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Abstract

Explicit, momentum-based dynamics that optimize functions defined on Lie groups
can be constructed via variational optimization and momentum trivialization. Struc-
ture preserving time discretizations can then turn this dynamics into optimization
algorithms. This article investigates two types of discretization, Lie Heavy-Ball,
which is a known splitting scheme, and Lie NAG-SC, which is newly proposed.
Their convergence rates are explicitly quantified under L-smoothness and local
strong convexity assumptions. Lie NAG-SC provides acceleration over the mo-
mentumless case, i.e. Riemannian gradient descent, but Lie Heavy-Ball does not.
When compared to existing accelerated optimizers for general manifolds, both
Lie Heavy-Ball and Lie NAG-SC are computationally cheaper and easier to im-
plement, thanks to their utilization of group structure. Only gradient oracle and
exponential map are required, but not logarithm map or parallel transport which
are computational costly.1

1 Introduction
First-order optimization, i.e., with the gradient of the potential (i.e. the objective function) given as
the oracle, is ubiquitously employed in machine learning. Within this class of algorithms, momentum
is often introduced to accelerate convergence; for example, in Euclidean setups, it has been proved to
yield the optimal dimension-independent convergence order, for a large class of first-order optimizers,
under strongly convex and L-smooth assumptions of the objective function[21, Sec. 2].

Gradient Descent (GD) without momentum can be generalized to Riemannian manifold by moving to
the negative gradient direction using the exponential map with a small step size. This generalization
is algorithmically straight forward, but quantifying the convergence rate in curved spaces needs
nontrivial efforts [6, 32, 27]. In comparison, generalizing momentum GD to manifold itself is
nontrivial due to curved geometry; for example, the iteration must be kept on the manifold and the
momentum must stay in the tangent space, which changes with the iteration, at the same time. It is
even more challenging to quantify the convergence rate theoretically due to the loss of linearity in
the space, leading to the lack of triangle inequality and cosine rule. Finally, there is not necessarily
acceleration unless the generalization is done delicately.

Regardless, optimization on manifolds is an important task, for which the manifold structure can
either naturally come from the problem setup or be artificially introduced. A simple but extremely
important example is to compute the leading eigenvalues of a large matrix, which can be approached
efficiently via optimization on the Stiefel manifold [19]; a smaller scale version can also be solved
via optimization on SO(n) [7, 29, 8, 26]. More on the modern machine learning side, one can
algorithmically add orthonormal constraints to deep learning models to improve their accuracy and
robustness [e.g., 5, 9, 17, 19, 24]. Both examples involve SO(n), which is an instance of an important
type of curved spaces called Lie groups.

1Code can be found at https://github.com/konglk1203/Accelerated_Optimizer_On_Lie_Group
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Lie groups are manifolds with additional group structure, and the nonlinearity of the space manifests
through the non-commutative group multiplication. The group structure can help not only design
momentum optimizer but also analyze its convergence. More precisely, this work will make the
following contributions:

• Provide the first quantitative analysis of Lie group momentum optimizers. This is significant,
partly because there is no nontrivial convex functions on many Lie groups (see Rmk. 1), so
we have to analyze nonconvex optimization.

• Theoretically show an intuitively constructed momentum optimizer, namely Lie Heavy-Ball,
may not yield accelerated convergence. Numerical evidence is also provided (Sec. 6).

• Generalize techniques from Euclidean optimization to propose a Lie group optimizer, Lie
NAG-SC, that provably has acceleration.

Comparing to other optimizers that are designed for general manifolds, we bypass the requirements
for costly operations such as parallel transport [e.g., 4], which is a way to move the momentum
between tangent spaces, and the computation of geodesic [e.g., 1], which may be an issue due to not
only high computational cost but also its possible non-uniqueness.

1.1 Related work
In Euclidean space, Gradient Descent (GD) for µ-strongly convex and L-smooth objective func-
tion can converge as ∥xk − x∗∥ ≤ (1 −C µ

L
)k ∥xk − x0∥ 2 upon appropriately chosen learning rate.

Momentum can accelerate the convergence by softening the dependence on the condition number
κ ∶= L/µ. However, how momentum is introduced matters to achieving such an acceleration. For
example, NAG-SC [21] has convergence rate 3 1 −C

√
µ
L

, but Heavy-Ball [23] still has linear depen-
dence on the conditional number, similar to gradient descent without momentum (but it may work
better for nonconvex cases).

Remarkable quantitative results also existed for manifold optimization. The momentum-less case
is relatively simpler, and [32], for example, developed convergence theory for GD on Riemannian
manifold under various assumptions on convexity and smoothness, which matched the classical
Euclidean result — for instance, Thm. 15 of their paper gave a convergence rate of 1−Cmin{ µ

L
,K}4

when the learning rate is 1/L, under geodesic-µ-strong-convexity and geodesic-L-smoothness. For
the momentum case, [3] analyzed the convergence of a related dynamics in continuous time, namely
an optimization ODE corresponding to momentum gradient flow, on Riemannian manifolds under
both geodesically strongly and weakly convex potentials, based on a tool of modified cosine rule.
However, numerical methods in discrete time that are easy and cheap to implement and provably
convergent in an accelerated fashion under mild conditions are still under-developed. One existing
idea is to transform a function on the manifold to a function on a Euclidean space by the logarithm
function. More precisely, in the case where the logarithm is a one-to-one map from the manifold to
the tangent space, it can be used to project the objective function on the manifold to a function on
the tangent space (‘pullback objective function’), enabling the usage of accelerated algorithms in
Euclidean spaces [e.g., 11]. Although such analysis may relax the requirement of global convexity, it
requires assumptions on the ‘pullback objective function’, which is hard to check in reality. Another
series of seminal works include [33, 1], which analyzed the convergence of a class of optimizers by
extending Nesterov’s technique of estimating sequence [21] to Riemannian manifolds. They managed
to show a convergence rate between 1−C

√
µ
L

and 1−C µ
L

, i.e., with conditional number dependence
inbetween that of GD with and without momentum in the Euclidean cases. They further proved that,
as the iterate gets closer to the minimum, the rate bound gets better because it converges to 1−C

√
µ
L

.
However, their algorithm requires the logarithm map (inverse of the exponential map), which may
not be uniquely defined on many manifolds (e.g., sphere) and can be computationally expensive. In
contrast, Lie NAG-SC, which we will construct, works only for Lie group manifolds, but they are

2All the constants C in this paper may be different case-by-case, but they are all independent of dimension
and the condition number.

3For continuous dynamics, convergence rate means c if U(gt) −U(g∗) = O(e−ct). For discrete algorithms,
it refers to c if U(gk) −U(g∗) = O(ck).

4We will use K to denote constants that depend on the manifold structure, e.g., diameter, curvature. It may
be different case-by-case.
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more efficient when applicable, due to being based on only exponential map and gradient oracle.
Acceleration of the same type will also be theoretically proved.

Momentum optimizers specializing in Lie groups have also been constructed before [26], where
variational optimization [30] was generalized to the manifold setup and then left trivialization were
employed to obtain ODEs with Euclidean momentum that perform optimization in continuous
time. Our work is also based on those ODEs, whose time however has to be discretized so that an
optimization algorithm can be constructed. Delicate discretizations have been proposed in [26] so
that the optimization iterates stay exactly on the manifold, saving computational cost and reducing
approximation errors. But we will further improve those discretizations. More precisely, note first
that [26] slightly abused notation and called both the continuous dynamics and one discretization Lie
NAG-SC. However, we find that their splitting discretization may not give the best optimizer – at
least, a 1st-order version of their splitting scheme yields a linear condition number dependence in our
convergence rate bound. Since this splitting-based optimizer almost degenerates to heavy-ball in the
special case of Euclidean spaces (as Rmk. 28 will show), we refine the terminology and call it Lie
Heavy-Ball. To remedy the lack of acceleration, we propose a new discretization that actually has
square root condition number dependence and thus provable acceleration, and call it as (the true) Lie
NAG-SC.

Finally, note there can be obstructions to accelerated optimization, for example roughly when
curvature is negative [16, 10, 12]. That is, however, not a contradiction because our setup involves
positive curvature.
1.2 Main results
We consider the local minimization of a differentiable function U ∶ G→ R, i.e., ming∈GU(g), where
G is a finite-dimensional compact Lie group, and the oracle allowed is the differential of U .

Two optimizers we focus on are given in Alg. (1). Under assumptions of L-smoothness and locally

geodesic-µ-strong convexity, we proved that Lie Heavy-Ball has convergence rate (1 +C L
µ
)
−1

, which

is approximately the convergence rate of 1 −Cmin{L
µ
,K} for Lie GD (Eq.1, which is identical to

Riemannian GD applied to Lie groups); this is no acceleration. To accelerate, we propose a new Lie

NAG-SC algorithm, with provable convergence rate (1 +Cmin{
√

L
µ
,K})

−1
. Note the condition

number dependence becomes
√
κ instead of κ ∶= L/µ, hence acceleration.

For a summary of our main results, please see Table 1.

Algorithm 1: Momentum optimizer on Lie groups
Parameter :step size h > 0, friction γ > 0, number of iterations N
Initialization :g0 ∈ G, ξ0 = 0
Output :Local minimum of U
for k = 0,⋯,N − 1 do

if Heavy-Ball then
ξk+1 = (1 − γh)ξk − hTgkLgk−1∇U(gk)

if NAG-SC then
ξk+1 = (1 − γh)ξk − (1 − γh)h (TgkLgk−1∇U(gk) − Tgk−1Lgk−1−1∇U(gk−1)) −
hTgkLgk−1∇U(gk)

gk+1 = gk exp(hξk+1)
end
return gN

Remark 1 (Triviality of convex functions on Lie groups). We do not assume any global convexity of
U . In fact, U has to be nonconvex for any meaningful optimization to happen. This is because we are
considering compact Lie groups5, and a convex function on a connected compact manifold could only
be a constant function [31]. An intuition for this is, a convex function on a closed geodesic must be
constant. See [e.g., 18, Sec. B.3] for more discussions. Our analysis is, importantly, for nonconvex
U , and convexity is only required locally to ensure a quantitative rate estimate can be obtained.

5Even if we consider noncompact Lie groups, many of them have compact Lie subgroups [20], and our
argument would still hold.

3

140232 https://doi.org/10.52202/079017-4451



Continuous dynamics Heavy-Ball NAG-SC
Scheme Eq. (2) Eq. (9) Eq. (13)

Step size h -
√
µ

4L
min{ 1√

2L
, 1
2p(a)}

Convergence rate c 2
3

√
µ (1 + µ

16L
)−1 (1 + 1

30

√
µmin{ 1√

2L
, 1
2p(a)})

−1

(Modified) energy Eq. (5) Eq. (10) Eq. (41) 6

Lyapunov function Eq. (6) Eq. (12) Eq. (14)
Main theorem Thm. 9 Thm. 13 Thm. 14

Table 1: A summary of main results
2 Preliminaries and setup
2.1 Lie group and Lie algebra

A Lie group, denoted by G, is a differentiable manifold with a group structure. A Lie algebra is a
vector space with a bilinear, alternating binary operation that satisfies the Jacobi identity, known as
Lie bracket. The tangent space at e (the identity element of the group) is a Lie algebra, denoted as
g ∶= TeG. The dimension of the Lie group G will be denoted by m.
Assumption 2 (general geometry). We assume the Lie group G is finite-dimensional and compact.

One technique we will use to handle momentum is called left-trivialization: Left group multiplication
Lg ∶ ĝ → gĝ is a smooth map from the Lie group to itself and its tangent map TĝLg ∶ TĝG→ TgĝG is a
one-to-one map. As a result, for any g ∈ G, we can represent the vectors in TgG by TeLξ for ξ ∈ TeG.
This operation is the left-trivialization. It comes from the group structure and may not exist for a
general manifold. If the group is represented via an embedding to matrix group, i.e., g, ξ ∈ Rn×n,
then the left trivialization is simply given by TeLgξ = gξ with the right-hand side given by matrix
multiplication.

