SIMVEG

VDI-Berichte Volume 2445

Baden-Baden, Germany 19-20 November 2024

ISBN: 979-8-3313-1468-2

Printed from e-media with permission by:

Curran Associates, Inc. 57 Morehouse Lane Red Hook, NY 12571

Some format issues inherent in the e-media version may also appear in this print version.

Copyright© (2024) by VDI Verlag GmbH All rights reserved.

Printed with permission by Curran Associates, Inc. (2025)

For permission requests, please contact VDI Verlag GmbH at the address below.

VDI Verlag GmbH VDI Platz 1 40468 Dusseldorf, Germany

Phone: 49 211 61 88-560 Fax: 49 211 61 99-97560

www.vdi-nachrichten.com

Additional copies of this publication are available from:

Curran Associates, Inc. 57 Morehouse Lane Red Hook, NY 12571 USA

Phone: 845-758-0400 Fax: 845-758-2633

Email: curran@proceedings.com Web: www.proceedings.com

Inhalt/*Content*

	Advanced technologies enabling digital twins for design, manufacturing and operation F. Chinesta, A. Pasquale, R. Magg, alle ENSAM, ESI Group CHAIR, Paris, Frankreich	1
	Driving the Future Now M. Peller, BMW Group, München	19
1	ADAS	
	Virtuelle Umgebungen für die interaktive Fahrsimulation Vermessung oder augmented virtuality? S. Emmerich, T. Rothmann, J. Frank, Dr. J. Schwank, J. Schneider, R. Reinhard, M. Burger, Fraunhofer ITWM, Kaiserslautern	27
	Entspannen Sie sich und bleiben Sie ruhig – Verifizierung und Validierung von Mensch-Maschine-Schnittstellen für selbstfahrende Fahrzeuge Keep Calm and Relax – Verification and validation of HMI for Self-Driving Vehicles	49
	J. Schöning, N. Kruse, Osnabrück University of Applied Sciences	
	Integrated tool chain for the use of real traffic scenarios for simulation-based validation of automated driving B. Bahn, K. Gimm, M. Fischer, C. Schicktanz, Institut für Verkehrssystemtechnik, DLR, Braunschweig	59
	Simulation im Homologationsprozess von autonomen Shuttles im ÖPNV S. Petermaier, CADFEM Germany GmbH, Grafing b. München	73
	Continuous validation of perception sensor simulation P. Rosenberger, C. Linnhoff, T. Ruppert, Persival GmbH, Ober-Ramstadt	87
	Real Steering on the Vehicle-in-the-Loop Testbed for the Validation of Highly Automated Vehicles A. Hartwecker, D. Nickel, R. Hettel, AVL Deutschland GmbH, Advanced Solution Lab, Karlsruhe	99
	Potenzialanalyse für künstliche Intelligenz im Bereich der Fahrzeug- erprobung und der virtuellen Erprobung auf einem Gesamtfahrzeug- prüfstand	111
	L. Kopp, T. Schmidt, M. Kley, Institut für Antriebstechnik Hochschule Aalen, Aalen; T. Schwämmle, F. Porsche AG, Weissach	

Weitwinkelkamera-Stimulation als wichtiger Baustein für die Validierung von ADAS/AD am Vehicle-in-the-Loop M. Kirjanov, SETES GmbH, Saarbrücken; R. Hettel, AVL Deutschland GmbH, Karlsruhe; T. Düser, Institut für Produktentwicklung am KIT, Karlsruhe	131
Credible Simulation	
Funktionsdatenmanagement als Grundlage für verlässliche Simulation M. Baumann, HD. Walter, Karakun AG, Basel, Schweiz	149
KI in der Fahrzeugauslegung	
Utilisation of Machine Learning Methods to Set Modelling Requirements for CAE based Concept Definition T. Pohl, Stellantis Engineering and Bergische Universität Wuppertal; A. Schumacher, F. Beyer, Bergische Universität Wuppertal	157
KI-basierte Auslegung und Optimierung des ganzheitlichen Fahrzeugkonzeptes M. Oswald, J. Schlager, AVL List GmbH, Virtual Vehicle & Energy Management, Graz, Österreich	175
Batterie & Brennstoffzelle	
Optimierung des Lebensdauer-vs-Effizienz Tradeoffs einer PEM-Brennstoffzelle S. Scheidel, A. M. Reiter, AVL List GmbH, Graz, Österreich	183
Charakterisierung der passiven Rezirkulation in Polymerelektrolytmembran Brennstoffzellen in Automobilanwendungen Characterization of Passive Recirculation in Polymer Electrolyte Membrane Fuel Cells in Automotive Application M. Osterhammer, Technische Universität München / BMW Group, München; S. Held, ETH Zürich F. Du; N. Feldkeller, V. Formanski, BMW Group, München; M. Heldwein, Technische Universität München, München	193
Thermische Batteriezell-Ersatz-Modelle (T-BCM) – Validierungs- konfiguration zur Verifikation der Modellgüte M. Nöller, J. Rein, Y. Zeng, K. Bause, A. Albers, Karlsruher Institut für Technologie (KIT IPEK – Institut für Produktentwicklung, Karlsruhe	209),

