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Abstract

In modern chip design, placement aims at placing millions of circuit modules,
which is an essential step that significantly influences power, performance, and
area (PPA) metrics. Recently, reinforcement learning (RL) has emerged as a
promising technique for improving placement quality, especially macro placement.
However, current RL-based placement methods suffer from long training times,
low generalization ability, and inability to guarantee PPA results. A key issue lies
in the problem formulation, i.e., using RL to place from scratch, which results in
limits useful information and inaccurate rewards during the training process. In
this work, we propose an approach that utilizes RL for the refinement stage, which
allows the RL policy to learn how to adjust existing placement layouts, thereby
receiving sufficient information for the policy to act and obtain relatively dense
and precise rewards. Additionally, we introduce the concept of regularity during
training, which is considered an important metric in the chip design industry but is
often overlooked in current RL placement methods. We evaluate our approach on
the ISPD 2005 and ICCAD 2015 benchmark, comparing the global half-perimeter
wirelength and regularity of our proposed method against several competitive
approaches. Besides, we test the PPA performance using commercial software,
showing that RL as a regulator can achieve significant PPA improvements. Our RL
regulator can fine-tune placements from any method and enhance their quality. Our
work opens up new possibilities for the application of RL in placement, providing
a more effective and efficient approach to optimizing chip design. Our code is
available at https://github.com/lamda-bbo/macro-regulator.

1 Introduction

In the complex and evolving landscape of modern chip design, placement is a pivotal process that
significantly influences the power, performance, and area (PPA) metrics of the final chip [21, 22].
A modern chip typically comprises thousands of macros (i.e., individual building blocks such as
memories) and millions of standard cells (i.e., smaller basic components like logic gates). The
macro placement result provides a fundamental solution for the subsequent processes (e.g., standard
cells placement and routing), thus playing an important role [32]. For example, macro placement
influences the placement of standard cells, and poor macro placement might make it challenging
to place these cells optimally, leading to an unsatisfactory chip performance [33]. Moreover, an
inappropriate macro placement can result in macro blockage in the core center, which harms the
overall chip performance by causing unwanted effects such as routing congestion, inferior wirelength,
and timing performance issues [26].
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(a) MaskPlace

(b) MaskRegulate (Ours)
(c) PPA results

Figure 1: Placement layouts and congestions of (a) MaskPlace and (b) MaskRegulate on the su-
perblue1 from ICCAD 2015 benchmark [14], where the red points indicate the congestion critical
regions. (c): Comparing two crucial PPA metrics, namely Congestion and total negative slack (TNS)
between MaskRegulate, DREAMPlace [19], AutoDMP [1], WireMask-EA [29], and MaskPlace [16],
where lower values indicate better performance. These results are obtained using Cadence Innovus.

Due to the lengthy and complex workflow of chip design, designers often rely on proxy metrics that
can reflect the final results to guide the optimization process [2, 30, 20]. One important proxy metric
is half-perimeter wirelength (HPWL), which provides an approximation for the routing wirelength
and is widely used to measure the placement quality [2, 13, 28]. Traditional macro placement methods
can be divided into two categories. Earlier approaches usually solve macro placement by black-box
optimization (BBO) [24, 5, 12, 29]. They often suffer from the poor scalability due to the large-scale
search space and high complexity of decoding a solution to a placement. Another type is analytical
method [6, 7, 19], which can solve the placement efficiently by approximating HPWL gradients.
However, these methods are hard to guarantee the non-overlapping constrain between cells and are
easy to be stuck in local optima [16, 34].

Reinforcement learning (RL) [31] has recently emerged as a promising technique to enhance the
macro placement quality [23, 9, 8, 16, 15]. RL’s ability to learn policies through interaction with a
complex environment offers a novel pathway for addressing various challenges of macro placement.
However, the application of RL is currently hindered by several limitations, including the long
training time, an inability to guarantee PPA improvements, and the lack of generalization across
different chip layouts. In this work, we highlight that a major contributing factor to these issues is the
problem formulation, i.e., the conventional RL approach of placing macros from scratch often results
in limited state information and inaccurate reward signal throughout the learning process.

To address these challenges, we propose a novel RL approach called MaskRegulate that shifts
the focus from initial placement to refining existing placement layouts. The RL policy acts as a
regulator rather than a placer, which operates on pre-existing placements, thus allowing for access
to comprehensive state information and enabling the acquisition of more precise rewards. This
adjustment enhances the efficiency of the learning process and finally improves the final placement
results. Furthermore, MaskRegulate introduces the concept of regularity [26] as a part of input
information and a critical reward signal, which has been largely overlooked in previous research
despite its significance in ensuring manufacturability and performance. Previous methods often only
consider the HPWL metric, suffering from optimizing different metrics effectively. By integrating
regularity into the RL framework, our approach aligns more closely with advanced chip requirements.

The effectiveness of the proposed MaskRegulate is comprehensively evaluated on the ICCAD
2015 benchmark [14], which is is currently one of the largest open-source benchmarks that allows
us to evaluate PPA metrics such as congestion and timing slack. We first compare the global
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HPWL and regularity of our approach against several competitive methods. Additionally, we
use the commercial electronic design automation (EDA) tool Cadence Innovus to evaluate the
PPA performance, demonstrating that our proposed MaskRegulate can lead to significant PPA
improvements, e.g., the placement layouts and two PPA metrics on superblue1, as shown in Figure 1.
Specifically, compared to MaskPlace (an advanced RL placer [16]; MaskRegulate shares a similar
architecture to it), MaskRegulate improves 17.08% on routing wirelength, 73.08% and 38.81 % on
routed horizontal and vertical congestion overflow respectively, 18.35% on worst negative slack,
37.89% on total negative slack, and 46.17% on the number of violation points.

This work provides a more effective approach for macro placement of modern chips, opening new
possibilities for the application of RL in chip design. The contributions of this work are highlighted
in three key points:

• Novel problem formulation: Innovatively applying RL in the refinement stage of macro
placement, which allows for more effective learning from structured state and accurate
reward information, significantly enhancing the learning efficiency and effectiveness.

