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Abstract

In this paper, we study the problem of learning the structure of a discrete set of
N tokens based on their interactions with other tokens. We focus on a setting
where the tokens can be partitioned into a small number of classes, and there exists
a real-valued function f defined on certain sets of tokens. This function, which
captures the interactions between tokens, depends only on the class memberships
of its arguments. The goal is to recover the class memberships of all tokens from
a finite number of samples of f. We begin by analyzing this problem from both
complexity-theoretic and information-theoretic viewpoints. We prove that it is
NP-complete in general, and for random instances, we show that on the order
of N In(N) samples, implying very sparse interactions, suffice to identify the
partition. We then investigate the conditions under which gradient flow dynamics
of token embeddings can reveal the class structure, finding that this is achievable
in certain settings when given on the order of N2 ln2(N ) samples.

1 Introduction

Modern machine learning systems are able to learn extremely complicated relations from data. They
often rely on learned embeddings of discrete tokens in a continuous space. This is notably true for
Large Language Models (LLMs) [9, 17, 25} 23]] which encode their input by converting text into a
sequence of discrete tokens that are embedded in a high dimensional embedding space and those
embeddings are fed into, e.g., a transformer architecture [28]] which allows predicting the next token.
But also in the other domains, e.g., in vision, discrete embeddings are frequently used as a component
of deep learning architectures [27, [10] as this enables capturing complex concepts that are often
discrete.

It was observed that after training, these word embeddings exhibit many interesting structures. The
most prominent example probably is the observation that the difference of the Word2Vec embedding
vectors of the nouns "king’ and ’queen’ approximately equals the difference of the embeddings of
‘man’ and "woman’ [21}122]. Similarly, it was found that using word similarity as an inductive bias to
structure latent spaces helps downstream performance [4]. Thus, a properly structured latent space
seems to be an important ingredient to capture the intricate correlations in complex data.

A proper theoretical understanding of such complex models currently remains an elusive goal.
However, there have been various attempts to understand various components of deep learning
models. Many works investigated the behavior of feedforward-networks in particular focusing on
shallow networks [2} 8] and asymptotic regimes [[15}29]. More recently, several works investigated
transformer architectures (often focusing on the one layer case with linearized attention mechanism)
(L6l 1L 130, [12]. On a technical level [[11]] is closely related as they study the large depth limit of
transformers through the lens of particle systems (however in their case time corresponds to depth,
while in our case it corresponds to training time). A feature shared by many of those works is that
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little structure is assumed on the input, i.e., fixed token embeddings are assumed and often those are
even assumed to be isotropic Gaussian.

Here we instead focus on the dynamics of the token embeddings and study how these can recover
structure present in the data. There is no ground truth target for the embeddings for large scale models
used in deep learning and their embeddings need to capture a variety of nuanced correlations and
relations that are hard to formalize. Therefore, we focus on a simplified problem that nevertheless
shares important features with more complex real world settings. One general heuristic is that the
embeddings contain information about the similarity of tokens. We focus here on the strongest form
of similarity, namely equality. Indeed, our central assumption is that tokens can be clustered in a
small number of groups such that tokens within a cluster behave exactly the same, i.e., they interact
in the same manner with other tokens.

Then the central questions is what assumptions allow us to recover a hidden structure. The crucial
feature of this setting is that we only get information about a token by its interaction with other tokens
about which we also only learn through their interaction behavior. Moreover, those interactions
are typically sparse, i.e., we observe only a small subset of all possible interactions. Note that this
setting resembles observations made in the context of collective behavior where a global structure
emerges from local interactions [13} 24, 3]]. A related question was investigated in [[6] where they
study associative memory and also want to identify a hidden structure, however, they learn the
class memberships directly through the interaction with a class embedding (and they train the
interaction instead of the embedding). In [[19] the dynamics of word embeddings and transformer
layers was investigated when the data follows a topic model. This work shares the crucial feature
that membership of a word in a certain topic is only transmitted through the co-occurrence with
other words from the same topic. In contrast to their work, we here do not focus on learning class
membership from token frequencies and in fact consider uniform token distribution. Instead, we view
this problem as a logical inference problem: Given a set of facts about a set of tokens can the hidden
structure of the tokens discovered.

We summarize the main contributions of the paper as follows:

* We introduce a learning problem that shares important features with learning through the
interaction behavior that is crucial for LLMs and complex systems.

* We analyze this problem from a complexity-theoretic viewpoint where we show that it is in
general hard, and from an information-theoretic viewpoint where we show, roughly, that
for N different tokens in the alphabet order N In(V) samples are sufficient to identify the
latent structure.

* We then carefully investigate the gradient dynamics of token embeddings, finding local
recovery of the cluster structure and global recovery for tensor-product functions on the
tokens if we have more than N2 In(/V) samples for an alphabet with N tokens.

Notation. We write [N] = {1, ..., N} for the set of the first N integers. The cardinality of a finite
set A is denoted by |A| and we also denote the standard Euclidean norm of any vector v € R? by |v].
The expressions Apax(A4) and A\pin(A) denote the largest and smallest eigenvalue of a symmetric
matrix A respectively. We denote the uniform distribution over a set A by U(A). For two subsets
A,BC RYwedenoteby A+ B ={a+b: ac Abc B} their Minkowski sum. We denote the
permutation group on k elements by G;. An overview of the used variable names can be found in
Appendix [A]

2 Setting and Motivation

In this section, we illustrate our problem with an example and define the setup more formally.
Consider the set of all animals. Those can be grouped into classes such as mammals, birds, or reptiles
(in fact there is a rich hierarchical structure which we ignore here). Those groups were conceived
by findings sets of animals that share many properties. Once these groups are found, we can predict
unobserved properties by first identifying the cluster to which an animal belongs and then predict
that the property is shared with animals in the same cluster. Note that this is a specific instance of
a general problem in scientific inference, where we want to uncover a hidden grouping of similar
entities from sparse observations about these entities.
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Figure 1: Illustration of the setting for I = 3 different groups clustered in 3, 2, and 3 subgroups
respectively. Samples consist of one element of each group, the dashed lines indicate samples (1,3, 1)
and (3,7,6).

Here our main motivation, however, stems from the analysis of large language models where a similar
problem arises implicitly during training. They are trained by next token prediction, so we do not
expect them to learn structure by deductive reasoning such as cows are mammals, and mammals have
lungs, so cows have lungs. Instead, their learning signal is whether a token can be replaced by another
token for a given context. Thus, it is a natural question whether gradient descent-based training on
token embeddings can uncover a hidden cluster structure of the data. Note that if the hidden structure
is recovered, then generalization to unseen prompts is possible.

We now introduce our formal setup that captures key aspects of the discussion. We consider [ sets of
Ny, No, ..., Ny tokens or entities (such as words). For simplicity, we identify these with tokens from
the set [IV;]. For each of the sets [IV;] there is a partition P; in K; classes which we can identify with
the set [K;]. Then we can encode the partitions through maps II, : [N;] — [K;] so that the partition
is given by P; = (Hi_1 (ki) k. e[k,]- i€, I1; encode the class membership. We consider the map

H:H1®...®HI,1.C., H(nl,...,nI):(Hl(nl),...,HI(nI)). (1)

This structure is illustrated in Figure [[|Now we assume that there is a function g : [K;] x [K>] x
-+ [Kj] — R which depends only on the classes. The map f = g o II extends this map to the
tokens such that it only depends on the group a token belongs to. In the case where g (and thus f)
maps to {0, 1} this can be interpreted as truth assignments, i.e., a statement consisting of a sequence
(n1,...,ny)is trueif f(nq,...,n;) = 1 and false otherwise and this case is the main motivation of
our work. More generally, f could output the index of a suitable next token where in the 0, 1 case 0
could correspond to a negation while 1 to an end of sentence token. Our goal is to learn the partitions
‘P; or, equivalently, IT up to a permutation and thereby identify the hidden structure.

We assume that we are given data in the form of samples (n®, f(n®) where n® = (nj,...,n}) and
n? € [N;]. In other words, we try to learn the underlying structure from the interactions of a token
with the other tokens, which is the same for every element of the partition. To simplify the notation
and statements, we assume in the following that N; = N and K; = K for some N, K and all
1 <4 < I. Our main interest concerns the case where N is large, i.e., there are many entities and K
and [ are small, i.e., the number of groups is small.

Let us summarize several features that this model shares with real world problem, such as learning
suitable embeddings in latent space.

* Hierarchical structures, i.e., groups of objects that share certain features, as discussed here,
are abundant in language and science.

* We only receive an indirect learning signal for the value of IT;(n) through its interaction
with other tokens.

* Interactions can be very complex, i.e., here the output depends on the interaction of I
different tokens and ignoring parts of the context makes learning infeasible.

On the other hand, many important features are abstracted away, e.g.:

* Here we assume that tokens from the same element of the partition interact in exactly the
same way with other tokens while in reality there are many different partitions of the tokens
depending on the broader context (e.g., we can group species by habitat, color, or, size each
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resulting in different partitions) or there are exceptions, e.g., mammals generally do not lay
eggs but the platypus does.

* Many more complex notions of similarity or further properties of embeddings such as a
vector space structure are not covered. Also, there can be many uninformative features.

* We do not consider noisy data or errors in this work, which is crucial for real world
applications.

3 Complexity-Theoretic and Information-Theoretic Analysis

We now study this learning problem in different settings. Let us first briefly discuss complexity-
theoretic and information-theoretic properties of the learning problem to understand the general
boundaries of this learning task. We first study the information-theoretic viewpoint, i.e., the question
of how many samples are necessary to identify II (and potentially g). We focus on the case where
we sample IT and the data-samples uniformly at random. To learn an unstructured map [N]! —
R we generally need of the order N’ In(/N') independent samples (N! when sampling without
replacement).

For the structured setting we show that if II is drawn uniformly at random then generally order
KTNIn(N) samples are sufficient to learn f and the partition induced by II. In other words, for
every token n; and each of the K7 classes IT~! (k) we need of the order of In(/N) samples 7 such that
II(n) = k and n; = n;. In particular, for N >> K any token will interact only with K/ In(N) < N
other tokens, i.e., a very sparse subset of the other tokens.

We require the following necessary condition for identifiability: For every k; # k. there are
ki,..., ki1, k‘i+1, .. kre [K] such that

g(kl, ceey ki—la ki, kH—la ey ]C]) 7é g(kl, ceey ki—la k;, kH—la ey k]) (2)
Note that if this condition is indeed necessary because if it is not satisfied then it is not possible to
distinguish TT; ! (k;) and TI; ' (k}). Clearly, we can generally only identify IT up to a permutation
symmetry, i.e., we can only find IT such that there are permutations 7; € & g such that IT; = ;11;.
We have the following result.

Theorem 1. Assume that g : [K]! — R is a function satisfying the assumption [2). Assume we
randomly sample maps 11; such that 11;(n;) = k; with probability K1 for all i, n;, and k; and
such that (I1;(n;))ic 1 n,e[n] are independent. Assume we are given S samples (n, g o II(n)) where
n ~ U([N]!). Then there is a constant No(I, K, n) such that with probability at least 1 — 2e~" for
N > No(I, K,n) and

S > 223 IKIN In(N) 3)

we can recover I and g up to permutations of [K|.

This result is a special case of Theorem [6]in Appendix [B] which shows similar bounds for arbitrary
maps II that are not necessarily random. In the more general setting, there are additional dependencies
on the size of the preimages 11, ! (k). Note that this dependency cannot be avoided because if there
is a k such that [II"!(k)| = 1 and g(k) = 1 and g(k’) = 0 for k # k' then order N’ samples
are necessary to find n such that II(n) = k and thus II. The general proof idea is to bound the
probability that any fixed IT' # II is compatible with the dataset. It turns out that it is possible to
bound this probability in terms of the partitions distance of the partitions induced by IT and IT’. Then
we are left with bounding the number of partitions, and we conclude with the union bound. We now
show that this bound is essentially tight.

Theorem 2. Let g : [K]! — R be a function such that g(1,ks, ..., kr) = g(2,ko, ..., kr) for all
ko, ..., k; € [K] except when ko = k3 = ... = kr = 1. Assume that N is divisible by K and
that |T1; 1 (k)| = N/K foralli € [I] and k € [K]. Given 3 < S < NK!'='In(N/K)/4 samples
(n®, gol(n®)) where n ~ U([N]!) i.i.d. Then the function 11 is identifiable with probability at most

2¢" VN/E

The proof of this result can be found in Appendix |B} Next, we emphasize that while typically a
rather small number of samples is sufficient to learn II it can generally be very hard to do this
in practice. More concretely, we show that for / > 3 even deciding whether there is a map
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D=1 ®...®I;: [N)f = [K]! suchthat f = g oIl given access to samples of the form (n®,t*)
is NP-complete. We show that this is true even if g is known, / = 3 and K = 2.

Theorem 3. Consider the map g : {0,1}3 — {0, 1} given by
g(k1, k2, k3) = Liy fhythg=2- “)

Then it is an NP-complete problem to decide given samples of the form (n3,n5, nj, t*) € [N]*x{0,1}
whether there is a map 11 = II; ® Iy @ I3 with I1; : [N] — {0, 1} such that t* = g o II(nf§, n3, n3)
for all samples.

