximizers,
the no-overbidding assumption is often imposed for analyzing the PoA of utility maximizers in
second-price auctions and first-price auctions (otherwise, the PoA could be 0). However, in the model
we consider, assuming no overbidding for value maximizers with ROI constraints may rule out their
optimal strategies. More importantly, with the no overbidding assumption, the optimal strategy for
value-maximizers would be to bid their values in first-price auctions since such a strategy maximizes
their bids without violating the ROI constraints, leading to the trivial welfare-optimal outcome in a
world with value-maximizers only. In other words, the welfare inefficiency in the autobidding world
is mainly caused by the overbidding behavior from value maximizers, and such inefficiency can only
be analyzed without assumptions such as no-overbidding (although such assumptions might make
sense in other contexts).

3 PoA of the First-price Auction in a Full Autobidding World

In the literature [Aggarwal et al., 2019, Deng et al., 2021, Balseiro et al., 2021b], the analyses of PoA
for the second-price auction in a full autobididng world mainly leverage the fact that the second-price
auction is truthful for utility maximizers, a nice property implying that value maximizers adopt
uniform bidding strategy in equilibrium [Aggarwal et al., 2019]. Here, a uniform bidding strategy for
a value maximizer i is a strategy in which she bids ki · vi,j with a constant bid multiplier ki in each
auction j. However, as the first-price auction is not truthful for utility maximizers, a uniform bidding
strategy is generally no longer a best response for a value maximizer. A value maximizer i may adopt

4See Appendix A for why this is without loss of generality, as well as further justifications for considering
the liquid welfare in the autobidding world.
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a non-uniform bidding strategy using different bid multiplier ki,j in different auction j, and the bid
multipliers can even be randomized.

Liaw et al. [2022] show that the PoA of running the first-price auction in a full autobidding world
is 1/2 when restricting to equilibria of bidding in a deterministic way (i.e., restricted to pure Nash
equilibria). In this section, we devise a novel argument to analyze equilibria with possibly randomized
non-uniform bidding strategies to show that the PoA of the first-price auction in a full autobidding
world is exactly 1/2.
Theorem 1. When all bidders are value maximizers, the PoA of the first-price auction in a full
autobidding world is 1/2. Formally,

inf
n,m,{vi,j}

PoA(n,m,Bu = ∅, Bv = [n], {vi,j}) = 1/2.

All missing proofs are deferred to Appendix B. We remark that the proof of Theorem 1 in fact
establishes the following claim, which will be a building block in our analysis of PoA of the first-price
auction in a mixed autobidding world with both value maximizers and utility maximizers.
Lemma 1. For any n, m, Bu, Bv , and {vi,j}, if {bi}i form an equilibrium, then∑

i∈Bv

E[vali] +
∑

i,j:rw(j)∈Bv

E[pi,j ] ≥
∑

j:rw(j)∈Bv

max
i

vi,j ,

where rw(j) = argmaxi vi,j denotes the “rightful winner” of each auction j, with ties broken in
favor of the bidder with the smallest index.

4 PoA of the First-price Auction in a Mixed Autobidding World

In this section, we proceed to the main result of the paper: characterizing the exact PoA of running the
first-price auction in a mixed autobidding world with both utility maximizers and value maximizers
participating in the auctions. The entire section is devoted to the proof of the following claim.
Theorem 2. The PoA of the first-price auction in a mixed autobidding world is given by:

inf
n,m,Bu,Bv,{vi,j}

PoA(n,m,Bu, Bv, {vi,j}) = min
t∈[0,1]

1 + t ln t

2− t+ t ln t
≈ 0.457.

Roadmap. In the rest of the section, we first establish a PoA lower bound. At first sight, one
might be tempted to adapt the proof of Theorem 1, hoping to get the same lower bound of 1/2 in the
presence of utility maximizers. In doing so, one faces the following intuitive difficulty: for a utility
maximizer i, the value i receives when best responding is not necessarily lower bounded by the value
i receives when using the proxy bidding strategy b′i,j = vi,j . This is because aiming to maximize
utility, i may bid in a way such that both the value i receives and the payment i makes are smaller,
but their difference (which is the utility i gets) is larger. One simple fix is to consider instead the
following proxy strategy: b′′i,j = vi,j/2. Adapting the proof of Theorem 1, it is not hard to show this
alternative proxy strategy gives a PoA lower bound of 1/4. However, it is unlikely that such a fix
would yield the tight ratio of about 0.457.

In order to overcome this obstacle, we present a novel local analysis (Lemma 3) for the first-price
auction that handles auctions where the rightful winner is a utility maximizer, which roughly says
that if the expected value that the rightful winner receives from such an auction is small, then the
expected payment that other bidders make in the same auction must be large. This argument relies on
a characterization of the structure of the best response of a utility maximizer. Given the local analysis,
one can already get a lower bound of about 0.317 on the PoA by exploiting the tradeoff between
value and payment.

To obtain the right ratio, we further combine the local analysis for utility maximizers with the bound
for value maximizers (Lemma 1) discussed earlier. The idea is to consider 4 quantities separately:
(A) the total value that all value maximizers receive, (B) the total value that all utility maximizers
receive from auctions where they are the rightful winner, (C) the total payment made in auctions
where the rightful winner is a value maximizer, and (D) the total payment made in auctions where
the rightful winner is a utility maximizer, by bidders who are not the rightful winner.
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One can show that the welfare in equilibrium is lower bounded by a very specific combination of
these 4 quantities (Lemma 4). Moreover, Lemma 1 provides a tradeoff between (A) and (C), and
the local analysis (Lemma 3) provides a tradeoff between (B) and (D). Therefore, one can lower
bound the PoA by solving an optimization problem involving a few number of parameters to get the
worst-case tradeoffs. We show that this optimization gives the right ratio of about 0.457 (Lemma 5).
Finally, we present a problem instance where there exists an equilibrium where the gap between the
actual welfare and the optimal welfare is precisely the right ratio (Lemma 6). This, together with the
matching lower bound, concludes the proof of Theorem 2.

