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Abstract

We propose estimating Gaussian graphical models (GGMs) that are fair with
respect to sensitive nodal attributes. Many real-world models exhibit unfair dis-
criminatory behavior due to biases in data. Such discrimination is known to be
exacerbated when data is equipped with pairwise relationships encoded in a graph.
Additionally, the effect of biased data on graphical models is largely underexplored.
We thus introduce fairness for graphical models in the form of two bias metrics
to promote balance in statistical similarities across nodal groups with different
sensitive attributes. Leveraging these metrics, we present Fair GLASSO, a reg-
ularized graphical lasso approach to obtain sparse Gaussian precision matrices
with unbiased statistical dependencies across groups. We also propose an efficient
proximal gradient algorithm to obtain the estimates. Theoretically, we express
the tradeoff between fair and accurate estimated precision matrices. Critically,
this includes demonstrating when accuracy can be preserved in the presence of
a fairness regularizer. On top of this, we study the complexity of Fair GLASSO
and demonstrate that our algorithm enjoys a fast convergence rate. Our empirical
validation includes synthetic and real-world simulations that illustrate the value
and effectiveness of our proposed optimization problem and iterative algorithm.

1 Introduction

Data analysis frequently requires estimating complex dyadic relationships, which can be conveniently
encoded in graphical representations such as Gaussian graphical models (GGMs) [1–3]. Myriad
real-world applications model structure in data by obtaining graphs from observations, in fields
including neuroscience, genomics, finance, and more [4–6]. However, it is known that real-world data
can encode historical biases which models ought not to consider, such as discriminatory biases against
sensitive populations [7, 8]. For example, social networks often exhibit preferential relationships that
may unfairly discriminate against sensitive communities [9–11]. Moreover, the use of unfair graphs
for downstream tasks is known to exacerbate existing biases [12–14]. While accurate graphical
representations are critical for applications and analyses, the propagation of undesirable bias in graph
data necessitates learning models that balance both fairness and accuracy.

The long-standing popularity of GGMs for several applications, many of them high-stakes, warrants
care in how we estimate them from potentially biased data. However, there is no formal definition of
fairness for graphical models, and existing definitions for graph-based machine learning may not be
applicable for obtaining fair statistical relationships. Indeed, while fairness for graph data has recently
received copious attention, the study of biased graphs in statistics and graph signal processing (GSP)
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is only beginning [15–17]. Furthermore, previous works primarily consider fairness for downstream
tasks, while few attempt to learn unbiased graphs from data [16–18]. We thus arrive at two vital
questions. First, what does it mean for a graphical model to be fair? We aim to compare such a
notion to existing definitions of fairness on graphs. Second, how can we obtain GGMs that are fair in
the presence of biased data? To address these questions, we consider estimation of fair GGMs from
biased observations, where nodes belong to groups corresponding to different sensitive attributes.

We propose an optimization framework to obtain fair GGMs from potentially biased data, where
statistical dependencies between nodes show no preferences for particular groups. We first define
fairness for graphical models by introducing two bias metrics that measure similarities in statistical
behavior between pairs of groups. Our metrics are simple and convex, yet they intuitively capture
biases in terms of conditional dependence. We then propose Fair GLASSO, a penalized maximum
likelihood estimator using our bias metrics as regularizers, which aims to obtain sparse Gaussian
precision matrices that optimally extract structural information from observed data while promoting
fairer statistical behavior across node groups. We summarize our contributions as follows:

• We formally define fairness for graphical models via two bias metrics, one balancing statistical
dependencies evenly across all groups and a stronger alternative requiring each node to be balanced
across all groups. We relate our definition to other notions of fairness on graphs, where ours
is specific to graphs encoding conditional dependence structures, which in turn allows greater
interpretability and more detailed statistical analysis.

• We present Fair GLASSO, a penalized maximum likelihood estimator for sparse Gaussian precision
matrices that are unbiased according to any measure of graphical fairness, which we demonstrate
with our proposed bias metrics. We theoretically demonstrate that our approach yields a tradeoff
between fairness and accuracy, which depends on the bias in the underlying graph.

• The convexity of Fair GLASSO under our proposed metrics allows us to propose an efficient
iterative method based on proximal gradient descent. We show that our algorithm enjoys iterations
of moderate complexity and provable convergence.

• We evaluate Fair GLASSO on both synthetic and real-world datasets. The former provides
empirical validation of the efficiency of our algorithm and the existence of the fairness-accuracy
tradeoff. The latter shows the myriad real-world applications for which we can reliably obtain
graphical representations from data while also balancing statistical behavior across sensitive groups.

1.1 Notation

For any positive integer p ∈ N, we let [p] := {1, 2, . . . , p}. For a matrix X ∈ Rp×p and a set of
indices C ∈ [p]2, we let XC denote a masking operation on X permitting non-zero entries only at
indices in C. If we define D := {p(i − 1) + i}pi=1, then XD is a diagonal matrix containing the
diagonal entries of X. For D̄ := [p]2\D denoting the complement of the set D, XD̄ = X − XD
contains non-zero values of X only in its off-diagonal entries. We also let vec(X) ∈ Rp2

denote the
vertical concatenation of the columns of X. The smallest and largest eigenvalues of a matrix X are
represented respectively by λmin(X) and λmax(X).

2 Fair Gaussian Graphical Models

GGMs succinctly model pairwise relationships in multivariate Gaussian distributions through intuitive
graphical representations. We denote undirected graphs by G = (V, E ,W), where V = [p] is the set
of p nodes and E ⊆ V×V the set of edges connecting pairs of nodes. For graphs with weighted edges,
W ∈ Rp×p encodes the topological structure of G such that Wij ̸= 0 if and only if (i, j) ∈ E , that
is, there is an edge in E connecting nodes i and j with weight Wij . Let x ∈ Rp be a random vector
following a zero-mean Gaussian distribution with positive definite covariance matrix Σ0 ≻ 0, that is,
x ∼ N (0,Σ0). The precision matrix Θ0 = Σ−1

0 completely describes the conditional dependence
structure among the variables in x. In particular, for any distinct pair i, j ∈ [p], variables xi and xj
are conditionally independent if and only if [Θ0]ij = 0 [1, 2]. This Markovian property yields a
graphical representation, where off-diagonal entries of Θ encode the weighted edges of a graph G
connecting conditionally dependent variables. In this work, we aim to obtain the structure encoded in
Θ0 using observations sampled from N (0,Σ0).

When considering group fairness, we associate each variable in x with one of g groups that partition
the variables according to a sensitive attribute [20, 21]. We represent group membership by the

2

139590https://doi.org/10.52202/079017-4429



M: 0.4654, W: 0.010, A: 0.025

(a) Karate club network
M: 0.0089, W: 1.576, A: 0.410

(b) Dutch school network
M: 0.4816, W: 8.501, A: 1.403

(c) U.S. Senate network

Figure 1: Three real-world networks with node groups denoted by color. Within-group edges are in
blue and across-group edges in red, while edge widths correspond to edge weight magnitudes. For
each network, we present (“M”) the modularity of the graphs with respect to group membership [19],
(“W”) the ratio of positive to negative estimated partial correlations for within-group edges, and (“A”)
an analogous ratio for across-group edges. Networks in (a) and (c) show high group-wise modularity,
while (b) and (c) show significant preferences for positive correlations in the same group.

indicator matrix Z = [z1, . . . , zg] ∈ {0, 1}p×g, where Zia = 1 if and only if variable i belongs to
group a ∈ [g], otherwise Zia = 0. Group sizes are denoted by pa =

∑p
i=1 Zia for every a ∈ [g].

We also assume that groups are non-overlapping, thus p =
∑g

a=1 pa. GGMs may possess biases
when a group of variables behaves significantly more or less similarly to particular groups. Indeed,
individuals within the same political party tend to vote similarly [18]. In this case, entries of Θ0

corresponding to pairs of voters of the same party will likely be positive and larger in magnitude.

We empirically demonstrate this phenomenon in Figure 1 for multiple real-world networks. Fig-
ures 1a and b show two social network examples, Zachary’s karate club network [22, 23] and the
Dutch school network [24], where nodes represent individuals and edges connect them by their
relationships. Figure 1c is a political network that connects U.S. senators if their voting patterns
exhibit correlated behavior [18]. For each network, we present both their modularity with respect
to group membership [19] and a comparison of their approximate partial correlations within and
across nodal groups [25, 26], with both metrics defined in Appendix G. Figures 1a and c show higher
group-wise modularity, in line with the ubiquitous preference for within-group connections in real-
world networks [9, 10]. However, observe that Figures 1b and c exhibit a clear preference for positive
correlations between nodes in the same group. Despite its presence in real-world interconnected
data, this type of discriminatory behavior is typically not addressed in existing works [27]. These
examples inspire us to develop a definition of fairness for graphical models that accounts for both
correlation bias, when behavior is highly correlated between certain groups, and connectivity bias,
when connections are denser or sparser across certain group pairs.

2.1 Bias Metric for Fair Graphical Models

To address biases in both connectivity and correlations, we propose a definition of group fairness for
graphical models. We consider the popular notion of demographic parity (DP), the primary choice for
fairness on graphs [20]; however, other definitions of group fairness can be similarly adapted [21]. DP
requires that outcomes be agnostic to sensitive attributes [20, 28]. In our case, we require estimation
of graphical models with unbiased edge selection with respect to nodal groups. Thus, we present the
following definition of dyadic DP for graphical models.

