2024 5th International Conference on Communication, Computing & **Industry 6.0 (C2I6 2024)**

Bengaluru, India 6-7 December 2024

IEEE Catalog Number: CFP24Y51-POD ISBN:

979-8-3503-7989-1

Copyright © 2024 by the Institute of Electrical and Electronics Engineers, Inc. All Rights Reserved

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved.

*** This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version.

 IEEE Catalog Number:
 CFP24Y51-POD

 ISBN (Print-On-Demand):
 979-8-3503-7989-1

 ISBN (Online):
 979-8-3503-7988-4

Additional Copies of This Publication Are Available From:

Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA Phone: (845) 758-0400

Fax: (845) 758-2633

E-mail: curran@proceedings.com Web: www.proceedings.com

CONTENTS

S. No	Paper ID	Paper Title	Page
1	01_C2I6_PID_26	Deep Reinforcement Learning (DRL) for resource	1-6
		allocation in Cloud: Review and Prospects	
2	02_C2I6_PID_36	Analysis of Supply Chain Attacks in Open Source Software	7-11
		and Mitigation Strategies	
3	03_C2I6_PID_39	Seasonal Forest Disaster Prediction Using Machine	12-17
		Learning Models	
4	04_C2I6_PID_60	IoT Based Smart Lake Fire Detection and Alarming System	18-24
5	05_C2I6_PID_69	Trans-SegNet - Deep Transfer learning Approach to detect	25-30
		abnormalities in Microscopic blood smear images for	
		Medical image segmentation	
6	06_C2I6_PID_70	Enhanced Feature Fusion Techniques for Acute Leukemia	31-36
		Detection in Microscopic Blood Cells	
7	07_C2I6_PID_72	Evaluating the Performance of an Incremental Classifier	37-48
		using Clustered-C4.5 Algorithm for Processing Big Data	
		Streams	
8	08_C2I6_PID_75	Deep Learning-Based Age and Gender Prediction through	49-55
		Feature Extraction from Facial Images Using	
		Convolutional Neural Networks	
9	09_C2I6_PID_93	Detection of Ghee and Vanaspati Adulteration using	56-61
		Hyperspectral Imaging and Machine Learning	
10	10_C2I6_PID_100	Smart solar panel monitoring and fault identification	62-66
		using IOT	
11	11_C2I6_PID_129	Road Accident Detection and Alert System at Real-Time	67-72
		using Deep Learning Techniques	
12	12_C2I6_PID_132	Performance Analysis in Blast Induced Ground Vibrations	73-77
		with Advanced Machine Learning Algorithm Techniques	
13	13_C2I6_PID_144	Impact of Ant Colony Optimization on Optimal Routing for	78-83
		Vehicular Ad Hoc Networks	
14	14_C2I6_PID_164	High Speed, Area Efficient Three Operand Pipelined Adder	84-89
15	15_C2I6_PID_184	DESIGN OF A SIMPLIFIED FLOATING POINT ADDER FOR	90-95
		COMPLEX COMPUTATION	
16	16_C2I6_PID_195	AN EFFICIENT AND ENERGY DATA TRANSMISSION USING	96-101
		INTELLIGENT BASED TECHNIQUES IN WIRELESS SENSOR	
		NETWORK	
17	17_C2I6_PID_198	Lumbar Spine MRI Images Quality Enhancement through	102-107
		Contrast Limited Adaptive Histogram Equalization	
18	18_C2I6_PID_206	Enhanced Pseudorandom Number Generation using	108-113
		Mersenne-LFSR Fusion	
19	19_C2I6_PID_208	Leveraging Deep Learning Techniques for Colon Cancer	114-119
		Classification from Histopathology Images	
20	20_C2I6_PID_213	Exploring the Performance of NOMA Systems with	120-125
		Intelligent Surface Assistance	
21	21_C2I6_PID_217	Leveraging Data Analytics to enhance Athlete	126-132
		Performance in the UAE	