4.1 A Local Analysis

In this subsection, we propose a local analysis of the first-price auction to analyze the tradeoff between
welfare and payment in equillibrium when the rightful winner of the auction is a utility maximizer.
Although the analysis is mainly designed for utility maximizers towards establishing the lower bound
of PoA, it also works when the rightful winner of the auction is a value maximizer. For the remainder
of this subsection, we fix n, m, {vi,j}, and an equilibrium profile {bi}i, and consider any fixed bidder
i and auction j where i is the rightful winner. For brevity, we also let v = vi,j .

Value-payment frontiers. We first try to understand the maximum expected value i can get in
auction j when paying a particular amount in expectation. Let F be the CDF of the highest other bid,
i.e., for any x ≥ 0,

F (x) = Pr
b−i

[
max
i′ ̸=i

bi′,j ≤ x

]
.

Note that in the first-price auction j, if bidder i bids t, the bidder i pays t · F (t) and earns value
v · F (t). For any x ≥ 0, consider a function G : R+ → [0, v] such that

G(x) = sup
t≥0: t·F (t)≤x

v · F (t).

In other words, G maps a desired expected payment x to the maximum (or strictly speaking, supre-
mum) value i can get by bidding deterministically, when paying at most the desired payment x in
expectation. By bidding randomly, i can further achieve any value-payment pair that is a convex
combination of points on G. In light of this, we further consider the concave envelope H of G,
which captures the value-payment frontier when i can bid randomly. Note that for utility maximizers,
although there always exists a deterministic best response (since all bids with a positive probability in
a randomized bidding strategy must result in the same quasi-linear utility), the equilibrium bidding
strategies may still be randomized for the sake of stability.

Characterizing the best response. Given the definition of the value-payment frontier H , one can
further observe that when best responding, i’s expected utility E[vali,j − pi,j ] depends only on H . In
fact, intuitively, since H is concave, i’s expected value and payment in auction j must correspond to
the “rightmost” point on H where the derivative is larger than or equal to 1 (this is informal since (1)
the point may not be unique and (2) the derivative may be undefined). Formally, when i is a utility
maximizer, i’s best response in j, bi,j , has the following property.
Lemma 2. For any b ≥ 0 in the support of bi,j , we have for any w ≥ b ·F (b), H(w)−H(b ·F (b)) ≤
w − b · F (b).

We remark that the same property also holds when i is a value maximizer, with minor modifications
in the proof.

A tradeoff between value and payment in equilibrium. We are ready to present a tradeoff
between the value i receives and the payment other bidders make in auction j. The intuition is that
given Lemma 2, the curve H must be relatively flat to the right of (pi,j , H(pi,j)) (i.e., with slope at
most 1), which means the CDF function F of the highest other bid must also be with a relatively
small slope. On the other hand, the payment made by other bidders can be written as

bi,j · (1− F (bi,j)) +

∫ ∞

bi,j

(1− F (t)) dt.

This means if F (bi,j), the probability that i wins when bidding bi,j , is small, then since F is with a
small slope to the right of bi,j , the payment must be relatively large. The following claim formally
captures this tradeoff.

6
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Lemma 3. There exists some x ∈ [0, 1] such that

E[vali,j ] = x · v and
∑
i′ ̸=i

E[pi′,j ] ≥ (1− x+ x lnx) · v.

We remark that Lemma 3 alone already implies a lower bound of about 0.317 on the PoA: summing
the bound in Lemma 3 over i and j where rw(j) = i and exploiting the convexity of the mapping
z 7→ 1− z + z ln z, one can show there is some x ∈ [0, 1] such that∑

i

E[vali] ≥ x ·
∑
j

max
i

vi,j and
∑
i

E[pi] ≥ (1− x+ x lnx) ·
∑
j

max
i

vi,j .

Since
∑

i E[vali] ≥
∑

i E[pi], the worst case scenario is when x = 1 − x + x lnx, which gives
x ≈ 0.317, a lower bound on the PoA.

4.2 Putting Everything Together

In this subsection, we combine Lemma 1 and Lemma 3 to obtain an improved (and in fact, tight)
lower bound on the PoA of the first-price auction in the mixed autobidding world. Fixing n, m,
Bu, Bv and {vi,j}, we consider four key quantities in the proof. (A): the total value that all value
maximizers receive; (B): the total value that all utility maximizers receive from auctions where
they are the rightful winner; (C): the total payment made in auctions where the rightful winner is a
value maximizer; and (D): the total payment made in auctions where the rightful winner is a utility
maximizer, by bidders who are not the rightful winner. Formally,

A =
∑
i∈Bv

E[vali], B =
∑

i∈Bu,j:rw(j)=i

E[vali,j ]

C =
∑

i,j:rw(j)∈Bv

E[pi,j ], D =
∑

i,j:rw(j)∈Bu and rw(j)̸=i

E[pi,j ].

We first show that the welfare can be bounded by a combination of the above quantities.
Lemma 4. For any bidding strategies {bi}i that form an equilibrium, we always have∑

i

E[vali] ≥ max{A,C +D}+B.

We are now ready to prove our main PoA lower bound.
Lemma 5. In a mixed autobidding world with both utility maximizers and value maximizers, the PoA
of the first-price auction has the following lower bound:

inf
n,m,Bu,Bv,{vi,j}

PoA(n,m,Bu, Bv, {vi,j}) ≥ min
t∈[0,1]

1 + t ln t

2− t+ t ln t
≈ 0.457.

Remark 1. Our analysis involves bounds (e.g., Lemma 3) of similar forms to those normally seen
in the smoothness framework [Syrgkanis and Tardos, 2013] and its instantiations (e.g., [Hartline
et al., 2014]), and it is conceivable that one might be able to fit part of our analysis in the smoothness
framework. However, it is unlikely that doing so would substantially simplify or change the nature of
the analysis. In particular, in order to instantiate the smoothness framework in the proper way that
produces the tight bounds, presumably one would need to carry out essentially the same argument as
in our analysis.