A Riemannian metric is required to take Riemannian gradient and we are considering a left-invariant
metric: we first define an inner product ⟨⋅, ⋅⟩ on g, which is a linear space, and then move it
around by the differential of left multiplication, i.e., the inner product at TgG is for η1, η2 ∈ TgG,
⟨η1, η2⟩ ∶= ⟨TgLg−1η1, TgLg−1η2⟩.

2.2 Optimization dynamics
Riemannian GD [e.g., 32] with iteration gk+1 = expgk(−h∇U(gk)) can be employed to optimize U
defined on G, where ∇ is Riemannian gradient, and exp ∶ G × TgG→ G is the exponential map. To
see a connection to the common Euclidean GD, it means we start from gk and go to the direction of
negative gradient with step size h to get gk+1 by geodesic instead of straight line. Riemannian GD
can be understood as a time discretization of the Riemannian gradient flow dynamics ġ = −∇U(g).
In the Lie group case, it is identical to the following Lie GD obtained from left-trivialization [26]:

gk+1 = gk expe(hTgkLgk−1∇U(gk)), (1)

where TgkLgk−1∇U(gk) ∈ g is the left-trivialized gradient. expe
7 is the exponential map staring at

the group identity e following the Riemannian structure given by the left-invariant metric, and the
operation between gk and exp(hTgkLgk−1∇U(gk)) is the group multiplication. To accelerate its
convergence, momentum was introduced to the Riemannian gradient flow via variational optimization
and left-trivialization [26], leading to the following dynamics:

{ġ = TeLgξ

ξ̇ = −γ(t)ξ + ad∗ξ ξ − TgLg−1∇U(g)
(2)

Here g(t) ∈ G is the position variable. ġ is the standard ‘momentum’ variable even though it should
really be called velocity. It lives Tg(t)G, which varies as g(t) changes in time, and we will utilize
group structure to avoid this complication. More precisely, the dynamics lets the ‘momentum’ ġ be
TeLgξ, and ξ is therefore TgLg−1 ġ and it is our new, left-trivialized momentum. Intuitively, one can

6The monotonicity of this energy function requires smaller step size than it listed in this table. See discussion
in Rmk. 36 and the details are provided in Sec. D.1

7The group exponential map and the exponential map from Riemannian structure can be different [18, Sec.
D.1]. However, under our choice of the left-invariant metric later in Lemma 3, they are identical and exp will be
the group exponential unless further specified.
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think ξ as angular momentum, and TeLgξ being gξ is position times angular momentum, which is
momentum. Similar to the Lie GD Eq. (1), we will not use ∇U(g) directly, but its left-trivialization
TgLg−1(∇U(g)), to update the left-trivialized momentum.

This dynamics essentially models a damped mechanical system, and Tao and Ohsawa [26] proved
this ODE converges to a local minimum of U using the fact that the total energy (kinetic energy
1
2
⟨ξ, ξ⟩ plus potential energy U ) is drained by the friction term −γξ. In general, γ can be a positive

time-dependent function (e.g., for optimizing convex but not strongly-convex functions), but for
simplicity, we will only consider locally strong-convex potentials, and constant γ is enough.

For curved space, an additional term ad∗ξ ξ that vanishes in Euclidean space shows up in Eq. (2). It
could be understood as a generalization of Coriolis force that accounts for curved geometry and is
needed for free motion. The adjoint operator ad ∶ g×g→ g is defined by adX Y ∶= [X,Y ]. Its dual,
known as the coadjoint operator ad∗ ∶ g × g→ g, is given by ⟨ad∗X Y,Z⟩ = ⟨Y,adX Z⟩,∀Z ∈ g.

2.3 Property of Lie groups with ad∗ skew-adjoint
The term ad∗ξ ξ in the optimization ODE (2) is a quadratic term and it will make the numerical
discretization that will be considered later difficult. Another complication from this term is, it
depends on the Riemannian metric, and indicates an inconsistency between the Riemannian structure
and the group structure, i.e., the exponential map from the Riemannian structure is different from the
exponential map from the group structure. Fortunately, on a compact Lie group, the following lemma
shows a special metric on g can be chosen to make the term ad∗ξ ξ vanish.
Lemma 3 (ad skew-adjoint [20]). Under Assumption 2, there exists an inner product on g such that
the operator ad is skew-adjoint, i.e., ad∗ξ = −adξ for any ξ ∈ g.

This special inner product will also give other properties useful in our technical proofs; see Sec. A.1.

2.4 Assumption on potential function
To show convergence and quantify its rate for the discrete algorithm, some smoothness assumption is
needed. We define the L-smoothness on a Lie group as the following.
Definition 4 (L-smoothness). A function U ∶ G→ R is L-smooth if and only if ∀g, ĝ ∈ G,

∥TĝLĝ−1∇U(ĝ) − TgLg−1∇U(g)∥ ≤ Ld(ĝ, g) (3)
where d is the geodesic distance.

Under the choice of metric in Lemma 3 that ad is skew-adjoint, Lemma 21 shows this is same as the
commonly used geodesic-L-smoothness (Def. 20).

To provide an explicit convergence rate, some convex assumption on the objective function is usually
needed. Under the assumption of unique geodesic on a geodesically convex set S ⊂ G, the definition
of strongly convex functions in Euclidean spaces can be generalized to Lie groups:
Definition 5 (Locally geodesically strong convexity). A function U ∶ G→ R is locally geodesic-µ-
strongly convex at g∗ if and only if there exists a geodesically convex neighbourhood of g∗, denoted
by S, such that ∀g, ĝ ∈ S,

U(g) −U(ĝ) ≥ ⟨TĝLĝ−1∇U(ĝ), log ĝ−1g⟩ +
µ

2
∥log ĝ−1g∥2 (4)

where log is well-defined due to the geodesic convexity of S.

3 Convergence of the optimization ODE in continuous time
To start, we provide a convergence analysis of the ODE (2), since our numerical scheme comes from
its time discretization. We do not claim such convergence analysis for the ODE is new, and in fact,
convergence for continuous dynamics has been provided on general manifolds [e.g., 3]. However, we
will prove it using our technique to be self-contained and provide some insights for the convergence
analysis of the discrete algorithm later.

Define the total energy EODE ∶ G × g→ R as

EODE(g, ξ) ∶= U(g) + 1

2
∥ξ∥2 (5)

i.e., the total energy is the sum of the potential energy and the kinetic energy. Thanks to the friction γ,
the total energy is monotonely decreasing, which provides global convergence to a stationary point.

5
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Theorem 6 (Monotonely decreasing of total energy [26]). Suppose the potential function U ∈ C1(G)
and the trajectory (g(t), ξ(t)) follows ODE (2). Then

d

dt
EODE(g(t), ξ(t)) = −γ∥ξ∥2

Thm. 6 provides the global convergence of ODE (2) to a stationary point under only C1 smoothness:
when the system converges, we have ξ∞ = 0, which gives ∥∇U(g∞)∥ = 0.

Moreover, using the non-increasing property of total energy, the following corollary states that if the
particle starts with small initial energy, it will be trapped in a sub-level set of U . The local potential
well can be defined using U ’s sub-level set.
Definition 7 (u sub-level set). Given u ∈ R, we define the u sub-level set of U as

{g ∈ G ∶ U(g) ≤ u} ∶= ⋃
i≥0

Si

i.e. a disjoint union of connected components.
Corollary 8. Suppose U ∈ C1(G). Let u = EODE(g(0), ξ(0)). If the u sub-level set of U is ⋃i≥0 Si

and g(0) ∈ S0, then we have g(t) ∈ S0,∀t ≥ 0.

Under further assumption of local strong convexity on this sub-level set, convergence rate can be
quantified via a Lyapunov analysis inspired by [25]. More specifically, given a fixed local minimum
g∗, there is provably a local unique geodesic convex neighbourhood of g∗. Denote it by S, and we
define LODE on S by

LODE(g, ξ) ∶= U(g) −U(g∗) +
1

4
∥ξ∥2 + 1

4
∥γ log g−1∗ g + ξ∥2 (6)

By assuming the local geodesic-µ-strong convexity of U on S, we have the following quantification
of Eq. (2).
Theorem 9 (Convergence rate of the optimization ODE). If the initial condition (g0, ξ0) satisfies
that g0 ∈ S for some geodesically convex set S ⊂ G, U ∈ C1(G) is locally geodesic-µ-convex on S,
and the u sub-level set of U with u = EODE(g0, ξ0) satisfies S0 ⊂ S, then we have

U(g(t)) −U(g∗) ≤ e−cODEtLODE(g0, ξ0) (7)

with cODE = 2
3

√
µ by choosing γ = 2√µ.

Remark 10. This theorem alone is a local convergence result and a {Lie group + momentum}
extension of an intuitive result for Euclidean gradient flow, which is, if the initial condition is close
enough to a minimizer and the objective function has a positive definite Hessian at that minimizer, then
gradient flow converges exponentially fast to that minimizer. However, Thm.6 already ensures global
convergence, and if not stuck at a saddle point, the dynamics will eventually enter some local potential
well. If that potential well is locally strongly convex at its minimizer, then the local convergence
result (Thm.9) supersedes the global convergence result (which has no rate), and gives the asymptotic
convergence rate. Note however that different initial conditions may lead to convergence to different
potential wells (and hence minimizers), as usual.

4 Convergence of Lie Heavy-Ball/splitting discretization in discrete time
One way to obtain a manifold optimization algorithm by time discretization of the ODE (2) is to split
its vector field as the sum of two, and use them respectively to generate two ODEs:

{ġ = TeLgξ

ξ̇ = 0 {ġ = 0
ξ̇ = −γξ − TgLg−1∇U(g)

(8)

Each ODE enjoys the feature that its solution stays exactly on G × g [26], and therefore if one
alternatively evolves them for time h, the result is a step-h time discretization that exactly respects the
geometry (no projection needed). If one approximates exp(−γh) by 1 − hγ, then the same property
holds, and the resulting optimizer is

{gk+1 = gk exp(hξk+1)
ξk+1 = (1 − γh)ξk − hTgkLgk−1∇U(gk)

(9)

6
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In Euclidean cases, such numerical scheme can be viewed as Polyak’s Heavy-Ball algorithm after a
change of variable (Rmk. 27), and will thus be referred to as Lie Heavy-Ball. It is also a 1st-order (in
h) version of the ‘2nd-order Lie-NAG’ optimizer in [26] (Rmk. 28).

To analyze Lie Heavy-Ball’s convergence, we again seek some ‘energy’ function such that the
iteration of the numerical scheme Eq. (9) will never escape a sub-level set of the potential, similar to
the continuous case. Given fixed friction parameter γ and step size h, we define the modified energy
EHB ∶ G × g→ R as

EHB(g, ξ) ∶= U(g) + (1 − γh)
2

2
∥ξ∥2 (10)

Theorem 11 (Monotonely decreasing of modified energy of Heavy Ball). Assume the potential U
is globally L-smooth. When the step size satisfies h ≤ γ

γ2+L , we have the modified energy EHB is
monotonely decreasing, i.e.,

EHB(gk, ξk) −EHB(gk−1, ξk−1) ≤ −γh∥ξk∥2

Thm. 11 provides the global convergence of Heavy-Ball scheme Eq. (9) to a stationary point under
only L-smoothness: Due to the monotonicity of the energy function EHB, the system will eventually
converge. When it converges, since g is not moving, we have ∥ξ∞∥ = 0, leading to the fact that
∥∇U(g∞)∥ = 0. More importantly, the following corollary shows that the non-increasing property of
the modified traps g in sub-level set of U :
Corollary 12. Let u = EHB(g0, ξ0). If the u sub-level set of U satisfies g0 ∈ S0 and

d(S0,⋃
i≥1

Si) > h
√
2EHB(g0, ξ0) + h2max

S0

∥∇U∥ (11)

Then we have gk ∈ S0 for any k for the Heavy-Ball scheme Eq. (9) when h ≤ γ
γ2+L .