Definition 1 For a graphical model with the matrix Θ0 ∈ Rp×p encoding the underlying conditional
dependence structure, we consider DP to be satisfied if

P[[Θ0]ij |Zia = 1, Zja = 1] = P[[Θ0]ij |Zia = 1, Zjb = 1] ∀ a, b ∈ [g]. (1)

Note that the distribution need not be Gaussian for this definition. Intuitively, our graphical model DP
requires that groups have evenly balanced connections across groups and do not behave significantly
more or less similarly to certain groups. Crucially, Definition 1 accounts for both forms of bias
showcased in Figure 1, connectivity bias in the support of Θ0 and correlation bias in the signs of
entries in Θ0. Not only is this definition appropriately tailored to fairness for graphical models, but it
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also provides flexibility in how we address biases. We may adjust similarities in behavior without
changing the topology of the graph [14, 29], but conversely, we may alter connections if correlations
cannot be changed [30]. Finally, note that works for fairness on graphs with weighted or signed edges
are rare [27], and to the best of our knowledge no previous work has specified fairness for graphical
models that encode conditional dependencies.

We consider a graphical model unfair when there is a gap in DP, that is, when (1) does not hold. In
practice, we measure biases in GGMs by approximating the DP gap. For this purpose, we propose
the following bias metric inspired by [18],

H(Θ) :=
1

g2 − g

g∑
a=1

∑
b̸=a

(
z⊤a ΘD̄za
p2a − pa

− z⊤a ΘD̄zb
papb

)2

. (2)

Each term in (2) compares the average within-group edge weight and the average across-group
edge weight for every distinct group pair. Thus, H(Θ) will increase if variables belonging to two
groups exhibit either significantly denser or sparser connections or significantly stronger or weaker
correlations. As we aim to balance statistical behavior across groups, we consider obtaining precision
matrices Θ that balance data fidelity with small values of H(Θ). The main difference between H(Θ)
and the related metric in [18] lies in the use of squared summands. While subtle, this modification
tends to yield fairer outcomes, as group pairs are balanced overall as opposed to the metric in [18],
which may favor balancing some pairs of groups over others.

In addition to (2), we also propose a stronger alternative metric for node-wise fairness across groups,

Hnode(Θ) :=
1

pg

p∑
i=1

g∑
a=1

 1

g − 1

∑
b̸=a

[ΘD̄za]i
pa

− [ΘD̄zb]i
pb

2

, (3)

which is zero if and only if every variable is completely balanced across groups in terms of connections
or correlation. This stronger metric is inspired by [15, 18], also modified by squaring summands as
for H(Θ). As an alternative interpretation, observe that Hnode(Θ) increases when the correlation
between the group of a variable i and the i-th column of Θ increases. This node-wise penalty is
stronger than H(Θ), as we require that not only pairs of groups exhibit no preference in statistical
similarities but also each node must show no preference for connecting to certain groups.

For graph-based works, the predominant choice of bias metric is DP (see related works in Appendix A).
Thus, we approach the nascent task of graphical model estimation with a familiar bias metric to
verify our approach with established measurements. However, our formulation is suited to others
such as equalized odds (EO), defined in Appendix I. While both DP and EO are popular fairness
definitions, we cannot compute EO for the true precision matrix since it is conditioned on the ground
truth connections. For this reason, we emphasize DP for group fairness since a measure of bias in the
true precision matrix is critical to our theoretical interpretation of the fairness-accuracy tradeoff.

3 Fair GLASSO

3.1 Graphical Lasso for Fair GGMs

We apply our proposed metrics in (2) and (3) to estimate GGMs from observations while mitigating
both connectivity and correlation biases (see Section 2). Assume that we observe n samples from
the distribution N (0,Σ0) collected in the data matrix X ∈ Rn×p. To estimate fair and sparse
precision matrices from data, we adapt the celebrated graphical lasso method [26, 31, 32], a penalized
maximum likelihood approach for recovering GGMs.

Given the sample covariance matrix Σ̂ = 1
nX

⊤X, we present Fair GLASSO, a version of graphical
lasso for fair GGMs,

Θ∗ = argmin
Θ

tr(Σ̂Θ)− log det(Θ+ ϵI) + µ1 ∥ΘD̄∥1 + µ2RH(Θ)

s.t. Θ ∈ M := {Θ ∈ Rp×p : Θ ⪰ 0, ∥Θ∥22 ≤ α}, (4)

where RH denotes a bias penalty measuring the fairness of Θ and µ1, µ2 ≥ 0 tune the encouragement
of sparse and fair precision matrices, respectively. For the penalty RH , we can choose not only our
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proposed metrics H and Hnode but also any metric for measuring bias on graphs. Similar to existing
works on graph Laplacian GGMs [33], the addition of ϵI for ϵ > 0 adds practicality to our approach,
permitting us to obtain positive semi-definite precision matrices. The ability to estimate rank-deficient
matrices allows for disconnected graph solutions. We assume that the true precision matrix Θ0

has bounded eigenvalues (see AS2 and AS3 in Section 3.2), hence the constraint ∥Θ∥22 ≤ α on
the spectral norm of Θ for large enough α > 0. In practice, an effective α can be obtained by
overshooting its value based on the minimum eigenvalue of the sample covariance Σ̂. For further
context of how both our proposed bias metrics H and Hnode and our Fair GLASSO method relate
to existing works, we provide a detailed review of related works in Appendix A. We present our
approach for estimating GGMs, but indeed we may consider other distributions for the problem
formulation in (4), such as the Ising negative log-likelihood. As our theoretical analysis requires
Gaussianity, we proceed under this assumption, but future work will see the application of fair
regularization to other distributions. Moreover, our empirical results in Section 4 show satisfactory
performance optimizing (4) even for real-world datasets with non-Gaussian data.

3.2 Fair GLASSO Theoretical Analysis

We theoretically characterize the performance of Fair GLASSO. In particular, we focus on the effect
of our fairness penalty in (4). Our result demonstrates the error rate of Θ∗ not only from a traditional
statistical perspective but also in terms of the bias in the true precision matrix Θ0. Indeed, as Θ0

becomes more unfair, we expect that imposing unbiased estimates hinders estimation performance.
Let the set S := {(i, j) ∈ [p]2 : [Θ0]ij ̸= 0, i ̸= j} contain the indices of the non-zero, off-diagonal
entries of Θ0. We first share the following assumptions on Θ0 and Z.

AS1 (Bounded sparsity) There exists a constant s > 0 such that the cardinality of S satisfies |S| ≤ s.

AS2 (Bounded spectrum) There exists a constant k > 0 such that λmin(Σ0) ≥ k > 0.

AS3 (Bounded spectrum) There exists a constant k̄ > 0 such that λmax(Σ0) ≤ k̄ < ∞.

AS4 (Persistent groups) All groups have the same size, that is, pa = p̄ ≥ 2 for every a ∈ [g].

Assumptions AS1, AS2, and AS3 follow those from the distinguished work [32]. Note that AS4 is
imposed for simplicity, but similar results hold if we merely require asymptotically similar groups
sizes, where no groups vanish as p → ∞. With our assumptions in place, we present our main result
on the error rate of Fair GLASSO, the proof of which can be found in Appendix B.

Theorem 1 Assume that AS1 to AS4 hold and that µ1 ≍
√

(log p)/n and µ2 = o(1). Moreover, let
RH = H from (2) and ϵ = 0 in (4). With probability tending to 1 as n, p → ∞, there exist constants
m1,m2 > 0 such that

∥Θ∗ −Θ0∥F ≤ m1

√
(p+ s) log p

n
+m2

√
g 4
√
H(Θ0)√
p

. (5)

Moreover, there exists a constant q > 0 such that if µ2 satisfies

µ2
2 ≤ qp2 log p

g2n
√
H(Θ0)

, (6)

then with probability tending to 1 as p → ∞ we can further guarantee that

∥Θ∗ −Θ0∥F ≤ m1

√
(p+ s) log p

n
. (7)

Our error bound consists of the Frobenius norm convergence rate for graphical lasso in [32] and a
term accounting for the bias penalty in (4). In particular, the second term in (5) portrays the influence
of bias in the true precision matrix Θ0. Theorem 1 not only provides an intuitive error bound for fair
estimation of GGMs but also exemplifies when a tradeoff between fairness and accuracy may occur.
When the true model Θ0 is biased, that is, H(Θ0) is large, then performance may suffer according
to (5). However, if bias mitigation is mild enough, that is, if µ2 is small enough to satisfy (6), then we
instead enjoy the error rate of [32] with no adverse effect from the bias penalty. Indeed, as the true
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Θ0 becomes fairer, so too grows the range of values of µ2 that guarantee (7). Thus, if Θ0 is unbiased,
then imposing a strong bias penalty can obtain fair estimates Θ∗ while maintaining accuracy.

In addition to the explicit Frobenius error rate of Θ∗, we are also interested in when we can
sufficiently describe the true model behavior. Our next result shows how well Fair GLASSO solutions
approximate the true distribution, which enjoys the same rate as in Theorem 1, proven in Appendix C.

Corollary 1 Let the assumptions of Theorem 1 hold. Then, with probability tending to 1 as n, p → ∞,
there exist constants m′

1,m
′
2 > 0 such that

∥Θ∗Σ0 − I∥F ≤ m′
1

√
(p+ s) log p

n
+m′

2

√
g 4
√
H(Θ0)√
p

. (8)

Moreover, there exists a constant q > 0 such that when µ2 satisfies (6), then with probability tending
to 1 as p → ∞ we can further guarantee that

∥Θ∗Σ0 − I∥F ≤ m′
1

√
(p+ s) log p

n
. (9)

Note that a similar rate to (9) holds up to a constant if we replace Σ0 with Σ̂. Thus, we may apply
∥Θ∗Σ̂− I∥F as an error metric when the true covariance matrix Σ0 is unavailable.

3.3 Algorithmic Implementation

Algorithm 1: Fair GLASSO from Gaussian observations.