	Simulative Beschreibung und Vorstellung eines geplanten Versuchs- programms für das Thermal Propagation Verhalten von Batteriezellen F. Möller, N. Jakhiya, EDAG Engineering GmbH, Sindelfingen	225
	Development of AI based surrogate models for the optimization of battery operation strategies A. C. Miranda, J. Dahlhaus, V. Faessler, TWT GmbH Science & Innovation, Stuttgart	235
1	Virtuelle Methoden	
	Breaking Boundaries in Simulation: Leveraging FPGA Technology for Virtual Test Environments T. Domke, A. A. Sayd, ITK Engineering GmbH, Holzkirchen	243
	Ableitung kundenspezifischer Fahrzyklen zur nutzungsorientierten Bewertung neuer Antriebskonzepte C. Biedinger, H. Christiansen, M. Speckert, Fraunhofer Institut für Techno- und Wirtschaftsmathematik, Kaiserslautern	257
	Fast Digital Twin in the Cloud Using cloud deployed fast digital twin for predictione M. Glensvig, M. Soranno, AVL List GmbH, Graz; F. Erhardt, AVL-AST d.o.o. Croatia, Zagreb	281
	 »Grey-Box-Processing« – A novel validation approach for structural simulations in vehicle safety T. Soot, M. Dlugosch, J. Fritsch, Fraunhofer-Institut für Kurzzeitdynamik, Ernst-Mach-Institut, EMI, Freiburg 	297
	KI special: Forschungsprojekt newAIDE	
	Abschluss Forschungsprojekt newAIDE (new Artificial Intelligence based Design in Engineering) M. Luegmair, S. Cram, S. Mößner, BMW AG; C. Bohnenberger, Altair Engineering Gm T. Heel, TWT GmbH Science & Innovation	30 9 bH;
	KI & Datenmanagement in der Anwendung	
	Maschinelles Lernen in der Bremsgeräuschanalyse – Ein Erfahrungsbericht D. Klitzke, M. Steger, Renumics GmbH; S. Ropers, A. Bartelt, MM. Ngankia, Volkswagen AG	337

KI-basierte Modellierung und Analyse von realen Fahrzeugen mit Fokus auf dynamischem Verhalten und Alterungseffekten AI-based modeling and analysis of real vehicles with a focus on dynamic behavior and aging effects M. Grill, T. Hagenbucher, A. C. Kulzer, FKFS –Research Institute of Automotive Engineering and Powertrain Systems Stuttgart, Stuttgart, Germany	349
Optimierung der Instandhaltung: Einsatz von Digitalen Zwillingen für simulationsgestützte Entscheidungsprozesse bei Turbinenschaufeln M. Probst, CAIQ GmbH, München	365
Entwicklung und Validierung eines LSTM-basierten Modells zur Vorhersage der Stator-Temperaturen in Elektromotoren – Ein datengetriebener Ansatz unter dynamischen Lastbedingungen K. Wolter, A. Albers, Karlsruher Institut für Technologie, IPEK – Institut für Produkt- entwicklung, Karlsruhe; M. Adrian, Schaeffler Automotive Bühl GmbH & Co. KG, Bühl	367
Kategorisierung von physikalischen Systemmodellen mithilfe von Graph Neural Networks A. Grbavac, M. Grill, FKFS, Stuttgart; A. Casal Kulzer, Universität Stuttgart	383
Entwicklungsprozess mit nahtloser CAD-Integration in ANSA und KOMVOS Halbautomatischer Modellaufbauprozess für Gesamtfahrzeugmodelle B. Näser, BMW Group, München; M. Tryfonids, BETA CAE Systems, Thessaloniki	S 391
In das Simulationsdatenmanagement integrierter, hochautomatisierter CFD-Simulationsprozess für effiziente Aerodynamikentwicklung C. Edelmann, Mercedes-Benz AG, Sindelfingen; M. Thiele, SCALE GmbH, Ingolstadt	397
KI in der Fahrzeugsicherheit	
Simplifying the evaluation and usage of many crash simulation results with machine learning J. Garcke, R. Iza-Teran, D. Steffes-lai, Fraunhofer SCAI, Sankt Augustin	407
Ein intelligenter Assistent für die Crashauslegung – Perspektiven und Voraussetzungen M. Neururer, Volkswagen AG, Wolfsburg; M. Meywerk, Helmut-Schmidt-Universität/ Universität der Bundeswehr Hamburg, Professur für Fahrzeugtechnik	415
Prognose von Belastungswerten mittels Machine Learning in den frühen Phasen der Entwicklung von passiver Fahrzeugsicherheit J. Steinhäuser, F. Porsche AG, Weissach	429