The proof of this result can be found in Appendix [C}] Now that we established under what the
conditions II can in principle be learned, and clarified that this might be hard in general, we next
discuss how we can find II in practice. First, we remark that Theorem E] rules out the existence
of any general fast algorithms to learn II. Given the combinatorial nature and the hardness of the
problem, it is natural to reformulate the task as a constraint satisfaction problem which can then be
solved using standard SAT solvers (see, e.g., [14] for a review). Indeed, we can introduce Boolean
variables ti fori € [I], k € [K], and n € [N] which encode whether I1;(n) = k and 7, for
every k € [K]! and v € Im(f) in the (finite) image of f that encode whether g(k) = v. It is then
relatively straightforward to then express the conditions for the map II as a constraint satisfaction
problem which is satisfiable if and only if there are maps II and g such that ¢* = g(II(n®)) holds
for all samples. We outline the construction in more detail in Appendix [C] We leave the task of
developing and studying efficient algorithms for the considered problem for future work because
the main motivation of this paper is rather to understand how the complex statistical patterns can be
extracted using simple gradient based algorithms. This will be investigated in the next section.

4 Analysis of Gradient Descent Dynamics

In this section, we investigate under what conditions the clustering induced by II can be learned
using gradient descent on token embeddings. Our main finding is that for uniformly random IT and S
sufficiently large gradient descent can be used to uncover or at least preserve the cluster structure of
the embeddings. This shows that while the general problem is NP hard typical random instances with
sufficiently many samples can be solved with straightforward algorithms quickly. This is in spirit
similar to the results found in, e.g., [5]]. Let us start by introducing the setting.

Setting. We assume that we have token embeddings for each of the I sets [N1] to [IN/], i.e., we
assume that there are vectors v(i,n) € R? for some D and all i € [I], n € [N]. Based on these

embeddings, we assume that we are given a function f : R'P — R that transforms the embeddings
into a prediction. We will abuse notation and write for n € [N]!

f(m) = fv(1,my),...,0(I,n5)), (5)
i.e., we will suppress the map from tokens to embeddings in the notation.

Now we consider gradient descent for the embedding vectors using the least square loss on training
samples, i.e., the loss of a sample (n,t = f(n))is (f(n) — f(n))>2.

We assume that we are given a dataset D = {n!,... , n%} ~ U([N]!)®. Then the empirical loss
reads (the division by 2 is convenient for the gradient evaluation later)
R 1< .
E((’U(Z’an))ie[[],ne[l\’o = § Z(f(ng) - f(ns))z (6)
s=1

We also define shorthands for certain concatenations of embeddings. For a sample n € [N] we

denote the collection of embeddings by v(n) = (v(1,n1),...,v(I,ns)). Using the convention (3)
we can then write f(v(n)) = f(n).
Moreover, we define ©(i) € RPY as the concatenation of the vectors v(i, 1), ..., v(i,n), i.e., the
combined embedding for the i-th slot and ¥ € RPN as the concatenation of the vectors o(7) for
1 < i <1, i.e., all token embeddings concatenated. We consider the regularized loss given by

N 4
==L

S (= - Al
RA®) = $L(0) + Slof ™
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Note that the scaling by N/S (instead of usual 1/.5) is natural because every token embedding v (%, n)
occurs in approximately S/N of the samples and so the scaling ensures that the gradient of R> with
respect to the token embedding v(7,n) is of order one. Now, we consider the continuous gradient
descent of the loss with respect to the embeddings, i.e., we consider (omitting the time variable from
the notation)

d N d oL )
_dv(i,n) —gmﬁ(v) — (i, n). ®)

This introduces a time dynamics on the token embeddings. We indicate the time dependence by
v(i,n,t) but we drop t if not necessary. Our main goal is to understand which conditions ensure that
the token embeddings v(i, n,t) and v(i,n’, t) converge to each other if IT;(n) = II;(n’) as t — co.
To investigate this we define the center of the class embeddings by

a1 .
wlis k) = e ne;(k)v(z,n,t) ©)

RMNw) =

o(i,n) =

and we consider the deviations from the class centers given by

0(i,n,t) = v(i,n, t) — w(i, ;(n),t). (10)
Thus the vectors (i, n, t) capture whether we recover the cluster structure, in particular if all norms
|0(3, n,t)| are small then we essentially recovered the hidden structure. Therefore, we define

Omax(t) = max max |6(i,n,t)|. 11
(t) = max max [6(G.m. 1) (an

Similarly, to the notation introduced before we consider for k € [K]! the vector w(k) =
(w(l,ky),...,w(I,kr)). As in (B) we abuse notation and write

a(k) = fw(k)) = f(w(, k), w(l k). (12)
Similar to ¥(i) and v we introduce w(i) as the concatenation of (w(k,%))rec(x) and w as the
concatenation of w(7).

Assumptions. Our first result for the gradient dynamics states that clusters are stable under the
dynamics if the initial loss is sufficiently small. More precisely, this means that we assume that
v(i,n) and v(i,n’) are close initially whenever II;(n) = II;(n’), i.e., dmax(0) is small. In addition,
we assume that |§(k) — g(k)| is small. To capture this we define

e (t) = mi [§(w(k. 1) ~ g(k)] (13)

Then the result shows that d,,,.x stays small for all times if S > N2 under mild additional assumptions.
In other words, if we start from the correctly learned substructures and g(k) ~ g(k) for all k € [K]!
then this remains true for all times. Note that while we phrase smallness as an assumption on the
mean embeddings w(i, k) this is generally a consequence of 0,,,x small and a small empirical loss

L(v). Let us now state the required assumptions.

Assumption 1. We assume that the map 11 : [N]! — [K]! is approximately balanced which means
that for all i € [I), k € [K]

N 2N

— <I;'(k) < = 14
e SR < 2 (14)
This assumption ensures that clusters are of approximately equal size. We have already seen in
Section [3]that different cluster sizes increase the sample complexity of learning II.

Assumption 2. We assume that there is a convex set @ C RP and a constant M' > 1 such that the
following bound holds
A A A A VM

sup  sup  max (|F(0)], 10, £ (0)1,105, f(0)1,10,0,,0:, f(0)] ) < M= = 15)

veN! il,iQ,ige[DI]
Here it is convenient to introduce M = 16M'? so that later certain errors in a Taylor approximation
are bounded by M. We also assume that

VM
max |g(k)| < M' = R

< (16)
ke[K]!
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This is a rather mild assumption. For C® functions f and €2 bounded this is always true. The next
assumption entails a rigidity of approximate minimizers of the loss.

Assumption 3. We assume that for all embeddings w(i, k) € RP fori € [I), k € [K] that satisfy

max — f k)) — k Sl 17
r krg[%llf(w( ) — g(k)| (17)
the bound
wo=minAmin [ Y Vi (w(k) ® Vagn f(wk) | >0 (18)
o ke[K) ki=k

holds for some positive constant wy. Of course, the bound rmax < 1 could be replaced by any other
constant.

Note that this condition can only hold if D < K I-1 i e., the latent space dimension cannot be too
large. The high level intuition of this assumption is essentially that (at least if ), ( f(w(k)) —g(k))?
is small) there is no direction v € RP such that v - Vw(iﬁk)f('w(k)) ~ 0 for all k such that k; = k,
i.e., we cannot move one single embedding without changing the output f(w(k)) for at least one k.

If this condition does not hold, then we cannot guarantee that 3", (f(w(k)) — f(k))? is minimized
for a unique w(i, k) (for all other embeddings fixed). This generally prevents concentration of v(i, n).
Note that this condition does not ensure that there is a unique minimizer w, in particular there could

still be a rotationally invariant family of embeddings w(i, k) such that f(w(k)) = g(k) for all
k € [K]!. Finally, we need a further mild assumption that ensures that mean token embeddings
w(i, k) stay bounded in some set if the loss is small. This can be achieved, e.g., if f — oo if
|lw(k)| — oo.

Assumption 4. We assume that for all collections of mean embeddings w(i, k) € RP fori € [I],
k € [K] that satisfy

Pmax = 1, |f(w(k)) - g(k)| <1 (19)

there is a convex set Qg C RY such that w(i, k) € Qo for all i € (I}, k € [K). Again, the right-hand
side of the bound r.x < 1 could be replaced by any other constant.

Results. The first stability theorem can then be stated as follows.

Theorem 4. Let 11 : [N]! — [K]! be approximately balanced as stated in Assumption Assume

that the functions g : [K]! — R and f : RIP — R satisfy Assumption 3| for some wy > 0 and
Assumption || for some convex set Qy. Assume that Assumption [2| holds for some M and the set
Q = Qg + B2(0). Then there are constants ¢y, Cs, Cs, Cy > 0 depending on I, M, D, and wy such
that for all initial embeddings v(i,n,t = 0) € RP fori € [I] and n € [N] satisfying

(Smax(o) S C2K_3I/2; Tmax(o) S CBK_3I/2 (20)
and sample size
S > ¢; max <K31N2 1n2(N),N1n(N)K9’/2) 1)

the following holds with probability at least 1 — S~ over the randomness of the dataset. When
considering the gradient dynamics of the embeddings given by (8) the bound

R = limsup ryax(t) <1 (22)
t—o0
holds and moreover
; 31/2 N
lim sup Omax (t) < C4 K In(S) gR. (23)
t—o0

In particular 8pax(t) = 0 if rmax(t) — 0, i.e., all token embeddings for one fixed class converge to
the same point.
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This result shows that for order N2 In(V) samples and initialization sufficiently close to a global
minimum the cluster structure remains stable. We do not provide conditions that ensure 7,45 () — 0
which guarantees convergence to 0 loss and perfect recovery of the clusters.

Next we note that we cannot expect the clustering to be stable in general even if 0., (0) is arbitrarily
small if initialization is not close to a minimum. This is true even in the simplest case where
I = K =1, i.e, we consider gradient descent for a single function value. Then gradient descent
does not necessarily converge to a global minimum and close by points do not necessarily stay close
because gradient descent is not well posed. Let us clarify this by an example.

6 4 —— Average distance all embeddings. e

-4 -2 0 2 4 6 0 50 100 150 200 250
Gradient steps

Figure 2: Simulation of the setting in Theorem|§]with N =1000, K =1 =3,D =2, A=0,
S = 100.000. (left) trajectories of 50 randomly sampled tokens from 6 different classes. (right)
Average distance of token embeddings within a class for different classes (colored) and average
distance between all pairs of embeddings (black).

Example 1. Assume ] = K = D =1, N > 1, f(z) = —2% 4+ 2% and f(n) = —2. Consider the
dataset D = {1,...,n}. Assume that v(1,n,t = 0) ~ N(0,02) for any o> > 0. Then the gradient
dynamics introduced in () reads

o(1,n,t) = f'(w(1,n, ) (fo(1,n,t) — f(n)) =~ 4v(1,n,t) if [o(1,n,t)|issmall.  (24)

We find that v(1,n,t) — 2/3 (which is a local minimum of f as ¢ — oo if v(1,n,t = 0) > 0. On
the other hand v(1,7n,t) — —1if v(1,n,t = 0) < 0. So in this case 6ax(0) = O(c%/In(N)) but
Omax(t) = 5/3 as t — oo. Slight modifications show that also d,,.x — o0 is possible.

The previous example shows that without additional assumption, we cannot expect to recover the
structure of the data. Therefore, we impose additional restrictions on the function f. As apparent from

Example(l|and also from the bound in Lemmain Appendix [E} it is the curvature of the function f
that can push token embeddings of the same class apart. We therefore consider the function class of
slow-wise linear functions defined as follows.

Definition 1. We call f slot-wise linear if for every v = (v(1),...,v(I)) € RP*! and any i € [I],
a, B € [D] the relation

d d
dvg (7) dvg(i)

fwy=0 (25)
holds.

Let us denote for v € RP by & € RP*! the vector v where we append a 1. The most general
slot-wise linear function is then of the form

F0)=TH1) ©5(2) ®...0 (1)) (26)
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where T : RO+D" 5 R is a linear map. Note that this class covers linearized attention where the
embeddings v (i, n) are split in three separate parts that are used to form key, query, and value vectors.
For this function class we can show stronger clustering results.

Theorem 5. Let 11 be approximately balanced, i.e., assume that Assumptionholds. Let f :RIP
R be a slot-wise linear. Assume that v(i,n, t) follow the gradient dynamics (8) and that v(i, n,t) € Q
foralli € [I], n € [N] and t > 0 for some convex set ). Assume that Assumption [2| holds with
constant M for the set ). Let Cy be the constant from Lemmall|(which depends on I, D, M). Assume
that at initialization

Then there are constant Co, Cs > 0 depending on M, 1, D, such that for
NQKI—l NKI—l
S > max <02/\2 In?(N/\), Cs—7— ln(N/)\)) (28)
the bound
40 KU-D/2 N
Omax(t) < max <6max(0)e_)‘t/s, % ln(S)§ (29)

holds for all t > 0.

The high level summary of this result is that for order N2 In(N) samples the clusters can be recovered
up to an error of order A~!4/In(S)N/S. Note that the a-priori assumption that the gradient flow is
restricted to the set 2 might appear difficult to guarantee in practice. However, we conjecture that the
results extend to gradient dynamics clamped at the boundary. Moreover, in Lemma 2] we prove that

the mean embeddings w (i, k, t) stay within a ball of radius R = O(v/A 1) for all times. This allows
us to prove Theorem [§| which does not require any a-priori bounds on the evolution of v(i, n,t) but
comes at the price that the constants C, Co, and C3 depend on A so we cannot infer the explicit A
dependence. Let us make an important remark.