• Integration of regularity: Introducing regularity, a critical yet previously overlooked metric
in chip design, into the RL training framework, which not only aligns with industry practice
but also enhances the chip PPA quality.

• Impressive PPA improvement and comprehensive analysis: On the popular ICCAD 2015
benchmark, our proposed MaskRegulate demonstrates significant improvements in PPA
metrics, showing the practical applicability and effectiveness of the RL regulator.

2 Background

2.1 Placement

The circuit in the placement stage is considered as a graph where vertices model gates. The main
input information is the netlist N = (V,E), where V denotes the information (i.e., height and
width) about all macros designated for placement on the chip, and E is a hyper-graph comprised
of nets ei ∈ E, which encompasses multiple cells (including both macros and standard cells) and
denotes their inter-connectivity in the routing stage. Given a netlist, a fixed canvas layout and a
standard cell library, a placement method is expected to determine the appropriate physical locations
of movable macros such that the total wirelength can be minimized. A macro placement solution
s = {(x1, y1), . . . , (xk, yk)} consists of the positions of all the macros {vi}ki=1, where k denotes the
total number of macros. One popular objective of macro placement is to minimize the total HPWL of
all the nets while satisfying the cell density constraint, which is formulated as,

min
s

HPWL(s) = min
s

∑
e∈E

HPWLe(s), s.t. D(s) ≤ ϵ, (1)

where D denotes the density, ϵ is a threshold, and HPWLe is the HPWL of net e, which is defined
as: HPWLe(s) = (maxvi∈e xi −minvi∈e xi) + (maxvi∈e yi −minvi∈e yi).

There are three mainstream placement methods, i.e., analytical methods, black-box optimization
methods, and learning-based methods. Analytical methods [4] place macros and standard cells
simultaneously, which can be roughly categorized into quadratic placement and nonlinear placement.
Quadratic placement [11, 18] iterates between an unconstrained quadratic programming phase to
minimize wirelength and a heuristic spreading phase to remove overlaps. Nonlinear placement [6, 20,
7] formulates a nonlinear optimization problem and tries to directly solve it with gradient descent
methods. Generally speaking, nonlinear placement can achieve better solution quality, while quadratic
placement is more efficient. Recently, there has been extensive attention on GPU-accelerated non-
linear placement methods. For example, DREAMPlace [19, 17] transforms the non-linear placement
problem in Eq. (1) into a neural network training problem, solves it by classical gradient descent
and leverages GPU, enabling ultra-high parallelism and acceleration and producing state-of-the-art
analytical placement quality.

Black-box optimization methods for placement have a long history. Earlier methods such as SP [24]
and B∗-tree [5] have poor scalability due to the rectangular packing formulation. Recently, some black-
box optimization methods have made significant progress by changing the search space. AutoDMP [1]
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improves DREAMPlace by using Bayesian optimization to explore the configuration space and shows
remarkable performance on multiple benchmarks. WireMask-BBO [29] adopts a wire-mask-guided
greedy genotype-phenotype mapping and can be equipped with any BBO algorithm, demonstrating
the superior performance over other types of methods.

2.2 RL for Macro Placement

Researchers recently leverage RL-based methods for better placement quality to meet the demands of
modern chip design. GraphPlace [23] first models macro placement as a RL problem. It divides the
chip canvas into discrete grids, with each macro assigned discrete coordinates of grids, wherein the
agent decides the placement of the current macro at each step. However, no reward is given until
all the macros are placed, making the reward sparse and hard to learn. DeepPR [9] and PRNet [8]
incorporate macro placement, standard cells placement, and routing to achieve better performance
than GraphPlace, but may violate the non-overlap constraint. To address this issue, MaskPlace [16]
introduces a dense reward and uses a pixel-level visual representation for circuit modules, which
can comprehensively capture the configurations of thousands of pins, enabling fast placement in
a full action space on a large canvas size. MaskPlace has many attractive benefits that previous
methods do not have, e.g., 0% overlap, dense reward, and high training efficiency. ChiPFormer [15]
incorporates an offline learning decision transformer and focuses on improving the generalizability of
placer. EfficientPlace [10] integrates a global tree search algorithm to guide the optimization process,
achieving remarkable placement quality within a short time.

However, current RL methods exhibit several shortcomings: 1) Placing from scratch provides
insufficient state information and inaccurate reward signals; 2) Most methods focus on minimizing
wirelength, which may bring macro blockages and thus harm the final PPA metrics. In this work, we
propose a novel RL approach for macro placement: an RL policy acts as a macro regulator rather than
a macro placer. Specifically, our learned RL policy is designed to adjust macros based on an existing
placement result, rather than placing all macros from scratch. This approach aims to refine and
optimize pre-existing layouts, addressing the limitations of traditional RL-based placement methods.

3 Method

We present our proposed MaskRegulate here. Section 3.1 introduces our problem formulation and
policy architecture, and Section 3.2 describes how to integrate regularity into the method.

3.1 MaskRegulate Framework

Problem formulation of RL regulator. In the Markov Decision Process (MDP) formulation of
traditional RL placer, a macro is placed at each step [23, 9, 16, 15]. The placement order of macros is
determined based on some pre-defined rules, such as the number of nets, the size of macros, and the
number of connected modules that have been placed. An episode ends after all macros have been
placed. Typically, the state representation includes information about the chip canvas, the macros that
have already been placed, and the macro currently being placed. In GraphPlace [23], the reward is
determined only after all macros have been placed, resulting in a sparse reward signal that complicates
the training process. Recent works have introduced various methods to densify the reward signal. For
instance, WireMask [16] provides a more continuous reward based on the macros already placed. In
contrast to RL placers, our RL regulator focuses on refining an existing placement by adjusting the
location of one macro at each step. Unlike the placer, which initiates the placement process from
scratch, the regulator benefits from additional information when adjusting each macro. Specifically,
the regulator considers not only the macros that have already been placed but also the positions of
all other macros. Furthermore, it enhances accuracy by taking into account all macros, even while
employing a reward function similar to WireMask.