Input: Sample covariance Σ̂, weights µ1 and µ2,
Lipschitz constant L of f .

1 Initialize Θ̂
(0)

= Θ̌
(1) ∈ M, t(1) = 1, k = 1.

2 while Stopping criteria not met do
3 Proximal gradient descent: Θ̇

(k)
= Tµ1/L

(
Θ̌

(k) − 1
L
∇f(Θ̌

(k)
)
)

.

4 Projection step: Θ̂
(k)

= ΠM
(
Θ̇

(k))
.

5 Adaptive step size update: t(k+1) = 1
2

(
1 +

√
1 + 4(t(k))2

)
.

6 Accelerated update: Θ̌
(k+1)

= Θ̂
(k)

+ t(k)−1

t(k+1)

(
Θ̂

(k) − Θ̂
(k−1)

)
.

7 Update iteration: k = k + 1.
8 end

Output :Estimated precision matrix Θ̂ = Θ̂
(k)

.

If we choose RH in (4)
as H or Hnode, the
convexity of the resul-
tant problem allows us
to introduce a simple
yet effective algorithm
for Fair GLASSO esti-
mates. We base our
approach on an acceler-
ated proximal gradient
method known as fast iter-
ative shrinkage algorithm
(FISTA) [34], which is
well suited to solving non-
smooth, constrained opti-
mization problems. More-
over, our ensuing FISTA approach is still applicable under other distributions as long as the associated
loss in (4) is convex and differentiable, such as the negative log-likelihood of the Ising model.

We separate the Fair GLASSO objective function F (Θ) = f(Θ) + h(Θ) into its smooth and
non-smooth terms via f(Θ) and h(Θ), respectively, which are given by

f(Θ) := tr(Σ̂Θ)− log det(Θ+ ϵI) + µ2RH(Θ), h(Θ) := µ1∥ΘD̄∥1. (10)

The proposed algorithm to estimate Θ∗ is presented in Algorithm 1. We discuss the steps of our
algorithm in Appendix D, and we provide further details in Appendix E, including specifying the
gradient ∇Θf and the Lipschitz constant of f when RH = H or RH = Hnode.

Computationally, the complexity of Algorithm 1 is limited by an eigendecomposition in the projection
step and a matrix inverse in the proximal gradient descent step (see (50) and (51) in Appendix D for
details). Over-the-shelf implementations of these operations render a computational complexity of
O(p3). However, implementations based on fast matrix multiplication may result in an improved
complexity of O(p2.4), a remarkable improvement since the optimization problem involves learning
p2 variables. Finally, in addition to a mild computational complexity, the proposed algorithm enjoys
a convergence rate of O( 1

k2 ), which we formally state next and prove in Appendix F.
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Figure 2: Estimation performance in terms of error and bias. (a) Bias and error for estimating a fair
graph as data becomes more biased. (b) Bias and error as graph size p grows for ER graphs. (c) Bias
and error for a biased real-world network [23] as the number of observations n grows.

Theorem 2 Let {Θ̂
(k)

}k≥1 be the sequence generated by Algorithm 1 for solving the optimization
problem (4), where we denote the global minimum by Θ∗. Then, for any k ≥ 1,

∥Θ̂
(k)

−Θ∗∥2F ≤ 4L∥Θ(0) −Θ∗∥2F
α(k + 1)2

, (11)

where L is the Lipschitz constant of f(Θ) and α corresponds to the spectral constraint in (4).

Thus, Theorem 2 guarantees convergence of Algorithm 1 to the optimal solution Θ∗ under our
constraints in (4) with either of our bias metrics in (2) or (3). Not only are the convex fairness
penalties amenable to efficient algorithms with well-understood performance guarantees, we also
are able to guarantee that our algorithm converges with respect to the estimation variable, which is
stronger than previous works’ results on convergence of the objective function [35].

4 Experiments

We illustrate the ability of Fair GLASSO to reliably estimate both synthetic and real-world graphs
from data while promoting unbiased connections. Extensive experimental details including our
performance metrics, the baselines with which we compare, and the real-world datasets are provided
in Appendix G; these details are summarized here. We include additional experiments on the effect
of varying the hyperparameters µ1 and µ2 and violating assumptions (AS1)-(AS4) of Theorem 1 on
Appendix H.

We compare our method with existing approaches for both scalability and performance. In particular,
we consider (i) GL: Traditional graphical lasso [26], (ii) FGL: Fair GLASSO with RH = H , (iii)
NFGL: Fair GLASSO with RH = Hnode, (iv) FST: Network inference from spectral templates with
a group-wise bias penalty [18, 36], (v) NFST: Network inference from spectral templates with a
node-wise bias penalty [15, 18], and (vi) RWGL: Graphical lasso with randomly rewired edges.

We then perform GGM estimation on multiple real-world networks: (i) Karate club: the social
network of Zachary’s karate club members [23], (ii) School: A contact network of high school
students [37], (iii) Friendship: The friendship network of the same high school students as in
School [37], (iv) Co-authorship: An author collaboration network [38], and (v) MovieLens: A
movie recommender network [39]. Figure 1 demonstrated that interconnected data may have fair
or unfair relationships; thus, our experiment not only exemplifies the viability of our approach for
real-world settings but also the fairness-accuracy tradeoff depending on biases in data.

4.1 Estimating Fair Graphs with Biased Data

Consider the realistic setting where our model is to be implemented in a fair setting, but our observa-
tions contain unfair biases [8]. We aim to obtain accurate graphical models by reducing the biases
encoded in data. We consider synthetic networks whose nodes show no preferential connections, but
our observations become increasingly unfair, growing in preference for within-group correlations.

Figure 2a presents the error and bias from networks estimated using graphical lasso with and without
bias penalties H and Hnode. As expected, all methods show an increase in both error and bias as the
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data becomes more unfair, as our observations are not only straying from the true distribution but
also tending toward unfair behavior. However, FGL and NFGL not only preserve a lower bias than
GL, but we also improve estimation performance. This significant result exemplifies the situation
described in Section 3.2; our proposed penalties not only yield unbiased estimates but also serve as
informative priors when the underlying graph is fair. Thus, we enjoy improvement in both fairness
and accuracy for this realistic setting.

4.2 Performance as Graph Size Increases

Nodes p GL FGL-0 FGL-1

50 2.06 0.55 0.64
200 18.80 8.14 8.87
1000 10225.74 1900.89 1893.57

Table 1: Running time in seconds of Algo-
rithm 1 and graphical lasso via [26].

Fair GLASSO adapts traditional GGM learning
through the bias penalty, which includes (2) and (3).
To observe the regularization effect of our penalties,
we compare graphical lasso both with and without
bias penalties for estimating synthetic networks as
the graph size p grows, which also demonstrates the
scalability of our method. We thus implement GL
via a state-of-the-art approach for comparison [26].
Figure 2b shows the relationship between error and bias in the estimated graphs. Each line corre-
sponds to a graph estimation method, and points on the lines denote the varying dimension, ranging
from p = 50 (highlighted via darker, filled markers) to p = 1000.

First, observe that GL achieves superior accuracy at the expense of a larger bias, while NFGL
improves bias, albeit with greater error. In contrast, FGL for µ2 ∈ {1, 10} can improve bias without
sacrificing accuracy, where µ2 = 10 yields the most Pareto-optimal solution. This result aligns
with Theorem 1, showcasing the ability of Fair GLASSO to maintain estimation performance while
significantly improving the fairness of the obtained graph. Critically, even as p increases, our method
enjoys relatively short running times, ranging from 0.5 seconds for 50 nodes to 30 minutes for 1000,
which we show in Table 1. Our implementation of the classical algorithm in [26] requires 2 seconds
and 170 minutes for p = 50 and p = 1000, respectively. We can then conclude that our efficient
algorithm for Fair GLASSO can sufficiently handle larger graphs.

4.3 Social Network with Synthetic Signals

We next apply Fair GLASSO for the Karate club network, a real-world graph with known biased
connections [23]. As this network famously exhibits group-wise modularity [22], we can compare
different methods for estimating a real biased network. We show bias and error as the number of data
samples increases from n = 102 (denoted by darker, filled markers) to n = 105 in Figure 2c. Since
this graph does not have data, we generate synthetic Gaussian observations on the social network.
Note that we only consider synthetic samples for this real-world dataset; the remainder are equipped
with a set of real graph signals. In addition to the previously considered baselines, we also compare
to FGL-L1 and NFGL-L1, which correspond to Fair GLASSO using the group-wise and node-wise
bias metrics in [18] as the penalty RH . These metrics may prioritize balancing some group pairs over
others, as described in Section 2.1.

For all methods, increasing the number of samples improves estimation error, but bias also grows
since the underlying graph is unfair. Observe that all alternatives to GL are able to reduce estimation
bias. As expected, randomly rewiring edges from graphical lasso estimates in RWGL does mildly
improve bias when compared to GL, but error also rises significantly. The methods designed for fair
graph estimation achieve the greatest improvement in bias, with our proposed methods FGL and
NFGL outperforming FST and NFST in both bias and error. We also observe that FGL and NFGL
using our bias metrics H and Hnode with squared terms improve both fairness and accuracy over
FGL-L1 and NFGL-L1 using the analogous metrics in [15, 18], which consider sums of absolute
values of each term. Moreover, not only does FGL outperform other methods in both fairness and
accuracy for all n, but FGL is the only approach that simultaneously decreases bias and error. Fair
GLASSO is therefore viable for estimating real-world networks with known biased connections.