Under the further assumption of local strong convexity on this sub-level set, the convergence rate
can be quantified via a Lyapunov analysis inspired by [25]. More specifically, given a fixed local
minimum g∗, there is a local unique geodesic neighbourhood of g∗, denoted by S, and we define LHB

on S by

LHB(g, ξ) ∶= 1

1 − γh (U(g exp(−hξ)) −U(g∗)) +
1

4
∥ξ∥2 + 1

4
∥ γ

1 − γh log g−1∗ g + ξ∥
2

(12)

The exponential decay for the Lyapunov function (Lemma 32) helps us quantify of the convergence
rate for Eq. (9) in the following theorem:
Theorem 13 (Convergence rate of Heavy-Ball scheme). If the initial condition (g0, ξ0) satisfies that
g0 ∈ S for some geodesically convex set S ⊂ G, U is L-smooth and locally geodesic-µ-convex on S,
and the u sub-level set of U with u = EODE(g0, ξ0) satisfies S0 ⊂ S and Eq. (11), then we have

U(gk) −U(g∗) ≤ ckHBLHB(g0, ξ0)

with cHB ∶= (1 + µ
16L
)−1 by choosing γ = 2√µ, h =

√
µ

4L
.

Note the rate is (1 + 1/(16κ))−1. The condition number dependence is linear (κ) but not
√
κ.

Similarly, the procedure of global convergence→ local potential well→ local minimum discussed in
Rmk. 10 also applies the Heavy-Ball algorithm.

5 Convergence of Lie NAG-SC in discrete time
The motivation for NAG-SC is to improve the condition number dependence. The convergence
rate of Heavy-Ball shown in Thm. 13 is the same as the momentumless case [e.g., 32, Thm. 15]
under the assumption of local strong convexity and L-smoothness. To improve the condition number
dependence, inspired by [25], we define Lie NAG-SC as the following:

{gk+1 = gk exp(hξk+1)
ξk+1 = (1 − γh)ξk − (1 − γh)h (TgkLgk−1∇U(gk) − Tgk−1Lgk−1−1∇U(gk−1)) − hTgkLgk−1∇U(gk)

(13)
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Comparing to Lie Heavy-Ball, an extra O(h2) term h (TgkLgk−1∇U(gk) − Tgk−1Lgk−1−1∇U(gk−1))
is introduced (see [25, Sec. 2] for more details in the Euclidean space). Our technique of left-
trivialized (and hence Euclidean) momentum allows this trick to transfer directly from Euclidean to
the Lie group case.

For NAG-SC, we will only provide a local convergence with quantified convergence under L-
smoothness and local geodesically convexity on a geodesically convex subset S ⊂ G. The difficulty
in designing a modified energy and proving the global convergence will be given later in Rmk. 36.
We define the following Lyapunov function:

LNAG-SC(g, ξ) ∶= 1

1 − γh (U(g exp(−hξ)) −U(g∗)) +
1

4
∥ξ∥2 (14)

+ 1

4
∥ξ + γ

1 − γh log g−1∗ g + h∇U(g exp(−hξ))∥
2

− h2(2 − γh)
4(1 − γh) ∥∇U(g exp(−hξ))∥

2

where g∗ is the minimum of U in S. This Lyapunov function helps us to trap g in a local potential
well and quantify the convergence rate:
Theorem 14 (Convergence rate of NAG-SC). If the initial condition (g0, ξ0) satisfies that g0 ∈ S
for some geodesically convex set S ⊂ G satisfying maxg∈S d(g∗, g) ≤ a

A
for some a < 2π and

A ∶=max∥X∥=1 ∥adX∥op, U is L-smooth and locally geodesic-µ-convex on S, and the u sub-level set
of U with u = (1 − γh)−1LNAG-SC(g0, ξ0) satisfies S0 ⊂ S and

d(S0, S − S0) > h
√
LNAG-SC(g0, ξ0) (15)

then we have
U(gk) −U(g∗) ≤ ckNAG-SCLNAG-SC(g0, ξ0)

by choosing h =min{ 1√
2L

, 1
2p(a)} and γ = 2√µ, with cNAG-SC ∶= (1 + 1

30

√
µmin{ 1√

2L
, 1
2p(a)})

−1
,

where
p(x) ∶= x

1 − exp(−x) (16)

Unlike sampling ODE and Lie Heavy-Ball, monotonely decreasing modified energy is not provided
for Lie NAG-SC. It is unclear whether such modified energy for NAG-SC exists, and an intuition is
provided in the Rmk. 36.

Another fact in Thm. 14 that is worth noticing is, we have a term 1/p(a) that depends on the curvature
of the Lie group 8, while the Lie Heavy-Ball has the same convergence rate as the Euclidean case
[25]. It is unclear if the lost of convergence rate in Lie NAG-SC comparing to the Euclidean case is
because of our proof technique or the curved space itself. However, we try to provide some insights
in Rmk. 35.

6 Systematic numerical verification via the eigen decomposition problem
6.1 Analytical estimation of property of eigenvalue decomposition potential
Given a symmetric matrix, its eigen decomposition problem can be approached via an optimization
problem on SO(n):

min
X∈Rn×n,X⊺X=I

trX⊺BXN

where N ∶= diag([1, . . . , n]). This problem is a hard non-convex problem on manifold, but some
analytical estimation [e.g., 7, Thm. 4] can be helpful for us to choose optimizer hyperparameters (we
don’t have to have those to apply the optimizers, but in this section we’d like to verify our theoretical
bounds and hence µ and L are needed).

This problem is non-convex with 2nn! stationary points corresponding to the elements in n-order
symmetric group, including 2n local minima and 2n local maxima. We suppose B = RΛR⊺ with
Λ = diag (0,1, . . . , n − 2, κ

n−1), where λi’s (the diagonal values of Λ) are in ascend order. Given π
in the n-symmetric group, the corresponding local minimum is Xπ ∶= (Xπ(i)), i.e., we switch the
columns of X by π. The eigenvalues of its Hessian at the local minimum π can be written as

σij = (j − i)(λπ(j) − λπ(i)), 1 ≤ i < j ≤ n
The global minimum is given by π∗ = id with minimum value ∑n

i=1 iλi.

8In comparison, Euclidean NAG-SC has convergence rate (1 +C
√

µ
L
)−1 [25].
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(a) Numerical estimation for 1 − c under different
condition numbers κ ∶= L

µ
for Heavy-Ball and NAG-

SC, initialized close to the global minimum. The
dashed curves are fitted value using our theoretical
result, i.e., for Heavy-Ball, it is fitted by 1 − cHB ≈
Cκ−1 for some C fit by linear regression, and for
NAG-SC, it is 1 − cNAG-SC ≈ C
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(b) Global convergence on non-convex potential. The
initial condition is chosen closed to the global maxi-
mum, and we plot the value of the potential function
along the trajectory. The horizontal tail means the
algorithm converges to the machine precision.

Figure 1: Fig. 1(a) shows that 1) Lie NAG-SC converges much faster than Lie Heavy-Ball on
ill-conditioned problems; 2) The fitted dashed curve and the experimental results align well, showing
our theoretical analysis of the convergence rate cHB and cNAG-SC is correct. Fig. 1(b) shows the
performance of our algorithms on non-convex problems experimentally. In this specific experiment,
Lie NAG-SC outperforms Lie Heavy-Ball and finds the global minimum successfully without being
trapped in local minimums. However, we are not sure which is better in general optimization. One
possible reason for the good performance on NAG-SC is it uses a larger learning rate and is better for
jumping out of the local minimums. The values of Lyapunov function along the trajectory are not
provided since it is not globally defined.

6.2 Numerical Experiment

We use the eigenvalues at the global minimum to estimate the L and µ in its neighborhood. As a
result, around the global minimum, L ≈ (n − 1)(λn − λ1), and µ ≈ mini{λi+1 − λi}, where we
assume λ’s are sorted in the ascend order. Such estimation is used to choose our parameters (γ and h)
in all experiments as stated in Table 1.

Given a conditional number κ ∶= L
µ

, we design A in the following way: we choose Λ =
diag (0,1, . . . , n − 2, κ

n−1) and R is uniformly sampled from SO(n) using [22, Sec. 2.1.1]. When
the given κ satisfies κ ≥ (n − 1)(n − 2), the condition number at global minimum is the given κ.

The results are presented in Fig. 1 and 2. In all experiments, we set n = 10, and the computations are
done on a MacBook Pro (M1 chip, 8GB memory).

7 Application to Vision Transformer

This section will demonstrate a practical modern machine learning application of our Lie NAG-SC
optimizer. The setting is a highly non-convex optimization problem with stochastic gradients, due
to being a real deep learning task, but empirical success is still observed. More specifically, it was
discovered [19] that adding artificial orthogonal constraints to attention layers in transformer models
can improve their performances, because orthogonality disallows linearly dependent correlations
between tokens, so that the learned attentions can be more efficient and robust. We will apply our
optimizer to solve this constrained optimization problem.

The setup is the following (using the notation of [28]): consider a Scaled Dot-Product Multi-
head Attention given by MultiHead(Q,K,V ) = Concat(head1, ...,headnhead)WO, where headi =
Attention(QWQ

i ,KWK
i , V WV

i ), Attention(Q̃, K̃, Ṽ ) = softmax ( Q̃K̃⊺

√
dk
) Ṽ . The trainable parame-

ters are matrices WQ
i ∈ Rdmodel×dk , WK

i ∈ Rdmodel×dk , WV
i ∈ Rdmodel×dv and WO ∈ Rnheaddv×dmodel . The
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(c) NAG-SC

Figure 2: Local convergence of Lie Heavy-Ball and Lie NAG-SC on eigenvalue decomposition
problem with different condition numbers. The initialization is close to the global minimum. The
dashed curves are the value of potential function along the trajectory and the solid curves are the
values of the corresponding Lyapunov functions. Lie GD (Eq. 1) has h been chosen as 1/L [32,
Thm. 15]. We observe: 1. Lie NAG-SC converges much faster than Lie Heavy-Ball, especially
on ill-conditioned problems. 2. Although the potential function is not monotonely decreasing, the
Lyapunov is.
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Figure 3: Training curve when applying our Lie HB and Lie NAG-SC to vision transformers. Forcing
the query matrices and the key matrices on SO(n) [19, Orthogonality across heads] led to reduced
training error. Moreover, validation error is also improved (Tab. 2).

three input matrices Q, K and V all have dimension sequence_length×dmodel. dk and dv are usually
smaller than dmodel.

In the case dmodel = nheaddk, which is satisfied in many popular models, we apply the constraint
‘orthogonality across heads’ [19] and require Concat(WQ

i , i = 1..., nhead) and Concat(WK
i , i =

1..., nhead) to be in SO(dmodel). We compare the performance of our newly proposed optimizer
with the existing ones (the optimizer in [19] is identical to Lie Heavy-Ball on SO(n)). Fig. 3 and
Tab. 2 are the validation error when we train a vision transformer [2] with 6.3M parameters from
scratch on CIFAR, showing an improvement of Lie NAG-SC comparing the state-of-the-art algorithm
Lie Heavy-Ball. The computations are done on a single Nvidia V100 GPU. The model structures
and hyperparameters are identical as Sec. 3.2 in [19]. Each presented result is the average of 3
independent runs.