Due to the advantages mentioned above in the MDP problem formulation, even without considering
additional factors (e.g., regularity), RL regulator is able to achieve better results compared to RL
placer, as shown in our experiments in Appendix B.1. Furthermore, our main experimental results
demonstrate superior performance not only in proxy metrics but also in PPA metrics measured by
commercial tools, as shown in Section 4.2. The regulator also exhibits better generalization abilities,
as shown in Section 4.3. Intuitively, adjusting an unseen chip is easier for the regulator compared to
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Figure 2: Overview of MaskRegulate. MaskRegulate shares a similar architecture to MaskPlace [16],
except for the MDP formulation and the integration of regularity in the state and reward.
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Figure 3: Illustration of chip canvas, PositionMask, WireMask and RegularMask. We use the left-
bottom corner of the module to denotes its location.

placing macros from scratch, as the incomplete state information of placer would be even worse in
the case of unseen chips, resulting in poorer performance.

Policy architecture. Our policy architecture is illustrated in Figure 2. The policy divides the chip
canvas into several grids and utilizes visual information as inputs, converting chip information into
pixel-level image masks. This approach has demonstrated superior efficiency and performance in RL
placer policy learning [16, 15]. The inputs include an image of the current canvas, a PositionMask
that identifies all valid positions for placing the current macro, a WireMask [16] that indicates
the approximate wirelength change for placing the current macro at each valid position, and a
RegularMask that indicates the change in regularity for placing the current macro at each valid
position (which will be detailed in Section 3.2). An illustration of the PositionMask and WireMask
is provided in Figure 3. To facilitate broader adjustments, the PositionMask has been modified to
consider only macros that have already been adjusted; thus, grids occupied by unadjusted macros
are available for placement. In our MaskRegulate, the calculation of the WireMask is based on all
macros, allowing its value to either increase or decrease. These values are normalized to the range
[−1, 1], unlike the [0, 1] normalization used in [16]. Additionally, our framework introduces the
RegularMask to quantify changes in regularity within the state and to encourage improvements in
regularity through the reward function, as presented in Section 3.2.

3.2 Integration of Regularity

Why does regularity matters? Macro placement has significant impact on subsequent chip design
processes, including standard cell placement and routing. If only focusing on minimizing wirelength
(which is the case for most current RL placers), certain macros may end up positioned in the middle
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of the chip canvas, resulting in macro blockages [26]. This, in turn, leads to the division of available
placement areas into separate and disconnected sub-regions. As a consequence, standard cells that
are connected by the same net may be scattered across different placement sub-regions, resulting in
increased overall wirelength and the potential routing challenges, which ultimately degrade the timing
performance. Thus, a well-established practice among experienced engineers in macro placement
is to place macros towards the peripheral regions of the chip to prevent macro blockage. In this
work, we aim to integrate regularity in the learning-based placement approach to achieve placement
preferences similar to those of experienced engineers.

RegularMask. Intuitively, macros closer to the edges tend to have lower regularity. Therefore, we
propose a simple and effective way to measure regularity. On a canvas, the regularity of a grid located
at (x, y) is calculated as min{x,Xmax − x} + min{y, Ymax − y}, where Xmax and Ymax represent
the real length of the horizontal and vertical axes, respectively. Given a macro to be placed, the
RegularMask measures the value change in regularity for each valid placement position, as illustrated
in Figure 3(d).

Reward and policy learning. The reward of MaskRegulate consists of two components: rwire

and rreg, which represent the reduction of HPWL and the improvement in regularity, respectively,
after refining the current macro. To mitigate the influence of scale differences on training caused
by wirelength and regularity, both rwire and rreg are normalized to [0, 1]. The final reward is
r = α · rwire + (1− α) · rreg , where α is a trade-off coefficient. We will analyze the influence of α
in Section 4.4, showing that different α lead to different multi-objective preferences. The detailed
information are presented in Appendix A.3. MaskRegulate treats the chip canvas as a grid and divides
it into N ×N cells, resulting in N2 possible discrete actions. We use the popular proximal policy
optimization (PPO) algorithm [27] to learn the regulator policy.

4 Experiment

In this section, we first introduce the basic experimental settings, including the tasks and evaluation
metrics in Section 4.1. Then, we try to answer the following three research questions (RQs) in
Sections 4.2 to 4.4: 1) How does MaskRegulate perform compared to other methods? 2) How is the
generalization ability of MaskRegulate? 3) How do the different parts of MaskRegulate affect the
performance? Finally, we provide the visualization of placement results and congestion in Section 4.5.

4.1 Experimental Settings

Tasks. We mainly use the ICCAD 2015 benchmark [14] as our test-bed, which includes sufficient
advanced chip information and is currently one of the largest open-source benchmarks that allows us
to evaluate congestion, timing and other PPA metrics. The benchmark statistics are listed in Table 3
in Appendix A.1. Although ICCAD 2015 is the benchmark we have found that closely reflects the
current practices in the EDA industry, it still has some shortcomings. For example, it allows for a
large placement area, resulting in loose placement results that do not adhere to the design principles
of advanced modern chips. Note that the “A” in PPA denotes “Area”, which is a core metric of
chip design and should be minimized [3, 32]. Therefore, we scale down the chip’s placement area,
presenting further challenges for the compared methods. Besides, we also conduct experiments on
ISPD 2005 benchmark [25], which is also a popular benchmark in AI for chip design but does not
have sufficient information for PPA evaluation. Detailed results can be found in Appendix B.