We also investigate the effect of H versus Hnode for estimating group-wise modular networks.
Figure 3 visualizes three graphs learned using GL, FGL, and NFGL. Both FGL and NFGL attempt
to mitigate biased connections by reducing larger weights for existing within-group edges. However,
since FGL aims to improve bias in expectation, Figure 3b shows an increase in negative within-group
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(a) GL: Graphical lasso (b) FGL: Fair GLASSO with
bias penalty H

(c) NFGL: Fair GLASSO with
bias penalty Hnode

Figure 3: Estimated Karate club network via graphical lasso with and without penalties H and
Hnode. Node colors denote group membership, while edge thickness denotes edge weight magnitude
and edge color its sign, with blue (red) as positive (negative) correlation. (a) Estimation via GL. (b)
Estimation via FGL. (c) Estimation via NFGL.

edges, that is, negative partial correlations between nodes in the same group. Conversely, Figure 3c
shows a network with more balanced connections per node, where more nodes are connected to new
edges that are both positive and negative. This result suggests that the bias metric H for group-wise
balance in expectation aligns more with existing definitions of DP, while the node-wise DP gap Hnode

behaves closer to an individual fairness metric [40, 41].

4.4 Fair GGMs for Real-World Data

Finally, in Table 2 we evaluate Fair GLASSO to estimate graphs from four real-world datasets
consisting of two social networks, School and Friendship with gender as the sensitive attribute;
a collaboration network Co-authorship with groups representing the type of conference in which
each author publishes most; and a recommendation network MovieLens, where we consider binary
sensitive attributes for each movie (node) denoting whether or not the movie was released after
1991. Evaluating Fair GLASSO on these datasets not only demonstrates its effectiveness on relevant
real-world scenarios with biases, which are described in greater detail in Appendix G, but we can
also showcase performance on non-Gaussian data, such as the discrete graph signals of the School
and Friendship social networks. As each network varies in level of biases in their connections and
observations, we show results for both weak and strong bias mitigation, that is, µ2 ∈ {1, 106}, for all
fair graph learning methods.

For the relatively unbiased School and Friendship networks, our methods FGL and NFGL obtain
superior estimation accuracy while sufficiently accounting for biases, particularly in comparison with
FST and NFST. Unsurprisingly, we observe the lowest estimation error when µ2 = 1 is small enough
such that FGL and NFGL achieve similar bias to Ground truth. However, observe that FGL and
NFGL have low estimation error even for large µ2 = 106, which enjoys significant bias reduction.
This verifies the results from Theorem 1 and in Figure 2a for real-world data; when the underlying
graph is fair, our bias penalties serve as informative structural priors that improve performance.

For the Co-authorship network, we also observe the best accuracy using FGL and NFGL when µ2

is small enough that bias is similar to that of the true network. Critically, even when µ2 is large, we
observe errors for FGL and NFGL competitive with GL while also achieving low bias. Moreover, for
the MovieLens dataset, Fair GLASSO is the only method that rivals GL in accuracy while acquiring
significantly fairer estimates. Indeed, FGL with µ2 = 106 is the only method to achieve both low
error and bias simultaneously. This implies that the observations in both the Co-authorship and
MovieLens datasets are biased, since high bias mitigation yielding fair estimates improves estimation
performance. Thus, we demonstrate that relationships in real data can be explained by graphical
models rivaling the accuracy of state-of-the-art approaches while also exhibiting fairer behavior.
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School Co-authorship MovieLens Friendship
Error Bias Error Bias Error Bias Error Bias

Ground truth – 0.2030 – 14.052 – 0.6791 – 0.1487
GL 0.2661 0.3111 0.1995 12.6102 0.0223 0.9529 0.6477 0.4068
RWGL-150 0.3497 0.3943 0.2308 12.5836 2.1919 0.9409 0.6509 0.4068
RWGL-300 0.3775 0.5110 0.2978 12.5735 2.2002 0.9184 0.6633 0.3861
FST (µ2 = 1) 0.4383 0.8942 0.4188 0.5754 0.1724 4.0568 1.0606 0.3787
NFST (µ2 = 1) 0.4386 0.8924 0.4068 6.6887 0.1724 4.0568 1.1149 0.3734
FST (µ2 = 106) 1.7820 1.0767 1.0801 129.5384 0.1724 4.0568 1.1924 0.0052
NFST (µ2 = 106) 1.6131 3.1971 1.0500 176.6285 0.1724 4.0568 1.1852 0.0081
FGL (µ2 = 1) 0.1417 0.4824 0.1896 10.3317 0.0253 0.8177 0.0505 0.1657
NFGL (µ2 = 1) 0.1417 0.4824 0.1895 11.8391 0.0253 0.8177 0.0505 0.1657
FGL (µ2 = 106) 0.1449 0.0308 0.2432 0.1899 0.0248 0.6106 0.0516 0.0153
NFGL (µ2 = 106) 0.2981 0.0827 0.2708 0.7908 0.0239 0.7104 0.0873 0.0243

Table 2: Bias and error for estimating four real-world networks. The top row shows the bias present
in the true underlying network. The best performances are in bold.

5 Conclusion

This work proposes two metrics to evaluate bias in graphical models, which we apply as regularizers
for fair GGM estimation. In particular, we adapt DP to measure biases in the conditional dependence
structure encoded in graphical models, where nodes may show preferences for certain groups in terms
of either connections or correlations. Unlike existing works that typically only consider fairness based
on the unweighted topology of a known graph, we extend the concept of graph DP for the weighted
connectivity patterns represented by the precision matrix of a Gaussian distribution. Moreover, we
apply our group fairness for graphical models to modify graphical lasso for estimating fair GGMs.
Future work will see more general graphical models, along with other extensions both in terms of the
graph setting and fairness, which we discuss further in Appendix I.

Broader Impact

In this work, we proposed a fair adaptation of graphical lasso, an extremely prominent method
for complex data analysis. The development of methods that encourage fairness is necessary to
ensure ethical and trustworthy tools, particularly those applied as extensively as GGMs to several
critical and sensitive applications. Biases present in real-world graphs are well known, such as biased
connections due to gender in social network analysis or segregated communities of co-authors in
different disciplines. We revealed that these graphical biases extend beyond preferences in connections
to include within-group correlations in behavior. Indeed, while intuitive, the tendency for group
members to behave similarly has not been investigated for graphical models, as bias in signed edges
has not been considered. Our paper contributes to expanding available unbiased graph-based methods,
leading to extensions of other graphical models and statistical tools.

Moreover, as fairness on graphs is still nascent, several graph-based tasks have yet to be considered
under the lens of fairness. Indeed, models are typically encouraged to be unbiased with respect to
independent entities, but recent years have seen greater attention paid to the treatment of data equipped
with graphical relationships. We not only participate in this movement, but we also extend fairness
on graphs by considering weighted and signed edges for graphical models encoding conditional
dependencies. This paper serves as a critical step in developing fair graph-based tools, particularly as
GGMs are used in several high-stakes fields, including finance and medicine.
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A Related Work

A.1 Graph Estimation

Obtaining graphical representations from data has long stood as one of the most prominent tasks
in several fields, including statistics, GSP, and more [3, 42, 43]. Maximum likelihood estimation
of GGMs was first introduced by Dempster [25], and subsequent additions of the ℓ1-norm penalty
produced the famous graphical lasso approach [31, 32, 44]. Several modifications and extensions
followed, typically proposing alternative penalties [4, 45–49], and its popularity has brought about
copious theoretical investigation into its performance, its limitations, and more [26, 32, 50–52].
While Gaussianity is typical for estimating graphs, extensions to non-Gaussian distributions are also
well studied [53–55]. Similar approaches have found use in GSP, both under additional constraints
and in more general settings [33, 36, 56, 57].

Most works learn graphs from data solely to preserve some notion of fidelity that may potentially
be aided by prior structural assumptions [58, 59]. However, estimating graphs while improving
performance in both accuracy and fairness in connections remains novel [18]. Moreover, to the best of
our knowledge, we are the first to estimate graphical models from data while explicitly encouraging
fairness in its connections, particularly in terms of both connectivity and correlation bias [16].

A.2 Fairness on Graphs

Fairness in graph-based tasks has received much attention recently, particularly in the field of
machine learning. In addition to group fairness [13, 14], some works consider other definitions
such as individual or structural fairness [40, 41, 60]. The most prevalent tasks for fairness on
graphs are link prediction [12, 14, 19, 61, 62] and node representation [12, 13, 62–64], where
nodes must experience equal treatment regardless of their sensitive attributes. Some works directly
alter graph structure to promote unbiased connections, but, unlike our work, this requires a known
graph [14, 19, 29, 30, 61, 65].

A number of works consider creating fair graphs, which share our goal of obtaining graph represen-
tations that possess unbiased connectivity patterns [16–18, 66]. This includes fair graph generative
models [66], which aims to learn distributions of graph data, whereas we learn graph structure from
nodal observations. We note [16–18] as the only other works of which we are aware that estimate
graphs from data while considering fair outcomes. However, for [16, 17], the task is fundamentally
different as they aim to cluster nodes fairly without explicitly imposing fairness on graph structure.
While the task in [18] is the same as ours, we differ not only in how our samples are modeled
but also in our definition of fairness, which is specific to graphical models encoding conditional
dependence. Moreover, we provide further theoretical results, including guarantees of both error rates
and algorithmic convergence.

B Proof of Theorem 1

Our proof of Theorem 1 is inspired by that of [32]. While some steps in this work are analogous to
those of our result in Theorem 1, the presence of the bias penalty yields subtle differences. Thus,
we elaborate on all steps of the proof to demonstrate deviations from the original result along with
providing a self-contained result for clarity. We first require the following lemma [67, Lemma A.3],
which allows us to bound differences between entries of estimated and true Gaussian covariance
matrix entries with high probability.