Euclidean SGD Lie HB Lie NAG-SC
CIFAR 10 9.84% 9.12% 8.77%

CIFAR 100 32.68% 31.93% 31.38%
Table 2: Validation error rate of vision transformer trained by different algorithms on CIFAR, showing
the performance is ordered by Euclidean GD < Lie Heavy-Ball < Lie NAG-SC for both CIFAR 10
and 100. The blue font means the lowest error rate.
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A Properties of Lie groups and functions on Lie groups

A.1 More details about compact Lie groups with left-invariant metric

Comparing with the Euclidean space, Lie groups lack of commutativity, i.e., for g, ĝ ∈ G, gĝ and ĝg
are not necessarily equal. This can also be characterized by the non-trivial Lie bracket [⋅, ⋅]. This
non-commutativity leads to the fact that exp(X) exp(Y ) ≠ exp(X + Y ). An explicit expression for
log(exp(X) exp(Y )) is given by Dynkin’s formula [13]. Utilizing Dynkin’s formula, we quantify
d log in the following.
Corollary 15 (Differential of logarithm). If d log g is well defined, then the differential of logarithm
on G is given by

dξ log g ∶= (d log)g(TeLgξ) = TeLg [p(adlog g)ξ] , ∀ξ ∈ g (17)

where the power series p is defined in Eq. (16)

The vanishment of ad∗ξ ξ can also be understood as the group structure and the Riemannian structure
are compatible. See [18] for more discussion. Under such assumption, we have the following
properties:
Corollary 16. Suppose we have adX is skew-adjoint ∀X ∈ g. Then for any g ∈ G and any ξ ∈ g such
that dξ log g is well-defined, we have

⟨dξ log g, log g⟩ = ⟨log g, ξ⟩
Corollary 17. When dξ log g is well-defined and adX is skew-adjoint ∀X ∈ g, we have

⟨dξ log g, ξ⟩ ≤ ∥ξ∥2

Corollary 18. Define
A ∶= max

∥X∥=1
∥adX∥op (18)

When d(g, e) ≤ a
A

for some a ∈ (0,2π), we have

∥d log g − Id∥ ≤ q(a)
where q is defined by

q(x) ∶= ∥p(xi) − 1∥

= ∥ xi

1 − cosx + i sinx − 1∥ (19)

=

¿
ÁÁÀ1 − x2

2
− cosx − x sinx
1 − cosx

with p defined in Eq. (16).
Remark 19 (About existence and uniqueness of log). As the inverse of exp, the operator log may
not be uniquely defined globally. However, we are always considering in a unique geodesic subset of
the Lie group, where log is defined uniquely in such a subset of Lie group. Similarly, even if we do
not have globally geodesically strongly convex functions, we only require locally strong convexity.

A.2 More details about functions on Lie groups

The commonly used geodesic L-smooth on a manifold M is given by the following definition [e.g.,
32, Def. 5]:
Definition 20 (Geodesically L-smooth). U ∶ G→ R is geodesically L-smooth if for any g, ∈̂M ,

∥∇U(g) − Γg
ĝ∇U(ĝ)∥ ≤ Ld(g, ĝ)

where Γg
ĝ is the parallel transport from ĝ to g.

Lemma 21. Under the assumption of ad∗X is skew-adjoint ∀X ∈ g, Def. 4 is identical to Def. 20.
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Proof of Lemma 21. For any g, ĝ ∈ G, consider the shortest geodesic ϕ ∶ [0,1] → G connecting g

and ĝ and denote ξ = TgLg−1∇U(g). Using the condition ad is skew-adjoint, we have ϕ̇(t) = 0 and
TeLϕ(t)ξ is parallel along ϕ by checking the condition for parallel transport [14, Thm. 1]:

d

dt
ξ = 0 = −1

2
[Tϕ(t)Lϕ(t)−1 ϕ̇(t), ξ]

This tells that

TgLg−1Γ
ĝ
g∇f(g) = TĝLĝ−1∇f(ĝ)

Together with the metric is left-invariant, we have

∥TgLg−1∇U(g) − TĝLĝ−1∇U(ĝ)∥ ≤ Ld(g, ĝ)

which is identical to Def. 4.

Corollary 22 (Properties of L-smooth functions). If U ∶ G→ R is L-smooth, then for any g, ĝ ∈ G,
we have

U(ĝ) ≤ U(g) + ⟨TgLg−1∇U(g), log g−1ĝ⟩ +
L

2
d2(g, ĝ) (20)

Proof of Cor. 22. We denote the one of the shortest geodesic connecting g and ĝ as g(t), i.e., π ∶
[0,1] → G with g(0) = g and g(1) = ĝ, g(t) = g exp(tξ) for some ξ ∈ g with ∥ξ∥ = d(g, ĝ). Then

U(ĝ) −U(g)

= ⟨TeLgξ,∇U(g)⟩ + ∫
1

0
⟨TeLg(t)ξ,∇U(g(t))⟩d t

= ⟨ξ, TgLg−1∇U(g)⟩ + ∫
1

0
⟨ξ, Tg(t)Lg(t)−1∇U(g(t)) − TgLg−1∇U(g)⟩d t

≤ ⟨ξ, TgLg−1∇U(g)⟩ + ∫
1

0
∥ξ∥∥Tg(t)Lg(t)−1∇U(g(t)) − TgLg−1∇U(g)∥d t

≤ ⟨ξ, TgLg−1∇U(g)⟩ + ∫
1

0
tL∥ξ∥2 d t

= ⟨ξ, TgLg−1∇U(g)⟩ +
L

2
d2(g, ĝ)

Lemma 23 (Co-coercivity). If the function U ∶ G→ R is both L-smooth and convex on a geodesically
convex set S ⊂ G, then we have for any g, ĝ ∈ S,

U(ĝ) ≥ U(g) + ⟨TgLg−1∇U(g), log g−1ĝ⟩ +
1

2L
∥TgLg−1∇U(g) − TĝLĝ−1∇U(ĝ)∥

2
(21)

Proof of Lemma 23. By convexity, we have for any g ∈ G, ξ ∈ g and t ∈ [0,1],

U(g exp(tξ)) −U(g) ≥ t⟨TgLg−1∇U(g), ξ⟩
U(g) −U(g exp(tξ)) ≥ −t⟨Tg exp(tξ)Lg exp(tξ)−1∇U(g exp(tξ)), ξ⟩

We sum these two inequalities and have

⟨Tg exp(tξ)Lg exp(tξ)−1∇U(g exp(tξ)) − TgLg−1∇U(g), ξ⟩ ≥ 0

which tells that

∂

∂t
[Tg exp(tξ)Lg exp(tξ)−1∇U(g exp(tξ))] =Htξ

for some linear map H ∶ g → g with all eigenvalues between 0 and L, i.e., 0 ≤ Ht ≤ L for any
t ∈ [0,1].
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Now, we select the shortest geodesic connection g and ĝ, defined by g(t) ∶= g exp(tξ), with ĝ =
g exp(ξ) and ∥ξ∥ = d(g, ĝ). By

Tg(t)Lg(t)−1∇U(g(t)) − TgLg−1∇U(g) = ∫
t

0

∂

∂s
Tg exp(sξ)Lg exp(sξ)−1∇U(g exp(sξ))ds

= ∫
t

0
Hsξds

we have

U(ĝ) −U(g)

= ∫
1

0
⟨Tg(t)∇U(g(t)), ξ⟩

= ∫
1

0
⟨TgLg−1∇U(g) + ∫

t

0

∂

∂s
Tg(s)Lg(s)−1∇U(g(s))ds, ξ⟩dt

= ⟨TgLg−1∇U(g), ξ⟩ + ∫
1

0
⟨∫

t

0
Hsξds, ξ⟩dt

= ⟨TgLg−1∇U(g), ξ⟩ + ∫
1

0
∫

t

0
⟨Hsξ, ξ⟩dsdt

= ⟨TgLg−1∇U(g), ξ⟩ +
1

2
∫

1

0
∫

1

0
⟨Hsξ, ξ⟩dsdt

≥ ⟨TgLg−1∇U(g), ξ⟩ +
1

2L
∫

1

0
∫

1

0
⟨Hsξ,Hsξ⟩dsdt

≥ ⟨TgLg−1∇U(g), ξ⟩ +
1

2L
∫

1

0
(∫

1

0
Hsξds)

2

dt

= ⟨TgLg−1∇U(g), ξ⟩ +
1

2L
∫

1

0
∥TĝLĝ−1∇U(ĝ) − TgLg−1∇U(g)∥

2
dt

= ⟨TgLg−1∇U(g), ξ⟩ +
1

2L
∥TĝLĝ−1∇U(ĝ) − TgLg−1∇U(g)∥

2

Corollary 24. If the function U ∶ G→ R is both L-smooth and convex on a geodesically convex set
S ⊂ G, then we have for any g, ĝ ∈ S,

⟨TgLg−1∇U(g) − TĝLĝ−1∇U(ĝ), log ĝ−1g⟩ ≥
1

L
∥TgLg−1∇U(g) − TĝLĝ−1∇U(ĝ)∥

2
(22)

Proof. By exchanging g and ĝ in Eq. (21), we have

U(g) ≥ U(ĝ) + ⟨TĝLĝ−1∇U(ĝ), log ĝ−1g⟩ +
1

2L
∥TgLg−1∇U(g) − TĝLĝ−1∇U(ĝ)∥

2
(23)

Summing up 21 and 23 gives us the desired result.

Corollary 25 (Properties of µ-strongly convex functions). Suppose U ∶ G→ R is geodesic-µ-strongly
convex on a geodesically convex set S ⊂ G, then for any g, ĝ ∈ S,

⟨TgLg−1∇U(g), log ĝ−1g⟩ ≥ µd2(g, ĝ) (24)

Proof of Cor. 25. By the definition of geodesic-µ-strongly convex functions in Eq. (4), we have

U(g) −U(ĝ) ≥ ⟨TĝLĝ−1∇U(ĝ), log ĝ−1g⟩ +
µ

2
∥log ĝ−1g∥2

U(ĝ) −U(g) ≥ ⟨TgLg−1∇U(g), log g−1ĝ⟩ +
µ

2
∥log ĝ−1g∥2

Summing them up and using log g−1ĝ = − log ĝ−1g gives us the conclusion.
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B More details about optimization ODE

Proof of Thm. 6. By direct calculation,

d

dt
E(g(t), ξ(t)) = ⟨TeLgξ,∇U(g)⟩ + ⟨ξ, ξ̇⟩

= −γ∥ξ∥2

Lemma 26 (Monotonicity of the Lyapunov function). Assume adX is skew-adjoint for any X ∈ g.
Suppose there is a geodesically convex set S ⊂ G satisfying:

• U is geodesic-µ-strongly convex on a geodesically convex set S ⊂ G.

• g∗ is the minimum of U on S.

• g(t) ∈ S for all t ≥ 0.

• log g−1∗ g and its differential is well-defined for all g ∈ S.

Then the solution of ODE (2) satisfies

d

dt
LODE(g(t), ξ(t)) ≤ −cODELODE(g(t), ξ(t)) (25)

with the convergence rate given by

cODE ∶= γmin{ µ

µ + γ2
,
2

3
}

Proof of Lemma 26. The time derivative of L is

d

dt
LODE = ⟨ξ, TgLg−1∇U(g)⟩ +

1

2
⟨ξ,−γξ − TgLg−1∇U(g)⟩

+ 1

2
⟨γ log g−1∗ g + ξ, γ dξ log g−1∗ g − γξ − TgLg−1∇U(g)⟩

= ⟨ξ, TgLg−1∇U(g)⟩ −
γ

2
⟨ξ, ξ⟩ − 1

2
⟨ξ, TgLg−1∇U(g)⟩

+ γ2

2
⟨log g−1∗ g,dξ log g

−1
∗ g⟩ − γ2

2
⟨log g−1∗ g, ξ⟩ − γ

2
⟨log g−1∗ g, TgLg−1∇U(g)⟩

+ γ

2
⟨ξ,dξ log g−1∗ g⟩ − γ

2
⟨ξ, ξ⟩ − 1

2
⟨ξ,∇U(g)⟩

= −γ⟨ξ, ξ⟩ − γ

2
⟨log g−1∗ g, TgLg−1∇U(g)⟩ +

γ

2
⟨ξ,dξ log g−1∗ g⟩

≤ −γ
2
⟨log g−1∗ g, TgLg−1∇U(g)⟩ −

γ

2
⟨ξ, ξ⟩

where the second last equation is by Cor. 16 and the last inequality is by Cor. 17. By the property of
strong convexity in Eq. (4) and Cor. 25, for any λ ∈ [0,1],

d

dt
LODE ≤ −γ

2
(λ(U(g) −U(g∗)) + (

λ

2
+ (1 − λ))µd2(g∗, g) + ∥ξ∥2) (26)

where λ is a constant to be determined later.

