2025 United States National **Committee of URSI National Radio Science Meeting** (USNC-URSI NRSM 2025)

Boulder, Colorado, USA 7-10 January 2025

IEEE Catalog Number: CFP25USN-POD ISBN:

979-8-3315-1397-9

Copyright © 2025, USNC-URSI **All Rights Reserved**

*** This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version.

IEEE Catalog Number: CFP25USN-POD CFP25USN-POD 979-8-3315-1397-9 ISBN (Print-On-Demand): ISBN (Online): 978-1-9468-1520-0

Additional Copies of This Publication Are Available From:

Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA

Phone: (845) 758-0400
Fax: (845) 758-2633
E-mail: curran@proceedings.com
Web: www.proceedings.com

TABLE OF CONTENTS

D1: RF AMPLIFIERS COMPUTER-AIDED DESIGN (CAD) SIMULATIONS Jonathan Swindell, Adam Goad, Austin Egbert, Baylor University; Casey Latham, Matthew Ozalas, Andy Howard, Daren McClearnon, Keysight; Charles Baylis, Robert Marks, Baylor University D1.2: LINEARIZATION OF NONLINEAR POWER AMPLIFIER EFFECTS ON BPSK WAVEFORMS2 James Gaudreau, Nicholas Ellis, Joel Johnson, Patrick Roblin, Justin Kuric, Richard Ridgway, Christopher Ball, The Ohio State University **COMMUNICATIONS AND RADIO SCIENCE** Jack Molles, CU Boulder; Sushians Rahimizadeh, Lin Yi, NASA JPL; Zoya Popović, CU Boulder MITIGATION IN A CONGESTED SPECTRAL ENVIRONMENT Justin Roessler, Emma Lever, Luke Mello, Austin Egbert, Charles Baylis, Robert Marks, Baylor University; Alex Bouvy, Benjamin Kirk, DEVCOM Army Research Laboratory ABF5*: QUANTUM TECHNOLOGY APPLICATIONS IN ELECTROMAGNETICS, METROLOGY, AND **REMOTE SENSING** SUPERCONDUCTING CIRCUIT QUANTUM DEVICE Ghazi Khan, Thomas Roth, Purdue University IN NON-TERRESTRIAL NETWORKS QI JIAN LIM, Zhen Peng, University of Illinois at Urbana-Champaign ABF5*.3: FAST AND ACCURATE METHOD FOR DOPPLER AVERAGING OF RYDBERG EIT SIGNALS.......8 Omar Nagib, Thad G. Walker, University of Wisconsin-Madison **ELECTRIC FIELD CALIBRATIONS** William Watterson, University of Colorado Boulder; Alexandra Artusio-Glimpse, Nikunjkumar Prajapati, Matthew Simons, Christopher Holloway, National Institute of Standards and Technology ABF5*.5: MICHAEL FARADAY AND THE QUANTUM FIELD THEORY.......11 Akira Ishimaru, University of Washington