Lemma 1 (Bickel and Levina [67]) For iid Gaussian random vectors Zi ∼ N (0,S) for i ∈ [n]
such that λmax(S) ≤ k̄ < ∞, we have that

P

[∣∣∣∣∣
n∑

ℓ=1

ZiℓZjℓ − Sij

∣∣∣∣∣ ≥ nϵ

]
≤ c1 exp{−c2nϵ

2}, (12)

where ϵ > 0 is bounded, and c1, c2, and ϵ are dependent only on k̄.

15

139603 https://doi.org/10.52202/079017-4429



We proceed with the proof of (5) in the statement of Theorem 1. Consider a function Q that measures
the difference in the objective of (4) given Θ ∈ M and the true precision matrix Θ0,

Q(Θ) := tr(Σ̂Θ)− log detΘ+ µ1 ∥ΘD̄∥1 + µ2H(Θ)

− tr(Σ̂Θ0) + log detΘ0 − µ1 ∥[Θ0]D̄∥1 − µ2H(Θ0)

= tr((Σ̂−Σ0)(Θ−Θ0)) + tr(Σ0(Θ−Θ0))− (log detΘ− log detΘ0)

+ µ1

(
∥ΘD̄∥1 − ∥[Θ0]D̄∥1

)
+ µ2

(
H(Θ)−H(Θ0)

)
. (13)

We may also represent the objective difference in terms of the disparity between Θ and Θ0, that is,
G(∆) = Q(Θ0 +∆) for ∆ = Θ−Θ0, where we have

G(∆) = tr((Σ̂−Σ0)∆) + tr(Σ0∆)−
(
log det(Θ0 +∆)− log detΘ0

)
+ µ1

(
∥(Θ0 +∆)D̄∥1 − ∥[Θ0]D̄∥1

)
+ µ2

(
H(Θ0 +∆)−H(Θ0)

)
. (14)

We may then use Q and G to compare Θ∗ and Θ0 via their difference under the objective function of
our proposed graphical lasso problem (4).

By the definition of Θ∗ ∈ M as the minimizer of (4), we have that Q(Θ∗) ≤ 0 and thus G(∆∗) ≤ 0
for ∆∗ = Θ∗ −Θ0. If we can show that G(∆) > 0 for every ∆ ∈ M such that

∥∆∥F > m1rn +m2
g 4
√

H(Θ0)√
p

(15)

where

rn :=

√
(p+ s) log p

n
(16)

for some constants m1,m2 > 0, then we know that ∥∆∗∥F satisfies (5) in Theorem 1, as desired.
To this end, we obtain a lower bound of G(∆) and determine the conditions under which we can
guarantee that G(∆) > 0 for any ∆ ∈ M such that (15) holds.

Trace difference. We begin by addressing the first term of (14). These steps are analogous to those
of [32]. By the triangle inequality, we define nonnegative values t1 and t2 such that

∣∣∣tr((Σ̂−Σ0)∆)
∣∣∣ ≤

∣∣∣∣∣∣
∑
i ̸=j

(Σ̂ij − [Σ0]ij)∆ij

∣∣∣∣∣∣+
∣∣∣∣∣

p∑
i=1

(Σ̂ii − [Σ0]ii)∆ii

∣∣∣∣∣ =: t1 + t2, (17)

for which we provide an upper bound. To bound t1, note that by Lemma 1, we may choose any
constant c1 > 0 such that

|Σ̂ij − [Σ0]ij | =

∣∣∣∣∣ 1n
n∑

k=1

XkiXkj − [Σ0]ij

∣∣∣∣∣ ≥ c1

√
log p

n
(18)

with probability at most d1p−d2c
2
1 for constants d1, d2 > 0. Then, by the union sum inequality,

P

[
max
i̸=j

|Σ̂ij − [Σ0]ij | ≥ c1

√
log p

n

]
= P

⋃
i ̸=j

|Σ̂ij − [Σ0]ij | ≥ c1

√
log p

n


≤
∑
i ̸=j

P

[
|Σ̂ij − [Σ0]ij | ≥ c1

√
log p

n

]
≤ d1(p

2 − p)p−d2c
2
1 ≤ d1p

−d3 , (19)

where c1 >
√
2/d2 and d3 > d2c

2
1 − 2. We then apply the Cauchy-Schwarz inequality for the

following bound on t1,

t1 ≤ max
i ̸=j

∣∣∣Σ̂ij − [Σ0]ij

∣∣∣ · ∥∆D̄∥1 ≤ c1

√
log p

n
∥∆D̄∥1 , (20)
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whose probability tends to 1 as p → ∞ as in the right-hand side of (19).

For t2, we again apply the Cauchy-Schwarz inequality and Lemma 1 to obtain

t2 ≤
( p∑

i=1

(Σ̂ii − [Σ0]ii)
2

)1/2

· ∥∆D∥F

≤ √
pmax

i∈[p]
|Σ̂ii − [Σ0]ii| · ∥∆D∥F

≤ c2

√
p log p

n
· ∥∆D∥F

≤ c2rn ∥∆D∥F (21)
with probability again approaching 1 as p → ∞.

We combine (20) and (21) to obtain a lower bound of the first term of (14),

tr((Σ̂−Σ0)∆) ≥ −
∣∣∣tr((Σ̂−Σ0)∆)

∣∣∣ ≥ − c1

√
log p

n
∥∆D̄∥1 − c2rn ∥∆D∥F . (22)

Log-determinant difference. We next consider the difference of log determinants in G(∆) which
differs from the proof of [32] as we consider an inequality in (15) rather than an equality. Consider
the function f(t) = log det(Θ0 + t∆). The derivative and second derivative of f(t) are

f ′(t) = tr((Θ0 + t∆)−1∆), (23)

f ′′(t) = −tr(∆(Θ0 + t∆)−1∆(Θ0 + t∆)−1), (24)
respectively. Then, the Maclaurin series expansion of f(1) with the integral form of the remainder is

f(1)− f(0) = f ′(0) +

∫ 1

0

f ′′(v)(1− v)dv, (25)

so by the symmetry of Θ0 and ∆ we apply the Kronecker product for
log det(Θ0 +∆)− log detΘ0

= tr(Σ0∆)−
∫ 1

0

(1− v)tr(∆(Θ0 + v∆)−1∆(Θ0 + v∆)−1)dv

= tr(Σ0∆)− vec(∆)⊤
[∫ 1

0

(1− v)(Θ0 + v∆)−1 ⊗ (Θ0 + v∆)−1dv

]
vec(∆). (26)

Recall that the definition of the smallest eigenvalue of a matrix A is λmin(A) = minx:∥x∥2=1 x
⊤Ax.

We thus have
log det(Θ0 +∆)− log detΘ0

≤ tr(Σ0∆)− ∥∆∥2F λmin

(∫ 1

0

(1− v)(Θ0 + v∆)−1 ⊗ (Θ0 + v∆)−1dv

)
≤ tr(Σ0∆)− ∥∆∥2F

∫ 1

0

(1− v)λ2
min(Θ0 + v∆)−1dv (27)

since the eigenvalues of the Kronecker product of two matrices are the products of their eigenvalues.
Then, we have that

log det(Θ0 +∆)− log detΘ0 ≤ tr(Σ0∆)− 1

2
∥∆∥2F min

v∈[0,1]
λ2
min(Θ0 + v∆)−1

≤ tr(Σ0∆)− 1

2
∥∆∥2F λ2

min(Θ0 +∆)−1

= tr(Σ0∆)− 1

2
∥∆∥2F λ−2

max(Θ0 +∆)

≤ tr(Σ0∆)− 1

2
∥∆∥2F (∥Θ0∥2 + ∥∆∥2)

−2

≤ tr(Σ0∆)− 1

2
∥∆∥2F (k−1 + ∥∆∥F )

−2. (28)
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We define τ := max{4, (1 + k ∥∆∥F )2}, which gives us

log det(Θ0 +∆)− log detΘ0 ≤ tr(Σ0∆)− 1

2
∥∆∥2F

(
k−1 max{2, k ∥∆∥F + 1}

)−2

≤ tr(Σ0∆)− 1

2τ
k2 ∥∆∥2F . (29)

Sparsity penalties. For the sparsity penalties, note that by the definition of S, we may follow
the steps in [32] and exploit the fact that ∥[Θ0 +∆]D̄∥1 = ∥[Θ0 +∆]D̄∩S∥1 + ∥∆D̄∩S̄∥1 and
∥[Θ0]D̄∥1 = ∥[Θ0]D̄∩S∥1. Then, by the triangle inequality,

µ1(∥[Θ0 +∆]D̄∥1 − ∥[Θ0]D̄∥1) ≥ µ1(∥∆D̄∩S̄∥1 − ∥∆D̄∩S∥1). (30)

DP gaps. Finally, we consider the difference in DP gaps. Observe that H(Θ) is both differentiable
and convex in Θ. Thus, we have that

H(Θ0 +∆)−H(Θ0) ≥ tr(∇ΘH(Θ0)∆)

≥ − |tr(∇ΘH(Θ0)∆)|
≥ − |tr(∇ΘH(Θ0)Θ0)| − |tr(∇ΘH(Θ0)Θ)|
≥ − ∥∇ΘH(Θ0)∥∗ (∥Θ0∥2 + ∥Θ∥2)

≥ −
(
α1/2 + k−1

)
∥∇ΘH(Θ0)∥∗ . (31)

Moreover, recall that by definition Cab is block-wise constant for every a, b ∈ [g]. Thus, the gradient
∇ΘH(Θ0) as in the right-hand side of (51) is block-wise constant with g blocks, hence it is at most
rank g. We then have that