Remark 1. While we state our results for a fixed function f this function could in principle be
time-dependent, e.g., f could be given by a neural network, and we consider gradient descent not
only on the token embeddings but also on the network parameters. The only requirement is that the
assumptions hold uniformly for all times ¢. In particular, for Theorem[5] we only need to ensure that
the derivatives of f stay uniformly bounded in time. This can, e.g., be guaranteed by clipping the
parameters of the slot-wise linear map f .

Our results so far show that we can recover the right cluster structure in the sense that the embeddings
from the same group cluster. However, this leaves open whether there is any non-trivial dynamics at
all, i.e., all embeddings could cluster at the same point. This is in general not the case as can be seen
from Corollary [T| which states that in the setting of Theorem [5]and for large times the dynamics of
the cluster-means follow the equation

(i k) =— Y ‘J";’iku,ki)(g(k)—g<k>>2—Aw<z’,k>+o( 1n<s>N> (30)

S
ke[K]T ki=k

where (2K)~! < ag,; < (2/K)! are positive numbers. This shows that w(i, k) follow generally
a non-trivial dynamic (and this also justifies the scaling as this expression is of order 1). So in the
generic case the cluster structure will be revealed if the numbers of samples is sufficiently large,
however, there is no general guarantee that the clusters are well separated. As an illustration of this
result we refer to Figure [2] where the clustering of the embeddings becomes apparent.

Proof idea and overview. Let use here give a quick summary of the main steps of the proof
and where to find them. The first important ingredient is an expansion of the loss gradient. We
Taylor expand the loss of a sample v(n) around the point w(II(n)) to second order with remainder
terms, the relevant calculations can be found in Appendix [D] (see Proposition [I] for the outcome).
A second ingredient are concentration bounds for certain datapoint-statistics random variables and
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random matrices. Those are derived in Section |G| with the necessary results collected in Theorem [0
Combining the Taylor expansion with the concentration result, we can extract the dominant terms of
the expansion (see Appendix . Moreover, we obtain such an expansion for w (i, k) (see Corollary
and thus the displacements d(%, n) (see Corollary . This expansion can then be used to control
0¢|0(i,m)|? (see Lemma which is sufficient to control d,,.x.

Discussion of assumptions Let us contemplate the differences and similarities to training token
embeddings in neural networks.

* For the first main result Theorem @ we make minimal assumptions on f so this could
in principle be a neural network applied to the token embeddings. The second result,
Theorem [3} is more restrictive but covers subclasses of linearized attention.

* An important feature of the results is that f itself could be time dependent (see Remark .

Differences to standard training of neural networks are:

* We use continuous time gradient descent instead of stochastic gradient descent. This is a
frequently used modification and in suitable limits those converge (see, e.g., [20]).

* We use mean squared error, while sequence modelling usually relies on cross entropy loss.
This simplification is frequently used in theoretical analysis, but it is expected that results
generally extend to the non-convex cross entropy loss.

* A more crucial difference is that the embedding space dimension in practice is usually
chosen large to provide large representation capacity. Here D has to be rather small to allow
a unique optimal solution of the token embeddings that allows us to recover the cluster
structure.

5 Conclusion

In this paper, we considered a learning problem where we try to recover a partition of tokens from
their interaction with other tokens. This can be seen as a toy problem for next token prediction in
LLMs, but also more broadly as a problem in scientific inference. We studied this problem from
different perspectives, namely from an information-theoretic, complexity-theoretic, and gradient
descent based viewpoint. We found that order N In(N') samples are sufficient to recover the partition
for N tokens, while we showed that N2 In(N) samples are sufficient for gradient based methods.
There are several natural open follow-up questions. First, there are some open questions regarding the
tightness of our analysis of the gradient descent. In particular, it is a natural question whether already
Q(N In(N)) samples are sufficient to control d,,,x Which is the information-theoretic threshold and
would be similar to the optimal results for matrix completion [18, [7]). Another interesting question
for future research is whether Theorem |3 holds for standard initialization schemes for the token
embeddings. Secondly, it is of interest to relax the notion of clustering of embeddings to more general
notions that still allow recovering some structure but are also applicable to high dimensional latent
spaces and potentially to multiple partitions and relations on the same tokens (e.g., tokens belonging
to different clusters). Thirdly, it is a natural question whether this work can be connected more closely
to empirical findings.
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Supplementary Material

This supplementary material is structured as follows. We first review the notation used in the paper
in Appendix [A] Then we provide the proofs for the information-theoretic results in Section [3]in
Appendix [B] and the proof of Theorem [3] and a reduction to a constraint satisfaction problem in
Appendix [C] The proofs of the main results concerning the gradient flow rely on a careful Taylor
expansion of the loss gradient. This expansion can be found in Appendix [D] and bounds for this
expansion are derived in Appendix [E] Based on these bounds, we can prove our main results in
Appendix [F} An important ingredient in bounding the Taylor expansion are concentration results for
the dataset statistics that can be found in Appendix |G| Finally, we review some results on random
matrices in Appendix [H]which are necessary for the concentration bounds and we review the definition
of Kronecker products in Appendix[I]

A Overview of Notation used
Let us here collect important notation used throughout the paper and the proofs.

General notation.

e Numbers up to n: [n] = {1,...,n}
* Eigenvalues of a matrix: \;(A)

* Largest eigenvalue: Apax(A)

* Operator norm of a matrix: || A||

Notation used in the learning problem.

* Number of slots: [

* Number of tokens for each slot: N

e Number of classes: K

* Number of samples: S

* Map defining the partition in subclasses: I1 = II; ® ... ® II; : [N]{ — [K]*
« Function on classes: g : [K]Y — R

* Induced function on tokens: f : [N]! = R, f = goll

Notation used in the gradient descent analysis.

* Dimension of latent space: D

» Embedding for token n of slot i: v(i,n)

* Token embeddings for a sample n: v(n) = (v(1,n1),...,v(I,ny))
* Token embeddings of a slot i: v(i) = (v(i,1))ne[N]

* All token embeddings: © = (9(4))e[n

* Mean of cluster embeddings: w(%, k)

* Sample version: w(k) = (w(1, k1), ..., w(l, kr))

* Mean token embeddings for slot i: w(7) = (w(i, k)) ek

* All mean embeddings: w = (w(i));e[]

* Displacements from cluster center: §(i,n) = v(i,n) — w(i, IL;(n))
* Displacements of a sample: d(n) = (6(1,n1),...,0(I,n))

* Displacements of all tokens for slot i: §(i) = (6(4,n))ne[n]

» Function on token embeddings: f : R/ — R, identified with f : [N]' — R, f(n) =
f(v(n))

« Function on classes: § : [K]7 — R, §(k) = f(w(k))

* Regularization: A
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B Proofs for Information-Theoretic Results

In this section, we provide the proofs and additional results for Section[3] Let us first start to state the
general information-theoretic bound that handles the case where |IT; * (k)| might be of arbitrary size.
Theorem 6. Let g : [K]! — R satisfy @) and there is a projection 11 = Tl ®. . .®11; : [N]! — [K].
Assume there is L > 0 such that for every k € [K|! we have 171 (k) > NI /L. Moreover, assume
foralli € [I] and k € K] the bound |TT; (k)| > M, i.e., every class has at least M members.
Assume we are given S samples {(n®, g o II(n®)) : s € [S]} where n. ~ U([N]!). If

KI+1L

S > 2-max < max (In(K)IN,n),2! LN max(2In(NK)I, n)) 31

for some n > 2 then with probability at least 1 — 6e~" we can recover 11 and g up to permutations of

[K]. In other words, for any map II' =TI} ® ... @ II} and ¢’ such that g o II(n°) = ¢’ o II'(n?®).

There are permutations 7; € & such that I1; = m; o II; and the corresponding relation holds for g,
/

g.

A few remarks to explain this result are in order.

Remark 2. The scaling of S might appear slightly complicated, so let us comment on this. We are
mostly interested in the case where N large and K stays bounded. In addition, we are primarily
interested in the regime where L < CK f bounded and M > ¢N/K (which holds for random IT), i.e.,
the sampling probability of each class k € [K]! is of similar size. In this case, the first term in the
condition @ for S stays constant as N — oco. The second term dominates, and we see that we need
only O(N In(NN)) samples to identify IT and g. This is the setting studied in Theorem 1] in the main
text. The result is essentially tight in this limit (up to the dependence on I) as stated in Theorem
Note that as remarked in the main text, the dependence on L cannot be avoided. Indeed, consider
the extreme case where II;(n) = 1 forn = 1 and I1;(n) = 2 forn > 1 and g(kq,...,kr) = 1iff
ki =...=kr=0and g(ky,...,k;) = 1 otherwise. Then we have L = NT and we also need of
order N' samples to sample the point (0,0, ...,0) € [N]! which is necessary to identify II.

Proof. Let us first introduce some notation. We denote the set of samples
D= {n',...,n"}. (32)

Consider two partitions P, Q of a set [N]. We denote by P# for A C [V] the restriction of a partition
to a subset (i.e., {P N A : P € P}). The partition distance is defined by

D(P1,P2) = min{|A°| : P{* = P3', A C [N]}, (33)
i.e., the minimal number of elements that need to be removed such that the partitions agree.

We call II' compatible with the datapoints D if there is a ¢’ such that ¢’ o IT' = g o II on the data.
Now the general strategy is to consider any other candidate map II” and upper bound the probability
that is compatible, i.e., for some function ¢’ the functions f’ = ¢’II and f agree on the data. We will
then conclude by applying the union bound over maps II’. Thus, we need to prove an upper bound on
the number of partitions with partition distance at most A and a lower bound on the error probability
for a given A. Let us start with the latter. Denote by

Pi= {17 (k) : k € [K]) G34)

the partition generated by II;. Consider any other map Il' = I} ® ... ® I} : [N]! — [K]! with
corresponding partitions P;. We define for any such IT’ the quantity

A(IT') = max D(P;, P;) (35)
1€
Assume now that
, , M
A:A(H):D(Pl,Pl)gg, (36)

and in particular D(P;, P}) < A. Let Py = {Pi,..., Px} where P, = IT; *(k). Let A be a set of
maximal size such that Pi* = PjA. After relabeling we can assume that P} = {P},..., P} and
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PN A= P/ N A. By composing IT} with a permutation we can also assume that P}, = I}~ (k).
Moreover,

[P N Al = |Pe N Al = |Py| — [A%| = |Pul — [Pel/2 = | Pxl/2. 37)
The same applies to all partitions P; and P;. Next, we claim that if f = go Il and f' = ¢’ o II' agree

on all samples then with probability K’ ¢~ 37T over the randomness of the samples g = ¢’. Define
Ey :=1'"1(k) NI~ !(k). Using and the assumption on IT we have that for k € [K]V

NI
[Bal = 074 0) T ()| > 27T (k) 2 5 (38)
The probability that none of the S samples is in Ej, can then be bounded as follows
s s
|Ek,| 1 __S
Applying the union bound over k we find that
Pp (1T is consistent with D for some ¢’ # g) < Klemait. (40)
Now we bound the probability that g’ = g is compatible, i.e., g o II(n®) = g o IT'(n®) for all s € [S].
Let now n; € [N]. Denote by E,,, C [N]! the set of all vectors n = (n1, na, . ..,ns) such that
golIl(n) # goll'(n) (4D

We now lower bound the size of E,,, under the assumption that there is k¥ € [K] such thatn, € P[NA®

(where A is as above a set such that P{* = Pj4). Then IT} (n1) = k and (by minimality of A°) we
find ny ¢ Py and thus II1ny = k # k for some k. By assumption, we can find ks, ..., k; such
that g(k, ko, ..., kr) # g(k, ko, ..., k). Consider now any vector n = (nq,ns,...,ny) such that

n; € I0; Y (ki) N IT'; " (k;). Then, for any such n
goll(n) =g(k,ka,... k1) # g(k, ka,... . k1) = goIl'(n) (42)

we conclude that all such n are in E,,, By assumption we have

V] TG (k) VIV i) | > 7 43)

This implies that

lel
1Bl = g (44)
and therefore
1

P(E,,) > —. 45

The sets Ey,, are disjoint so we conclude that & = U, ¢(n) En, satisfies

1 A

P(E) = P(E,. ) > |A° =_—— . 46
(B)= 3 P(Bu) 2 A5 = 51w (46)

ni€[N]
Now we can upper bound the probability that D is compatible with IT" and g by
s
. . . / A __sa
Pp (D is compatible with IT', g) < Pp(END =) < (1 - ZILN) <e 2n. (47)
Clearly the same reasoning applies to any other index instead of 1.