4.3 A Matching Upper Bound

To conclude this section, we present a problem instance in which our PoA lower bound can be actually
achieved, even with n = 2 bidders and m = 2 auctions.
Lemma 6. When n = m = 2, there exists Bu, Bv and {vi,j} such that

PoA(n,m,Bu, Bv, {vi,j}) ≤ min
t∈[0,1]

1 + t ln t

2− t+ t ln t
≈ 0.457.

Theorem 2 is a direct corollary of Lemma 5 and Lemma 6.
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5 Improved Efficiency with ML Advice

In this section, we turn to a more practically-motivated setting, where the seller can rely on machine-
learned advice to set reserves and thereby further improve the efficiency of the first-price auction. In
particular, we show that as the advice gets more and more accurate, there is a way to set reserves
such that the PoA of the first-price auction approaches 1.

Setup. Following prior work Balseiro et al. [2021b], we consider the setting in which for each
auction j, the seller can access a signal sj , which approximates the highest value maxi vi,j in this
auction. Formally, we assume there is a constant γ ∈ [0, 1] such that sj ∈ [γ ·maxi vi,j ,maxi vi,j ]
for each auction j.5 As Balseiro et al. [2021b] argue, the model is a reasonable simplification of
the actual problem, which enables clean theoretical results while still making practical sense. In
particular, the assumption that the signal never overestimates the value can be relaxed: if there is
a (high-probability) bound on how much the signal might overestimate the maximum value, then
one can scale everything down accordingly and retain the PoA bound in Theorem 3 (with high
probability).

First-price auction with machine-learned reserves. The way we exploit machine-learned signals
is to use them as reserve prices in the first-price auction. To be more specific, in each auction j,
we set a reserve rj = sj , such that a bidder i can win only if i’s bid bi,j ≥ rj . In particular, if
maxi bi,j < rj , then no one wins in auction j. This is different from the first-price auction without
reserves, where there is always exactly 1 winner.

We overload the notations and let xi,j = xi,j(rj , {bi′,j}i′) be the indicator variable that i wins in
auction j, and define {vali,j} and {pi,j} in a similar way such that all these variables depend on both
the reserves {rj} and the bidding profile {bi′,j}i′ . For any n, m, Bu, Bv, and {vi,j}, we consider
the following parametrized instance-wise PoA when each rj = sj ∈ [γ ·maxi vi,j ,maxi vi,j ]:

PoAγ(n,m,Bu, Bv, {vi,j}) = inf
{bi,j} form an equilibrium

∀j,rj∈[γ·maxi vi,j ,maxi vi,j ]

∑
i E[vali]∑

j maxi vi,j
.

Our main result in the section is captured by the following theorem.
Theorem 3. For any n, m, Bu, Bv , {vi,j} and γ ∈ [0, 1],

PoAγ(n,m,Bu, Bv, {vi,j}) ≥ min
t∈[0,1]

1 + t ln t− γt(1 + ln t)

2− t− γ + (1− γ)t ln t
.

One way to interpret the lower bound is it provides a smooth transition between the case without
machine-learned advice (or with totally unreliable advice, i.e., γ = 0), and the case where the advice
is perfectly accurate (i.e., γ = 1) and the seller knows precisely the value of the rightful winner in
each auction. In the former scenario corresponding to γ = 0, we recover the tight PoA bound stated
in Theorem 2. In the latter scenario corresponding to γ = 1, as one would expect, the theorem gives
a lower bound of 1, which means the auctions are perfectly efficient. More generally, for γ between
0 and 1, the lower bound in Theorem 3 increases monotonically as γ increases, since the fraction
within the min increases in γ for any fixed t ∈ [0, 1]:

1 + t ln t− γt(1 + ln t)

2− t− γ + (1− γ)t ln t
=

(1− t)2

(2− t+ t ln t)(1 + t ln t)− (1 + t ln t)2γ
+

t+ t ln t

1 + t ln t
,

where 1 + t ln t ∈ (0, 1] and 2− t+ t ln t ≥ 1 ≥ γ ≥ γ · (1 + t ln t).

In order words, the efficiency of the first-price auction with machine-learned reserves improves as
the reserves become more and more accurate. To better illustrate the rate at which the efficiency
improves, we plot our lower bound against the accuracy γ in Figure 1. As the plot shows, our lower
bound improves approximately linearly as the accuracy γ increases from 0 to 1.

5As we focus on the single-slot environment in this paper, for ease of presentation, our assumption here
is weaker than Balseiro et al. [2021b] as they assume for each bidder i and each auction j, there is a signal
si,j ∈ [γ · vi,j , vi,j ], and setting sj := maxi si,j gives the signals which can be used in our setting. Our result
can be extended to the multi-slot environment by adopting the assumption from Balseiro et al. [2021b].
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Figure 1: The efficiency of the first-price auction with machine-learned reserves when the accuracy
of the reserves is γ ∈ [0, 1].

To prove Theorem 3, the plan is to apply Lemma 4, which provides a lower bound on the welfare
in any equilibrium, and consider tradeoffs between the 4 quantities involved in the lower bound.
The key difference is that we obtain better tradeoffs with machine-learned reserves. In the rest of
the section, we fix n, m, Bu, Bv, and {vi,j}. With machine-learned reserves, the tradeoff given by
Lemma 1 improves to the following (note the factor of (1− γ) on the left hand side).
Lemma 7. In auctions with machine-learned reserves of accuracy γ ∈ [0, 1], for any {bi}i that form
an equilibrium,

(1− γ) ·
∑
i∈Bv

E[vali] +
∑

i,j:rw(j)∈Bv

E[pi,j ] ≥
∑

j:rw(j)∈Bv

max
i

vi,j .