∥∇ΘH(Θ0)∥∗ ≤ √
g ∥∇ΘH(Θ0)∥F

≤
2
√
g

g2 − g

g∑
a=1

∑
b ̸=a

tr(CabΘ0) ∥Cab∥F

=
2
√
g

g2 − g

g∑
a=1

∑
b ̸=a

|tr(CabΘ0)|
(

1

p̄2 − p̄
+

1

p̄2

)1/2

≤
4
√
g

p̄(g2 − g)

g∑
a=1

∑
b ̸=a

|tr(CabΘ0)|

≤
4
√
g

p̄
√
g2 − g

 g∑
a=1

∑
b̸=a

|tr(CabΘ0)|2
1/2

, (32)

where the last inequality holds by ∥x∥1 ≤
√
m ∥x∥2 for any vector x ∈ Rm. By the definition of H ,

∥∇ΘH(Θ0)∥∗ ≤
4
√
g

p̄

√
H(Θ0). (33)

We then have the following lower bound for the difference in DP gaps,

H(Θ0 +∆)−H(Θ0) ≥ −
4
√
g(
√
α+ k−1)

p̄

√
H(Θ0) ≥ − c3g

p̄

√
H(Θ0). (34)

We now combine the lower bounds for each term in (14), that is, (22), (29), (30), and (34). For
ϵ1 < 1, we let

µ1 =
c1
ϵ1

√
log p

n
. (35)
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Then, we have that

G(∆) ≥ 1

2τ
k2 ∥∆∥2F − c1

√
log p

n
∥∆D̄∥1 − c2rn ∥∆D∥F

+ µ1(∥∆D̄∩S̄∥1 − ∥∆D̄∩S∥1)−
µ2c3g

p̄

√
H(Θ0)

≥ 1

2τ
k2 ∥∆∥2F − c1

(
1 +

1

ϵ1

)
rn ∥∆D̄∥F − c2rn ∥∆D∥F − µ2c3g

p̄

√
H(Θ0)

= ∥∆D̄∥F

[
1

4τ
k2 ∥∆D̄∥F − c1

(
1 +

1

ϵ1

)
rn

]
(36)

+ ∥∆D∥F

[
1

4τ
k2 ∥∆D∥F − c2rn

]
(37)

+

[
1

4τ
k2 ∥∆∥2F − µ2c3g

p̄

√
H(Θ0)

]
, (38)

where we aim to find conditions on ∥∆∥F ensuring that each term (36), (37), and (38) are positive so
that G(∆) > 0. For the first two terms (36) and (37), we obtain the following lower bounds

∥∆D̄∥F > 4τk−2c1

(
1 +

1

ϵ1

)
rn (39)

and
∥∆D∥F > 4τk−2c2rn, (40)

respectively. For the third term (38), we have

∥∆∥2F > 4τc3µ2 ·
g

p̄

√
H(Θ0). (41)

All three conditions (40), (39), and (41) guarantee that G(∆) is positive. Combining the conditions,
we obtain a sufficient condition to ensure that G(∆) > 0,

∥∆∥F > max

{
4τk−2

(
c1

(
1 +

1

ϵ1

)
+ c2

)
rn,
√
4τc3µ2 ·

√
g

p̄
4
√
H(Θ0)

}
. (42)

Thus, there exist constants m1,m2 > 0 such that with high probability as n, p → ∞,

∥∆∥F > m1rn +m2

√
g 4
√
H(Θ0)√
p̄

. (43)

When this holds for any ∆ ∈ M, then we have shown that G(∆) > 0. Thus, since G(∆∗) ≤ 0 and
∆∗ ∈ M, we have that

∥∆∗∥F ≤ m1rn +m2

√
g 4
√
H(Θ0)√
p̄

(44)

with high probability. Recalling that gp̄ = p by AS4, we obtain the inequality in (5), as desired.
Moreover, note that if we select µ2 such that

µ2 ≤ 4τk−4

c3

(
c1

(
1 +

1

ϵ1

)
+ c2

)2
(

p̄2 log p

n
√
H(Θ0)

)

≤ 4τk−4

c3

(
c1

(
1 +

1

ϵ1

)
+ c2

)2
(
p̄(p+ s) log p

ng
√

H(Θ0)

)
, (45)

then (42) becomes equivalent to

∥∆∥F > 4τk−2

(
c1

(
1 +

1

ϵ1

)
+ c2

)
rn, (46)

and we need only satisfy ∥∆∥F > m1rn with probability tending to 1 as n, p → ∞ for any ∆ ∈ M,
which guarantees that G(∆) > 0. Again, since G(∆∗) ≤ 0, we then have with high probability as
p → ∞ that

∥∆∗∥F ≤ m1rn (47)
for small enough µ2 dependent on the dimension p, the number of samples n, the number of groups
g, and the fairness of the true precision matrix H(Θ0), satisfying (7) as desired.
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C Proof of Corollary 1

Recall that by definition, Θ0Σ0 = I. Then,

∥Θ∗Σ0 − I∥F = ∥(Θ∗ −Θ0)Σ0∥F ≤ k̄ ∥Θ∗ −Θ0∥F . (48)

The result then follows from Theorem 1 for m′
1 = k̄m1 and m′

2 = k̄m2.

D Optimization Algorithm Details

We provide an overview on computing the update steps for Algorithm 1. For each iteration, we first
take a gradient step for f(Θ), where the Lipschitz constant of f plays the role of the step size, then
we perform a proximal step over the non-smooth terms in h(Θ). The proximal step for h(Θ) is the
soft-thresholding operation for the ℓ1 norm,

Tλ(Θij) = max{|Θij | − λ, 0}sign(Θij), (49)

where sign(x) returns the sign of x. After the proximal gradient step, we perform an orthogonal
projection ΠM onto the feasible set, which in our case is given by

ΠM(Θ) = Vmin
{
max {Λ, 0} , α1/2

}
V⊤, (50)

with V and Λ respectively denoting the eigenvectors and eigenvalues of Θ, and with some abuse of
notation we let min{max{Λ, 0}, α1/2} denote an element-wise minimum and maximum operation
on the entries of Λ, which projects all the eigenvalues in the diagonal of Λ onto the interval [0, α1/2].

Both the gradient ∇Θf and the Lipschitz constant L of f are contingent on the choice of bias penalty.
The following two lemmas provide their computation for the cases where we apply RH = H , our
DP gap measurement (2), or RH = Hnode, its node-wise alternative (3). The proofs of both lemmas
are deferred to Appendix E.

Lemma 2 Let the bias penalty RH in (4) be given by H(Θ) in (2). Then, the gradient of f(Θ) is
given by

∇Θf(Θ) = Σ̂− (Θ+ ϵI)−1 +
2µ2

g2 − g

g∑
a=1

∑
b̸=a

tr(CabΘ)C⊤
ab (51)

where Cab := [zaz
⊤
a /(p

2
a − pa) − zaz

⊤
b /(papb)]D̄ for every a, b ∈ [g] such that a ̸= b. Moreover,

for C̄ :=
∑

a ̸=b Cab ⊗C⊤
ab we have that ∇Θf(Θ) is Lipschitz with constant

L1 =
1

ϵ2
+

2µ2

g2 − g
λmax(C̄) ≤ L̄1 =

1

ϵ2
+

2µ2

g2 − g

g∑
a=1

∑
b̸=a

λ2
max(Cab). (52)

Intuitively, while L1 is a smaller Lipschitz constant, it involves computing the eigendecomposition
of a p2 × p2 matrix, which may be prohibitive in higher-dimensional settings. Consequently, L̄1

provides an approximation involving only p × p matrices. The following lemma provides similar
results when the node-wise DP gap Hnode is employed.

Lemma 3 Let the bias penalty RH in (4) be given by Hnode(Θ) in (3). Then, the gradient of f(Θ)
is given by

∇Θf(Θ) = Σ̂− (Θ+ ϵI)−1 + 2µ2[AΘD̄]D̄, (53)

where

A :=
1

pg(g − 1)2

g∑
a=1

∑
b ̸=a

(∑
b ̸=a

za
pa

− zb
pb

)(∑
b̸=a

za
pa

− zb
pb

)⊤

. (54)

Moreover, ∇Θf(Θ) is Lipschitz with constant

L2 =
1

ϵ2
+ 2µ2λmax(A). (55)
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For more concrete intuition, we present a brief analysis for bias metric RH(Θ) = Hnode(Θ), but
a similar analysis holds for other penalties such as RH(Θ) = H(Θ). The first step of Algorithm 1
is a proximal gradient step. Computing the gradient requires an inverse (Θ + ϵI)−1 and product
AΘD̄, both incurring O(p3) operations. The gradient step and soft-thresholding enjoy entry-wise
computations with complexities O(p2). The projection step onto the set of positive semidefinite

matrices involves an eigendecomposition of Θ̇
(k)

with complexity O(p3). Finally, the step size update

only requires scalar operations, and the accelerated update of Θ̌
(k+1)

involves O(p2) operations, so
they can be neglected.

E Gradients and Lipschitz Constants

Here, we provide the computation of relevant gradients and Lipschitz constants for f in (10) used in
the proposed Algorithm 1. Both the gradient and the Lipschitz constant of f depend on the choice of
bias penalty H(Θ).