MODEL

Saba Mudaliar, Air Force Research Laboratory

ABF5*.7: QUANTUM SENSING OF 130 GHZ BLACKBODY RADIATION WITH RYDBERG STATES OF
Noah Schlossberger, Nikunjkumar Prajapati, Alexandra B. Artusio-Glimpse, Matthew T. Simons, National Institute of Standards and Technology; Dixith Manchaiah, Dangka Shylla, William J. Watterson, Charles Patrick, Adil Meraki, Rajavardhan Talashila, University of Colorado, Boulder; Christopher L. Holloway, National Institute of Standards and Technology
ABF5*.8: ELECTRIC FIELD DETECTION WITH HIGH ANGULAR MOMENTUM RYDBERG
RECEIVERS IN THE HF/VHF BANDS AND BEYOND David La Mantia, Baran Kayim, Michael Viray, Daniel Richardson, Ryan Westafer, Brian Sawyer, Robert Wyllie, Georgia Tech Research Institute
ABF5*.9: PERFORMANCE SHOWDOWN: RYDBERG SENSORS VS. ELECTRICALLY SMALL
ANTENNAS Kathryn Nicolich, Kelly Backes, Neel Malvania, Zachary Hardesty-Shaw, Bonnie Schmittberger Marlow, Charles Fancher, MITRE
ABF5*.10: FDTD IN COMPUTATIONAL ELECTROMAGNETICS AND QUANTUM TRANSPORT
A1: ANTENNAS
A1.1: TOWARDS HARSH ENVIRONMENT SILICON CARBIDE BASED ON-CHIP ANTENNA
A1.2: CYLINDRICAL DIELECTRIC RESONATOR ANTENNA PROVIDING PATTERN DIVERSITY
USING HIGHER-ORDER MODES Anh T. Vu, Jason Summer, Nigel Shepherd, Hung Luyen, University of North Texas
A1.3: 37 GHZ LOW-PROFILE WIDEBAND ANTENNA WITH HIGH-GAIN CHARACTERISTICS FOR21
NEXT-GENERATION NETWORKS Carlos Arteaga Araujo, Elias Alwan, Florida International University
A1.4: DIRECT ANTENNA BINARY PHASE-SHIFT KEYING THROUGH FERRIMAGNETIC LOADING
A1.5: EVOLVING ANTENNAS FOR DIRECTIONAL RADIO SENSITIVITY
Dylan Wells, Ohio State University; Julie Rolla, NASA; Bryan Reynolds, Remcom; Amy Connolly, Ohio State University
GH4*: METEORS ORBITAL DEBRIS AND DUSTY PLASMAS
GH4*.1: TRACK AFTER DETECTION OF INERT SPACE OBJECTS IN CONJUNCTION WITH
SATELLITE-BASED PLASMA WAVE SENSORS Paul Bernhardt, University of Alaska Fairbanks; Bengt Eliasson, University of Strathclyde; Wayne Scales, Andrew Howarth, Virginia Tech; Lauchie scott, DRDC Ottawa Research Centre; Andrew Foss, university of cal
GH4*.2: SIMULTANEOUS OBSERVATION OF A DAYTIME ARIETIDS METEOR HEAD ECHO AT VHF
AND UHF FREQUENCIES Trevor Hedges, Stanford University; Alex Green, Boston University; Nicolas Lee, Sigrid Elschot, Stanford University; Meers Oppenheim, Boston University
GH4*.3: USING PLASMA CLOUDS PRODUCED BY DUST IMPACTS ON PARKER SOLAR PROBE
TO SEARCH FOR ANOMALOUS DUST POPULATIONS IN THE INNER HELIOSPHERE David Malaspina, Avery Mazurkiewicz, University of Colorado, Boulder; Jamey Szalay, Princeton University; Delaney Lee- Bellows, University of Colorado, Boulder

GH4*.4: TOWARDS RESOLVING THE WAKE STRUCTURE OF A DUST GRAIN IN PLASMA WITH
GH4*.5: ANOMALOUS DIFFUSION OF A STRONGLY MAGNETIZED PLASMA IN A SIMULATED
F1: SIGNALS OF OPPORTUNITY BISTATIC RADAR REMOTE SENSING OF THE EARTH
F1.1: A STUDY ON RFI DETECTION AND MITIGATION FOR UAS-BASED P-BAND SOOP SYSTEM
F1.2: THE SEA STATE SENSITIVITY OF GNSS-R OCEAN WIND SPEED MEASUREMENTS
F1.3: INVERTING SOIL MOISTURE FROM GNSS-R REFLECTIVITY USING A SEMI-EMPIRICAL
F1.4: GRID SIZE OPTIMIZATION FOR SOIL MOISTURE ESTIMATION USING UAS-BASED GNSS
F1.5: SENSING OF DIRECTIONAL ICE SURFACE ROUGHNESS FEATURES WITH
J7*: RADIO SCIENCE FROM THE MOON
J7*.1: THE DAWNING OF RADIO ASTRONOMY FROM THE MOON
J7*.2: PRESERVING THE SHIELDED ZONE OF THE MOON FOR RADIO ASTRONOMY
J7*.3: RAE-EXPLORING THE PAST: LUNAR SCIENCE AND THE LEGACY OF RAE-2
J7*.4: COMMISSION J: RADIO SCIENCE FROM THE MOON LUNAR ODYSSEY: ROLSES-1 DATA