Proxy evaluation metrics. We use the following two popular proxy metrics for a quick comparison
of different algorithms: 1) Global HPWL. After determining the locations of all the macros, we use
DREAMPlace [19] to place standard cells to obtain the global placement result, and then report the
global HPWL (i.e., full HPWL involving both macros and standard cells). Compared to macro HPWL,
global HPWL considers the total wirelength, typically on a scale that is two orders of magnitude
larger, providing a better estimation of the final real performance of the chip. 2) Regularity: We
compute the regularity values for all macros, which serve as a measurement of the overall regularity
of the placement result. We run each algorithm for five times and report their mean and variance. We
do not consider the rectangular uniform wire density (RUDY) metric [30] for congestion proxy, as
this approximation is sometimes positively correlated with the HPWL metric and is not accurate [29].
Instead, we will evaluate congestion within our PPA evaluation.
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PPA evaluation metrics. The whole chip design process is lengthy and complex, and proxy metrics
may not accurately capture the true performance of the chip. PPA metrics often require the use of
commercial EDA tools to obtain precise results with expensive cost. In our experiments, we select
the best placement result for PPA evaluation based on global HPWL from multiple runs. After
obtaining the global placement results, we use commercial tool Cadence Innovus to proceed the
subsequent stages and evaluate their PPA metrics, including routed wirelength, routed vertical and
horizontal congestion overflow, worst negative slack, total negative slack, and the number of violation
points. These metrics are extremely important measures of chip design and are typically considered
to evaluate the quality of a chip comprehensively.

4.2 RQ1: How does MaskRegulate perform compared to other methods?

We consider the following methods to be compared: DREAMPlace [19]: A state-of-the-art analytical
placer; AutoDMP [1]: A method that improves DREAMPlace by exploring its configuration space
iteratively; WireMask-EA [29]: A state-of-the-art black-box macro placement method with EA as
the optimizer; MaskPlace [16]: A representative online RL methods, which shares similar policy
architecture, state, HPWL reward with our MaskRegulate.

For the same components, MaskPlace and MaskRegulate use the same settings, e.g., the number of
grids, and the learning rate. Detailed information is provided in Appendix A.3. Additionally, in order
to demonstrate that the regulator has higher training efficiency than the placer, MaskRegulate and
MaskPlace are trained for 1000 and 2000 episodes, respectively. For each chip, MaskRegulate uses
DREAMPlace to obtain an initial macro placement result to be adjusted, which takes within few
minutes and has relatively low quality.

The overall evaluation results are shown in Table 1. MaskRegulate achieves the best average rank on
both proxy and PPA metrics. DREAMPlace has the worst average ranking on wirelength, congestion,
and timing. However, after adjustment by MaskRegulate, the obtained placements achieve the
best average rank. Compared to MaskPlace, MaskRegulate leads to significant improvements in
multiple PPA indicators: improves 17.08% on routing wirelength, 73.08% and 38.81 % on routed
horizontal and vertical congestion overflow respectively, 18.35% on worst negative slack, 37.89%
on total negative slack, and 46.17% on the number of violation points. By incorporating regularity,
MaskRegulate achieves the highest regularity on all the eight chips. We can observe a certain
correlation between the proxy metric (global HPWL) and the real metric (rWL), but there still exists
a gap, indicating the challenges involved in the placement task. Furthermore, we provide detailed
visualizations of placement results in Figure 5, where MaskRegulate shows significant improvements
on congestion metrics. Besides, the final placement layouts of MaskRegulate are much regular than
all the other methods.

4.3 RQ2: How is the generalization ability of MaskRegulate?

The generalization ability of RL policies is an important question to be investigated. In this section,
we pre-train MaskRegulate and MaskPlace on the first four chips (i.e., superblue1, superblue3,
superblue4, and superblue5) and test on the remaining four chips. To further validate the ability of
MaskRegulate to adjust different initial placement results, we use it to adjust the results obtained by
different initial placements on the test chips.

The results are shown in Table 2. On both the global HPWL and regularity metrics, MaskRegulate
consistently outperforms MaskPlace, showcasing its stronger generalization capability. An interesting
finding is that MaskRegulate performs better on unseen chips than on the chips it was trained on,
specifically in terms of global HPWL, such as with superblue16. This may suggest that MaskRegulate
has learned some general knowledge during the pre-training process, enabling it to overcome local
optima that may arise from direct learning on the target chip.

4.4 RQ3: How do the different parts of MaskRegulate affect the performance?

We investigate the influence of different parts and provide additional analysis in this section.

Hyperparameters sensitivity analysis: different trade-off coefficient α leads to different multi-
objective preferences. One hyperparameter of RegularMask is the coefficient α between HPWL
reward rwire and regularity reward rreg, where a higher α indicates a preference for optimizing
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Table 1: Results of proxy metrics and PPA metrics on the ICCAD 2015 benchmarks. Global HPWL
(1e8) and Regularity (1e6) are two proxy metrics. PPA metrics are evaluated by Cadence Innovus.
The placement is performed by different methods, and the subsequent stages are performed by
Cadence Innovus. rWL (m) is the routed wirelength; rO-H (%) and rO-V (%) represent the routed
horizontal and vertical congestion overflow, respectively; WNS (ns) is the worst negative slack; TNS
(1e5 µs) is the total negative slack; NVP (1e4) is the number of violation points. WNS and TNS are
the larger the better, while the other metrics are the smaller the better. The best result of each metric
on each chip is bolded.

Benchmark Method Proxy metrics PPA metrics
Global HPWL Regularity rWL rO-H rO-V WNS TNS NVP

superblue1

DMP 8.96 ± 0.84 4.15 ± 0.04 154.23 17.15 4.48 -119.616 -2.91 3.35
AutoDMP 8.13 ± 0.17 4.99 ± 0.08 185.60 20.99 5.73 -124.572 -3.72 3.46

WireMask-EA 8.07 ± 0.38 4.41 ± 0.15 149.49 7.62 0.38 -67.616 -3.57 2.94
MaskPlace 7.93 ± 0.06 4.40 ± 0.06 158.59 16.28 0.64 -72.070 -3.98 4.41

MaskRegulate 5.77 ± 0.05 3.31 ± 0.00 116.11 1.26 0.11 -60.532 -1.33 1.06

superblue3

DMP 12.87 ± 1.73 4.43 ± 0.03 232.19 40.55 19.64 -96.904 -2.36 2.25
AutoDMP 8.13 ± 0.69 5.49 ± 0.17 166.15 14.71 3.39 -76.566 -1.12 1.44

WireMask-EA 9.37 ± 0.81 4.77 ± 0.23 167.67 7.81 0.32 -92.566 -1.57 2
MaskPlace 8.90 ± 0.17 4.77 ± 0.06 177.25 9.16 0.64 -111.041 -1.77 2.02