The next step is to upper bound the number of such candidate partitions. The number of partitions
such that D(P;,P;) < A can be bounded by (NK)?, i.e., we A times select one of N tokens and
assign it to another (or the same) class. This bound can be applied to all indices 1 < ¢ < I and by the
union bound, we find that

{(P1,....P}) + maxD(P],P;) < A}| < (NK)'2. (48)
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Thus we can bound the the probability that any of the maps II’ (there are more such maps than
partitions because there is a label assigned to each class, but consistency with the data depends only
on the underlying permutation) with 0 < A(II') < M/2 is consistent with the data is bounded by
M/2
SA S
Pp (311’ with A(Il') < M/2 consistent with D) < I > (N )™ (e_ N+ K’e—m) . (49)
A=1
Here the first term corresponds to the upper bound for the probability that (after permutation) g = ¢

is compatible with the data and the second term bounds the probability that any other function is
compatible with the data and I accounts for the fact that any ¢ € [I] can be arg max; D(P;, Py).

We now consider the remaining case that there is an index ¢ € [I] such that D(P;, P}) > M /2 where
we can assume w.l.o.g. thati = 1. As above, let Py = {P,..., Px}and P{ = {P/,..., P} such
that P, N A = P, N A and A is a set of maximal size. We now claim that we can find an index k # k
such that
M

2K?°
Indeed, first assume that there is an index & such that [P, N Py| < M/K. Since |P;| > M there is
another index & such that | P{NP;| > M /K. By maximality of A we have P,NA = P/NA = PyNP;,
and moreover

M

‘P]gﬂpk|+|PljcﬂPE|Z|P1Eﬁpk|+|P/kﬂPj€‘ (29

because otherwise exchanging P}, and PI—; would allow picking a larger A. By our assumption, we
conclude from here that

M M M
Thus, in this case |P; N Pr| > M/(2K) and |P; N P| > M/K and (50) holds. Assume now to the
contrary that there is no index & such that | P/ N Py| < M /K. The assumption |A°| > M /2 implies
that there is & such that |A° N P;| > M/(2K) and by minimality of A° we find A°N P, N P, =0
and thus there is k # k such that | P}, N Py| = |A°N P} N P;| > M/(2K?). This finishes the proof
of (30).

We now fix k and k such that |P, N P/| > M/(2K?) and |P; N P;| > M/(2K?). Then, by
assumption, we can find ko, ...,kr € [K] such that k = (k, ko,...,kr) and k = (k, ko, ..., kr)

satisfy g(k) # g(k).

Moreover |I[I7!(k)| > N/L. Now for every k; there is k] such that |II;}(k;) N II'; " (k})| >
K~ |TI; ! (k;)|. Thus, there is k" € [K]! such that

I

I

_ _ _ _ NI
H |H2 (kG NII; 1(/%)‘ > K- HHi Y(ki)| > KL (53)
i=2 =2

Define A; = IT; ' (k{) N1I; ' (k;) and Ay = P, N P} and Ay = P; N P;. Define A = A; x A X
...x Arand A = Ay x Ay x ... x Aj. Note that by (30)

Al JA] > N 7 (54)

Clearly IT’ is constant (and equal to (k, k5, ..., k7)) on AN A and therefore also g’ o II" is constant
for any g’. On the other hand, TI(A) = {k} is constant and IT(A) = k is constant but

goll(n) = g(k) # g(k) = g o T1(R) (55)

forn € Aandn € A._Now IT’ can only be consistent with the data (for any ¢’) if there is no sample
in A or no sample in A, i.e., and thus

Pp((I', g') consistent with D fora g') < Pp(DNA=0orDN A =0)

<Pp(DNA=0)+Pp(DNA=0) 0
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where we used the union bound in the last step. Then we find using (54) and (56)

s
M
Pp ((I', ¢’) consistent with D fora g') < 2 (1 — 2K1+1L) < 9 IRIFIL (57)

Fhinally, we can bound the number of partitions by the number of maps II; : [N] — [K] which implies
that
{P1,...,P; : P; partition of [N] in at most K classes}| < (KV)! = KN, (58)
So we get the upper bound
Pp (311’ such that A(IT") > M /2 and II' compatible with D) < oI KN e "L, (59)
Combining (@9) and (39) and using the union bound we find
Pp((I1, g) not identifiable up to permutations) < Pp( I with A(II") > 0 is compatible with D)

M/2
< 2K N e wiriz —l—Iz:(NK)IA <€7ZISLAN —&-Kle*%).
A=1

(60)

Note that clearly the assumptions imply M < N/K < N and thus e=S/(2'L) < ¢=SA/(2'LN) for
A < M/2. We then find (using the simple bound IK! < (2K)! < (NK)'2 that

M/2 M/2
SONK)™S (7 H i 4 Ko i) <237 RN aR)A < e ©61)
A=1 A=1
for
S > max(4In(NK)I2' LN, 2" 1yLN) (62)

and n > 2 where we bound the geometric sum by twice its largest term. The first summand in (60)
can be bounded by

QKNI wItTE = 9e2MUIONI— 3555 < 2e77 (63)
for
4AIn(K)IK™ LN 2nK!+1L
S > . 64
> max ( i T (64)
O

The proof of Theorem [I]is now a direct consequence of the previous result because when assuming
that a uniformly random map II is chosen we can estimate the quantities M and L in the previous
theorem with high probability.

Proof of Theorem[l] We observe that |7, ! (k;)| ~ Bin(N, K—'). Applying a Chernoff bound on
the tail of the binomial variable we obtain

N
P (|7ri1(ki)| < (1= ;)> <eFE =Kk, (65)
By the union bound we get
P( min |r7' (k)| < N/2K) ) < KTe sk = M) 5k < o0 (66)
ie[I],ke[K] *

if N > Ny(n, K, I). Note that M > N/(2K) implies that L < (N/M)! < (2K)!. Assuming that
IT is such that the bounds for M and L hold we can apply Theorem [6] and find that for N > N
sufficiently large (depending on I, K, ) and

S > 22 TKIN In(N) (67)

(we bounded In(NK) < 21In(N)) the maps II and ¢ are identifiable with probability at least 1 — e".
Here we used that as N — oo the term indicated above is dominating in (3I)). Now the union bound
over the bad events ends the proof. O
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Proof of Theorem[Z] As before, we note D = {n!,... n°}. Assume there is n; such that IT; (n;) =
1 and such that

DN {n} x O (1) x ... x TI;H(1) = 0. (68)

Then IT' # II is compatible with D where II; = II, for ¢ > 2 and IT; (n) = II}(n) for n # n; and
I} (n1) = 2 # 1 = 111 (nq1) (by assumption on g). Let us denote

Apy = {ny} x T Y1) x ... x TI;1(1) c [N]. (69)
Then
1

To estimate the probability of the event | J,, {An, N'D = ()} we use Poissonization to make the events
independent. Consider datasets D whose distribution is generated by first sampling S ~ Poi(25) and

then conditional on S sample a dataset D as before, i.e., n° ~ U([N]!) for s € [S]. Then we find
that

NKI—l

and those events are independent for n; # n}. Thus, we find that

A, (| ~ Poi ( 25 ) 1)

P (|An, ND| = 0) = e~ wri=T, (72)

By independence we now find that

Po| (N {4unD#0t| = [[ Bs(4nnD#0)

i€l (1) i€l (1)

___32s N/K
= (1 —e NKI*1)

N/K
<(1- e*%m(N/K))N/K _ (1 _ \/F> < VK

VN
(73)

where we used the upper bound for S and (1 — z) < e~%. Assume D, ~ U([N]!)* and define

ps=Pp, | () {AwunND,#0}|. (74)
ni €l (1)
Note that pg is an upper bound on the probability that II is identifiable as explained above. We have
shown that
E(ppoi(as)) < e VK. (75)
Clearly p; is decreasing in s. This implies that
e VIN/E > E(ppoi(2s)) > ps - P(Poi(2S) > S). (76)
A Chernoff bound for the Poisson distribution reads
\)* —A
P(Poi()) < z) < % (77)
which implies with A = 2.5 and z = S that
. (2Se)Se—29 2\°
We thus conclude that
ps < 2e” VN/K (79)
for S > 3 (implying 1 — (2/e)° > 1/2). O
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C Proofs of Complexity-Theoretic Analysis and Constraint Satisfaction
Reduction

In this section, we provide the proof of Theorem [3]and a general reduction to a constraint satisfaction
problem. We start with the proof of Theorem [3] An important property we will use frequently
in the proof is that 7" has the property that for all values z; and x5 there is x3(x1, x2) such that
T(xz1, 2, 23(x1,22)) = 0. Indeed, xz3(x1,x2) = 0 except for 1 = xo = 1 where z3(1,1) = 0 has
this property.

Proof. We reduce the problem to 3SAT. We consider an arbitrary formula

¢(z) = \ Ci(z) (80)

on / variables with m clauses C;. We denote f = g o II. To improve readability, we consider a
symbol set S instead of [V] which is used for all 3 slots. We proceed in three steps. First we show
that we can write down a set of equations that ensures that two symbols sg, s1 € S satisfy IT;(s;) = j
for all ¢ (if f = g o II). Suppose the following relations hold

f(80750781) = f(50731,50) = f(81a80780) = 0)
f(s0,81,81) = f(s1,80,81) = f(s1,51,50) = 1.
Then it is easy to conclude that II;(s;) = j holds. Indeed, suppose that IT;(s;) = 0. Then the
lower part of the previous display combined with the definition of g imply II5(sg) = II3(s1) =

II5(s1) = II3(sp) = 1. But this is a contradiction to f(s1, Sg, So) = 0. Thus II;(s;) = 1 and the
same reasoning implies I1;(s1) = 1. Then the second equation in (81) directly implies II;(s¢) = 0.

81)

We now consider a symbol set

S={s0,81}UXUXUCUCUTUT UF (82)
where
X ={X1,...,X¢} (83)
will encode the variables in the formula ¢ and
C={C11,C12,C21,C29,...,Cp1,Cr 2} (84)

are auxiliary variables for the clauses. In addition, we need further auxiliary variables
X ={X1,..., X},
C={C11,C12,C21,C29,...,Cpy1,Cpo}, and (85)
O={o01,...,0n}.
We now add a set of equations that will ensure that for some value x; € {0,1}
I (X;) = Ha(X;) =5(X;) = o

_ _ _ (86)
This can be achieved by adding the following relations for all ¢
f(XithSl) :f(Xi,Xi,Sl):f(SI’Xi7Xi):17 (87)

f(817Xi7Xi) = f(Xi7813Xi) = f(Xiu 817Xi) =1.

Note that the these relations indeed imply that I1,(X;) # I(X;) for a # b, a,b € {1,2,3}. This
implies then that (86) holds. We add the similar relations for C; ;, which again ensure that

I1;(Cix) = Iy (Ci ) # 1;(Ci k). (88)
Now we encode the clauses of the formula. Consider a clause C; of the form x;, V x;, V x;,. Then

we add the relations

0
Xy, X3, Cr2) =0 (89)
1
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For a given choice of IT we set z; = IT; (X;). We now claim that the relations in the last display can
hold if and only if z;, V x;, V z;, evaluates to true. Suppose the formula evaluates to false. Then

and therefore
Hj()_(il) = Hj(X'iz) = Hj()_(ig) =1. 91
Then relation (89) implies
H3(Cl7i) =1 (92)
for i = 1,2. Using (88) we find that IT; (C} 1) = I12(C) 2) = 0 which implies
f(Ci1,Cia,0) = f(0,0,0,) =0 (93)

for any II5(o;). Therefore, the equations cannot all hold.

Suppose to the contrary that the formula evaluates to true. Let us first assume that IT; (X;,) = 1.
Then IT; (X;,) = 0 and we can set II3(C; 1) = 0 which ensures that the first equation is satisfied
(for any IT5(X;,)). By definition of g we can also find a value ¢; » such that for ¢; 5 = II3(C} 2) the
relation f(X,,, Xi;, Ci2) = f(4,, Ty, c12) = 0 holds. Now I11(C; 1) = 1 —13(Cy 1) = 1 ensures
that for any value of & 5 = I12(C} o) we can choose I13(0;) such that the relation f(Cj 1, Ci2,0;) =
f(1,&,2,0;) = 1 holds. The same reasoning applies for II; (X;,) = 1 and a similar argument applies
if IT; (X;,) = 1. For clauses containing negations the same construction works except that )_(ij has to

be replaced by X, for the negated variables in equation (89).

Putting everything together, we have shown that for a given formula ¢ there is a set of relations
of the form f(n®) = t* where n® € S given by (§1), (87) (plus similar equations for C; ;), and
(89) which has the following properties. For an assignment x = (z1,...,2,) € {0,1}" such that
¢(x) = 1 evaluates to true, there is a map II such that for all s the relations t* = f(n®) hold and
where II; (X;) = ;. On the other hand, if for some IT all the relations ¢* = f(n®) hold, then the
Boolean variables z; = I1(X;) will satisfy the formula ¢. This ends the proof. O

We now show how the problem of finding II and g can be generally expressed as a constraint
satisfaction problem. Recall that we want to find (if they exist) for a given K a projection map
I1: [N]f — [K]! and g : KT — R such that for all given samples (n*, t*) the relation t* = goII(n?)
holds. The general strategy is to introduce Boolean variables encoding the maps II and g and then
express all conditions as suitable constraints for these variables. We first introduce Boolean variables
ti fori € [I], k € [K], and n € [N] which are 1 if the token n is in cluster k, i.e., II;(n) = k and 0
otherwise. Then the expression

AV SAVERRRVE (94)

for i € [I] and n € [N] is true if and only if n is assigned to to at least one cluster. In addition, we
consider variables ry,, for every k € [K]! and v € Im(f) in the (finite) image of f. These variables
shall encode whether g(k) = v is true or not. Then the constraints

Mgy V TRy (95)

for v # v’ and all k ensure that each cluster is assigned at most one value v. Finally, we add for every
datapoint (n®, f(n?®)) and every k the constraint

i VooV yns V Tl f(ne)- (96)
This ensures that if II(n®) = k then this cluster must be assigned the value f(n®).