E.1 Proof of Lemma 2

First, we rewrite the demographic parity ∆DP in (2) as

H(Θ) =
1

g2 − g

g∑
a=1

∑
b ̸=a

tr(CabΘ)2, (56)

where Cab is defined in the statement of Lemma 2. The gradient of H can be obtained as

∇ΘH(Θ) =
2

g2 − g

g∑
a=1

∑
b̸=a

tr(CabΘ)C⊤
ab, (57)

and adding it to the gradient of the remaining terms of f(Θ), the result follows

∇Θf(Θ) = Σ̂− (Θ+ ϵI)
−1

+
2µ2

g2 − g

g∑
a=1

∑
b ̸=a

tr(ΘCab)[Cab]
⊤. (58)

Next, to show that the gradient of f(Θ) is Lipschitz, it suffices to show that its Hessian is bounded.
The Hessian ∇2

Θf(Θ) can be computed as

∇2
Θf(Θ) = (Θ+ ϵI)

−1 ⊗ (Θ+ ϵI)
−1

+
2µ2

g2 − g

g∑
a=1

∑
b ̸=a

(
Cab ⊗C⊤

ab

)
, (59)

and it is bounded by

∥∇2
Θf(Θ)∥2 ≤

∥∥∥(Θ+ ϵI)
−1 ⊗ (Θ+ ϵI)

−1
∥∥∥
2
+

2µ2

g2 − g

∥∥∥∥∥∥
g∑

a=1

∑
b̸=a

(
Cab ⊗C⊤

ab

)∥∥∥∥∥∥
2

≤ 1

ϵ2
+

2µ2

g2 − g

g∑
a=1

∑
b ̸=a

λmax(Cab) = L1. (60)

Moreover, it also follows that

∥∇2
Θf(Θ)∥2 ≤

∥∥∥(Θ+ ϵI)
−1 ⊗ (Θ+ ϵI)

−1
∥∥∥
2
+

2µ2

g2 − g

∥∥C̄∥∥
2

≤ 1

ϵ2
+

2µ2

g2 − g
λmax(C̄) = L̃1. (61)

Consequently, the gradient ∇Θf(Θ) is Lipschitz with constants L1 ≤ L̃1.
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E.2 Proof of Lemma 3

For the node-based DP gap Hnode(Θ) as in (3), applying standard gradient calculus to compute the
gradient and the Hessian of f(Θ) gives

∇Θf(Θ) = Σ̂− (Θ+ ϵI)
−1

+ 2µ2[AΘD̄]D̄, (62)

∇2
Θf(Θ) = (Θ+ ϵI)

−1 ⊗ (Θ+ ϵI)
−1

+ 2µ2 (I⊗A) . (63)
Then, the Lipschitz constant is obtained from the following upper bound of the Hessian

∥∇2
Θf(Θ)∥2 ≤ (Θ+ ϵI)

−1 ⊗ (Θ+ ϵI)
−1 ∥2 + 2µ2∥I⊗A∥2 ≤ 1

ϵ2
+ 2µ2λmax(A) = L2. (64)

F Proof of Theorem 2

Our proof builds over the convergence result for FISTA [34, Thm. 4.4], which establishes that the
sequence {Θ(k)}k≥1 generated by FISTA satisfies the following bound

F (Θ(k))− F (Θ∗) ≤ 2L∥Θ(0) −Θ∗∥2F
(k + 1)2

, (65)

where Θ∗ is the global minimum of the objective function of (4). This result requires f(Θ), the
smooth components of F (Θ), to be a convex function with Lipschitz continuous gradient, while
h(Θ), the non-smooth components of F (Θ), are only required to be convex.

From the expression of f(Θ) and h(Θ) in (10) it is clear that both terms of our objective function are
convex. Furthermore, from Lemma 2 and Lemma 3 it follows that the gradient of f(Θ) is Lipschitz
continuous when we consider RH = H or RH = Hnode, so the conditions from [34, Thm. 4.4] are
met and (65) holds.

Next, we demonstrate that the objective function F (Θ) is strongly convex. A function F (Θ) is
σ-strongly convex if F (Θ)− σ∥Θ∥2F is also convex, which implies that ∇2

ΘF (Θ)− σI ⪰ 0. Put in
words, the eigenvalues of the Hessian need to be larger than σ for F (Θ) to be σ-strongly convex. Let
f1(Θ) = tr(Σ̂Θ)− log det(Θ+ ϵI), whose Hessian is given by

∇2
Θf1(Θ) = (Θ+ ϵI)

−1 ⊗ (Θ+ ϵI)
−1

. (66)
Since Θ is constrained by ∥Θ∥22 ≤ α, applying the properties of the inverse and the Kronecker
product renders the following bound on the eigenvalues of ∇Θf1(Θ)

λmin

(
∇2

Θf1(Θ)
)
=

1

λ2
max(Θ+ ϵI)

≈ 1

λ2
max(Θ)

=
1

α
. (67)

Recall that ϵ is assumed to be a small parameter such that ϵ2 ≪ λ2
max(Θ). Consequently,

∇2
Θf1(Θ) ⪰ 1

αI, so f1(Θ) is strongly convex with constant 1
α , hence rendering F (Θ) also strongly

convex with the same constant.

The last ingredient is given by [68, Thm. 5.25], which establishes that if F (Θ) is strongly convex
with constant σ, then

∥Θ−Θ∗∥2F ≤ 2

σ
(F (Θ)− F (Θ∗)) , (68)

for every Θ in the domain of F .

Finally, our result follows from combining (65) and (68).

G Experimental Details

The following details include descriptions of our datasets, baselines, and performance metrics.
For synthetic experiments, we run simulations over 50 independent realizations of generated data.
Moreover, excepting experiments for which we test different specific parameter values, we choose
optimal values of hyperparameters via grid search.

Datasets. The numerical evaluation of the proposed algorithm is carried out over synthetic and
real-world data. The main features of the different datasets are summarized in Table 3. Additional
details are given next.
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Nodes (No.) Edges Signals (No.) Groups Sensitive attribute
School Students (126) 959 Interactions (28561) 2 Gender
Co-authorship Authors (130) 525 Keywords (1903) 6 Publication type
MovieLens Movies (200) 665 Ratings (943) 2 Old/New
Friendship Students (311) 1009 Interactions (47127) 2 Gender

Table 3: Properties of the real datasets used in Section 4.

• Synthetic data. Unless specified otherwise, graphs with p = 100 nodes are sampled from
an Erdős-Rényi (ER) random graph model with an average of 10 links per node. The
precision matrix is set to either the combinatorial graph Laplacian [33] or an adjacency
matrix with a loaded diagonal to ensure positive definiteness, and is employed to sample
graph signals from a zero-mean multivariate Gaussian distribution. The number of sampled
signals satisfies the conditions of Theorem 1. For experiments based on synthetic data,
50 independent realizations of graphs and signals are generated and we report the mean
performance.

• Karate club. A social network where the 34 nodes represent members from a karate club
and edges capture interactions between pairs of members outside the club [22, 23]. This
dataset is famously modular with respect to groups, serving as a well-known biased network
of real-world individuals. Since this graph does not have associated nodal observations, we
generate signals as multivariate Gaussian samples as described in the previous point for
synthetic data using the adjacency matrix of the social network with a loaded diagonal as
the precision matrix. Similarly, we evaluate experiments with this synthetic data over 50
independent realizations of generated signals with the mean performance reported.

• MovieLens1. This movie-recommendation dataset contains ratings for 1,682 movies by 943
users, resulting in sparse data as many movies have few ratings. Biases in recommendation
systems can reproduce and even exacerbate existing harmful stereotypes [69]. The Movie-
Lens dataset, a common benchmark for fair graph machine learning, exemplifies our ability
to form unbiased models from networks used for recommendation systems. To address this
sparsity, we followed the setup in [17] and selected the 200 most-rated movies as nodes,
using the ratings from the 943 users as graph signals. Since the dataset lacks a ground truth
graph, we report the model fit as defined in Corollary 1 rather than the error in Table 2. The
sensitive attribute for each node is determined by whether the movie was released before or
after 1991.

• Co-authorship2.The dataset includes papers from the ACM conference, featuring 17,431
authors, 122,499 papers, and 1,903 keywords. The nodes represent a subset of these authors.
The sensitive attribute associated with each author is determined by the conference type
in which that author publishes the most. We demonstrate an example of data with more
than two groups through the Co-authorship network with publication type as the sensitive
attribute. To create the ground truth graph, we analyzed author-paper relationships and
established an edge between two authors if they collaborated on a paper. For graph data
generation, we utilized the total number of different keywords, with each input graph signal
reflecting the frequency with which a specific author uses a particular keyword across
their papers. We constructed the graph by selecting a connected subset of the authors.
The associated graph signals were then used to estimate the graph through the considered
methods.

• School3. The dataset contains the temporal network of contacts between students in a
high school in Marseilles, France. In real-world social network analysis, common network
characteristics such as homophily can lead to negative outcomes across gender in both
social and academic settings [70]. Hence, both the School network and the Friendship
network described below require scrutiny with respect to fairness, where gender is a critical
consideration. The data includes the interactions of students from three classes over four
days in December 2011. We used the available contact data to construct a ground truth
graph, where nodes represent students and edges represent all interactions between them. We

1https://grouplens.org/
2https://dl.acm.org/
3http://www.sociopatterns.org/datasets/high-school-dynamic-contact-networks/
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Figure 4: Performance in terms of error and bias for estimating a fair precision matrix. (a) Error as
parameters µ1 and µ2 vary. (b) Bias as parameters µ1 and µ2 vary.

generated the signals by grouping the interactions into sets of four. Gender was considered
as sensitive attribute for each node.

• Friendship4. This dataset corresponds to the contacts and friendship relations between
students in nine classes at a high school in Marseilles, France, over five days in December
2013. Following the same procedure as with the School dataset, we used the available
contact data to generate the ground truth graph, where nodes represent students and edges
represent all interactions between them. The graph signals were generated by grouping the
interactions into sets of four, and gender was considered the sensitive attribute.

Baselines. We compare the performance of our proposed Fair GLASSO approach with the following
baselines:

• GL: The celebrated graphical lasso algorithm from [26] constitutes a workhorse alternative
to estimate the topology of the graph encoded in precision matrices. However, it ignores the
sensitive attributes of the nodes, so it is prone to include biases existing in the true graph.