Next, we try to give LODE an upper bound. By Cauchy-Schwarz inequality,

∥γ log g−1∗ g + ξ∥2 ≤ 2 (γ2d2(g∗, g) + ∥ξ∥2)

and further

LODE ≤ U(g) −U(g∗) +
3

4
∥ξ∥2 + γ2

2
d2(g, g∗) (27)
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Splitting scheme Heavy ball

velocity ξ
√

hγ
1−e−γh ξ

friction parameter γ
√

γ(1−e−γh)
h

step size h
√

1−e−γh

hγ
h

Table 3: Change of variable between Heavy-ball and splitting scheme

Compare the coefficients in Eq. (26) and (27), we have

d

dt
LODE ≤ −cODELODE

where the convergence rate cODE is given by

cODE ∶=
γ

2
min{λ, 4

3
,
2

γ2
(λ
2
+ (1 − λ))µ}

= γ

2
min{λ, 4

3
,
µ

γ2
(2 − λ)}

By selecting λ = 2µ
µ+γ2 to make λ = µ

γ2 (2 − λ) satisfied, we have the desired result.

Proof of Thm. 9. This is the direct corollary from Cor. 8 and Lemma 26.

C More details about Heavy-Ball discretization

Remark 27 (Polyak’s Heavy ball [23]). Heavy-ball scheme in the Euclidean space is

xk+1 = xk + α(xk − xk−1) − β∇U(xk)

where α and β are positive parameters. We now write it into a position-velocity form. By setting
vk+1 = xk+1−xk√

β
, we have

{xk+1 = xk +
√
βvk+1

vk+1 = αvk −
√
β∇U(xk)

We perform the change of variables given by
√
β → h, α → 1 − γh gives

{xk+1 = xk + hvk+1
vk+1 = (1 − γh)vk − h∇U(xk)

which is the Euclidean version corresponding to Eq. (9).

Remark 28 (Splitting discretization). The two systems of ODEs in Eq. (8) are both linear and has
exact solutions. We will refer to the numerical scheme evolving their exact solution alternatively by
splitting discretization. More precisely, this gives us the following numerical scheme:

⎧⎪⎪⎨⎪⎪⎩

gk+1 = gk exp(hξk+1)
ξk+1 = e−γhξk − 1−e−γh

γ
TgkLgk−1∇U(gk)

(28)

After change of variable in the Table 3, it becomes Eq. (9).

Eq. (28) is similar to the ‘NAG-SC’ in [26]. The authors provide a second-order approximation to
the optimization ODE Eq. (2) by evolving the two ODEs in Eq. (8) in the following way in each step:
1) evolve ξ-ODE for h/2 time; 2) evolve g-ODE for h/2 time; 3) evolve ξ-ODE for h/2 time again.
Although this zig-zag scheme is higher-order of approximation of the optimization ODE comparing
to the the splitting approximation mentioned in Rmk. 28, it still has the same condition number
dependence. The reason is, we can take out the first evolution of time h/2 for the ξ-system and it
becomes identical to the splitting scheme (with a different initial condition.)
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Before we start the theoretical calculation, we mention that update for ξ in Heavy-Ball scheme Eq.
(9) can also be written as

ξk =
1

1 − γhξk+1 +
h

1 − γhTgkLgk−1∇U(gk) (29)

which will be helpful later.

Proof of Thm. 11. Using Eq. (29), we have the following calculation of EHB(gk, ξk) −
EHB(gk−1, ξk−1):

EHB(gk, ξk) −EHB(gk−1, ξk−1)

= U(gk) −U(gk−1) +
(1 − γh)2

2
(∥ξk∥2 − ∥ξk−1∥2)

= U(gk−1 exp(hξk)) −U(gk−1) +
(1 − γh)2

2
(∥ξk∥2 − ∥

1

1 − γhξk +
h

1 − γhTgk−1Lgk−1−1∇U(gk−1)∥
2

)

= U(gk−1 exp(hξk)) −U(gk−1) − (γh −
γ2h2

2
)∥ξk∥2 − h⟨ξk, Tgk−1Lgk−1−1∇U(gk−1)⟩ −

h2

2
∥∇U(gk−1)∥2

≤ h⟨ξk, Tgk−1Lgk−1−1∇U(gk−1)⟩ +
Lh2

2
∥ξk∥2 − (γh −

γ2h2

2
)∥ξk∥2 − h⟨ξk, Tgk−1Lgk−1−1∇U(gk−1)⟩ −

h2

2
∥∇U(gk−1)∥2

≤ 1

2
(h2L − 2γh + γ2h2)∥ξk∥2 −

h2

2
∥∇U(gk−1)∥2

where the second last inequality is the property of L-smooth functions given in Eq. 20.

When h ≤ γ
γ2+L , we have h2L−2γh+γ2h2 ≤ −γh, and EHB(gk, ξk)−EHB(gk−1, ξk−1) ≤ −γh∥ξk∥2.

Remark 29. The design of modified energy for Heavy-Ball in Eq. (10) and Thm. 11 is new, and is
different from modified potential function in existing works (e.g., [15]). Our modified energy is not
designed to let the Hamiltonian system to have higher order of preserving the total energy, but is
defined to ensure monotonicity of the modified energy to ensure global convergence of the numerical
scheme.

Remark 30. We specially choose our update of numerical scheme in Eq. (9) (and also later Eq. (13)
for NAG-SC) to ensure such natural form of the modified energy. If we choose to update g first and
then ξ (e.g., [25]), the modified energy will have to be evaluated at different time step, EHB(gk+1, ξk),
for example.

Proof of Cor. 12. We prove this by induction. Suppose we have gk ∈ S0. By the dissipation of the
modified energy Thm. 11, EHB(gk, ξk) ≤ EHB(g0, ξ0). As a result,

∥ξk+1∥ ≤ (1 − γh)∥ξk∥ + h∥∇U(gk)∥

≤ (1 − γh)
√

2

(1 − γh)2E
HB(gk, ξk) + h∥∇U(gk)∥

≤
√
2EHB(g0, ξ0) + hmax

S0

∥∇U∥

Since we have gk+1 = gk exp(hξk+1), we have d(gk+1, gk) ≤ h∥ξk+1∥. Together with the condition
that U(gk+1) ≤ EHB(gk+1, ξk+1) ≤ u, we have gk+1 ∈ S0. Mathematical induction gives the desired
result.

Lemma 31. Assume adX is skew-adjoint for any X ∈ g. Suppose there is a geodesically convex set
S ⊂ G satisfying:

• U is geodesically µ-strongly convex on a convex set S ⊂ G.

• g∗ is the minima of U on S.
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• gk ∈ S for all k ∈ N.

• log g−1∗ g and its differential is well-defined for all g ∈ S.

Then we have

LHB
k+1 − LHB

k ≤ −bHBLHB
k+1 −

h

2(1 − γh) (
3γ

4L
− h

1 − γh) ∥∇U(gk+1)∥
2

where bHB is given by

bHB ∶=min{γh
8
,
µh(1 − γh)

2γ
,

2γh

3(1 − γh)}

Proof of Lemma 31. For (gk, ξk) following the Heavy-Ball scheme Eq. (9), we use the shorthand
notation of LHB

k ∶= LHB(gk, ξk), which gives

LHB
k =

1

1 − γh (U(gk−1) −U(g∗)) +
1

4
∥ξk∥2 +

1

4
∥ γ

1 − γh log g−1∗ gk + ξk∥
2

(30)

Evaluate of the three terms in LHB
k+1 − LHB

k separately :

•The first term: By co-coercivity in Lemma 23, we have

1

1 − γh (U(gk) −U(gk−1))

≤ h

1 − γh
⟨TgkLgk−1∇U(gk), ξk⟩ I1

− 1

2L

1

1 − γh
∥TgkLgk−1∇U(gk) − Tgk−1Lgk−1−1∇U(gk−1)∥

2
I2

•The second term: Using Eq. (29), we have

1

4
(∥ξk+1∥2 − ∥ξk∥2)

= 1

2
⟨ξk+1 − ξk, ξk+1⟩ −

1

4
∥ξk+1 − ξk∥2

= − γh

2(1 − γh)∥ξk+1∥
2

II1

− h

2(1 − γh)
⟨ξk+1, TgkLgk−1L∇U(gk)⟩ II2

− 1

4
∥ξk+1 − ξk∥2 II3

•The third term: Define a parametric curve [0, h] → G as gt ∶= gk exp(tξk+1)

1

4
(∥ γ

1 − γh log g−1∗ gk+1 + ξk+1∥
2

− ∥ γ

1 − γh log g−1∗ gk + ξk∥
2

)

= 1

4
(∥ γ

1 − γh log g−1∗ gk+1 + ξk+1∥
2

− ∥ γ

1 − γh log g−1∗ gk + ξk+1∥
2

)

+ 1

4
(∥ γ

1 − γh log g−1∗ gk + ξk+1∥
2

− ∥ γ

1 − γh log g−1∗ gk + ξk∥
2

)

= 1

2
∫

h

0
⟨ d
dt
( γ

1 − γh log g−1∗ gt + ξk+1) ,
γ

1 − γh log g−1∗ gt + ξk+1⟩dt

+ 1

4
(∥ γ

1 − γh log g−1∗ gk + ξk+1∥
2

− ∥ γ

1 − γh log g−1∗ gk + ξk∥
2

)
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We evaluate the two terms separately.

∫
h

0
⟨ d
dt
( γ

1 − γh log g−1∗ gt + ξk+1) ,
γ

1 − γh log g−1∗ gt + ξk+1⟩dt

= ∫
h

0
⟨ γ

1 − γh dξk+1 log g
−1
∗ gt,

γ

1 − γh log g−1∗ gt + ξk+1⟩dt

= ∫
h

0
⟨ γ

1 − γh dξk+1 log g
−1
∗ gt,

γ

1 − γh log g−1∗ gt⟩dt

+ ∫
h

0
⟨ γ

1 − γh dξk+1 log g
−1
∗ gt, ξk+1⟩dt

≤ γ2

(1 − γh)2 ∫
h

0
⟨ξk+1, log g−1∗ gt⟩dt +

γh

1 − γh∥ξk+1∥
2

= γ2

(1 − γh)2 ∫
h

0
⟨ξk+1, log g−1∗ gt − log g−1∗ gk⟩dt +

γ2h

(1 − γh)2
⟨ξk+1, log g−1∗ gk⟩ +

γh

1 − γh∥ξk+1∥
2

= γ2

(1 − γh)2 ∫
h

0
⟨ξk+1,∫

t

0
dξk+1 log g

−1
∗ gsds⟩dt +

γ2h

(1 − γh)2
⟨ξk+1, log g−1∗ gk⟩ +

γh

1 − γh∥ξk+1∥
2

= γ2

(1 − γh)2 ∫
h

0
∫

t

0
⟨ξk+1,dξk+1 log g−1∗ gs⟩dsdt +

γ2h

(1 − γh)2
⟨ξk+1, log g−1∗ gk⟩ +

γh

1 − γh∥ξk+1∥
2

≤ γ2

(1 − γh)2 ∫
h

0
∫

t

0
∥ξk+1∥2dsdt +

γ2h

(1 − γh)2
⟨ξk+1, log g−1∗ gk⟩ +

γh

1 − γh∥ξk+1∥
2

= γ2h2

2(1 − γh)2 ∥ξk+1∥
2 + γ2h

(1 − γh)2
⟨ξk+1, log g−1∗ gk⟩ +

γh

1 − γh∥ξk+1∥
2

Using the ξ update in Eq. (29), we have

∥ γ

1 − γh log g−1∗ gk+1 + ξk+1∥
2

− ∥ γ

1 − γh log g−1∗ gk + ξk∥
2

= ⟨ξk+1 − ξk,
2γ

1 − γh log g−1∗ gk + ξk+1 + ξk⟩

= −⟨ γh

1 − γhξk+1 +
h

1 − γhTgkLgk−1∇U(gk),
2γ

1 − γh log g−1∗ gk +
2 − γh
1 − γhξk+1 +

h

1 − γhTgkLgk−1∇U(gk)⟩

= − 2γ2h

(1 − γh)2
⟨ξk+1, log g−1∗ gk⟩ −

γh(2 − γh)
(1 − γh)2 ∥ξk+1∥

2 − 2γh

(1 − γh)2
⟨TgkLgk−1∇U(gk), log g−1∗ gk⟩

− 2h

(1 − γh)2
⟨TgkLgk−1∇U(gk), ξk+1⟩ −

h2

(1 − γh)2 ∥∇U(gk)∥
2

Sum them up, we have

1

4
(∥− γ

1 − γh log g−1k+1g∗ + ξk+1∥
2

− ∥− γ

1 − γh log g−1k g∗ + ξk∥
2

)