We then consider the constraint satisfaction problem consisting of the A of all the conditions in (94),
([©3), and (©96). Then any satisfying assignment gives rise to a map II and ¢ such that g o II(n?) = ¢*.
Indeed, we set g(k) = v if sg, = 1 if such a v exists and arbitrarily otherwise. Note that for every
satisfying assignment and every k there is at most one such v so g is well-defined. Moreover, we
set IT;(n) = k for any k such that !, = 1 and at least one such k exists. On the other hand, we can
easily construct a satisfying assignment given II and g so that there are no solutions II and g if the
constraint satisfaction problem has no solution.

Note that we did not ensure that each token is assigned only to a single cluster but this can be achieved
in post-processing or by adding additional constraints (such as =t} ,, V =ty ).
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D Taylor Expansion of the Loss Gradient

The goal of this and the following section is to lay the groundwork for the proof of the main results.

The general strategy of our proofs is to Taylor expand the loss of each term around the mean token
embedding w(i, II;(n;)) to first order plus a remainder term. We can then extract the dominating
terms of these expansions using concentration results for the datapoint statistics. It turns out that
the linearized dynamics has favorable properties, while the remainder terms can be bounded. In
this section, we derive the expansion of the loss gradient while the required bounds, in particular
Theorem[7|and Lemmal [I] are derived in the next section, Appendix [E] (they rely on concentration
results which are deferred to Appendix [G).

As pointed out above, the goal of this section is to Taylor expand the sample loss for one sample,
where we expand the loss around the point w(II(n)). Let us first introduce some notation. Recall that

we denoted by v(n) = (v(1,11),...,v(I,ns)) and by (i) the concatenation of the embeddings
(v(7,1))nen). We define similarly
d(n)=(6(1,m1),...,6(I,ny)) 97)
and we denote by §(7) € RP¥ the concatenation of §(i, 1),...,d(i,n), i.e.,
8(i) = (3(i,n))nerw) (98)

and 6 € RIPN as the concatenation of §(1),...,8(1).

Consider a data-point n with II(n) = k. We now consider the derivative of the mean squared error
of this term, i.e.,

L(n) = 5(f(n) = [(n))* = 5(f(n) — g(k))*. (99)

We use Greek-indices for the latent space dimension. Fix an ¢ € [I] as the slot with respect to which
we take the derivative. We then find for « € [D]

d 1/. 2 d 1/~ 2
w3 (Fotm) = 10)) = i AL (fwoim) - 1(k))
d s .
- <Mf(v(n))> (fwn) = £(k)) = hlw(n).
(100)

Here we introduced the shorthand h(v(n)) for this function which also depends on i, k, and . Now
we estimate this function by Taylor expanding it around the point

Then we find the following expansion to second order

h(v(n)) = k) + Y Z (] 3 h(w(k))d3 (5, ;)
Je] Bel D] ’ (102)

+ Z Z Ebjf,gﬂ(]z,,@z)( (k))(SBl(jlvnjl)(sﬁz(j%njz)

J1,J2€[I] B1B2€[D]

where R(;, 3,),(j»,8,) denotes the remainder terms. We remark that if we assume that v(i,n) € € for
some convex set 2 and all ¢ € [I], n € [IN] then (by convexity of ) also w(i, k;) € Q and

d d
dvﬁl (]17 nh) d’l}g2 (]27 nj2)

1
’UGQI 2

‘ n,T,0 |

R(jl»ﬁl),(jzﬁﬂ h(v) . (103)

Let us now (abusing notation again, it will be clear from context which function we refer to) write

L(k) = 3 (F(w(k)) — g(k))* (104)
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We introduce some more quantities to get a concise representation of the Taylor expansion. We define
the matrices D; jL(k) € RP*P containing the derivatives of a function L with respect to w(j1,n;,)
and w(j2, m;, ), i.e., we consider

d d
Dj, i, L(Ek))as = - , L(k). (105)
( s ( )) ’ dwa(]hk,h)dwﬂ(]%ka) ( )
Similarly we define the vector D;L(k) € RP by
d
D;L(k))o = ————L(k). (106)
(D))o = oty LK)

For the diagonal entries D; ; we need a more fine-grained decomposition. Note that by the product
rule we have

d d d d A
Twa G, o) dwp (o Fey) ) = (dwa@,k Y dws k) ““”“"”) JUCLEL)

107)
+ (Cma(iki)f(w(k)) (Wf(w(k))) _
Using the notations we introduced we can therefore write (recall §(k) = f (w(k)))
Dj;L(k)) = (D;,;4(k)) (9(k) — g(k)) + D;g(k) @ D;g(k). (108)

Collecting finally all remainder terms as
Z Z 6117;1) (]2”32)( ( ))5/31 (j17nj1)5ﬂ2(j23nj2) (109)
J1,52€[I] B1B=2€(D]
we can thus summarize the Taylor expansion result as follows
DiL(n) = D;L(k) + (Di,:g(k)) (9(k) — g(k)) + Dig(k) @ Dig(k)) (i, n;)

+ Y (DijL(k))3(j,n;) + R(i,n) (110)
J#i
Based on the expansion (TTI0) we now want to get an expression for the gradient of the total loss on
the entire dataset. We decompose the dataset as follows

Dkt = [n® € D|TI(n®) = k, ni =n}. (111)
Note that if II;(n) # k; then D*™¢ = (). We also define similarly
D™ = {n® € D|nj =n}. (112)
We find the following expansion

S

d 4, _ d
dv(i,n)c(v) - dv(i, n) & Z Z Z

ke[K]|I neDk.nt

S S DiL(k) + (Disg(k)) (ak) — (k) + Dig(k) @ Dig(k)) 6(i, my)

ke[K]I neDk:ni

+ Z Z Z )0(j,mj) + Z R(i,n)

ke[K neDkn i j#£4 neDni
(113)

We now rewrite or bound the four summands. First, we relate those expressions to the datapoint
statistics matrices. We define

BY' = Dk = [{n € D 1(n) = k, n; = n}|. (114)
and

AR — 1t e DPYin; =0’} = |{neD: li(n) =k, n; =n, n; =n'}|. (115)

n,n
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Then the first term equals
> > DiL(k)= > BEDL(k (116)
ke[K]|!I neDk.ni ke[K]|!
The second term is similarly given by

S (D) (3k) — g(k) + Dig(k) © Dig(k)) (i, m.)

ke[K]! neDk.ni

, (117)
> BE((Disg(k) (3(k) — g(k)) + Dig(k) @ Dig(k) ) (i, n)
ke[K|!
The third term is given by
Z Do Y DiLE)sGin) = Y D Z AL (D L(K))O(G, ')
I neDknii j#i ke[K]! j#in'€[N
_ ki, S/
- ZK (A J®D”L(k))6(]))nD:(n+1)D
(118)

where & was introduced in (98). Let us summarize those findings as a proposition.

Proposition 1. Assume that the bound (13)) holds for some 2 and v(i,n) € Q foralli € [I], n € [N].
Then the following expansion holds

d k,
B*'D;L(k

+ Z By ((Diig(k)) ((k) — g(k)) + Dig(k) ® Dig(k)) 6(i, n)
ke[K]|T

S Z((Ak”]@D,JL(k)) 5(])>nD:(n+l)D

ke[K]! j#i

+ ) R

neDnt

(119)

Proof. The result follows from the calculations above. O

E Bounds for the Loss Gradient

The goal of this section is to extract the asymptotically (with high probability) dominating terms of
the expansion from the previous section as S — co. The crucial observation is that the appearing
averages can be essentially replaced by their expectation. This is a consequence of concentration
properties of the datapoint statistics. These properties will be derived in Appendix |G| where they
are collected in Theorem[9} Here, we just prove the result conditional on the bound in Theorem 9]
Recall that we defined dmax = max;c(s],nen) [0(4, )| in (II)) as the maximal deviation norm and
Tmax = MaXge(k)r [(k) — g(k)|in (13) as the maximal residual. Finally, we introduce the notation

. n1(k
p(k,i) = N|I|Hz(1(l)cl)| (120)

Note that B¥* ~ Bin(S, p(k, 1)) if II;(n) = k; and B¥" = 0 otherwise. In particular, EB* =
S - p(k,i). Note that if IT is approximately balanced if the following bounds hold

‘ I "(k)| 11 (k)|
Np(k,i) =N = . 121
R T S -
This implies
1\’ 2\’
(2K> < Np(k,i) < (K) . (122)
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Theorem 7. Assume that the bounds in Theorem@ hold and assume f satisfies Assumption 2| for
some set Q) and v(i,n) € Q fori € [I] and [N)]. Then we obtain the following expansion for the loss
gradient

N d
'S du(i,n)
= > Np(k,i)D;L(k)
ke[K)1:k;=I1;(n) (123)
> Nplk)((a(k) - gk)Disg(k) + Diglk) @ Dig(k) )(i.m)
ke[K]!:k;=I1;(n)
+ EF(i,n) + ESY(i,n) + ES%(i,n) + E'(i,n) + ET (i,n).

Here the error terms are bounded by

L(v)

\EF (i,n)] < 4M min(1, ryax) (2K) D72 \/m(s%, (124)
|ES(i,n)| < ADM min(1, rmayx) (2K) /2 ln(S)%(Smax, (125)
|ES2(i,n)| < 4DM (2K)! /2 ln(S)%(Smax, (126)

|E!(i,n)| < 6DM (2K)~1/? ln(S)\/fémax, (127)

|EZ (i,n)| < MI*Dé&2,, (1 +4 IH(E)N> . (128)

Proof. The proof is a bit technical and essentially combines the assumptions and the concentration

results in a straightforward fashion. First we remark that for n € II; ! (k) we have as stated before
that

EpBR' = § . p(k,i) (129)

and Bﬁ’i = 0 otherwise. Then Propositionimplies that (123)) holds with the definitions of the error
terms given below. We now define and bound the error terms in the decomposition. Note that we have

d d
— Lk -
a0 k) | = don Gy

where we either bound both terms using Assumption [2]or the second term by 7max and the first one by
Assumption together with M’ < M. This then implies that the error term capturing the fluctuations
of the occupation statistics

(D L(K))al =

(k) (g (k) — g(k»\ < Mmin(1, rmay). (130)

N _ .
. _ v ki ki .
BF(in) = 5 3 (Bn Ep Bk )DzL(kz) (131)
ke[K]!
can be bounded by
Py : (I-1)/2 N . N

|EZ (i,m)| < 4M min(1, ryax) (2K) ln(S)§ < C(I, K, M)min(1, rmyax) ln(S)g.
(132)

Here we used that there are K/ ~! non-vanishing terms in the sum (if II;(n) # k; we have B’nc’i =
EB ﬁ’l = 0). Next, we consider the self interaction error terms

B (i,n) :% > (BE-EBEY) (3(k) — g(R)) (Diig(R)) (i), (133)
ke[K]!

BS2(im) =% 3 (BY ~EBE) (Dig(k) @ Dig(k)s(i,n). (134
ke[K]!
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For £ we get (similar to above) and using that the operator norm of a D x D matrix A is bounded
by D max |a;;|) the bound

|ESY(i,n)| < ADM min(1, rpax) (2K)7 7724 /In(S)

(=9

max

(135)
< C(I,K,M,D)min(1, rmax)Omax{/1n(S)

The error term E°+2 could also be absorbed in other terms later on but since it is not dominant, we
just bound it. We can obtain similarly to our treatment of £*! the bound

|ES2(i,n)| < 4DM (2K)~1/2 ln(S)%émaX
(136)
< C(I,K,M,D)dmax ln(S)g.
Next, we consider the interaction error term
N y _
I/ _ v k,i,j o .
Bllin) =3 Y ((A ®DML(k)> 5(;))nD:(n+1)D (137)

ke[K]! j#i

We note that ]E(AZf)’,@) = ¢ for some constant ¢ if IT;(n1) = k; and I1;(n2) = k, and 0 otherwise.

This implies that if IT;(n) = k;
((EA’W‘ ® Di,jL(k)) 5(j)) = Y Lk)(n) =0 (138)

nD:(n+1)D —
n/ €Il (k;)

here we used
Z 8(i,n) =0 (139)
nelll; * (k)]

which follows from the definition (]ED in the last step. If IT;(n) # k; then this expression is clearly
zero as the corresponding row of A®%J is zero. Thus, we find that

Bl =|g 3 3 (449 - EA*) 0 DyLk)) 5(0)

ke[K]T j#i nD:(n+1)D

(140)
aN i, 7 N
<K' 1§I,§§3<||Ak’ 7~ EARY || Dy ; L(K))| - max [8(7)].

Here we used the submultiplicativity of the operator norm of Kronecker-products stated in 28T).