We note that the above lemma also implies a lower bound of 1/(2− γ) on the PoA of the first-price
auction with machine-learned reserves in the full autobidding world in which all bidders are value
maximizers. When γ → 0 (i.e., reserves are extremely unreliable), the bound degrades to 1/2; when
γ → 1 (i.e., reserves are extremely accurate), the bound approaches 1, which means the auctions are
efficient.
Corollary 1. For any n, m, {vi,j} and γ ∈ [0, 1], PoAγ(n,m,Bu = ∅, Bv = [n], {vi,j}) ≥
1/(2− γ).

For utility maximizers, we adapt the local analysis, and obtain the following improved tradeoff
between value and payment.
Lemma 8. In auctions with machine-learned reserves of accuracy γ ∈ [0, 1], for any {bi}i that form
an equilibrium, and any bidder i and auction j where rw(j) = i, there exists x ∈ [0, 1] such that

E[vali,j ] = x · vi,j and
∑
i′ ̸=i

E[pi′,j ] ≥ (1− x+ (1− γ)x lnx) · vi,j .

We can now prove Theorem 3 by plugging Lemma 7 and Lemma 8 into Lemma 4.
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A More on Liquid Welfare

Following prior work on autobidding [Aggarwal et al., 2019, Deng et al., 2021, Balseiro et al., 2021a,
Liaw et al., 2022], we consider the liquid welfare as the objective throughout this paper. The liquid
welfare is the maximum amount of payment that can be extracted from the bidders given a certain
allocation. Formally, assuming each bidder i’s target ROI ratio is τi, and each bidder i’s value in each
auction j is vi,j , the liquid welfare under allocation {xi,j} is defined as follows:∑

i,j

xi,j · vi,j/τi.

In particular, we let τi = 1 for each utility maximizer i, which simply means i is individually rational.
One can check the above definition is consistent with the classical social welfare when all bidders are
utility maximizers, and it is also consistent with prior work on autobidding when all bidders are value
maximizers. The benchmark we consider in this paper is the first-best liquid welfare, i.e.,∑

j

max
i

vi,j/τi.

This can be achieved by allocating to the bidder i with the highest target-adjusted value vi,j/τi in
each auction j. Observe that the quantity that actually matters in the (first-best) liquid welfare is the
target-adjusted value vi,j/τi. Therefore, without loss of generality, we can replace each bidder i’s
value in each auction j with the target-adjusted value vi,j/τi, and assume all bidders’ target ROI
ratios are 1.

The liquid welfare makes more sense than the classical social welfare in the presence of value
maximizers, because a bidder with a high target ROI ratio and low values behaves in the same way as
a bidder with a low target ROI ratio and high values, as long as their target-adjusted values are the
same. There is no way for the mechanism to distinguish between the two types of bidders, and thus,
it is infeasible to try to maximize the classical social welfare.
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B Omitted Proofs

Proof of Theorem 1. First we provide a simple hard instance, which implies an upper bound of 1/2
on the PoA. Consider an instance with n = 2 bidders and m = 2 auctions, where both bidders are
value maximizers. We set v1,1 = 1, v2,2 = 1 − ε, and v1,2 = v2,1 = 0, where ε > 0 is a small
quantity to be fixed later. Consider the following deterministic bidding strategies: b1,1 = b2,1 = 0
(so bidder 1 wins in auction 1 by tiebreaking and pays 0), b1,2 = 1, and b2,2 = 0 (so bidder 1 wins in
auction 2 and pays 1). First we verify this is in fact an equilibrium. Observe that the ROI constraints
of both bidders are satisfied. Bidder 1 does not want to deviate from b1, since bidder 1 already gets
the maximum value possible, i.e., 1. Bidder 2 would ideally want to bid higher (possibly randomly)
in auction 2 in order to win with some probability and get positive value. However, given b1,2 = 1,
bidder 2 would have to bid at least 1 in order to win, which means p2,2 ≥ 1 whenever x2,2 = 1. This
would violate bidder 2’s ROI constraint. So both bidders’ strategies are best responses, and therefore
form an equilibrium. On the other hand, the optimal welfare is v1,1 + v2,2 = 2− ε, and the welfare
resulting from the above equilibrium is only v1,1 = 1, which means the PoA is at most 1/(2− ε).
Letting ε → 0 yields an upper bound of 1/2.

Now we focus on lower bounding the instance-wise PoA fixing any n, m, and {vi,j}. Consider any
equilibrium, induced by bidding strategies {bi}i. Our task is to show that

2
∑
i

E[vali] ≥
∑
j

max
i

vi,j ,

where the expectations, as well as all expectations in the rest of the proof, are taken over {bi}i. For
each auction j, let rw(j) = argmaxi vi,j be the “rightful winner” of auction j, where ties are broken
in favor of the bidder with the smaller index. Now fix a bidder i, and consider the following proxy
bidding strategy b′i of bidder i: b′i,j = vi,j in each auction j, i.e., the proxy bidding strategy b′i is a
strategy in which bidder i bids truthfully. Then, for each auction j where i = rw(j), the probability
that i wins in auction j under the proxy bidding strategy b′i, fixing all other bidders’ strategies b−i, is

Pr
b−i

[xi,j(b
′
i,j , b−i,j) = 1] = Pr

b−i

[
max
i′ ̸=i

bi′,j ≤ b′i,j

]
= Pr

b−i

[
max
i′ ̸=i

bi′,j ≤ vi,j

]
.

Also, observe that i’s ROI constraint is satisfied under the proxy bidding strategy b′i, since under the
proxy bidding strategy b′i, the following holds deterministically:

vali(b
′
i, b−i)−pi(b

′
i, b−i) =

∑
j

xi,j(b
′
i,j , b−i,j)·(vi,j−b′i,j) =

∑
j

xi,j(b
′
i,j , b−i,j)·(vi,j−vi,j) = 0.