Prognosis of crashworthiness performance of cars regarding changes in wall thickness using machine learning L. W. Teichmann, C. Ortmann, Volkswagen AG, Wolfsburg; A. Schumacher, Universität Wuppertal
Finite Element Method Integrated Networks S. Thel, L. Greve, Volkswagen AG Wolfsburg; M. Karl, Volkswagen AG, München
E-Mobility
Impact of multi physical interactions in the framework of simulation based development of rotors for BEV traction drives 485
B. Dönges, H. Gürbüz, F. Hönemann, T. Isaak, M. Rolfes, Mubea, Attendorn; M. Lauerburg, K. Hameyer, Institut für Elektrische Maschinen, RWTH Aachen, Aachen; J. Kern, K. Bause, S. Ott, A. Albers, Institut für Produktentwicklung, Karlsruher Institut für Technologie, Karlsruhe
Virtual Reliability of E-Powertrains: How Simulation Supports Bayesian Priors and Boosts Confidence in Reliability (Virtuelle Zuverlässigkeit von E-Antriebssträngen: Wie Simulation Bayes'sche a priori Wahrscheinlickeiten unterstützt und das Vertrauen in die Zuverlässigkeit stärkt) M. Leighton, A. Tuschkan, S. Hartwig, I. Garcia de Madinabeitia Merino, AVL List GmbH, Graz, Austria
Structures & Materials
Ersatzmodellierung von hochfesten Laserschweißverbindungen zur Prognose des kerbinduzierten Versagens unter Crashbelastung Simplified Modeling of laser-welded joints in crash-simulations covering notch effects and loading conditions 517 K. Schilling, T. Porsch, Volkswagen AG, Wolfsburg; T. Heubrandtner, VIRTUAL VEHICLE Kompetenzzentrum – Das virtuelle Fahrzeug Forschungsgesellschaft mbH, Graz
Strukturanalyse von Leiterplatten unter Berücksichtigung von statischen, dynamischen und thermischen Belastungen C. Neubacher, W. Hinterberger, Engineering Center Steyr GmbH & Co. KG, St. Valentin, Österreich
Effiziente NVH-Untersuchung von Kabeln und Schläuchen in batterieelektrischen Fahrzeugen Efficient NVH analysis for cables and hoses in battery electric vehicles F. Schneider-Jung, M. Roller, J. Linn, Fraunhofer-Institut für Techno- und Wirtschaftsmathematik (ITWM), Kaiserslautern

Den Variabilitätsgrenzen trotzen: Auslegungs- und Validierungsansätze für Holzwerkstoffe in nachhaltigen Mobilitätsanwendungen C. Kurzböck, Virtual Vehicle Research GmbH, Graz, Österreich	551
Srukturoptimierung	
Ressourceneinsparung durch Computational Design J. Mayer, Lehrstuhl für Konstruktionstechnik, S. Wartzack, Friedrich-Alexander-Universität Erlangen-Nürnberg	561
Automatische Crashoptimierung des Schwellers und des Batterieschutzes in einem Audi Q8 e-tron für einen seitlichen Pfahlaufprall Automatic crash optimization of the sill and battery protection in an Audi Q8 e-tron for a side pole impact D. Schneider, F. Beyer, S. Link, iNDUVOS GmbH, Wuppertal	567