MaskRegulate 7.05 ± 0.03 3.54 ± 0.00 142.89 1.86 0.18 -83.635 -1.15 0.97

superblue4

DMP 6.81 ± 0.23 3.06 ± 0.01 132.16 20.62 4.87 -73.192 -1.63 2.42
AutoDMP 4.57 ± 0.78 3.41 ± 0.06 82.94 5.43 0.21 -48.137 -0.64 1.08

WireMask-EA 5.51 ± 0.07 3.25 ± 0.10 110.20 8.29 0.61 -83.233 -1.85 1.98
MaskPlace 5.28 ± 0.03 3.22 ± 0.03 106.36 9.71 0.31 -67.995 -1.47 1.9

MaskRegulate 4.15 ± 0.06 2.18 ± 0.02 81.78 0.29 0.11 -49.071 -0.90 0.88

superblue5

DMP 8.78 ± 1.47 4.84 ± 0.06 144.64 3.75 0.46 -58.907 -0.68 1.64
AutoDMP 12.67 ± 4.09 5.79 ± 0.32 344.14 74.75 37.32 -197.175 -5.83 3.55

WireMask-EA 10.23 ± 0.68 5.03 ± 0.15 189.84 4.06 0.41 -75.115 -1.83 2.18
MaskPlace 9.81 ± 0.03 4.86 ± 0.04 196.79 4.79 0.37 -118.122 -2.98 2.62

MaskRegulate 6.94 ± 0.00 4.23 ± 0.01 137.79 0.02 0.02 -74.83 -0.73 1.32

superblue7

DMP 22.70 ± 0.91 4.24 ± 0.02 427.71 100.32 73.18 -123.310 -6.55 7.02
AutoDMP 10.04 ± 1.63 5.25 ± 0.09 221.69 6.32 0.64 -52.556 -1.82 4.31

WireMask-EA 10.05 ± 0.34 4.31 ± 0.13 195.36 0.82 0.35 -73.070 -1.78 3.45
MaskPlace 9.99 ± 0.05 4.36 ± 0.03 204.32 2.77 0.33 -69.441 -2.18 5.78

MaskRegulate 7.90 ± 0.03 3.03 ± 0.00 162.72 0.59 0.64 -50.494 -1.48 2.27

superblue10

DMP 14.81 ± 1.33 4.33 ± 0.02 261.35 7.00 5.16 -83.509 -3.09 2.51
AutoDMP 11.48 ± 1.78 6.55 ± 0.15 234.24 2.83 1.37 -169.540 -2.84 1.71

WireMask-EA 13.52 ± 2.25 4.82 ± 0.12 223.08 0.76 0.55 -121.785 -3.11 1.65
MaskPlace 10.94 ± 0.21 4.75 ± 0.11 212.85 0.51 0.19 -81.916 -4.37 2.11

MaskRegulate 11.23 ± 0.38 3.90 ± 0.44 212.84 0.52 0.09 -77.980 -2.74 1.75

superblue16

DMP 10.22 ± 0.58 2.78 ± 0.02 187.03 74.53 30.31 -138.370 -4.14 4.95
AutoDMP 6.12 ± 2.49 3.68 ± 0.09 119.62 2.46 0.22 -41.292 -1.17 2.26

WireMask-EA 6.13 ± 0.14 3.17 ± 0.17 120.45 8.20 0.36 -89.395 -2.19 2.66
MaskPlace 5.53 ± 0.04 3.08 ± 0.06 110.52 2.46 0.11 -36.488 -1.36 2.51

MaskRegulate 5.53 ± 0.04 2.55 ± 0.12 106.82 1.40 0.17 -45.962 -1.77 1.88

superblue18

DMP 4.97 ± 1.38 2.44 ± 0.00 85.93 11.76 8.93 -73.429 -0.46 0.95
AutoDMP 3.02 ± 0.01 3.01 ± 0.10 61.57 1.02 0.02 -17.545 -0.32 0.69

WireMask-EA 3.46 ± 0.07 2.62 ± 0.09 69.25 1.04 0.27 -34.143 -0.43 1.43
MaskPlace 3.49 ± 0.06 2.59 ± 0.08 70.24 1.08 0.40 -43.869 -0.76 1.31

MaskRegulate 2.96 ± 0.01 1.55 ± 0.00 60.64 0.04 0.03 -28.285 -0.40 0.85

Average Rank

DMP 4.625 2 4.375 4.5 4.75 3.875 3.625 4.125
AutoDMP 3 5 3.375 3.5 3.375 2.75 2.25 2.5

WireMask-EA 3.75 3.75 3 2.75 2.875 3.375 3.25 3
MaskPlace 2.375 3.25 3.125 3.125 2.375 3.125 4 3.875

MaskRegulate 1.25 1 1.125 1.125 1.625 1.875 1.875 1.5
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Table 2: Generalization results of proxy metrics on the four chips of ICCAD 2015 benchmarks. The
best result of each metric on each chip is bolded.

Benchmark MaskRegulate MaskPlace
Global HPWL (1e8) Regularity (1e6) Global HPWL (1e8) Regularity (1e6)

superblue7 7.99 ± 0.06 3.04 ± 0.00 10.33 ± 0.17 4.24 ± 0.06
superblue10 11.55 ± 0.27 3.25 ± 0.00 11.88 ± 0.72 4.73 ± 0.05
superblue16 5.16 ± 0.05 1.87 ± 0.00 5.97 ± 0.20 3.11 ± 0.03
superblue18 3.04 ± 0.02 1.54 ± 0.00 3.69 ± 0.09 2.52 ± 0.03

(a) Proxy metrics on
superblue1

(b) Proxy metrics on
superblue7

(c) PPA metrics on
superblue1

(d) PPA metrics on
superblue7

Figure 4: Illustration of MaskRegulate regulators with varying α values (ranging from 0.1 to 0.9).