22	22 00:0 5:= 55:	C. 1 D. 1	400 465
22	22_C2I6_PID_221	Grid Based Reliable Routing Algorithm with Energy	133-138
		Efficient in Wireless Sensor Networks Using Image	
		Processing	
23	23_C2I6_PID_222	A Dual-Layer Approach: Combining Lightweight and	139-144
		Dynamic RSA for Enhanced Data Security	
24	24_C2I6_PID_223	IoT-based Smart University Using MQTT Protocol: A	145-151
		Scalable and Sustainable Design Approach	
25	25_C2I6_PID_228	Solar Photovoltaic Based Reduced Multilevel Inverter	152-157
		Using Digital Logic Controller Based ANN Technique for	
		Reduction of Harmonics	
26	26_C2I6_PID_238	Advanced Diabetic Retinopathy Classification Using	158-162
		Context-Gated Dilated Convolutional Network	
27	27_C2I6_PID_240	Advanced Malware Detection Methods for Polymorphic	163-168
		Virus Identification	
28	28_C2I6_PID_250	Real-time V2V communication device for enhanced road	169-174
		safety	
29	29_C2I6_PID_251	Advanced Power Electronics Interface for Designing	175-180
		Electric Vehicle Charging Architecture	
30	30_C2I6_PID_264	Leveraging Hybrid Deep Learning Approaches for Effective	181-186
		Sickle Cell Anemia Diagnosis from Microscopic Images	
31	31_C2I6_PID_268	Innovative Approaches to Wireless Power Transmission	187-193
		for Enhanced Mobile Charging Efficiency	
32	32_C2I6_PID_270	Enhanced Colon Cancer Screening with Endoscopic	194-199
		Images Using Deep Learning Techniques	
33	33_C2I6_PID_280	Addressing Intersymbol Interference and Nonlinearity in	200-204
		Quadrature Amplitude Modulation Systems using	
		Functional Link Artificial Neural Network Equalizer	
34	34_C2I6_PID_282	Data Clustering and Routing using Improved Water Wave	205-210
		Optimization in Wireless Sensor Network	
35	35_C2I6_PID_295	IoT-based Heart Health Monitoring System	211-216
36	36_C2I6_PID_315	Advanced Communication Protocols: A Dual Approach	217-221
		with Advanced CoAP with DTLS	
37	37_C2I6_PID_321	Design of a Standalone Hybrid Renewable Energy System	222-226
		- A Hospital in Lafayette, Indiana, USA	
38	38_C2I6_PID_351	Automated Leukemia Cancer Detection Using Deep	227-232
		Learning Techniques	
39	39 C2I6 PID 360	Emotion classification to augment the emotional	233-236
		intelligence of Autistic Individuals	
40	40_C2I6_PID_374	YOLOv8-Powered Multi-Object Detection for Safety	237-241
		Helmets and Number Plates in Real-Time Surveillance	
		Systems	
41	41_C2I6_PID_409	Enhancing Breast Cancer classification through Attention	242-247
		based VGG-19 and Federated Learning with multi-center	
		Medical Imaging	
42	42 C2I6 PID 420	A Reliable Real-Time Traffic Sign Detection Model for	248-253
	1.2_02.10_1.10_420	Diverse Environmental Challenges	2.5 255
43	43_C2I6_PID425	Enhanced Security for IOMT Devices: Deep learning	254-259
-13	1.5_0210_110425	Techniques for Network Intrusion Detection	251 255
44	44_C2I6_PID_449	Data-Driven Approach for Predicting Critical Braking	260-265
	77_0210_110_449	Temperature in Train Wheels Using Fiber Bragg Grating	200-203
		Sensors	
		JEHBUIS	

45	45_C2I6_PID_453	Analysis of using Zero shot Open Vocabulary detection methods for plastic waste classification	266-274
46	46_C2I6_PID_476	Performance Analysis of Metamaterial-Based Designs for	275-279
		5G and Beyond Communication Systems	
47	47_C2I6_PID_479	Mobility Management in 5G Heterogeneous Networks: A	280-285
		Scheme for Reducing Handover Failures	
48	48_C2I6_PID_488	Development of High Precision Thick Film Process for	286-290
		Realization of Microwave Modules	
49	49_C2I6_PID_496	Enhanced Data Analysis by Natural Language Query	291-296
		Processing	
50	50_C2I6_PID_505	Development of a Machine Learning Model for	297-302
		monitoring the Friction Stir Welding Tool using Vibration	
		Signatures	
51	51_C2I6_PID_519	A Pick and Place Mechanism with Vision to Sort Objects	303-309
		of Different Colour and Size	
52	52_C2I6_PID_522	Optimizing Lightweight Cryptographic Protocols for	310-314
		Secure Communication in Internet of Things (IoT) Devices	
53	53_C2I6_PID_538	A Multi-Classifier Approach to Landslide Susceptibility	315-320
		Mapping Using Geospatial Data and Machine Learning in	
		the Ghats Regions of Karnataka	
54	54_C2I6_PID_545	Malware Detection in Image Data: A Deep Learning	321-325
		Approach	
55	55_C2I6_PID_548	AI-Powered Virtual Try-On System: Enhancing Fit	326-331
		Prediction and User Comfort Through Deep Learning	
56	56_C2I6_PID_555	Random Selection for cloud-based load-distributing in	332-339
		Varied P2P Networks using enhanced throttled algorithm	
57	57_C2I6_PID_564	Hidden Emotion Detection using Speech, Text, Facial	340-345
		Expressions and Neural Networks	
58	58_C2I6_PID_581	Enhancing Document Retrieval Using Al and Graph-Based	346-352
		RAG Techniques	
59	59_C2I6_PID_586	Morphological Classification of Galaxies using Enhanced	353-358
	60 0016 010 610	Deep Learning Model	252 251
60	60_C2I6_PID_610	Deep Learning-Based Bone Age Prediction Using VGG16:	359-364
		An Attention-Driven Approach for Pediatric Radiograph	
C1	C1 C2IC DID C20	Analysis	265 270
61	61_C2I6_PID_630	Enhancing Dynamic Spectrum Access in Wireless Mesh	365-370
62	63 C316 DID 636	Networks: Integrated Sensing and Channel Assignment	271 276
62	62_C2I6_PID_636	Comparative Study on Efficiency and Output Voltage Regulation in Dual-Active Bridge Converter with SPS and	371-376
		TPS Modulation under Input Voltage Variations	
63	63_C2I6_PID_637	A Low-Latency Memory Architecture using 3D XPoint and	377-387
03	03_0210_F10_03/	Memristor Technologies	311-301
64	64_C2I6_PID_641	EFO: Resource Aware Scheduling Model for Cloud	388-395
07	04_0210_110_041	Computing Using Meta-Heuristic Algorithm	300 333
65	65_C2I6_PID_657	BOA: Optimizing Energy Usage in Cloud-Fog Environment	396-403
0.5	05_0210_110_03/	Using Meta-Heuristic Scheduling Algorithm	350 703
66	66_C2I6_PID_668	Linear Irrational Unit (LIU): An Activation Function for	404-409
	55_52.5_1 15_556	Convolutional Neural Network	10. 405
67	67 C2I6 PID 669	Triple Layer Cyber Security Model for Anomaly Detection	410-415
٠,	_ 5CE.IG_I ID_005	p.o Layer of security intouch for Anomaly Detection	120 710