Taking the expectation over b−i, we see that i’s ROI constraint is satisfied (and is in fact binding).
The above observations imply the following fact: There exists a bidding strategy (i.e., b′i), under
which i’s ROI constraint is satisfied, and the expected value i receives is

E[vali(b′i, b−i)] ≥
∑

j:i=rw(j)

Pr
b−i

[xi,j(b
′
i,j , b−i,j) = 1] · vi,j =

∑
j:i=rw(j)

Pr
b−i

[
max
i′ ̸=i

bi′,j ≤ vi,j

]
· vi,j .

Observe that since i is a value maximizer and bi is a best response to b−i, we must have

E[vali(bi, b−i)] ≥ E[vali(b′i, b−i)] ≥
∑

j:i=rw(j)

Pr
b−i

[
max
i′ ̸=i

bi′,j ≤ vi,j

]
· vi,j .

On the other hand, fix a bidder i and consider the total payment collected in any auction j with
rw(j) = i, under (bi, b−i). By the properties of the first-price auction, we have∑

i′

E[pi′,j(bi,j , b−i,j)] = E
[
max
i′

bi′,j

]
≥ E

[
max
i′ ̸=i

bi′,j

]
≥ Pr

b−i

[
max
i′ ̸=i

bi′,j > vi,j

]
· vi,j =

(
1− Pr

b−i

[
max
i′ ̸=i

bi′,j ≤ vi,j

])
· vi,j .

Summing over all auctions j with rw(j) = i, we have∑
i′,j:i=rw(j)

E[pi′,j(bi, b−i)] ≥
∑

j:i=rw(j)

(
1− Pr

b−i

[
max
i′ ̸=i

bi′,j ≤ vi,j

])
· vi,j .

12

139281https://doi.org/10.52202/079017-4420



Combining this with the bound on the total expected value i receives, we get

E[vali(bi, b−i)] +
∑

i′,j:i=rw(j)

E[pi′,j(bi, b−i)] ≥
∑

j:i=rw(j)

vi,j .

Further summing over i (and omitting dependence on (bi, b−i)), the above gives∑
i

E[vali] +
∑
i

E[pi] ≥
∑
j

max
i

vi,j .

Finally, observe that for any bidder i, the ROI constraint implies E[pi] ≤ E[vali], and therefore we
can conclude the proof with

2
∑
i

E[vali] ≥
∑
i

E[vali] +
∑
i

E[pi] ≥
∑
j

max
i

vi,j .

Proof of Lemma 2. Suppose towards a contradiction that there exists w > b ·F (b) such that H(w)−
H(b · F (b)) > w − b · F (b), or equivalently, H(w) − w > H(b · F (b)) − b · F (b). Let b′i,j be
a possibly randomized bidding strategy that realizes the point (w,H(w)), i.e., when using b′i,j , i
receives value H(w) and pays w in expectation in auction j. Then, the utility that i receives from j
when using the new strategy b′i,j is H(w)− w. On the other hand, consider the deterministic bidding
strategy b′′i,j = b. Since b is in the support of bi,j , b′′i,j must also be a best response. However, under
b′′i,j , i receives utility H(b · F (b))− b · F (b), which is strictly worse than the utility i receives when
using the alternative strategy b′i,j . In other words, b′′i,j cannot be a best response, a contradiction.

Proof of Lemma 3. Let x = E[F (bi,j)]. Clearly x ∈ [0, 1] and E[vali,j ] = x · v. Our remaining task
is to show ∑

i′ ̸=i

E[pi′,j ] ≥ (1− x+ x lnx) · v.

Recall that ∑
i′ ̸=i

E[pi′,j ] = E
bi,j

[
bi,j · (1− F (bi,j)) +

∫ ∞

bi,j

(1− F (t)) dt

]
.

As a result, in order to lower bound the payment, we want to pointwise upper bound F . Fix any b in
the support of the best-response strategy bi,j , we must have

H(b · F (b)) = G(b · F (b)) = v · F (b).

By Lemma 2, for any w ≥ b · F (b), we have H(w)−H(b · F (b)) ≤ w − b · F (b), which implies
that H(w) ≤ H(b · F (b)) + w − b · F (b). Also, since H is the concave envelope of G, the same
upper bound applies to G, and we have

G(w) ≤ H(w) ≤ H(b · F (b)) + w − b · F (b) = v · F (b) + w − b · F (b).

Due to the monotonicity of F (x), we have that for any t ≥ b, we have t · F (t) ≥ b · F (b). Therefore,
given the relation between G and F , the above implies that for any t ∈ [b, v) (note that this range
might be empty),

v · F (t) ≤ G(t · F (t)) ≤ v · F (b) + t · F (t)− b · F (b) =⇒ F (t) ≤ (v − b) · F (b)

v − t
.

We next bound the payment conditioned on bi,j = b. We consider two possible cases: b ≥ v and
b < v. If b ≥ v, we simply have∑

i′ ̸=i

E[pi′,j | bi,j = b] = b · (1− F (b)) +

∫ ∞

b

(1− F (t)) dt

≥ b · (1− F (b)) ≥ (1− F (b)) · v ≥ (1− F (b) + F (b) lnF (b)) · v.
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In particular, the last inequality is because F (b) lnF (b) ≤ 0 when F (b) ∈ [0, 1]. If b < v, we must
have b = v − (v − b) · 1 ≤ v − (v − b) · F (b), and as a result,∑

i′ ̸=i

E[pi′,j | bi,j = b] = b · (1− F (b)) +

∫ ∞

b

(1− F (t)) dt

≥ b · (1− F (b)) +

∫ v−(v−b)·F (b)

b

(
1− (v − b) · F (b)

v − t

)
dt

= (1− F (b)) · v + (v − b) · F (b) · ln(v − t)
∣∣∣v−(v−b)·F (b)

b

= (1− F (b)) · v + (v − b) · F (b) · lnF (b)

≥ (1− F (b) + F (b) lnF (b)) · v.
Combining the two cases and further taking the expectation over bi,j , we get∑

i′ ̸=i

E[pi′,j ] ≥ E
bi,j

[(1− F (bi,j) + F (bi,j) lnF (bi,j)) · v] ≥ (1− x+ x lnx) · v,

where the last inequality is due to Jensen’s inequality, the fact that z 7→ 1− z + z ln z is convex on
[0, 1], and we chose x = E[F (bi,j)].