HPWL, and vice versa. In this section, we investigate the influence of the trade-off coefficient α. We
train different MaskRegulate regulators with varying α values (ranging from 0.1 to 0.9) and report the
proxy and PPA results in Figure 4. Due to the expensive computational cost of PPA, we select four
different trade-offs of MaskRegulate for evaluation. As expected, different α values lead to different
multi-objective preferences. In our experiments, we use α = 0.7 for all the chips as it achieves a
relative balance between different objectives.

Ablation studies. We consider the following ablations of MaskRegulate. 1) Only changing the prob-
lem formulation and purely comparing placer and regulator. We implement Vanilla-MaskRegulate,
where the only difference to MaskPlace is the problem formulation, and all the other components (e.g.,
state and reward) are the same. The results show that Vanilla-MaskRegulate consistently outperforms
MaskPlace in terms of Global HPWL. 2) MaskRegulate with or without normalization. Since global
HPWL has large scale than regularity, MaskRegulate w/o normalization does not prefer to consider
regularity, which is not what we expect. 3) Training regularity-aware RL placer from scratch. We
implement MaskPlace + RegularMask and compare it with MaskPlace and MaskRegulate. The
results show the advantages of the integration of regularity (between MaskPlace and MaskPlace +
RegularMask) and our RL regular formulation (between MaskPlace + RegularMask and MaskRegu-
late). The above ablation results demonstrate the effectiveness of each component of MaskRegulate.
Detailed results and discussions are provided in Appendix B.1 due to space limitation.

4.5 Visualizations of placement results and congestion.

We provide the detail visualizations of placement results of all the methods on all the eight chips from
ICCAD 2015. As shown in Figure 5, our proposed MaskRegulate shows significant improvements on
congestion metrics. Besides, the placement result of MaskRegulate is much regular than all the other
methods.

4.6 Additional results.

We conduct the following additional results to comprehensively show the effectiveness of our
MaskRegulate. 1) To verify whether using a better model structure for the RL placer can compare to
the regulator, we add comparison with recent proposed ChiPFormer [15] under a fair setting. 2) To
further show the generalization ability of our methods, we conduct generalization experiments on
the ISPD 2005 benchmark [25]. 3) To investigate whether MaskRegulate can be used to adjust any
initial macro placement solution, we use the pre-trained model to fine-tune other placement results.
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(a) DREAMPlace (b) AutoDMP (c) WireMask-EA (d) MaskPlace (e) MaskRegulate

Figure 5: Placement layouts and congestions of different methods on the eight ICCAD 2015 bench-
marks. The congestion results are obtained by Cadence Innovus, where red points indicate the
congestion critical regions.

These results further demonstrate the competitive results of our proposed MaskRegulate. Detailed
discussions are provided in Appendix B.2, B.3, and B.4, respectively.

5 Final Remarks

Conclusion. In this paper, we present a novel RL problem formulation for macro placement, focusing
on the development of a macro regulator rather than a placer. Our proposed method, MaskRegulate,
demonstrates substantial improvements in chip placement quality by refining existing layouts instead
of generating them from scratch. By integrating dense reward signals and emphasizing regularity, our
approach effectively addresses the limitations of traditional RL-based placement methods, resulting
in superior performance in PPA metrics across various chips. This advancement paves the way for
more efficient and effective chip design through RL.

Limitations and future work. This study has several primary limitations: it does not consider the
impact of module aspect ratio and area factors on placement; it overlooks global wirelength and timing
metrics during the training process; and it does not employ advanced transformer architectures [15] to
enhance the generalization of the regulator. Chip design inherently involves different preferences, such
as the need for compact size in mobile phone chips and larger sizes for computer chips. Therefore,
future research should address these challenges and explore efficient methods to obtain a set of chip
placements that accommodate different preferences using multi-objective optimization.
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A Implementation Details

A.1 Benchmarks

The detailed statistics of our benchmarks are listed in Table 3.

Table 3: Detailed statistics of the benchmarks.
Benchmark #Cells #Nets #Pins

adaptec1 210,904 221,142 944,053
adaptec2 254,457 266,009 1,069,482
adaptec3 450,927 466,758 1,875,039
adaptec4 494,716 515,951 1,912,420
bigblue1 277,604 284,479 1,144,691
bigblue2 534,782 577,235 2,122,282
bigblue3 1,095,514 1,123,170 3,833,218
bigblue4 2,169,183 2,229,886 8,900,078

superblue1 1,209,716 1215710 3,767,494
superblue3 1,213,253 1,224,979 3,905,321
superblue4 795,645 802,513 2,497,940
superblue5 1,086,888 1,100,825 3,246,878
superblue7 1,931,639 1,933,945 6,372,094

superblue10 1,876,103 1,898,119 5,560,506
superblue16 981,559 999,902 3,013,268
superblue18 768,068 771,542 2,559,143

A.2 HPWL calculation

𝑀𝑀1

𝑀𝑀3

𝑀𝑀4

𝑀𝑀2

adjusted

unadjusted

adjusting

Net 1={𝑃𝑃(1,1),𝑃𝑃(1,1),𝑃𝑃(1,1)}

𝑃𝑃(1,1)

𝑃𝑃(2,1)

𝑃𝑃(3,1)

𝑃𝑃(2,2)

𝑃𝑃(4,1)

𝑃𝑃(3,2)

Net 2={𝑃𝑃(2,2),𝑃𝑃(3,2),𝑃𝑃(4,1)}

𝑤𝑤1

𝑤𝑤2

ℎ1
ℎ2

Figure 6: Illustration of chip canvas and calculation of HPWL.

HPWL (half perimeter wirelength) is an important metric which measures the placement quality
before routing. Intuitively, Figure 6 illustrates a 2D chip canvas where M i and P (i,j) denote the
i-th module to adjust and its j-th pin, respectively. Solid boxes in green and purple represent the
bounding boxes for two distinct nets on the canvas. In concretely, "Net 1"(in green) connects modules
M1, M2 and M3 using wires through pins P (1,1), P (2,1) and P (3,1), while "Net 2"(in purple)
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connects modules M2, M3 and M4 using wires through pins P (2,2), P (3,2) and P (4,1). As shown in
Figure 3(a), HPWL can be computed as h1 + w1 + h2 + w2.