Now we use |8(j)| < v Nimax, the concentration bound (252), and bound || D; ;L(k)|| < DM
similar as before to find

_ N2
\E"(i,n)| = 6DM (2K) 1/ In(8)1/ 5 Ormax- (141)
Finally, we bound the Taylor expansion remainder term
N
ET(i,n) = < > R(i,n). (142)
neDn,i

Recall that
Ra(im)= 3 30 RES o (w(k)Os, (i )0 (amg,)  (143)
J1,J2€[I] B1B2€[D]
and
d d
dvg, (j1,my,) dvg, (j2, mj,)

‘ n,i,o

(F1.81),(G2.2)] < TAX 5

h(v) (144)
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where h = h™" was introduced in (TO0).
Assuming the bounds (T3) and (T6) we find

B ma - ‘ )h(v)’<4m-<m+m <M.

K . < —
(-71761)’(]2”62)| - 'UES%{ 2 d’Uﬁ1 (jl,njl) d'()gQ(jQ,TLj2 - 4 4 4

(145)

Indeed, the derivatives of h can be decomposed by the product rule in 4 terms which each can
bounded using (I3)) and (T6). Then we can bound the remainder term as follows

|Ra(ivn)| S M Z Z |551(j1anj1)552(j27nj2)‘ S MID Z |5(]7 nj)|2~ (146)
J1,32€[I] B1B2€[D] je

Recalling that D™ defined (T12) satisfies |D™?| = B! we obtain using the concentration bound

(253) from Lemmal[]

[EL ) =

Z R, (i,m)

neDnt

< %B;Mﬂmﬁm < MI?D&, (1 +4 hl(*;)N> .
(147)
O

If we consider the gradient descent dynamics we obtain the following expansion for the time derivative
(4, n). Let us from now on absorb the dependence on [ and D in generic constants C.

Corollary 1. Under the same assumptions as in Theorem[/]we get

w(ik)=— Y Np(k,i)D;L(k) — Mw(i, k) + E*(i, k) (148)
ke[K]! ki=k

where E™ can be bounded by

2
|EY (i, k)| < Cmin(1, rpay) K~H/2, /m(s% + CKY=1/21n(8)4/ %6max + 082,

(149)
for S > NIn(N).

Proof. The result follows from Theorem[7} the gradient dynamics (see (8)), and the definition of
w(i,n) (see (@)). We also use the relation }° ¢ ;-1 6(¢,n) = O (already stated in (I39)) to

conclude that terms involving 6(¢,n) cancel. The condition S > N In(N) allows us to bound
In(S)N/S < 2 to control ET. Note that here we use that E%! and E*? can be bounded by E'.
Note that we absorbed all terms involving ..« into the dominating term. O

We therefore get the following bound for & (i,n).

Corollary 2. Under the same assumptions as in Theorem[/]we get

bim) == > Nplk,)((a(k) — g(k)D:ig(k) + Diglk) @ Diglg) )a(i, n)
ke[K|! ki=n (150)

— \o(i,n) + E°(i,n).

where E° can be bounded by

2
|E9(i,n)| < Cmin(1, 7payx) K172 ln(S)% + CKY=D/21n(8)y/ %5max + O,
(151)
for S > N1In(N).
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Proof. This follows from Theorem [7] Corollary 2] and the relation
5(i,n) = (i, n) — (i, I;(n)). (152)
O

Now we are in the position to control the time evolution of |(i,n)|2. We obtain the following relation

Lemma 1. Under the same assumptions as in Theorem[7|the following bound holds

d1 N .
dt 2 ‘5(2 Tl)|2 < (_A (2K) + 21 sup mia‘XHDiQ,if(vh o 3U7L>|TIIIaX> |6(Zv TL)|2
v1 )

+ C} min(1, rmax)K(I_l)/2 ln(S)gémax (153)

+ ClK(I?l)/z 11’1(5) \/ S max + Cl max

where C1 is a constant depending on D, I, and M, and w is defined by

W = min Apip Y. Dig(k)® Dig(k) | >0, (154)
Pt ke[K)! ki=k

Proof. We have

d1 N
%3 —16(i,n)* = 6(i,n)d(i,n)
=— Y Np(k,i)(§(k) = g(K)S(i.n) - (Diid(k)) 3(i,n)
ke[K]! ki=n (155)
— > Np(k,i)(i,n) - Dig(k) ® D;(k)d(i,n)
ke[K]!,k;=n
—8(i,n)E° (i,m) — A|6(i,n)[%.
Recall that by (122) we have
I I
(;{) < Np(k,i) < <f{> . (156)

We consider w as defined in the statement of the lemma where w > 0 follows because we sum
positive semi-definite rank one matrices. Then we find using the lower bound on the spectrum

8(i,n)- > Dig(k) @ Dig(k) | 6(i,n)
kG[K]I,ki:n
(157)
> [6(i, 1) [*Amin > Dig(k) @ Dig(k) | > wl|d(i,n).
kG[K]I,ki:TL
Thus we find
d1l 9 9
<
G219 WP < X3 = 18 m) s
+27 sup max||Di,if(v1,...,vn)|\rmax|5(i,n)|2—5(i,n)E5(i,n)

where we used for the second to last contribution that we sum over K71 terms which is cancelled
by the (2/K)! factor. We finally bound the error term by

16(i,n) - B9 (i, n))|

< C’\len(l Tmux I /2 hl(S Inax"‘CKU v/ IH(S) m'}x (159)

<C mln(l Tmax I v/ \/7 Omax + CK(I n/2 \/ max + Cdfrnx

wz
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This ends the proof. O

F Proofs of the Main Results

In this section, we prove our main results, Theorem and Theorem@ In addition, we state and prove
Theorem [ which is a variant of Theorem 5| without a-priori bound on the embeddings. Essentially,
the proof strategy for both results is to rely on the groundwork from the previous two sections, in
particular on Lemmal[T] Indeed, we first verify that the conditions of Lemma [I] hold for all times and
then application of this Lemma allows us to control the evolution of §,,, for all times.

Proof of Theorem{d| The proof proceeds in three steps. First we use the monotonicity of the loss to
deduce that ry,,x(t) can be bounded in terms of 7,45 (0) and dax (t) and dmayx (0). Then we show
that choosing the variables as in the statement of the theorem allows us to bound all the terms in
Lemma|T]in Appendix [E] Then we apply Lemma T]and deduce the decay of the maximum of the
displacements |J(Z, n, t)|. Here we need to check carefully that the assumptions of the lemma are
satisfied for all £.

First we assume the conclusions on the concentration properties from Theorem [9]in Appendix [G]hold
which occurs with probability at least 1 — S~! over the randomness of the training data.

Let us consider any time 7' > 0 and we assume that v(i,n,t) € Q for all ¢ € [I], n € [N] and
0 < 7 < T. This allows us in particular to apply the Assumption [2Jup to time 7" for embeddings
v(i,n).

We now implement the first step where we bound 7y, (t) for all 0 < ¢ < T in terms of 705 (0),
Smax(t), and Gumax (). The idea is to upper bound the initial sample loss £(¢ = 0) and lower bound
the loss ﬁ(t > 0). First we note that by a first order Taylor expansion and using Assumption

| ((n)) = f(w(ll(n))] < D M|6(i,n:)| < MIdmax. (160)
i€l
This implies that
L1 .
£(o) = 5 3 (flo(n) - g(11(n)?
neD
2
1 P ) 1 9
<3 |/ (w(Il(n))) — g(I(n))| + Y M3(i,ny)| | < 35 (Pmax + TM8ma)”.
neD il
(161)
Next, we derive a lower bound on the loss. Let k be such that | f(k) — f(k)| = rmax. By assumption
N\
n'k) > —— 162
) > (5 ) (162
and using concentration bounds (e.g., by summing (254) over n and using the lower bound for S) we
find that
D = [fneD: (n) = k}| > -2 (163)
~ 2(2K)!
Thus we can lower bound the loss using the same Taylor expansion as before by
A 1 S 2
E('U(t)) Z Zm (maX(O, Tmax(t) - MI(SmaX(t))) . (164)

Since gradient descent does not increase the loss the bounds (I61)) and (T64) together imply for ¢ > 0

%S(Tmax(o) + IMb1nax(0))* 2 L(9(0))) > L(w(1))
e . (165)
> 1eKR)T (max(0, rmax(t) — MIdmax(t)))” .
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This implies

Tamax(t) < 2(2K)"? (rimax(0) + IM6max(0)) + IM Smax(t).- (166)
Then we get the bound
Tinax () < 42K)"? (rmax(0) + TM max(Smax(0), dmax (t)))- (167)
Now we choose Cy and C'3 such that the initialization condition becomes
. wo wo 1 _
Omax(0) < , , 1) =6 168
x(0) < min (801(2K)’ 64T M2D(2K)317221° 8(2K)1/2TM ) (168)
and
Fmax(0) < min i L (169)
et = 64M D(2K)31/221" 8(2K)1/2 |

K)
Assume in addition that for all times 0 < ¢ < T the bound G,y (t) < 6 holds. Using we then
find that for0 < ¢t < T

1 w w
max (1) < 4(2K)1/2 M > = ) :
Tmax(t) < 4(2K) (64MD(2K)31/221 + 64IM2D(2K)31/221 ) = M D(2K)T2!
(170)
and similarly
o) < 42KV (— L L ) oy (171)
maxiy) = 8(2K)1/2 8QK)!/2IM ) —
and therefore
. wo
max(t) < 771 . 172
Fmax(t) mm<8MD(2K)I2I > (47

The next step is to bound the various error terms appearing in Lemmal(l] Using the last display we
can bound for all i € [I] and n € [N] using Assumption2|for ¢ € [0, 7]

wo

1 . 2 £ . 2 I . 2
2 U17.§}}£€Q miax|\Di7if(U1, N ,vn)||rmax(t)|5(z, n, t)| S 2 MDW|6(7/, n, t)|
< ———|8(i,n, )%
(173)
Moreover, we can estimate for 0 < ¢ < T
C103 () < 0162 =0 52 174
1 mdx( ) 1 mdx( )801(2K)I — 8(2K)] max( ) ( )
Now we observe that for z = aIn?(a) and @ > 1 we find (using In(a) < a) the bound
In(z) In(a®) 3
< = —. 175
Ve = Val(@  Va (7
Hence we consider
242C2(2K)3T N2 242C2(2K)3I N2
S>Sy= 1K) In ( 1(2) ) (176)
wh wWo

Note that tracking only the dependence on K and N (and using K < N) this condition reads

S > C(2K)* N?1n?(N). (177)
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Then we find using (T75) combined with the observation that In(S)//S is decreasing for S > ¢? for

S > Sy the bound
5 2
Cy K1/ 1n(s>\/§ < GEUTYE 1n<So>\/g>
0

3CLK1/2N (178)
T 240, (2K)31/2Nwy !
<1 _wo
~ 8 (2K)I”
We note that similarly for x = aIn(a) we get
In(z) < 21n(a) _ g (179)
x aln(a) a

Thus we consider similarly

2-162N(2K)3LC? 2-162N(2K)3LC?
S>8 = (27 ) 11n( (27 ) 1) (180)
w§o w§o

where ¢ was introduced in (T68). Note that tracking only N and K this bound becomes
S > CNIn(N)K°/2, (181)

Then, similar to before, (using monotonicity of In(S)/S for S > e) we find for S > S

(I-1)/2 N 12 N

CiK max (1, rmax) ln(S)g < C1K'* max(1, rmax) ln(Sl)S—
1 (182)

1 Wy =
< 6 (2K)15max(1, Tmax(t))-

After all these preliminary estimates we can now finish the proof.

Let us define 7' € Ry U {co} to be the maximal time such that v(i,n, t) € Q for alli € [I], n € [N]
and 0 < ¢ < T and the bound (I68) holds for d,,ax(t) where we for convenience recall

N . wo wo 1
5mxt Saz 5 s ,1 . 183
ax(t) i (801(2K)1 64IM2D (2K )31/221° 8(2K) 12T M ) (183)
We want to show that 7' = oco. We assume that 7' < oo and prove by contradiction that this
does not hold. By (I72) we know that for ¢ < T the bound ry,.x(t) < 1 holds and therefore
Assumptionimplies that w(i, k,t = 0) € Qg and since moreover dy,qx(t) < 1 for t < T we find
that v(i,n,t = 0) € Qp + B1(0) CC Q. By continuity of v(i,n,t) in t we conclude that there is
e > 0 such that v(i,n,t) € Qforall0 <t < T +e¢,i € [I],and n € [N]. Thus, we can apply
Lemma ] for ¢ = 7" and then find using Assumption [3|and the bounds (T73)), (T74), (I78), and (I82)
d1 .
a§|5(i,n,t)|2 < (—/\ — (2;){0)1 +2f sup miax||Di2,if(v1, A vn)rmax> 16(,m,t)|?