• RWGL: a naive fair alternative to graphical lasso where several edges are randomly rewired
after estimating the precision matrix with GL. Since the rewiring process is independent of
the sensitive attributes of nodes, it will render a fairer estimate, but the random perturbation
may yield highly inaccurate estimates. Methods denoted “RWGL-N” for some positive
integer N represents RWGL with N edges rewired.

• FST: a fair alternative for learning the graph from stationary observations while mitigating
biases in the topology via a group-wise bias penalty [18, 36]. Different from graphical lasso,
stationary methods assume that the covariance of the observed data is a polynomial of a
matrix encoding the graph topology. This more lenient assumption typically comes at the
expense of requiring a larger number of observations.

• NFST: a variant of FST that estimates the graph topology from stationary observations
including a node-wise regularization to promote fairness [15, 18].

Moreover, note that the notation “FGL-X” for some number X denotes FGL with µ2 = X, and this
similarly holds for “NFGL-X”.

Performance metrics. To measure the error of our estimated precision matrices Θ∗, we apply the
following normalized squared Frobenius error∥∥∥∥ [Θ∗]D̄

∥[Θ∗]D̄∥F
− [Θ0]D̄

∥[Θ0]D̄∥F

∥∥∥∥2
F

(69)

for true precision matrix Θ0. When such a true matrix Θ0 is unavailable, we instead apply the left-
hand side of (8) from Corollary 1 using the sample covariance matrix Σ̂ estimated from observations.

To measure the bias in a given precision matrix Θ∗ for nodal group memberships Z, observe that
H and Hnode compute average differences in edge weights within and across groups, whether

4http://www.sociopatterns.org/datasets/high-school-contact-and-friendship-networks/
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Figure 5: Performance in terms of error and bias for estimating an unfair precision matrix. (a) Error
as parameters µ1 and µ2 vary. (b) Bias as parameters µ1 and µ2 vary.

group-wise or node-wise. Thus, for our practical bias metric we normalize by edge weight to obtain

2
√

H(Θ∗)

∥[Θ∗]D̄∥1
, (70)

that is, we take the square root of H(Θ), which acts as a squared ℓ2 norm across distinct group pairs,
and we divide by the average edge weight for unordered variable pairs.

The group-wise modularity presented in Figure 1 is defined in [19], that is,

Q(Θ) =

g∑
a=1

z⊤a ΘD̄za
2s

−
g∑

a=1

(
z⊤a ΘD̄za

2s

)2

, (71)

where s denotes the number of nonzero entries in Θ. To estimate partial correlation in Figure 1,
we apply graphical lasso without a bias penalty, and entries of the resultant precision matrix denote
estimates of partial correlation for every pair of variables.

Hardware details. The experiments are run on a computer with AMD Ryzen Threadripper 3970X
32-Core Processor, two Nvidia Titan RTX GPU, and 188GB of RAM.

H Additional Experiments

In this section, we provide additional simulations to demonstrate Fair GLASSO behavior under
hyperparameter tuning and violation of assumptions. Figures 4 and 5 of the attached document
present Fair GLASSO performance as hyperparameters µ1 and µ2 vary when estimating a fair or
unfair precision matrix, respectively. Observe that when the true precision matrix is unfair, increasing
µ2 encourages a fairer estimate and thus increases the error. Moreover, smaller values of µ2 yield
greater bias for the unfair setting in Figure 2 than the fair setting in Figure 4. While a larger µ2

decreases the bias in both settings, the effect is greater in Figure 5 for a true precision matrix that is
unfair.

Moreover, we provide additional simulations in Figure 6 where the precision matrix varies in sparsity
(AS1), the true precision matrix is rank-deficient (AS2), and the group sizes vary (AS4). Figure 6a
shows the classical graphical lasso result, where as the precision matrix grows denser, estimation error
suffers, particularly when the sparsity penalty weight µ1 is larger. In Figure 6b, we demonstrate the
effects of rankness on estimation performance. Indeed, the use of ϵ > 0 permits low-rank estimates,
and we observe relatively robust estimation error for different values of ϵ. Finally, Figure 6c shows
that as the ratio between two groups becomes small, that is, the precision matrix becomes unfair due
to imbalanced groups, error increases, particularly for larger µ2.

I Limitations and Future Work

This work focuses on group fairness via minimizing DP gap for Gaussian graphical models. While
our proposed definition of DP for graphical models does not require Gaussianity, the theoretical
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Figure 6: Performance in terms of the Frobenius error as different assumptions are violated. (a) Error
as true precision matrix becomes denser. (b) Error as eigenvalues of true precision matrix grow close
to 0. (c) Error as group sizes become increasingly imbalanced.

results and optimization algorithm require assuming both Gaussian random variables and use of our
proposed metrics. Interesting and critical extensions of this work include more general graphical
models and other ideas of fairness. Consider for instance the following adaptation of equalized odds
(EO) [21],

P
[
Θ∗

ij | [Θ0]ij , Zia = 1, Zja = 1
]
= P

[
Θ∗

ij | [Θ0]ij , Zia = 1, Zjb = 1
]
∀a, b ∈ [g], (72)

where Θ∗ denotes an estimate of the true precision Θ0, and Z is the group membership indicator
matrix. The comparison of fairness metrics for graphs warrants separate investigation since many
fairness metrics in machine learning have not yet been adapted to the graph setting. Such an analysis
of fairness metrics ought to be applied to tasks beyond graph learning and is thus out of scope of this
paper. Moreover, while we considered discrete sensitive attributes, we also aim to promote equitable
treatment for continuous sensitive traits.

Regarding the implementation of Fair GLASSO, Algoritm 1 can handle any function where the
smooth and non-smooth components are separable. In principle, this includes non-convex functions,
but the convergence result in Theorem 2 requires the smooth components to be strongly convex.
Weaker results exist for convex functions [34], but no convergence guarantees are available for
non-convex functions. In addition, Section 4.2 demonstrates the estimation of graphs with up to
1000 nodes. However, the computational complexity scales more than linearly with the number of
optimization variables, rendering our approach potentially unsuitable for graphs with millions of
nodes. Nonetheless, existing works can efficiently estimate very large graphical models, potentially
under additional assumptions [71–73]. We can combine these approaches with our proposed fairness
metrics, although we may lose our guarantee of convergence in Theorem 2.

Additional future directions include consideration of more general families of graphs. While we
consider the underexplored case of signed, weighted graphs for fairness, our work is specific to
graphical models encoding conditional dependence. We aim to consider more general interpretations
of graphs with real-valued edges, including the novel extension to directed graphs.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction claim that we make two contributions: we define
fairness for graphical models, and we propose fair GGM estimation using proposed bias
metrics. The former is provided in Section 2 and the latter in Section 3.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: In Appendix I, we detail limitations of our approach based on the explicit
assumptions made in the paper. Additionally, for future work we refer to the broader context
of fairness and graphs to point out areas outside the scope of this work.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: Each theorem and derivation both in the body of the paper and in the appendix
include the required assumptions and a reference to its associated proof in the appendix. In
particular, Theorem 1 and Corollary 1 in Section 3.2 have proofs in Appendices B and C,
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respectively, while Theorem 2 in Section 3.3 is proven in Appendix F. The reference for
Lemma 1 is provided for its associated details and proof [67], while Lemmas 2 and 3 and their
associated proofs are provided in Appendices D and E, respectively. The formal assumptions
AS1 to AS4 that are needed for Theorem 1 and Corollary 1 are stated immediately preceding
the theoretical results, while the remaining theoretical results have simpler assumptions
provided in the statement of the result.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The body of the paper includes a brief description of our experimental settings
in Section 4, and an in-detail description is included in Appendix G. Moreover, the code,
which is included in the submission for completeness, will be made available on GitHub if
the draft is accepted.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: In the supplementary material we provide the code for the experiments shown
in this paper. We also share links to all publicly availably datasets in Appendix G. The
remaining datasets are synthetic, and detailed descriptions of how they are generated are
provided in Appendix G.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Hyperparameters for optimization methods are either chosen to showcase
specific scenarios as in Sections 4.2 and 4.4 or chosen via classical hyperparameter tuning
methods as stated in Appendix G. Remaining experimental details are in Appendix G.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Our experiments in Section 4 consist of synthetic observations in Sec-
tions 4.1, 4.2, and 4.3. The results of the synthetic simulations are averaged over 50
trials; however, we observed low variance in the measured performances across 50 indepen-
dent realizations, thus we do not provide error bars. The experiments in Section 4.4 apply
real networks, and we use all available signals, so variance cannot be measured, thus we
again need not provide statistical significance test for these results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide at the end of Appendix G a summary of the compute resources
used for the experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: While simulations in Section 4 involve information of individuals via social
network analysis, these datasets are anonymized. The datasets, listed in detail in Appendix G,
are publicly available, and we do not provide any new data in this work that might be at risk
of harmful consequences. Moreover, rather than being at risk of unsafe usage, our method is
designed to promote improvement in societal outcomes.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Following Section 5, we provide a discussion on the broader impacts of this
work, which aims for improved societal outcomes.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
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(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We do not provide data or models with high risk of misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All methods in Section 4 with which we compare include the reference to the
original paper. Moreover, all real-world datasets used are publicly available and referenced
appropriately, and links to these are provided in Appendix G.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
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Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The code for both our method and our experiment from Section 4 are provided
in the supplementary material. If this manuscript is accepted, we will release the code on
GitHub for public use.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: We do not perform research using human subjects or involving crowdsourcing.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: We do not perform research using human subjects or involving crowdsourcing.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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