A.3 Detailed settings of methods

We conclude some important settings of different methods. For the four compared methods (i.e.,
DREAMPlace2, AutoDMP3, WireMask-EA4, and MaskPlace5), we use their original implementa-
tions.

• The size of grids is 224, which is same as the original implementation of MaskPlace [16].

• Hyperparameters.

Table 4: Hyperparameters
Configuration Value Configuration Value

Optimizer Adam Learning rate 2.5× 10−3

Total episode 1000 Epoch for update 10
Batch size 64 Buffer capacity 5120

Clip ϵ 0.2 Clip gradient norm 0.5
Reward discount γ 0.95 Mask soft coefficient 1

DREAMPlace evaluation number 3 Trade-off coefficient α 0.7
Grid soft coefficient 4

• Neural Network architecture.

Table 5: Neural Network architecture
Block Layer Kernel Size Output Shape

Local Mask Fusion
Conv 1× 1 (224, 224, 12)
Conv 1× 1 (224, 224, 12)
Conv 1× 1 (224, 224, 1)

Global Mask Encoder ResNet-18 - 1000
FC - 784

Global Mask Decoder

Deconv 3× 3 (14, 14, 8)
Deconv 3× 3 (28, 28, 4)
Deconv 3× 3 (56, 56, 2)
Deconv 3× 3 (112, 112, 1)
Deconv 3× 3 (224, 224, 1)

Merge Conv 1× 1 (224, 224, 1)

Position Embedding - - 64

FC for value
FC - 64
FC - 64
FC - 1

• Device.
CPU: Intel(R) Xeon(R) Gold 6430
GPU: 4 × GeForce RTX 4090

2https://github.com/limbo018/DREAMPlace
3https://github.com/NVlabs/AutoDMP
4https://github.com/lamda-bbo/WireMask-BBO
5https://github.com/laiyao1/maskplace
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B Additional Experimental Results

B.1 Ablation studies

Purely comparison between placer and regulator. Here, we only change the problem formulation
for purely comparing placer and regulator. We implement Vanilla-MaskRegulate, where the only
difference to MaskPlace is the problem formulation, and all the other components (e.g., state and
reward) are the same. The results in Table 6 clearly demonstrates our motivation, highlighting the
advantages of our regulator problem formulation.

Table 6: Results of MaskPlace and Vanilla-MaskRegulate on four chips of ICCAD 2015 benchmarks.
The only one difference between these two methods is the problem formulation, where all the other
components are the same. The best result on each chip is bolded.

Benchmark MaskPlace Vanilla-MaskRegulate
Global HPWL (1e8)

superblue1 7.93 ± 0.06 5.58 ± 0.05
superblue3 9.00 ± 0.17 8.01 ± 0.03
superblue4 5.28 ± 0.03 4.31 ± 0.01
superblue5 9.81 ± 0.03 7.89 ± 0.02

MaskRegulate with or without normalization. The results are shown in Table 7. Since global
HPWL has large scale than regularity, MaskRegulate w/o normalization does not prefer to consider
regularity, which is not what we expect.

Table 7: Results of MaskRegulate and MaskRegulate without normalization on the four chips of
ICCAD 2015 benchmarks. The best result of each metric on each chip is bolded.

Benchmark MaskRegulate MaskRegulate w/o normalization
Global HPWL (1e8) Regularity (1e6) Global HPWL (1e8) Regularity (1e6)

superblue1 5.77 ± 0.05 3.31 ± 0.00 5.82 ± 0.07 3.42 ± 0.06
superblue3 7.05 ± 0.03 3.54 ± 0.00 6.71 ± 0.03 3.59 ± 0.01
superblue4 4.15 ± 0.06 2.18 ± 0.02 3.99 ± 0.02 2.49 ± 0.10
superblue5 6.94 ± 0.00 4.23 ± 0.01 7.03 ± 0.04 4.26 ± 0.01

Training regularity-aware RL placer from scratch. Our proposed RegularMask and regularity-
based reward function can also be used to train a RL placer from scratch. We implement
MaskPlace+RegularMask and compare it with MaskPlace and MaskRegulate. The results show the
advantages of the integration of regularity (between MaskPlace and MaskPlace + RegularMask) and
our RL regular formulation (between MaskPlace + RegularMask and MaskRegulate).

The above ablation results demonstrate the effectiveness of each component of MaskRegulate.

Table 8: Results of MaskPlace, MaskPlace + RegularMask, MaskRegulate on the eight chips of
ICCAD 2015 benchmarks. The best result of each metric on each chip is bolded.

Benchmark MaskPlace MaskPlace + RegularMask MaskRegulate
Global HPWL (1e8) Regularity (1e6) Global HPWL (1e8) Regularity (1e6) Global HPWL (1e8) Regularity (1e6)

superblue1 7.93 ± 0.06 4.40 ± 0.06 7.44 ± 0.08 3.87 ± 0.06 5.77 ± 0.05 3.31 ± 0.00
superblue3 8.90 ± 0.17 4.77 ± 0.06 7.18 ± 0.05 3.53 ± 0.02 7.05 ± 0.03 3.54 ± 0.00
superblue4 5.28 ± 0.03 3.22 ± 0.03 4.49 ± 0.03 2.21 ± 0.03 4.15 ± 0.06 2.18 ± 0.02
superblue5 9.81 ± 0.03 4.86 ± 0.04 7.52 ± 0.08 4.23 ± 0.02 6.94 ± 0.00 4.23 ± 0.01
superblue7 9.99 ± 0.05 4.36 ± 0.03 8.74 ± 0.09 3.07 ± 0.01 7.90 ± 0.03 3.03 ± 0.00
superblue10 10.94 ± 0.21 4.75 ± 0.11 10.90 ± 0.30 4.46 ± 0.26 11.23 ± 0.38 3.90 ± 0.44
superblue16 5.53 ± 0.04 3.08 ± 0.06 5.72 ± 0.03 2.94 ± 0.06 5.35 ± 0.05 1.85 ± 0.02
superblue18 3.49 ± 0.06 2.59 ± 0.08 2.89 ± 0.03 1.56 ± 0.01 2.96 ± 0.01 1.55 ± 0.00
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B.2 Comparison with ChiPFormer

Recently, ChiPFormer [15] incorporates an offline learning decision transformer to improve the
generalizability. However, we find that even after fine-tuning for the same number of episodes as
MaskRegulate, it is still challenging to achieve satisfactory results on ICCAD 2015. Due to the
resource-intensive nature of fine-tuning it, we conducted only a partial set of experiments, which is
why they were not included in the main paper. In the future, we plan to explore training a generalized
Regulator based on the transformer and pre-train it on some chips from ICCAD 2015, and compare it
with ChiPFormer that pre-train on the same training chips.