≤ − h

2(1 − γh)2
⟨TgkLgk−1∇U(gk), ξk+1⟩ III2

− γh

2(1 − γh)2
⟨TgkLgk−1∇U(gk), log g−1∗ gk⟩ III1

− h2

4(1 − γh)2 ∥∇U(gk)∥
2

III3
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Take a closer look:
1

2
I1 + III2 =

h

2(1 − γh)
⟨TgkLgk−1∇U(gk), ξk⟩ −

h

2(1 − γh)2
⟨TgkLgk−1∇U(gk), ξk+1⟩

= h

2(1 − γh)⟨TgkLgk−1∇U(gk), ξk −
1

1 − γhξk+1⟩

= h2

2(1 − γh)2
∥TgkLgk−1∇U(gk)∥

2

1

2
I1 + II2 + II3 + III3 = −

1

4
∥ξk+1 − ξk +

h

1 − γhTgkLgk−1∇U(gk)∥
2

≤ 0

Now we sum everything up

LHB
k+1 − LHB

k ≤ −
γh

2(1 − γh) (
⟨TgkLgk−1∇U(gk), log g−1∗ gk⟩ + ∥ξk+1∥2) +

h2

2(1 − γh)∥∇U(gk)∥
2

By Eq. (4) (strong convexity) and Eq. (22) (corollary of co-coercivity) of U , we have U(gk) −
U(g∗) + µ

2
∥log g−1∗ gk∥

2 ≤ ⟨TgkLgk−1∇U(gk), log g−1∗ gk⟩

LHB
k+1 − LHB

k ≤ −
γh

2(1 − γh) (
1

4
(U(gk) −U(g∗)) +

µ

2
∥log g−1∗ gk∥

2 + ∥ξk+1∥2)

− h

2(1 − γh) (
3

4
γ(U(gk) −U(g∗)) −

h

1 − γh∥∇U(gk)∥
2)

≤ − γh

2(1 − γh) (
1

4
(U(gk) −U(g∗)) +

µ

2
∥log g−1∗ gk∥

2 + ∥ξk+1∥2) (31)

− h

2(1 − γh) (
3γ

4L
− h

1 − γh) ∥∇U(gk)∥
2

Cauchy-Schwarz inequality gives

LHB
k+1 ≤

1

1 − γh (U(gk) −U(g∗)) +
γ2

2(1 − γh)2
∥log g−1∗ gk∥

2 + 3

4
∥ξk+1∥2 (32)

Comparing the coefficients in Eq. (31) and (32) gives us the desired result.

Lemma 32 (Monotonicity of the Lyapunov function for Heavy-Ball scheme). Assume the conditions
in Lemma 31 is satisfied. By choosing γ = 2√µ and step size h =

√
µ

4L
, we have bHB = µ

16L
and

LHB
k+1 ≤ cHBLHB

k (33)

by defining cHB ∶= (1 + bHB)−1.

Proof of Lemma 32. By our choice of h and γ makes 3γ
4L
− h

1−γh ≥ 0, and the convergence rate by
Lemma 31.

Proof of Thm. 13. This is a direct corollary of Lemma 32 and Cor. 12.

D More details about NAG-SC discretization

Lemma 33. Assume adX is skew-adjoint for any X ∈ g. Suppose there is a geodesically convex set
S ⊂ G satisfying:

• U is geodesically µ-strongly convex on a convex set S ⊂ G.

• g∗ is the minima of U on S.

• gk ∈ S for all t ≥ 0.
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• log g−1∗ g and its differential is well-defined for all g ∈ S.

• maxg∈S d(g∗, g) ≤ a
A

for some a < 2π.

Setting h =min{ 1√
2L

, 1
2p(a)} and γ = 2√µ, we have

LNAG-SC
k+1 − LNAG-SC

k ≤ bNAG-SCLNAG-SC
k+1

for the contraction rate bNAG-SC given by

bNAG-SC ∶=
1

30

√
µmin{ 1√

2L
,

1

2p(a)} (34)

Proof of Lemma 33. For (gk, ξk) following the NAG-SC scheme Eq. (13), we define the shorthand
notation LNAG-SC

k ∶= LNAG-SC(gk, ξk), which gives

LNAG-SC
k = 1

1 − γh (U(gk−1) −U(g∗))+
1

4
∥ξk∥2+

1

4
∥ξk +

γ

1 − γh log g−1∗ gk + h∇U(gk−1)∥
2

−h
2(2 − γh)
4(1 − γh) ∥∇U(gk−1)∥

2

(35)

Evaluate of the basic terms of LNAG-SC
k+1 − LNAG-SC

k first:

•The first term: By the property of convex L-smooth functions in Eq. (21),

1

1 − γh (U(gk) −U(gk−1))

≤ h

1 − γh
⟨TgkLgk−1∇U(gk), ξk⟩ I1

− 1

2L

1

1 − γh
∥TgkLgk−1∇U(gk) − Tgk−1Lgk−1−1∇U(gk−1)∥

2
I2

•The second term: NAG-SC scheme in Eq. 13 gives the following:

1

4
(∥ξk+1∥2 − ∥ξk∥2)

= 1

2
⟨ξk+1 − ξk, ξk+1⟩ −

1

4
∥ξk+1 − ξk∥2

= − γh

2(1 − γh)∥ξk+1∥
2 − h

2
⟨TgkLgk−1∇U(gk) − Tgk−1Lgk−1−1∇U(gk−1), ξk+1⟩

− h

2(1 − γh)
⟨Tgk−1Lgk−1−1∇U(gk−1), ξk+1⟩ −

1

4
∥ξk+1 − ξk∥2

= − γh

2(1 − γh)∥ξk+1∥
2

II1

− h(1 − γh)
2

⟨TgkLgk−1∇U(gk) − Tgk−1Lgk−1−1∇U(gk−1), ξk⟩ II2

+ h2(1 − γh)
2

∥TgkLgk−1∇U(gk) − Tgk−1Lgk−1−1∇U(gk−1)∥
2

II3

+ h2

2
⟨TgkLgk−1∇U(gk) − Tgk−1Lgk−1−1∇U(gk−1), TgkLgk−1∇U(gk)⟩ II4

− h

2(1 − γh)
⟨ξk+1, TgkLgk−1∇U(gk)⟩ II5

− 1

4
∥ξk+1 − ξk∥2 II6
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•The third term: We consider the parametric curve on G connecting gk and gk+1 defined by gt =
gk exp(tξk+1), t ∈ [0, h].
1

4
∥ξk+1 +

γ

1 − γh log g−1∗ gk+2 + hTgkLgk−1∇U(gk)∥
2

− 1

4
∥ξk +

γ

1 − γh log g−1∗ gk + hTgk−1Lgk−1−1∇U(gk−1)∥
2

= 1

4
∥ξk+1 +

γ

1 − γh log g−1∗ gk+2 + hTgkLgk−1∇U(gk)∥
2

− 1

4
∥ξk+1 +

γ

1 − γh log g−1∗ gk + hTgkLgk−1∇U(gk)∥
2

+ 1

4
∥ξk+1 +

γ

1 − γh log g−1∗ gk + hTgkLgk−1∇U(gk)∥
2

− 1

4
∥ξk +

γ

1 − γh log g−1∗ gk + hTgk−1Lgk−1−1∇U(gk−1)∥
2

= 1

2
∫

h

0
⟨ξk+1 +

γ

1 − γh log g−1∗ gt + hTgkLgk−1∇U(gk),
γ

1 − γh dξk+1 log g
−1
∗ gt⟩d t

+ 1

4
⟨ξk+1 + ξk +

2γ

1 − γh log g−1∗ gk + hTgkLgk−1∇U(gk) + hTgk−1Lgk−1−1∇U(gk−1), ξk+1 − ξk + hTgkLgk−1∇U(gk) − hTgk−1Lgk−1−1∇U(gk−1)⟩

= 1

2
∫

h

0
⟨ξk+1 +

γ

1 − γh log g−1∗ gt + hTgkLgk−1∇U(gk),
γ

1 − γh dξk+1 log g
−1
∗ gt⟩d t

+ 1

4(1 − γh)2
⟨(2 − γh)ξk+1 + 2γ log g−1∗ gk + (3 − 2γh)hTgkLgk−1∇U(gk),−γhξk+1 − hTgkLgk−1∇U(gk)⟩

First, we estimate the term ∫
h
0 ⟨ξk+1 +

γ
1−γh log g−1∗ gt + hTgkLgk−1∇U(gk),

γ
1−γh dξk+1 log g

−1
∗ gt⟩d t

using the property of d log in Cor. 16, 17 and 18.

⟨ γ

1 − γh log g−1∗ gt + ξk+1 + hTgkLgk−1∇U(gk),dξk+1 log g−1∗ gt⟩

= ⟨ γ

1 − γh log g−1∗ gt + ξk+1,dξk+1 log g−1∗ gt⟩

+ h⟨TgkLgk−1∇U(gk), ξk+1⟩ + h⟨TgkLgk−1∇U(gk),dξk+1 log g−1∗ gt − ξk+1⟩

≤ γ

1 − γh
⟨log g−1∗ gt, ξk+1⟩ + ∥ξk+1∥2 + h⟨TgkLgk−1∇U(gk), ξk+1⟩ + p(a)h∥∇U(gk)∥∥ξk+1∥ (36)

Taking integral gives

∫
h

0
⟨ γ

1 − γh log g−1∗ gt + ξk+1 + hTgkLgk−1∇U(gk),dξk+1 log g−1∗ gt⟩d t

≤ ∫
h

0

γ

1 − γh
⟨log g−1∗ gt, ξk+1⟩ + ∥ξk+1∥2 + h⟨TgkLgk−1∇U(gk), ξk+1⟩ + p(a)h∥∇U(gk)∥∥ξk+1∥d t

= γ

1 − γh ∫
h

0
⟨log g−1∗ gt, ξk+1⟩d t + h∥ξk+1∥2 + h2⟨TgkLgk−1∇U(gk), ξk+1⟩ + h2p(a)∥∇U(gk)∥∥ξk+1∥