Proof of Lemma 4. Observe that∑
i

E[vali] =
∑
i∈Bv

E[vali] +
∑
i∈Bu

E[vali]

= max

{∑
i∈Bv

E[vali],
∑
i∈Bv

E[pi]

}
+

∑
i∈Bu

E[vali]

= max

{∑
i∈Bv

E[vali],
∑
i∈Bv

E[pi]

}
+

∑
i∈Bu,j:rw(j)=i

E[vali,j ] +
∑

i∈Bu,j:rw(j) ̸=i

E[vali,j ]

= max

{
A,

∑
i∈Bv

E[pi]

}
+B +

∑
i∈Bu,j:rw(j) ̸=i

E[vali,j ].

Note that for each i ∈ Bu and j, we always have E[vali,j ] ≥ E[pi,j ] since i is best responding and
the utility i receives in j is at least 0. Therefore, we can further relax the above into the following:∑

i

E[vali] ≥ max

{
A,

∑
i∈Bv

E[pi]

}
+B +

∑
i∈Bu,j:rw(j)̸=i

E[pi,j ]

≥ max

A,
∑
i∈Bv

E[pi] +
∑

i∈Bu,j:rw(j)̸=i

E[pi,j ]

+B.

Rearranging the sums within the max, we have that∑
i∈Bv

E[pi] +
∑

i∈Bu,j:rw(j) ̸=i

E[pi,j ] =
∑
i

E[pi]−
∑

i∈Bu,j:rw(j)=i

E[pi,j ]

=
∑

i,j:rw(j)∈Bv

E[pi,j ] +
∑

i,j:rw(j)∈Bu and rw(j) ̸=i

E[pi,j ]

= C +D.

Substituting in the max gives the bound to be proved.

Proof of Lemma 5. Fix any n, m, Bu, Bv, and {vi,j}. Consider any bidding strategies {bi}i that
form an equilibrium. Let

V1 =
∑

j:rw(j)∈Bv

max
i

vi,j , V2 =
∑

j:rw(j)∈Bu

max
i

vi,j .
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By Lemma 4, we have ∑
i E[vali]∑

j maxi vi,j
≥ max{A,C +D}+B

V1 + V2
.

By Lemma 1, we have A + C ≥ V1. So there must be some x ∈ [0, 1], such that A ≥ x · V1 and
C ≥ (1 − x) · V1. As for B and D, we apply Lemma 3. For each j where rw(j) ∈ Bu, Lemma 3
states that there exists some yj ∈ [0, 1], such that

E[valrw(j),j ] = yj ·max
i

vi,j ,
∑

i ̸=rw(j)

E[pi,j ] ≥ (1− yj + yj ln yj) ·max
i

vi,j .

Let y = B/V2. Since B =
∑

j:rw(j)∈Bu
E[valrw(j),j ] ≤

∑
j:rw(j)∈Bu

maxi vi,j = V2, we have
y ∈ [0, 1]. In particular,

y =

∑
j:rw(j)∈Bu

E[valrw(j),j ]∑
j:rw(j)∈Bu

maxi vi,j
=

∑
j:rw(j)∈Bu

yj ·maxi vi,j∑
j:rw(j)∈Bu

maxi vi,j
.

Since t 7→ 1− t+ t ln t is convex, by Jensen’s inequality, we must have

D =
∑

j:rw(j)∈Bu

∑
i ̸=rw(j)

E[pi,j ] ≥
∑

j:rw(j)∈Bu

(1− yj + yj ln yj) ·max
i

vi,j

≥ (1− y + y ln y)
∑

j:rw(j)∈Bu

max
i

vi,j = (1− y + y ln y) · V2.

Plugging in the above derived lower bounds for A, B, C, and D, we have∑
i E[vali]∑

j maxi vi,j
≥ max{A,C +D}+B

V1 + V2
≥ max{x · V1, (1− x) · V1 + (1− y + y ln y) · V2}+ y · V2

V1 + V2
,

where V1, V2 ≥ 0, V1 + V2 > 0 and x, y ∈ [0, 1]. In other words, we must have

PoA(n,m,Bu, Bv, {vi,j}) ≥ inf
V1,V2≥0,V1+V2>0,x,y∈[0,1]

max{x · V1, (1− x) · V1 + (1− y + y ln y) · V2}+ y · V2

V1 + V2
.

A careful analysis (see Lemma 9 in Appendix C) of the right-hand-side shows that it equals to

min
y∈[0,1]

1 + y ln y

2− y + y ln y
≈ 0.457,

which is achieved when x = 1 and V1 = (1− y + y ln y) · V2. This concludes the proof.

Proof of Lemma 6. Let Bu = {1} and Bv = {2}. We choose v1,1 = 1 and v1,2 = v2,1 = 0, and
leave v2,2 > 0 to be fixed later. The idea is to let bidder 2 win in auction 2 for free, and therefore
bidder 2 gains enough slackness in the ROI constraint and can therefore compete with bidder 1 in
auction 1. To be specific, in order for bidder 2 to win for free in auction 2, we choose b1,2 = b2,2 = 0
so that bidder 2 wins by tiebreaking and pays 0. We want bidder 1’s value-payment frontier in auction
1 to have the following shape: the curve starts at (0, t) for some t ∈ [0, 1] (to be fixed later), and then
increases linearly with slope precisely 1, until it hits the upper bound, i.e., when the y-axis becomes
v1,1 = 1. This ensures that bidder 1 bidding b1,1 = 0 deterministically is a best response. Translating
this to bidder 2’s bidding strategy, we would like that for any b ≥ 0,

Pr[b2,1 ≤ b] = min

{
1,

t

1− b

}
.