Table 9: Results of MaskRegulate and ChiPFormer on eight chips of ICCAD 2015 benchmarks. The
best result of each metric on each chip is bolded.

Benchmark MaskRegulate ChiPFormer
Global HPWL (1e8) Regularity (1e6) Global HPWL (1e8) Regularity (1e6)

superblue1 5.77 ± 0.05 3.31 ± 0.00 8.09 ± 0.00 4.84 ± 0.00
superblue3 7.05 ± 0.03 3.54 ± 0.00 9.22 ± 0.02 5.13 ± 0.00
superblue4 4.15 ± 0.06 2.18 ± 0.02 5.11 ± 0.00 3.66 ± 0.00
superblue5 6.94 ± 0.00 4.23 ± 0.01 10.97 ± 0.14 5.62 ± 0.01
superblue7 7.90 ± 0.03 3.03 ± 0.00 16.81 ± 0.09 4.78 ± 0.00
superblue10 11.23 ± 0.38 3.90 ± 0.44 14.15 ± 0.17 5.18 ± 0.00
superblue16 5.35 ± 0.05 1.85 ± 0.02 5.88 ± 0.00 3.67 ± 0.00
superblue18 2.96 ± 0.01 1.55 ± 0.00 3.57 ± 0.00 3.18 ± 0.00

B.3 Experiments on ISPD 2005

We test the generalization on the ISPD 2005 benchmark [25] by directly using the pre-trained models
on superblue 1, 3, 4, and 5 (i.e., the same models in Table 2) of MaskPlace and MaskRegulate to
place and regulate the eight chips. As shown in Table 10, MaskRegulate still outperforms MaskPlace
in most cases, demonstrating our superior generalization ability and robustness.

Table 10: Generalization results of proxy metrics on eight chips of ISPD 2005 benchmarks. The best
result of each metric on each chip is bolded.

Benchmark MaskPlace MaskRegulate
Global HPWL (1e7) Regularity (1e3) Global HPWL (1e7) Regularity (1e3)

adaptec1 10.58 ± 0.07 4.68 ± 0.08 7.75 ± 0.12 3.33 ± 0.00
adaptec2 13.91 ± 0.22 5.35 ± 0.03 9.53 ± 0.09 4.74 ± 0.00
adaptec3 23.62 ± 0.25 10.04 ± 0.03 20.40 ± 0.14 7.64 ± 0.01
adaptec4 23.92 ± 0.16 11.29 ± 0.05 24.45 ± 0.06 8.60 ± 0.02
bigblue1 10.78 ± 0.01 5.20 ± 0.04 9.34 ± 0.03 2.75 ± 0.01
bigblue2 34.31 ± 0.31 8.92 ± 0.06 24.32 ± 0.46 9.76 ± 0.01
bigblue3 51.53 ± 0.63 10.32 ± 0.24 36.97 ± 0.35 8.08 ± 0.03
bigblue4 134.97 ± 2.45 17.32 ± 0.20 93.96 ± 0.35 12.38 ± 0.03

B.4 Experiments on fine-tuning existing placement results

To investigate whether MaskRegulate can be used to adjust any initial macro placement solution,
we conduct additional experiments to demonstrate this capability. We used the pre-trained model
on superblue 1, 3, 4, and 5 (i.e., the same models in Tables 2 and 10) to adjust different placement
results obtained by MaskPlace, AutoDMP, and WireMask-EA. The results are shown in Table 11.
MaskRegulate consistently improves regularity on all four unseen chips and enhances global HPWL
on three chips.
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Table 11: Results of proxy metrics on four chips of ICCAD 2015 benchmarks. We use our policy
trained on superblue1, superblue3, superblue4 and superblue5 to finetune the placements gained
from MaskPlace, AutoDMP and WireMask-BBO on superblue7, superblue10, superblue16 and
superblue18. The left column indicates the Global HPWL (1e8) while the right column indicates the
regularity (1e6). The best result of each metric on each chip is bolded.

Method superblue7 superblue10 superblue16 superblue18

MaskPlace 9.92 4.32 10.55 4.87 5.46 3.02 3.40 2.57
MaskRegulate + MaskPlace 8.53 3.05 11.20 3.25 5.27 1.89 2.88 1.56

AutoDMP 10.68 3.96 11.57 3.73 5.87 2.56 3.02 2.29
MaskRegulate + AutoDMP 8.28 3.02 11.39 3.25 5.11 1.89 2.94 1.56

WireMask-EA 9.53 4.33 10.99 4.86 5.91 3.10 3.37 2.60
MaskRegulate + WireMask-EA 8.54 3.02 12.02 3.25 5.20 1.85 3.01 1.54
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C NeurIPS paper checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: See the last sentence of abstract and last paragraph of introduction.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: See the last paragraph of the paper.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: There is no theoretical results in this paper.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have provided our code in the supplemental file.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

20

140584https://doi.org/10.52202/079017-4462



Answer: [Yes]
Justification: We have provided our code in the supplemental file.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We have provided experimental details in Section 4.1 and Appendix A.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We have reported the error bars in our experiments. Please see Table 1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: This information is provided in Appendix A.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have read the NeurIPS Code of Ethics and follow it.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The chip is the core productivity of modern society. Our method proposes a
more efficient way of using reinforcement learning for macro placement of chips, which has
the potential to enhance the quality of chip design.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our paper has no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite the original paper and used dataset.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We have provided our code and models in our supplymental file.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This work does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This work does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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