We calculate the integral

∫
h

0
⟨log g−1∗ gt, ξk+1⟩d t

= ∫
h

0
[⟨log g−1∗ gk, ξk+1⟩ + ∫

t

0
⟨dξk+1 log g−1∗ gτ , ξk+1⟩d τ]d t

≤ h⟨log g−1∗ gk, ξk+1⟩ + ∫
h

0
∫

t

0
∥ξk+1∥2 d τ d t

= h⟨log g−1∗ gk, ξk+1⟩ +
h2

2
∥ξk+1∥2

which gives us

∫
h

0
⟨ξk+1 +

γ

1 − γh log g−1∗ gt + hTgkLgk−1∇U(gk),dξk+1 log g−1∗ gt⟩d t

≤ γh

1 − γh
⟨log g−1∗ gk, ξk+1⟩ +

h(2 − γh)
2(1 − γh) ∥ξk+1∥

2

+ h2⟨TgkLgk−1∇U(gk), ξk+1⟩ + h2p(a)∥∇U(gk)∥∥ξk+1∥
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The other term

⟨(2 − γh)ξk+1 + 2γ log g−1∗ gk + (3 − 2γh)hTgkLgk−1∇U(gk),−γhξk+1 − hTgkLgk−1∇U(gk)⟩
= −γh(2 − γh)∥ξk+1∥2 − 2γ2h⟨log g−1∗ gk, ξk+1⟩ − γh2(3 − 2γh)⟨TgkLgk−1∇U(gk), ξk+1⟩

− h(2 − γh)⟨TgkLgk−1∇U(gk), ξk+1⟩ − 2γh⟨log g−1∗ gk, TgkLgk−1∇U(gk)⟩ − h2(3 − 2γh)∥TgkLgk−1∇U(gk)∥
2

= −γh(2 − γh)∥ξk+1∥2 − 2γ2h⟨log g−1∗ gk, ξk+1⟩ − 2h(1 + γh − γ2h2)⟨TgkLgk−1∇U(gk), ξk+1⟩
− 2γh⟨log g−1∗ gk, TgkLgk−1∇U(gk)⟩ − h2(3 − 2γh)∥∇U(gk)∥2

Summing them up, we have

∥ξk+1 +
γ

1 − γh log g−1∗ gk+1 + hTgkLgk−1∇U(gk)∥
2

− ∥ξk +
γ

1 − γh log g−1∗ gk + hTgk−1Lgk−1−1∇U(gk−1)∥
2

≤ 2γ2h

(1 − γh)2
⟨log g−1∗ gk, ξk+1⟩ +

γh(2 − γh)
(1 − γh)2 ∥ξk+1∥

2

+ 2γh2

1 − γh
⟨TgkLgk−1∇U(gk), ξk+1⟩ +

2γh2

1 − γhp(a)∥∇U(gk)∥∥ξk+1∥

− γh(2 − γh)
(1 − γh)2 ∥ξk+1∥

2 − 2γ2h

(1 − γh)2
⟨log g−1∗ gk, ξk+1⟩ −

2h(1 + γh − γ2h2)
(1 − γh)2

⟨TgkLgk−1∇U(gk), ξk+1⟩

− 2γh

(1 − γh)2
⟨log g−1∗ gk, TgkLgk−1∇U(gk)⟩ −

h2(3 − 2γh)
(1 − γh)2

∥TgkLgk−1∇U(gk)∥
2

≤ 2γh2

1 − γhp(a)∥∇U(gk)∥∥ξk+1∥ −
2h

(1 − γh)2
⟨TgkLgk−1∇U(gk), ξk+1⟩

− 2γh

(1 − γh)2
⟨log g−1∗ gk, TgkLgk−1∇U(gk)⟩ −

h2(3 − 2γh)
(1 − γh)2 ∥∇U(gk)∥

2

Eventually, the third term becomes

1

4
∥ξk+1 +

γ

1 − γh log g−1∗ gk+1 + hTgkLgk−1∇U(gk)∥
2

− 1

4
∥ξk +

γ

1 − γh log g−1∗ gk + hTgk−1Lgk−1−1∇U(gk−1)∥
2

= − hγ

2(1 − γh)2
⟨TgkLgk−1∇U(gk), log g−1∗ gk⟩ III1

− h

2(1 − γh)2
⟨TgkLgk−1∇U(gk), ξk+1⟩ III2

− h2

2(1 − γh)
∥TgkLgk−1∇U(gk)∥

2
III3

− h2

4(1 − γh)2
∥TgkLgk−1∇U(gk)∥

2
III4

+ γh2

2(1 − γh)p(a)∥∇U(gk)∥∥ξk+1∥ extra term from curvature
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We sum the all the terms up to get

LNAG-SC
k+1 − LNAG-SC

k

≤ − γh

2(1 − γh) (
1

1 − γh
⟨TgkLgk−1∇U(gk), log g−1∗ gk⟩ + ∥ξk+1∥2) II1 + III1

− h

2(1 − γh)⟨TgkLgk−1∇U(gk),
1

1 − γhξk+1 − ξk + hTgkLgk−1∇U(gk)⟩ 1
2
I1 + III2 + III3

− h(1 − γh)
2

⟨TgkLgk−1∇U(gk) − Tgk−1Lgk−1−1∇U(gk−1), ξk⟩ II2

+ h2

2
⟨TgkLgk−1∇U(gk) − Tgk−1Lgk−1−1∇U(gk−1), TgkLgk−1∇U(gk)⟩ II4

− 1

4
( 2h

1 − γh
⟨ξk+1 − ξk, TgkLgk−1∇U(gk)⟩ + ∥ξk+1 − ξk∥

2 + h2

(1 − γh)2 ∥∇U(gk)∥
2)

1
2
I1 + II5 + II6 + III4

− 1

2
( 1
L

1

1 − γh − h
2(1 − γh)) ∥TgkLgk−1L∇U(gk) − Tgk−1Lgk−1−1∇U(gk−1)∥

2
I2 + II3

− h2(2 − γh)
4(1 − γh) (∥∇U(gk)∥

2 − ∥∇U(gk−1)∥2) Additional term

+ γh2

2(1 − γh)p(a)∥∇U(gk)∥∥ξk+1∥ extra term from curvature

1

2
I1 + III2 + III3

= h2

2(1 − γh)
⟨TgkLgk−1∇U(gk) − Tgk−1Lgk−1−1∇U(gk−1), TgkLgk−1∇U(gk)⟩ IV1

+ γh3

2(1 − γh)2
∥TgkLgk−1∇U(gk)∥

2
IV2

LNAG-SC
k+1 − LNAG-SC

k

≤ γh

2(1 − γh) (
1

1 − γh (
⟨TgkLgk−1∇U(gk), log g−1∗ gk⟩ − h2∥∇U(gk)∥2) + ∥ξk+1∥2)

II1 + III1 + IV2

− 1 − γh
2
⟨TgkLgk−1∇U(gk) − Tgk−1Lgk−1−1∇U(gk−1), log g−1k−1gk⟩ II2

+ h2

2

2 − γh
1 − γh

⟨TgkLgk−1∇U(gk) − Tgk−1Lgk−1−1∇U(gk−1), Tgk−1Lgk−1−1∇U(gk−1)⟩ II4 + IV1

− 1

2
( 1
L

1

1 − γh − h
2(1 − γh)) ∥TgkLgk−1∇U(gk) − Tgk−1Lgk−1−1∇U(gk−1)∥

2
I2 + II3

− h2

4

2 − γh
1 − γh (∥∇U(gk)∥

2 − ∥∇U(gk−1)∥2) Additional term

+ γh2

2(1 − γh)p(a)∥∇U(gk)∥∥ξk+1∥ extra term from curvature

II4 + IV1 +Additional term = h2

4

2 − γh
1 − γh

∥TgkLgk−1∇U(gk) − Tgk−1Lgk−1−1∇U(gk−1)∥
2

(II4 + IV1 +Additional term) + (I2 + II3)

≤ h2

2
(1 − γh + 1

1 − γh −
1

1 − γh
1

Lh2
) ∥TgkLgk−1∇U(gk) − Tgk−1Lgk−1−1∇U(gk−1)∥

2
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LNAG-SC
k+1 − LNAG-SC

k

≤ − γh

2(1 − γh) (
1

1 − γh (
⟨TgkLgk−1∇U(gk), log g−1∗ gk⟩ − h2∥∇U(gk)∥2) + ∥ξk+1∥)

− 1 − γh
2
⟨TgkLgk−1∇U(gk) − Tgk−1Lgk−1−1∇U(gk−1), log g−1k−1gk⟩

+ h2

2
(1 − γh + 1

1 − γh −
1

1 − γh
1

Lh2
) ∥TgkLgk−1∇U(gk) − Tgk−1Lgk−1−1∇U(gk−1)∥

2

+ γh2

2(1 − γh)p(a)
∥TgkLgk−1∇U(gk)∥∥ξk+1∥ extra term from curvature

By the property of L-smoothness in Eq. (22), we have

⟨TgkLgk−1∇U(gk) − Tgk−1Lgk−1−1∇U(gk−1), log g−1k−1gk⟩ ≥
1

L
∥TgkLgk−1∇U(gk) − Tgk−1Lgk−1−1∇U(gk−1)∥

2

and

LNAG-SC
k+1 − LNAG-SC

k ≤ − γh

2(1 − γh) (
1

1 − γh (
⟨TgkLgk−1∇U(gk), log g−1∗ gk⟩ − h2∥∇U(gk)∥2) + ∥ξk+1∥2)

− 1

2
(1 − γh + 1

1 − γh)(
1

L
− h2) ∥TgkLgk−1∇U(gk) − Tgk−1Lgk−1−1∇U(gk−1)∥

2

+ γh2

2(1 − γh)p(a)∥∇U(gk)∥∥ξk+1∥

When h ≤ 1√
2L

, together with Lemma 33 and Cauchy-Schwarz inequality, we have

LNAG-SC
k+1 − LNAG-SC

k

≤ − γh

2(1 − γh) (
1

1 − γh (
⟨TgkLgk−1∇U(gk), log g−1∗ gk⟩ − h2∥∇U(gk)∥2) + ∥ξk+1∥2)

+ γh2

2(1 − γh)p(a)∥∇U(gk)∥∥ξk+1∥

= − γh

2(1 − γh) (
1

1 − γh (
⟨TgkLgk−1∇U(gk), log g−1∗ gk⟩ − h2∥∇U(gk)∥2) + ∥ξk+1∥2)

+ γh2

4(1 − γh)p(a) (λ∥∇U(gk)∥
2 + λ−1∥ξk+1∥2)

where λ > 0 is a parameter to be chosen later. Using property of L-smoothness in Eq. (21), (22) and
property of µ-strong convexity in Eq. (24), we have for any λ1 ≥ 0 and λ2 ≥ 1 satisfying λ1 + λ2 ≥ 1,

2(1 − γh)2
γh

(LNAG-SC
k+1 − LNAG-SC

k )

≤ −⟨TgkLgk−1∇U(gk), log g−1∗ gk⟩

+ h2∥∇U(gk)∥2 − (1 − γh)∥ξk+1∥2 +
h(1 − γh)λp(a)

2
∥∇U(gk)∥2 +

h(1 − γh)λ−1p(a)
2

∥ξk+1∥2

≤ −(2 − λ1 − λ2)(U(gk) −U(g∗)) −
λ1

2L
∥∇U(gk)∥2 −

µλ2

2
d2(g, g∗)

+ h2∥∇U(gk)∥2 − (1 − γh)∥ξk+1∥2 +
h(1 − γh)λp(a)

2
∥∇U(gk)∥2 +

h(1 − γh)λ−1p(a)
2

∥ξk+1∥2

≤ −(2 − λ1 − λ2)(U(gk) −U(g∗)) + (
h(1 − γh)λp(a)

2
+ h2 − λ1

2L
)∥∇U(gk)∥2 −

µλ2

2
d2(g, g∗)

− (1 − γh)(1 − hλ−1p(a)
2

)∥ξk+1∥2 (37)