One can show that the expected payment that bidder 2 makes in auction 1 is 1− t+ t ln t. In order
to satisfy bidder 2’s ROI constraint, we choose v2,2 = 1− t+ t ln t. One may check that the above
bidding strategies in fact form an equilibrium. Note that E[val1] = Pr[b2,1 = 0] · v1,1 = t, and
E[val2] = v2,2 = 1− t+ t ln t.

Considering the ratio between the optimal welfare and the welfare resulting from the above equilib-
rium, we have

PoA(n,m,Bu, Bv, {vi,j}) ≤
E[val1 + val2]

v1,1 + v2,2
=

1 + t ln t

2− t+ t ln t
,
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for any t ∈ [0, 1]. Minimizing over t gives

PoA(n,m,Bu, Bv, {vi,j}) ≤ min
t∈[0,1]

1 + t ln t

2− t+ t ln t
.

Proof of Lemma 7. The proof is similar to that of Lemma 1 at a high level, except that the expected
payment is higher, because in each auction j, the rightful winner rw(j) must bid at least rj (which is
a constant fraction of vrw(j),j) unless the highest competing bid is at least vrw(j),j with probability 1.

Again fix any equilibrium strategies {bi}. By the same argument as in the proof of Lemma 1, for any
value maximizer i ∈ Bv , we have

E[vali] ≥
∑

j:i=rw(j)

vi,j · Pr
[
max
i′ ̸=i

bi′,j ≤ vi,j

]
.

Also, observe that for any value maximizer i ∈ Bv and auction j where rw(j) = i, at least one of
the following properties must hold: Either (1) bi,j ≥ ri,j deterministically, or (2) Pr[maxi′ ̸=i bi′,j ≥
vi,j ] = 1. This is because if neither of the two holds, then i for any b < rj in the support of bi,j , i
would be better off by moving probability mass from b to vi,j , which preserves feasibility and strictly
increases the value i receives from j. For each j where (1) holds, we have∑

i′

E[pi′,j ] ≥ vi,j ·
(
1− Pr

[
max
i′ ̸=i

bi′,j ≤ vi,j

])
+ rj · Pr

[
max
i′ ̸=i

bi′,j ≤ vi,j

]
≥ vi,j ·

(
1− Pr

[
max
i′ ̸=i

bi′,j ≤ vi,j

])
+ γ · vi,j · Pr

[
max
i′ ̸=i

bi′,j ≤ vi,j

]
= vi,j − (1− γ) · vi,j · Pr

[
max
i′ ̸=i

bi′,j ≤ vi,j

]
.

For each j where (2) holds, we immediately know that∑
i′

E[pi′,j ] ≥ vi,j · Pr
[
max
i′ ̸=i

bi′,j ≥ vi,j

]
= vi,j ≥ vi,j − (1− γ) · vi,j · Pr

[
max
i′ ̸=i

bi′,j ≤ vi,j

]
.

So combining the two cases and summing over j where i = rw(j),∑
i′,j:rw(j)=i

E[pi′,j ] ≥
∑

j:rw(j)=i

(
vi,j − (1− γ) · vi,j · Pr

[
max
i′ ̸=i

bi′,j ≤ vi,j

])
.

Combining this with the lower bound on E[vali] above, we get

(1− γ) · E[vali] +
∑

i′,j:rw(j)=i

E[pi′,j ] ≥
∑

j:rw(j)=i

vi,j .

Further summing over i ∈ Bv gives the inequality to be proved.

Proof of Lemma 8. The first part of the reasoning is almost identical to the proof of Lemma 3: For
any b in the support of bi,j , Lemma 2 gives us a way to upper bound the CDF of the highest other bid,
and subsequently to lower bound the payment made by other bidders. Without repeating the entire
argument, we start directly from this lower bound. Let F be the CDF of the highest other bid, i.e., for
any t ≥ 0,

F (t) = Pr

[
max
i′ ̸=i

bi′,j ≤ t

]
.

When b ≥ v, we have∑
i′ ̸=i

E[pi′,j | bi,j = b] ≥ (1− F (b)) · v ≥ (1− F (b) + (1− γ) · F (b) lnF (b)) · vi,j .

When b < v, again we must have one of the following two: Either (1) b ≥ rj ≥ γ · vi,j , or (2)
F (vi,j) = 1. When (1) holds, we have∑
i′ ̸=i

E[pi′,j | bi,j = b] ≥ (1−F (b))·vi,j+F (b) lnF (b)·(vi,j−b) ≥ (1−F (b)+(1−γ)F (b) lnF (b))·vi,j .
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When (2) holds, clearly we have∑
i′ ̸=i

E[pi′,j | bi,j = b] ≥ vi,j · F (vi,j) = vi,j ≥ (1− F (b) + (1− γ)F (b) lnF (b)) · vi,j .

Combining these cases and taking the expectation over bi,j (again letting x = E[F (bi,j)]), we get∑
i′ ̸=i

E[pi′,j ] ≥ E[(1−F (bi,j)+ (1− γ) ·F (bi,j) lnF (bi,j)) · vi,j ] ≥ (1−x+(1− γ) ·x lnx) · vi,j ,

where the last inequality from Jensen’s inequality since z 7→ 1− z + (1− γ) · z ln z is convex on
[0, 1] for any γ ∈ [0, 1].

Proof of Theorem 3. Reproducing the argument in the proof of Lemma 5 (but with the improved
tradeoffs given by Lemma 7 and Lemma 8), we can lower bound PoAγ(n,m,Bu, Bv, {vi,j}) by

inf
V1,V2≥0,V1+V2>0,x,y∈[0,1]

max{x · V1, (1− (1− γ)x) · V1 + (1− y + (1− γ)y ln y) · V2}+ y · V2

V1 + V2
.

A careful analysis (see Lemma 10 in Appendix C) of the infimum shows that it equals to

min
y∈[0,1]

1 + y ln y − γy(1 + ln y)

2− y − γ + (1− γ)y ln y
.