V1,...,01EQ

N N2
+ Cy max(1, Fpay ) KU 1/2 1n(5)§5max(t) + O, KU=D/210(8),/ ?5;% + C10max(t)?

wo : 2 15 2, 1 s 1 21 2
< _ 1 - 1 1
= @KR)T ( 16(3,n, )" + glo(i,n, t)[" + T max (1, "max(t))d + §0max(t)” + §0max(t) >
< 0 (153, )2+ Bmax(8)? + imax(l Tmax())d.
= (2K)! o g7ma 16 ’
(184)
If [6(i,n,t)| > 3/40max we find |5(i, 1, t)|> > Smax(t)?/2 and we conclude that
d1 . 2 wo 1 3 1 _
— < _ = _
T 2|§(z,n,t)| < (QK)Idmax(t)( 26max(t) + 86max(t) + T max (1, rmax(t))0
1w (185)
0 _
S s max ~Umax 2).
< S o)1) +/2)
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Now, if dmax(T) < 6/2 we conclude by continuity that there is € > 0 such that §,,.x(t) < d for
t € [T, T + ¢]. On the other hand, if §,nax (t) > & we conclude that & 2|5(4,n, T)|? < 0 for all i, n
such that |6(¢,n, t)| > 3/40max. This in particular implies that dpax (t) < dmax(T) fort € [T, T +¢]
and some € > 0 (dax 1S non-increasing at 7°). This is a contradiction, and we conclude that T = oo.

Finally, we prove the decay of d,,ax. Assume that for ¢ > 7T the bound min(1, ryax(t)) < R holds.
Note that the function d,,ax(¢) is not necessarily differentiable but its left and right derivative exist
(as the maximum of finitely many differentiable functions). Then we obtain, similar to @]), for the
right derivative the bound

d 1 1 wo _
— Zbmax t 2 < _-_“Y i 2 K(I 1)/2 1

I (I-1)/2
Omax(t) > (7116(21(10}( sz/anS)ég (187)
0

the previous bound simplifies to
1w

d 1 2 2
— < - - 77
a2 <~ (2K)15ma"(t) (188)

Imax(t). (186)

«n| =

For

which implies that for ¢ > T by Gronwall’s Lemma

16 (2K)7

Smax(t)? < exp ( (t— T)) Smax (T)2. (189)

Thus in finite time we achieve

16(2K) KU~1)/2 N N
5max(t) S 201 6( ) R ln(S)* S CK31/2 III(S)fR (190)
wo S S
This ends the proof. Note that we also get an exponential rate of convergence. O

Remark 3. The exponent 9/2 for the lower bound of S in (I&T) is not tight because we could use
that r,.x 1S small, but this provides only a small improvement that does not justify the additional
technicalities.

Before proving and stating Theorem [8]let us first prove that the weight decay A > 0 allows us to
derive a-priori bounds on the time evolution as stated in the following lemma.

Lemma 2. Let II be approximately balanced, i.e., assume that Assumption[l|holds. Let My > 0 be
such that

: vV My

sup |f('U1,...,’U7;)‘§ ) ) max|g(kz)|§ 9
v1,...,u1EB1(0)CRP k

(191)

Let 0 < X < 1 be a fixed number and assume that v(i,n, t) follow the gradient dynamics ) and are
initialized such that
Jo(i,n,t =0)| < 1 (192)

and assume that the dynamics exists for all times. Then for all i € [I), k € [K], and all times

4K M
lw(i,k,t) <R = ’/Tl +2IK. (193)

Proof. Note that by assumption

FE=0) = 5 3 L0 - s < s (B0 < nane o
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Then we conclude that

N <M1 + 13) > RM©(0)) > RMNB(t)) > A max max > (i, t)f

2 ie[l] ke[K] —
nell; " (k)
A N
> i ok k)2 > —= ik, )2
= 5 et M B s [0 B DI 2 g nagq le .
(195)
Thus we conclude that
4K M
max |w(i, k,t)]> < L 1 2IK. (196)
1€[I],k€[K)
This ends the proof. O

Now we state a refined version of Theorem [5| which does not require an a-priori bound but instead

proves boundedness of the embeddings v(i, n, t) for all times using Lemma

Theorem 8. Let 11 be approximately balanced, i.e., assume that Assumption|l|holds. Assume that

the function f : RIP — R is slot-wise linear. Assume that there is My > 0 such that
A v M v M

sup |f(’01,...,1)[)|§ 9 max‘g(k)‘é 2
v1,...,01 €EB1(0)CRP k

(197)

Let 0 < A < 1 be a fixed number and assume that for

R= \/4KAM1 1 2IK +3 (198)

Assumption @holds with Q = Br(0) and some M > 0. Note that M depends on R and thus on K
and \. Let C'y be the constant from Lemma Assume that v(i,n,t) follow the gradient dynamics (B))
and are initialized such that

A
Then there are constants Cy, C's > 0 depending on M, I, D, A\, and C such that for
N2K171 NKlfl
S > max (CQAQ In*(N/\), Cs—7— ln(N/)\)) (200)

the bound

(I-1)/2
Omax(t) < max <5max(())e)‘t/8, 401# ln(S)]g>

(201)

< max <5max(0)6’\t/8, Crpak IH(S)Z>

holds for all t > 0.

Remark 4. We emphasize again that since M might depend on A we obtain no explicit rate in .
However, the S and N dependence is the same as in Theorem 5]

Proof. The general strategy of the proof is similar to the proof of Theorem[d] but the proof is slightly
simpler, as it is easier to obtain a-priori estimates on the evolution of v(i,n,t). We assume that the
conclusion of Theorem@holds, which occurs with probability at least 1 — S~! over the randomness
of D.

Now let T > 0 be the largest time such that forall 0 < ¢ < T and all ¢ € [I] and n € [N] we have
v(i,n,t) € Q and the bound

Omax(t) < — <1 (202)
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(we assume w.l.0.g. that C; > 1) holds for 0 < ¢t < T'. By assumption, those relations hold at t = 0
(note that dax () < 2max; , |v(i,n)|). We can bound for ¢ = T' using the a-priori estimate (193)
from Lemma 2] and find

AK M
(i, n, T)| < Jw(i, L (k), T)| 4 Omax(T) < ’/Tl +2IK+2<R—-1.  (203)

Thus, by continuity, there is € > 0 such that v(#, n,t) € Br(0) for some ¢ > Oand all ¢ € [0,T + €.
Now we can apply Lemma for the interval [T, T + £]. We note that by slot-wise linearity we have

D;;f =0and w > 0. Therefore, we get

d1

N
37319

i,n)2 < =\d(i,n)|? + CLEKU=D/2 In(S) < Omax

N2
+ O KU=D/21n(S),/ ?53% + 0183

Now (with the same reasoning as in the proof of Theorem ) there is a constant C, depending on D,
I, and M such that for

(204)

12 202N2K171 12 202N2K171
5> 5= 12 Y ln2<( ) > ) (205)
the bound
N2 A
C1KU=1/21n(89) < <7 (206)
holds. Clearly, we get for a suitable constant C'y
N2K171
Sy < 02T In?(N/A). (207)
Similarly, we get for
2. 162Ci{NK!~! 2-162C{NK!~!
S>8 = ;4 In ( ;4 ) (208)
the bound
N A2
CKU=D2 [In(8) = < 209
! 295 = 166, (209)
holds. And we find
NKI—l
51 <Cs a In(N/)). (210)
Now we can continue to bound (204) for S satisfying (205) and (208) and using (202) as follows
31|5(i n, T)|* < =\d(i,n)|* + A—Q(S + 552 + é52’ (211)
dt 2 y 10 = ’ 1601 max 4 max 4 max*

Now, if dmax(T) < A/(8C}) then there is ¢ > 0 such that d,ax(¢) < A/(4C1) holds for ¢t €
[0,T + ¢]. Thus, we assume that dyax (1) > A/(8C1). Leti € [I], n € [N] be any index such that
[0(%, 7, T)| = Omax(T"). Then we conclude that

d1 A A2 A A A2
— 2160, n, T)|? < =262 R QA AN 5. = 0. 212
a2 /00mTI" < 5 Omax + Tga, Omax S 5 ga- Omax + T Omax =0 (212)
This implies that
d 1
—— —Omax(T)? < 21
7 0max(T)? <0 (213)

from which we conclude that there is £ > 0 such that d,,,x(¢) < A/(4C7) holds for 0 <t < T +e.
In either case, we get a contradiction and thus 7" = oo. In particular, we can apply Lemma ] for all
times ¢ > 0. Suppose now that for some ¢

(I-1)/2
4G KT % (214)

Bmax (1) = = [n(s)
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then we conclude from Lemmal/]] that

d1 A N
— =020 (t) € = Sbmax(t)? + CLETD/2 JIn(S) — Smax(t)
dt 2 2 S 215
A A A @1
< 242 —2452 < 242 .
— 2 5IIlaX (t) + 4 6IIlaX(t) — 4 51’1’12].)( (t)
Thus we conclude from Gronwall’s inequality that
2
4C, KU-D/2 N
Smax()? < max | Gmax(0)2e™ /4, (1)\ ln(5)§ (216)
This ends the proof. O

Proof of Theorem[5| The proof is the same as the proof of Theorem [§|above with the only exception
that we do not need to show that v(i,n,t) € §2 but this holds by assumption which makes the proof
strictly simpler. O

G Concentration of Datapoint Statistics Matrices

In this section, we prove high probability concentration bounds for certain matrices and vectors
capturing the statistics of the dataset. They are used in Section [E] to extract the asymptotically
dominating contribution of the loss gradient and therefore of the gradients of the embeddings under
gradient flow. All concentration bounds derived in this section are a simple consequence of the
general and standard matrix concentration bound stated in Lemma 7]

We start with the matrices AY € RV*N with entries
Al n, ={n €D ni =n1,my =na}| =, (217)

the matrix counting the appearance of a pair of tokens in slot  and j (this is closely related to the
matrices A®"J which we will consider below). Then we have the following result.

Lemma 3. Let A € RN*N pe as defined above. Assume that S > 12N. Then the following
bound holds forn > 0

Pp <||Ai’j —EAY)| > (1+1n) ln(S)\/§> < §nHE, (218)

This implies

- S S 3
LI > ~ | < —TI+§.
Pp <||A 1> %+ (1+77)1n(5)1/N> <s 219)

Proof. As in the proof of Theorem we use Poissonization, i.e., we consider dataset D generated
by first sample S ~ Poi(S) and then Dg ~ U([N]?)®. A uniform sample n ~ U([N]!) satisfies
n; = n and n; = ny with probability

1
p= (220)
Therefore the distribution of A7 is
o S
Aﬁ{m = Poi (1\72) (221)

and the entries are independent. We can now apply Lemma [7| where we use 71n(S) as 7 in the
statement of the lemma and find using S > N that

Ps <||Ai’j —E(A™)| > (14 7n)In(S) \/§> < 4NST, (222)
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Let us define

(S, N,n) = (14n) ln(S)\/E (223)
Note that P(S = S) = $%¢=/S! > 1/(3+/S). This implies
Pp (|| A™ —E(A™)| > r(S,N,m))
=Py (|l A% —E(AY)] = r(S,N.m)IS = §)
_ Py (AT —E(A™)]| >7(S,N,n)and § = 5) (224)
P5(S = 5)

1 —1
< 4ANS™T () < §nt3/2,
- 3VS -

Here we used S > 12N in the last step. The relation (ZI9) follows because |[EA™/|| = NS/N? =
S/N. O

Next we prove a similar but slightly more involved result for the matrices that capture a similar
statistics as A’ but which in addition only consider 7 such that II(n) = k. We thus consider
any k € [K]! and any indices i,j € I which we consider fixed for now. Consider the sets
N(i, k) =10, 1 (k;), N (j, k) = Hj_l(kj) C [N]. For a given dataset D = {n!,... , n°} we define

the matrices A¥"7 ¢ RN R)IXNGR) by

ARl —|{neD: (n) =k, n; =ny, n; = ny}| (225)

n1,m2

forny € N(i, k), no € N (4, k). Thus, the entries are the number of datapoints that are mapped to k
by II and whose entries ¢ and j are equal to ny and n,. We emphasize that this essentially agrees
with the definition in (TT3) given in Section [D] (except that the dimensions of the matrices do not
agree, we address this below the lemma). Similar reasoning as in the previous result, Lemmal[3] gives
the following statement.