J7*.5: PIONEERING ULTRA-LONG-WAVELENGTH RADIO SCIENCE WITH LUSEE-NIGHT45
Stuart Bale, John Bonnell, University of California, Berkeley; Jack Burns, University of Colorado; Thierry Dudok de Wit, Laboratoire de Physique et de Chimie de l'Environnement et de l'Espace; Adam Fahs, University of California, Berkeley; Keith Goetz, University of Minnesota; Christian Bye, University of California, Berkeley; Sven Herrmann, Brookhaven National
Laboratory; Joshua Hibbard, University of Colorado; Zack Li, University of California, Berkeley; Milan Maksimovic, Observatoire de Paris; David Malaspina, University of Colorado; Ryan McLean, Raul Monsalve, University of California, Berkeley; Paul O'Connor, Brookhaven National Laboratory; Brent Page, Aaron Parsons, Marc Pulupa, University of California, Berkeley; Rugved Pund, Stony Brook University; David Rapetti, NASA Ames Research Center; Kaja Rotermund, Lawrence Berkeley National Laboratory; Ben Saliwanchik, Brookhaven National Laboratory; Dave Sheppard, NASA Goddard Space Flight Center; Anže Slosar, Brookhaven National Laboratory; David Sundkvist, University of California, Berkeley; Aritoki Suzuki,
Lawrence Berkeley National Laboratory; Fatima Yousuf, University of California, Berkeley
J7*.6: DESIGN, MODELING, AND CHARACTERIZATION OF THE ANTENNA MODULE FOR THE
Kaja M. Rotermund, Aritoki Suzuki, Joseph Silber, LBNL; Jeremy McCauley, SSL at UC Berkeley; Fatima Yousuf, Adam Fahs, Stuart Bale, UC Berkeley; on behalf of the LuSEE-Night Team, BNL
J7*.7: LUNAR FARSIDE RADIO ARRAYS FOR INVESTIGATIONS OF DARK AGES AND EXOPLANET
Nivedita Mahesh, Caltech; Judd Bowman, ASU; Jack Burns, CU Boulder; Gregg Hallinan, Caltech
J7*.8: 300-900 MHZ MIDBAND ARRAY DESIGN FOR THE LUNAR FARSIDE TECHNOSIGNATURES
J7*.9: SOLAR SYSTEM RADIOPHYSICS FROM THE FARSIDE OF THE MOON
J7*.10: GROUND-PENETRATING RADAR FOR LUNAR EXPLORATION
J7*.11: THE LUNAR FARSIDE TECHNOSIGNATURE AND TRANSIENT TELESCOPE (LFT3)
B1: PROPAGATION, SCATTERING, AND SENSING
B1.1: REFLECTION BY A COATED PARABOLIC-CYLINDER MIRROR
B1.2: TOMOGRAPHIC 3D IMAGING FOR UAV LUNAR PENETRATING RADAR USING GEOMETRIC
Tatiana Valera, Stavros Koulouridis, John Volakis, Florida International University
B1.3: QUASI STATIC TEM ANALYSIS OF A USTRIP ABOVE A PERFORATED PLANE
B1.4: STOPBAND INVESTIGATION OF LEAKY-WAVE ANTENNA BASED ON MICROSTRIP LINE
B1.5: DESIGN AND SIMULATION OF A 94 GHZ RESONANT HORN ANTENNA THAT DETECTS