26

140255https://doi.org/10.52202/079017-4451



Now we try to upper bound LNAG-SC
k . Using Cauchy-Schwarz inequality,

∥ξk +
2γ

1 − γh log g−1∗ gk + hTgk−1Lgk−1−1∇U(gk−1)∥
2

≤ 3 [∥ξk∥2 + (
2γ

1 − γh)
2

d2(g∗, gk) + h2∥∇U(gk−1)∥2]

≤ 3 [∥ξk∥2 + (
2γ

1 − γh)
2

(d(g∗, gk) + h∥ξk∥)2 + h2∥∇U(gk−1)∥2]

≤ 3 [(1 + 2( 2γh

1 − γh)
2

)∥ξk∥2 + 2(
2γ

1 − γh)
2

d2(g∗, gk) + h2∥∇U(gk−1)∥2]

As a result,

LNAG-SC
k

≤ 1

1 − γh (U(gk−1) −U(g∗)) + (
1

4
+ 3

4
+ 6γ2h2

(1 − γh)2 )∥ξk∥
2

+ 6γ2

(1 − γh)2 d
2(g∗, gk) + (

3

4
− (2 − γh)
4(1 − γh))h

2∥∇U(gk−1)∥2

= 1

1 − γh (U(gk−1) −U(g∗)) +
1 − 2γh + 7γ2h2

(1 − γh)2 ∥ξk∥2 +
6γ2

(1 − γh)2 d
2(g∗, gk) +

1 − 2γh
4(1 − γh)h

2∥∇U(gk−1)∥2

≤ ( 1

1 − γh +
1 − 2γh
4(1 − γh)

h2

2L
)(U(gk−1) −U(g∗)) +

1 − 2γh + 7γ2h2

4(1 − γh)2 ∥ξk∥2 +
3γ2

2(1 − γh)2 d
2(g∗, gk)

≤ 5 − 2γh
4(1 − γh) (U(gk−1) −U(g∗)) +

1 − 2γh + 7γ2h2

(1 − γh)2 ∥ξk∥2 +
3γ2

2(1 − γh)2 d
2(g∗, gk)

which is the same as

2(1 − γh)LNAG-SC
k

≤ 5 − 2γh
2

(U(gk−1) −U(g∗)) +
2(1 − 2γh + 7γ2h2)

1 − γh ∥ξk∥2 +
3γ2

1 − γhd
2(g∗, gk) (38)

We suppose

h(1 − γh)λp(a)
2

+ h2 − λ1

2L
≤ 0 (39)

As a result, by comparing the parameters in Eq. (38) and (37), we have the contraction rate is

bNAG-SC ≥
γh

1 − γh min{2(2 − λ1 − λ2)
5 − 2γh ,(1 − hλ−1p(a)

2
) (1 − γh)2
2(1 − 2γh + 7γ2h2) ,

µλ2(1 − γh)
6γ2

}

= γhmin{ 2(2 − λ1 − λ2)
(5 − 2γh)(1 − γh) ,(1 −

hλ−1p(a)
2

) 1 − γh
2(1 − 2γh + 7γ2h2) ,

µλ2

6γ2
}

Now we try to give a lower bound for the contraction rate c upon a set of parameters (λ,λ1, λ2). By
assuming γh ≤ 1

7
, we have

bNAG-SC ≥ γhmin{2(2 − λ1 − λ2),
1

2
(1 − hλ−1p(a)

2
) , µλ2

6γ2
}

Choosing

λ1 = 2L(
hλp(a)

2
+ h2)

to make Eq. (39) satisfied. By assuming h ≤ 1
2L

, we choose

λ2 =
1 − hλp(a)
1 + µ

12γ2
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to make 2(2 − λ1 − λ2) ≥ µλ2

6γ2 . Then we have

bNAG-SC ≥ γhmin{1
2
(1 − hλ−1p(a)

2
) , µ

6(γ2 + µ) (1 − hλp(a))}

≥ 2√µhmin{1
2
(1 − hλ−1p(a)

2
) , 1

30
(1 − hλp(a))}

≥ 2√µhmin{1
2
(1 − hp(a)

2
) , 1

30
(1 − hp(a))}

by choosing γ = 2√µ, same as continuous case and simply choose λ = 1.

bNAG-SC ≥ 2
√
µmin{1

4
h(2 − hp(a)), 1

30
h(1 − hp(a))}

Setting h =min{ 1√
2L

, 1
2p(a)}, we have

bNAG-SC ≥ 2
√
µ
h

60

= 1

30

√
µmin{ 1√

2L
,

1

2p(a)}

which gives us the desired result.

Corollary 34. If the iteration for NAG-SC is initialized by g0 ∈ S0, with (g0, ξ0) satisfying

ENAG-SC(g0, ξ0) ≤ (1 − γh)u
for some u, with the u sub-level set of U satisfying Eq. (15). Then we have gk ∈ S0 for any k for the

NAG-SC scheme Eq. (13) when h ≤
√

1
2L

.

Proof of Cor. 34. First we prove LNAG-SC ≥ 1/4∥ξk∥2. By L-smoothness and geodesic convexity,
Lemma 23 gives

U(g) −U(g∗) ≥
1

L
∥∇U(g)∥2 ∀g ∈ S

As a result, when h ≤
√

1
2L

, we have 1
L(1−γh) ≥

h2(2−γh)
2(1−γh) , leading to LNAG-SC(g, ξ) ≥ 1

4
∥ξ∥2.

Now we are ready to prove this corollary by induction. Suppose we have gk−1 ∈ S0. By the
monotonicity of the Lyapunov function, LNAG-SC(gk, ξk) ≤ LNAG-SC(g0, ξ0). As a result,

∥ξk∥ ≤
√

4LNAG-SC
k ≤ 2

√
LNAG-SC
0

Since we have gk = gk−1 exp(hξk), we have d(gk, gk−1) ≤ h∥ξk∥. Together with the condition that
U(gk−1) ≤ (1−γh)LNAG-SC

k ≤ (1−γh)u, we have gk ∈ S0. Mathematical induction gives the desired
result.

Proof of Thm. 14. This is the direct corollary from Lemma 33 and Cor. 34 when defining cNAG-SC ∶=
(1 + bNAG-SC)−1, with bNAG-SC is given in Eq. (34).

Remark 35 (Why Lie NAG-SC losses convergence rate comparing to the Euclidean case).
In order to utilize the extra term h (TgkLgk−1∇U(gk) − Tgk−1Lgk−1−1∇U(gk−1)) in Eq. (13),
Lyapunov function Eq. (14) has the term ξk + γ

1−γh log g−1∗ gk+1 + h∇U(gk), and the term
⟨log g−1∗ gk+1 − log g−1∗ gk, TgkLgk−1∇U(gk)⟩ needs to be quantified, consequently. However, due
to the non-linearity of the Lie group, we have to make the assumption that gk+1 and gk are close to
g∗, leading to the space is ‘nearly linear’, so that we can bound the error from the non-linearity of
the space using Cor. 18. Please see the proof of Lemma 33, Eq. (36) for more details.

However, such loss of convergence rate due to curved spaces is also observed in some of the best
results so far [33, 1].

For heavy-ball scheme, the design of the Lyapunov function only has the term γ
1−γh log g−1∗ gk + ξk,

and we can use the properties Eq. (16) and (17) to quantify LHB
k+1 − LHB

k .
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D.1 Modified energy for NAG-SC

Remark 36 (Why we cannot have an modified energy for NAG-SC). An ‘modified energy’ for Lie
NAG-SC is provided in Eq. (41), whose monotonicity is shown in Thm. 37. The modified energy is
global defined and required only L-smoothness. However, the failure for this ‘energy function’ is
because its monotonicity requires step size O(

√
µ

L
), which is smaller than the step size O( 1√

L
) that

provides acceleration.

Comparing with the Heavy-Ball scheme, the larger step size and the acceleration of NAG-SC come
from extra term (1 − γh)h (TgkLgk−1∇U(gk) − Tgk−1Lgk−1−1∇U(gk−1)), which is closely related
to co-coercivity in Lemma 23. However, co-coercivity requires (local) geodesic convexity and L-
smoothness at the same time, which is not available when we are considering the convergence
globally.

The update for ξ in NAG-SC Eq. (13) can be also written as
1

1 − γh
(ξk + hTgkLgk−1∇U(gk)) = (ξk−1 + hTgk−1Lgk−1−1∇U(gk−1)) − hTgkLgk−1∇U(gk) (40)

This inspires us to define the following modified energy:

ENAG-SC(g, ξ) = U(g) + (1 − γh)2
2(1 + γh − γ2h2)

∥ξ + hTgLg−1∇U(g)∥
2

(41)

Theorem 37 (Monotonely decreasing of modified energy of NAG-SC). Assume the potential U is
globally L-smooth. When h ≤min{ 1

γ
, γ
2L
},

ENAG-SC(gk, ξk) −ENAG-SC(gk−1, ξk−1) ≤ 0
where the modified energy ENAG-SC is defined in Eq. (41).

Proof of Thm. 37. Given L-smoothness of U , we have

ENAG-SC(gk, ξk) −ENAG-SC(gk−1, ξk−1)

= U(gk) −U(gk−1) +
(1 − γh)2

2(1 + γh − γ2h2) (
∥ξk + hTgk−1Lgk−1−1∇U(gk−1)∥

2 − ∥ξk−1 + hTgk−2Lgk−2−1∇U(gk−2)∥
2)

= U(gk) −U(gk−1) +
(1 − γh)2

2(1 + γh − γ2h2)
∥ξk + hTgk−1Lgk−1−1∇U(gk−1)∥

2

− (1 − γh)2
2(1 + γh − γ2h2)∥

1

1 − γhξk +
h(2 − γh)
1 − γh Tgk−1Lgk−1−1∇U(gk−1))∥

2

= U(gk) −U(gk−1) +
(1 − γh)2

2(1 + γh − γ2h2)
∥ξk + hTgk−1Lgk−1−1∇U(gk−1)∥

2

− 1

2(1 + γh − γ2h2)
∥ξk + h(2 − γh)Tgk−1Lgk−1−1∇U(gk−1))∥

2

= U(gk) −U(gk−1) −
γh(2 − γh)

2(1 + γh − γ2h2)∥ξk∥
2 − h⟨ξk, Tgk−1Lgk−1−1∇U(gk−1)⟩

− h2(3 − 2γh)
2(1 + γh − γ2h2)∥∇U(gk−1)∥

2

By L-smoothness, U(gk) −U(gk−1) − h⟨ξk, Tgk−1Lgk−1−1∇U(gk−1)⟩ ≤ Lh2

2
∥ξk∥2

ENAG-SC(gk, ξk) −ENAG-SC(gk−1, ξk−1)

≤ Lh2

2
∥ξk∥2 −

γh(2 − γh)
2(1 + γh − γ2h2)∥ξk∥

2 − h2(3 − 2γh)
2(1 + γh − γ2h2)∥∇U(gk−1)∥

2

Consequently, a sufficient condition for ENAG-SC(gk, ξk) −ENAG-SC(gk−1, ξk−1) ≤ 0 can be given by

Lh2

2
≤ γh(2 − γh)
2(1 + γh − γ2h2)
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By assuming γh ≤ 1, a sufficient condition for this can be given by h ≤ γ
2L

, i.e., when

h ≤min{ 1
γ
,
γ

2L
}
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction stated the contributions, assumptions and limita-
tions.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The section ‘Related work’ contains our limitations, comparing with existing
results.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: We make assumtption of compactness (Assumption 2), L-smoothness (Def. 4)
and local geodesic-strong convexity (Def. 5)
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Details for numerical experiment are included in Sec. 6. Code is provided in
supplementary materials.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: Code will be released.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Details for numerical experiment are included in Sec. 6.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: No statistical error bar is included.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Please see Sec. 6.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We confirm we follow the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This paper focuses on theoretical aspect.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper focuses on theoretical aspect.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: No existing assets are used.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: No new assets are introduced.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: No human subject is involved.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No human subject is involved.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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