Lemma 4. Let A%%7 ¢ RNGK)IXNGK) pe as defined above. Assume that for alli € [I] and k € [K]
the bound N/(2K) < |TI; (k)| < 2N/K holds and let S > 24N. Then the following bound holds
forn >0

Pp <||A’“¥J’ — E(A*7)|| > (1 + 1) In(S) max (1, ()72 ;)) < 35713/2(226)

Note that in particular for K > 2 we find for S > 24N the bound

Pp <||A’“'J' — E(ARS))|| > (1+7) 1n(5),/ff> < §-nt3/2, (227)

Proof. The proof is essentially the same as the proof of Lemma 3| with some additional notational
complications. Again, we consider a dataset D generated by first sampling S ~ Poi(S) and then
Dg ~ U([N])S. Note that a uniform sample n ~ U([N]!) satisfies II(n) = k, n; = ny, and
n; = ny forny € N (i, k) and ny € N(j, k) with probability

b [T (k)|
p(k,i,5) = 7 T (ko)) - |1 () (228)

J

and thus the distribution of A%%J ig

-1
Ak :pm(S (k) )::Poiu(k,m» (229)

R NT I (k)| - [T (k)
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for all ny € N (i, k) and ny € N (j, k) and the entries are independent. Note that the assumption
N/(2K) < [II;'(k)| < 2N/K implies that

I~ (k)] 1 < TN
— v | N ) R SR T (230)
|Hi (k%>| ’ |Hj (kj)‘ 1e[K\{i,j} > TaRTE
which implies
1 S 2\"7? s
— < ) < | = —.
(2K)[_2 N2 — )\(k,l,]) — (K) N2 (231)

Now we apply Lemma where we use 7 In(.S) as 7 in the statement of the lemma and find that

P (HAk,m —E(AR)| > (1 + ) In(S)max (1, (2)072 g)) < %S*”. (232)
Let us set
S

r(S, N, K., I,n) = (1+n)In(S)max (1, ()"0 N) (233)

Again, P(S = S) = $%¢=5/S! > 1/(3+/S). This implies
Pp (| A% —E(AR)[| > r(S, N, K, I,n))
=P (||A% —E(ARY)| > r(S, N, K, 1,1)|S = 5)
Py (AR — E(ARGI)| >r(S,N, K, I,n)and § = )

— (234)
P5(S=295)
8N 1 \!
< ST =) <SR
T K <3\/§> -
Here we used S > 24N in the last step.
O

We also consider the matrix A¥*7 € RIN*IN already defined in (TT3), which we equivalently
obtain by embedding Ak:3 guitable, i.e, we have

ki, _ Af:ziiﬁjz-g ifi1 =4,71 =jandn; € N(Z, k), Nng € N(j, k) (235)
(i1,m1),(41.m2) 0 otherwise.
Since A% is a submatrix of A*"/ we find
|ARHT — EARGT|| = || AR — EARS|| (236)

so that Lemma El] applies to AR

We also need a simpler concentration statement for the frequency of datapoints n* such that n; = n.
We define the vectors B* € R by

B! =|{ne€D: n;=n}. (237)

We need a simple upper bound on the vectors B g
Lemma 5. The following bound holds for n > 0

P (Bﬁl > % + max(2y/nIn(S)SN-1,4/3n ln(S))> <87, (238)

Proof. Note that B!, ~ Bin(S, N~!). The variance of a Ber(p) variable is p(1 — p) < p. Bernstein’s
one-sided inequality then reads

t? 2
i H-SNTI>t) < | < —min { ——— .
P(Bln(S,N )— SN _t)_exp( 25N‘1—|—2t/3)_eXp( mln(4SN_1,3t/4>)
(239)
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Now we apply this bound with ¢ = max(2+/n1n(S)SN~1,4/3n1n(S)) which implies

P (Bin(s, N7YH — % > max (2, /771n(S)%,4/317 1n(5)>> <8 (240)

O

As before for the A matrices we also need an extension of the previous result to a setting where we in
addition require IT(n) = k for a given k and n € [N]. Recall that N'(i, k) = II; ' (k;). Then we
consider the vector B¥ ¢ RN (&%) given by

Bkt = |{n € D :1I(n) = k, n; = n}| = | D", (241)
Again, this agrees with the definition of B given in (I114). The following Lemma holds.

Lemma 6. Ler B®? € RVNK) pe as defined above. Assume that for all i € [I] and k € [K] the
bound |T1; ' (k)| < 2N/K holds. Then the following bound holds for n > 0 and n € N (i, k)

» , 2\U~b/2 S 4
P | |BY — E(B¥")| > max | 2 <K) nln(S)ﬁ, gnln(S) <2877 (242)

Note that viewing I and K as constant we get for S > N - In(N) the bound

Pp (lB’:” —E(By")| > cf,m/nln(S)@ <287 (243)

Proof. The proof is along the lines of Lemma 5| but slightly more technical. Note that the entries of
B¥: are distributed according to Bin(S, p(k, 1)) where

, (k)|
ki) = ——— 7 244
P = NI ) e
Note that by assumption
oN\ 1 1 79\t
N < | = T=_ (= :
p(k,i) < < 7 ) N N <K> (245)
Since the variance of a Ber(p) variable is p(1 — p) < p Bernstein’s inequality then implies
2
P(|Bin(S,p(k,¢)) — S -p(k,1)| > t) <2 ——=
(Bin(S.p(k, 1)) = o) 2 1) < 200 (gt »

< 2exp < min <4L5’pt(2k:,i)’3t/4)> .

Now we apply this bound with ¢ = max(2+/n1n(S)Sp(k,1),4/3n1n(S)) which implies

P(\Bin(s, p(k,i)) — S - p(k, )| > max(2/nIn(S)Sp(k, i), 4/3n 1n(5))) <257 (247)
Applying [245) we find

9\ I-1)/2 S 4
P ( |Bin(S, p(k,i)) — S - p(k, )| > max | 2 (K) 17111(5)N7 gnln(S) <2877
(248)

To conclude that (243) holds, we just need to show that for S > N In(NV) the expression S/(N 1n(.5))
is bounded which follows by monotonicity of S/ In(.S) in S. O

Recall that we introduced B** € RV in (TT4) and then
B {Bfﬂ' ifn € N(i, k)

24
0 otherwise. (249)

For our analysis we want to summarize all those concentration bounds in one result. To simplify the
statement, we only consider our main regime of interest.

140102 https://doi.org/10.52202/079017-4445



Theorem 9. Assume that the bound N/(2K) < |TI; '(k)| < 2N/K holds for all i € [I] and
k € [K]. Assume that

S > N max (24, 3(K/2)! " In(N), 4IK’/2) . (250)
Then with probability at least 1 — S™! the following bounds hold simultaneously for all k € K],
i,j € ]
hy o g
[|A™ —E(A"")] < 51n(S) N’ (251)
kyi,j k,i,j (I-1/2 [S
A% —E(A™)] < 61n(S) (%) ¥ (252)
; S In(S)S
Bl < —+4 253
e ot (253)
. .y (I-1)/2 g
B¥ —E(B>")| <4 — 1 —. 254
By EB < (1) w(s)s s

Proof. Applying Lemma [3| with 7 = 4 we obtain that the first bound holds with probability at least
1 — S~2 (here we used S > 12N). Similarly, we obtain for S > (K/2)/~IN

max<1,(;)<’—”/2 Ji):(;)“—”/z > (255)

Setting 77 = 5 in Lemma ] we get that the second bound holds (by the union bound) with probability
atleast 1 — 3I?K1S~3 foralli,j € [I] and k € [K]!. For S > aN In(N) and N > a we find

S aN In(N) S aN In(N) L@
In(S) = In(aln(N)N) = 3In(N) ~ 3

N (256)

which implies for n = 2 and S > 3N In(V)

max <21/771n(5)f/_,4/37]1n(5)> <4 ln(S)% (257)

and thus applying Lemma 5| with = 2 implies that the third bound holds with probability at least
1 — S~2. Finally, we find for S > 3(K/2)! 1N In(N) and = 3 the bound

(I-1)/2 (I-1)/2
2 S 4 2 S
z 22 <4(= Z.
max (2 < > nln(S)N, 377111(5)) <4 < > ln(S)N (258)

Lemma [6] implies that the last bound holds with probability at least 1 — 27 K/,S~3. All bounds
simultaneously then hold with probability at least

1-S2-31PK'§3_972_92JK'S3>1-25"2_2. is—l >1-8"1. (259)
O

H Spectral bounds for Random Matrices

In the derivation of the concentration bounds in the previous section, we needed concentration bounds
for random matrices whose entries follow a Poisson distribution. In this section we provide the
required result. Lemma below should be folklore, but we did not find an exact reference so we
provide a proof based on standard concentration results for random matrices. Let us first state the
general result.
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Theorem 10 (Corollary 3.7 in [26]]). Let X, be a sequence of independent random symmetric
matrices with dimension d. We assume that there is a function g : (0,00) — [0, 00| and symmetric
matrices Ay, such that

Ee’Xr < 904 for g > 0. (260)
Define
P = Amax(Y_ Ar). (261)

k
Then for all t € R the following bound holds

P (Amax (Z Xk) > t) <d-inf e 0tta®)p, (262)
k

We now apply the previous concentration bound to our specific setting of interest.

Lemma 7. Consider a random matrix A € R%*% ywhose entries are independent random variables
with A;; ~ Poi(\) for some X > 0. Then the following bound holds for all n > 0

P (||A “E(A)| > (n + 1) max ( max(dy, dz)\, 1)) < 2(dy + do)e . (263)

Proof. To bound the norm of this non-symmetric matrix we use the usual approach to consider

_ 04, xd, A—-E(4)
Q - (AT _ E(A)T 0d1><d1 ) . (264)

Consider the index set

then we can write
QE D (Nij—N(Eij + Ey) (266)
(i,5)€l

where E; ; is the matrix whose entry (4, j) is 1 and all other entries vanish and N; ; ~ Poi(\). Let
Xi; = (N;j; — A)(E; ; + Ej ;). Note that by induction one directly finds
E;; + E;; ifkiseven
E,:+E:.;)f= K JJ )
( a B, ) {Ei,j +E;; ifkisodd.
In any case we get £(E; ; + E;;)* < E;; + E;; in the sense of symmetric matrices and we set
Aij = E; i + E; ;. Now we obtain for any 6 € R the relation

. 02K E(Poi(\) — \)2k . 02K FLIE(Poi(\) — A\)2k+L

(267)

Ee@XU — AZJ

= (2k)! P (2k + 1)!
- - (268)
L 0PFPE(Poi(\) — N2 | O2FFIE(Poi(A) — A)2k+L
< Aij (;;) 2k)! + ;) 2k + 1) ) '

Note that the first summand is invariant under § — —6 while the term in absolute values changes its
sign. This implies that

<§: BPFE(Poi(\) = ) IS P E(Poi() — 1)
L OFE(Poi(A) — N)F S (—0)FE(Poi(A) — A\)F
:max<z (Poi() = V)" = (-6)*E(Poi() >>

2k + 1)!

k=0 k=0

(2k)!
k! k!

k=0 k=0
— max <E66(Poi(/\)f>\)’ EefH(Poi()\)f)\)>

0 _1\_ —6_ e _ _
— max (ex(e D=20_ e 1)+>\9) — Ae?=1)=xj0]

(269)
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Here we used the moment generating function of the Poisson distribution and in the last step that
A > 0 and then for 8 > 0

e? —e7% = 2sinh(6) > 26. (270)
Thus we infer from (268) and (269) that

EefXii < ex(e\e\_l)_xmAij — (AT =D =N0) A pen (10D Ai; 271)

using that Ai-“j = A;; in the second step. Note that here

da+da
Yoo A=) E“+E”—Zd2 Wit Y dE 272)
(i,9)€l (i,9)el i=d1+1
which implies
p=2A Z Ayj | = max(dy, da). (273)

(i,9)€l

Thus we can apply Theorem[I0]and get

. 0t+g(0)p
P )\max Z Xz] >t| < (dl + dz) 1I>lf(.)6
(i.g)€l (274)

< (d1 + do) - inf e max(dy,dz) (e’ ~1-6)
B >0

If max(dy, d2)\ < 1 we apply this bound with ¢ = 7 + 1 and 6 = 1 and find

Pl dmax | D Xij | = (L4+n) | < (dy+da) - exp (—(1+n) + Amax(dy, dy) (e — 2))
(i,5)€l

S (d1 + dg)ein
(275)

If max(dy,dz)\ > 1 we set 0 = /max(d;, dg))\_l <landt= (n+1)\/max(dy,d2)A and find
using that for 0 < 6 < 1 the bound e? —1— 6 < 62holds

P Amax | Y. Xij | = (n+1)y/max(dy,d2)) | < exp (—0t + Amax(dy, dy)0?)

(i,5)€I
276)
max(dy, dg) A ) ¢
<(di+ds)-exp|—(1+ 77)M + Amax(dy, da)y/max(dy, d2)A
max(dl, dg))\
= (dl —+ dg)e”’.
Thus we can combine both cases and obtain the relation
P (Amax Q) > (7 + 1) max ( max(dy, dz) X, 1)) < (dy + do)e™. 77)
We observe that by (271)
Ee?(—Xii) = Ee=0Xii < 910D A (278)
Thus the same reasoning shows that
P (/\min (Q) < —(n + 1) max ( max(dy, do) \, 1)) < (dy + do)e. (279)

and since ||A — EA| = ||Q|| = max |\;(Q)]| the claim follows by applying the union bound over

277) and (279). O

https://doi.org/10.52202/079017-4445 140105



I Kronecker Products

Let us here state some basic properties of the Kronecker product of matrices. For two matrices

A € R"™™ and B € RP*Y the Kronecker product is defined by
allB e almB

A®B= : eRanmQ_

CLnlB s ant
We will need the property that the operator norm satisfies

A Bl <Al -[B]

(280)

(281)

Note that we use the notation v ® w = vw' to denote the outer product. Formally we have

T

vw' =v®@w! butitis convenient and common to drop the transposed here.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: See main results and Section[3]
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See discussions in Section[2and Sectiond and Section
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: All assumptions are stated and complete proofs can be found in the sumpple-
mentary material.
Guidelines:
» The answer NA means that the paper does not include theoretical results.
* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.
* All assumptions should be clearly stated or referenced in the statement of any theorems.
* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.
Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.
e Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [NA]
Justification:
Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [NA]
Justification:
Guidelines:

* The answer NA means that paper does not include experiments requiring code.
* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA]
Justification:
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]
Justification:
Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.
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8.

10.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]
Justification:
Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

 The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification:
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification:
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification:
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification:
Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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paperswithcode.com/datasets

Answer: [NA]
Justification:
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification:
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification:
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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