C Analysis of the Infimum

Lemma 9.

inf
V1,V2≥0,V1+V2>0,x,y∈[0,1]

max{x · V1, (1− x) · V1 + (1− y + y ln y) · V2}+ y · V2

V1 + V2
= min

y∈[0,1]

1 + y ln y

2− y + y ln y
.

Proof. Without loss of generality, suppose V1 + V2 = 1, so the domain is compact, and we only need
to prove that

inf
V1+V2=1,V1,V2,x,y∈[0,1]

max{x · V1, (1− x) · V1 + (1− y + y ln y) · V2}+ y · V2

V1 + V2
= min

y∈[0,1]

1 + y ln y

2− y + y ln y
.

Since the term inside the infimum is continuous on the domain we can replace the inf with a min. In
other words, there exists V ∗

1 , V ∗
2 , x∗ and y∗ that achieve the minimum. If V2 = 0, then clearly it is

lower bounded by 1/2 (which is clearly suboptimal). So we must have V ∗
2 > 0.

Now observe that the two terms within the inner max must be equal when the minimum is achieved.
This is because: if V ∗

1 ≥ (1−y∗+y∗ ln y∗)·V ∗
2 , then x∗ must equalize the two terms (any other choice

of x∗ would be suboptimal). Otherwise, the inner max must be (1−x∗)·V ∗
1 +(1−y∗+y∗ ln y∗)·V ∗

2 ,
which means x∗ must be 1, in which case V ∗

1 does not appear at all. But then, increasing V ∗
1 and

decreasing V ∗
2 simultaneously would strictly decrease the value, which contradicts the optimality of

these choices. So we must have

x∗·V ∗
1 = (1−x∗)·V ∗

1 +(1−y∗+y∗ ln y∗)·V ∗
2 =⇒ V ∗

1 =
(1− y∗ + y∗ ln y∗) · V ∗

2

2x∗ − 1
and x∗ ∈ (1/2, 1].

Plugging this in, the minimum simplifies to
x∗ · (1 + y∗ + y∗ ln y∗)− y∗

2x∗ − y∗ + y∗ ln y∗
.

Observe that the denominator of the above fraction is always positive whenever x∗ ∈ (1/2, 1] and
y∗ ∈ [0, 1]. Moreover, depending on the value of y∗, the partial derivative of the above fraction with
respect to x∗ is either never 0 or always 0. In the former case, it must be the case that x∗ = 1 (any
other choice cannot be optimal); in the latter case, the value of x∗ does not matter, so without loss of
generality we can choose x∗ = 1. Plugging this in, the minimum simplifies to

1 + y∗ ln y∗

2− y∗ + y∗ ln y∗
= min

y∈[0,1]

1 + y ln y

2− y + y ln y
.

This concludes the proof.
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Lemma 10.

inf
V1,V2≥0,V1+V2>0,x,y∈[0,1]

max{x · V1, (1− (1− γ)x) · V1 + (1− y + (1− γ)y ln y) · V2}+ y · V2

V1 + V2

= min
y∈[0,1]

1 + y ln y − γy(1 + ln y)

2− y − γ + (1− γ)y ln y
.

Proof. When γ = 1, it is easy to check the above minimum is 1. In the rest of the proof, we assume
γ ∈ [0, 1). We break this into two cases:

• When

V1 ≤ γ · V1 + (1− y + (1− γ)y ln y) · V2 =⇒ V1 ≤ (1− y + (1− γ)y ln y) · V2

1− γ
,

the minimum becomes

min
(1− (1− γ)x) · V1 + (1 + (1− γ)y ln y) · V2

V1 + V2
,

and the minimum must be achieved when x = 1, in which case it further simplifies to

min
γ · V1 + (1 + (1− γ)y ln y) · V2

V1 + V2
.

Since y ln y ∈ [−1/e, 0] and (1 + (1− γ)y ln y) > γ, we want V1 to be as large as possible,
which means V1 = (1 − y + (1 − γ)y ln y) · V2/(1 − γ). Plugging this in, the minimum
becomes

min
1 + y ln y − γy(1 + ln y)

2− y − γ + (1− γ)y ln y
.

• When

V1 ≥ γ · V1 + (1− y + (1− γ)y ln y) · V2 =⇒ V1 ≥ (1− y + (1− γ)y ln y) · V2

1− γ
,

the minimum must be achieved when the two terms within the inner max are equalized, i.e.,

x·V1 = (1−(1−γ)x)·V1+(1−y+(1−γ)y ln y)·V2 =⇒ V1 =
(1− y + (1− γ)y ln y) · V2

(2− γ)x− 1
.

This also means we can restricted the domain of x to x ∈ (1/(2− γ), 1]. Plugging this in,
the minimum simplifies to

min
x(1 + y − γy + (1− γ)y ln y)− y

(2− γ)x− y + (1− γ)y ln y
.

Observe that the denominator is always positive for x and y in the domain, so the derivative
of the fraction with respect to x is either never 0 or always 0. In the former case, the
minimum can only be achieved when x = 1; in the latter case, the value of x does not
matter, so we can without loss of generality choose x = 1. Plugging x = 1 in, the minimum
simplifies to

min
1 + y ln y − γy(1 + ln y)

2− y − γ + (1− γ)y ln y
.

Combining the two cases concludes the proof.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction discuss the claims proved in the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The paper discusses settings where the results do not apply, and also presents
negative results.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: The full model is defined and all results are proved.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [NA]
Justification: No experimental results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [NA]
Justification: No data or code.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [NA]
Justification: No experimental results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: No experimental results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [NA]
Justification: No experimental results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: In particular, we have done our best to preserve anonymity.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: The paper is theoretical without immediate broader impacts.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: No data or models released.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: No existing assets used.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [NA]
Justification: No new assets introduced.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: No crowdsourcing or human subjects involved.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No human subjects involved.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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