D2: ANTENNAS AND SENSING

D2.1: OPTIMIZATION METRICS FOR MINIMIZING ERROR IN ARRAY TRANSMISSION PATTERN	59
D2.2: SOFTWARE-DEFINED RADIO (SDR) CONFIGURATION PITFALLS AND REFERENCE SIGNAL	60
D2.3: REINFORCEMENT LEARNING CONTROLLED MECHANICALLY RECONFIGURABLE ANTENNAS Lauren Linkous, Erwin Karincic, Michael Suche, Erdem Topsakal, Virginia Commonwealth University	61
D2.4: A PROTOTYPE MILLIMETER-WAVE REFLECTIONLESS DIPLEXER BASED ON SILICON	63
D2.5: NRL SPADE-2 PLASMA DIAGNOSTIC ELECTRONICS	65
A2: MICROWAVE TO SUBMILLIMETER TECHNIQUES	
A2.1: IN-SITU VOLTAGE AND CURRENT ASSESSMENT FOR TRANSMISSION OF SIGNALS WITH	66
A2.2: GROUNDED COPLANAR WAVEGUIDES FOR MATERIAL CHARACTERIZATION	67
A2.3: SPECTRUM SENSING USING DISPERSIVE DELAY LINE STRUCTURE IN REAL-TIME	 68
A2.4: ELECTROMAGNETIC NOISE AND RADIATION MITIGATION IN POWER DELIVERY	69
G11*: TOTAL ECLIPSE	
G11*.1: AN ECLIPSE-BALLOONING STUDY OF SHADOW BANDS DURING THE APRIL 2024 TOTAL ECLIPSE Giana Deskevich, University of Pittsburgh; Norris Bach, Carnegie Mellon University; Jakob Bindas, Kristian Borysiak, Russe Clark, Louis Coban, Istvan Danko, Luke Docherty, Michael Hatridge, Howard Malc, Boris Mestis, Emma Moran, Mathilda Nilsson, University of Pittsburgh; Jeffery Peterson, Carnegie Mellon University; Edward Michael Potosky, Sandhya Rao, Pere Schindelheim, David Turnshek, Ryan Young, Ameya Velankar, University of Pittsburgh	ell
G11*.2: COMPARATIVE ANALYSIS OF THE GREAT AMERICAN SOLAR ECLIPSES DATA OBTAINED	72

G11*.3: VLF AND ELF REMOTE SENSING OF THE LOWER IONOSPHERE DURING TOTAL
SOLAR ECLIPSE CONDITIONS Mark Golkowski, University of Colorado Denver; Oleksiy Agapitov, University of California Berkeley; Ryan Eskola, Gabriel Da Silva, Favour Ogbinaka, Srivani Inturi, University of Colorado Denver
G11*.4: SIGNATURES OF IONOSPHERIC G-CONDITION OBSERVED DURING 2017 AND 2021 TOTAL74 SOLAR ECLIPSES
Shibaji Chakraborty, Virginia Tech; Sebastijan Mrak, JHU/APL; Naomi Maruyama, LASP; Gareth Chisham, BAS; Xueling Shi, Virginia Tech; Evan Thomas, Dartmouth College; Kevin Sterne, Virginia Tech
G11*.5: FORECASTING GLOBAL VTEC DATA FROM VISTA WITH HIGH SPATIAL AND TEMPORAL
Srivani Inturi, Mark Golkowski, Ashis Biswas, University of Colorado Denver; Venkata Ratnam Devanaboyina, Koneru Lakshmaiah University; Anmol Singhal, University of Colorado Denver
F8*: TROPOSCATTER
F8*.1: FADING MEASUREMENTS FROM A MARITIME MOBILE TROPOSCATTER LINK
F8*.2: CHARACTERIZING CLUTTER VIA A TIME-VARYING TROPOSCATTER SIGNAL
F8*.3: EVALUATION OF A TURBULENCE CHARACTERIZATION TECHNIQUE USING
F8*.5: TROPOSCATTER: ILLUMINATING THE BLACK BOX
B6*: ANTENNA AND RF SELF-INTERFERENCE SUPPRESSION TECHNIQUES FOR IN-BAND FULL- DUPLEX COMMUNICATION SYSTEMS
B6*.1: CIRCULAR RETRODIRECTIVE ARRAYS MAKING USE OF SELF-INTERFERENCE
B6*.2: CO-SITE INTERFERENCE MITIGATION IN FULL-DUPLEX HF ANTENNA ARRAYS
B6*.3: MUTUAL COUPLING STUDY OF FULL-DUPLEX ARRAYS Kenneth Kolodziej, MIT Lincoln Laboratory; Dejan Filipovic, Zoya Popovic, University of Colorado Boulder
B6*.4: DUAL-BAND MATCHING AND DECOUPLING NETWORK DESIGN FOR ASYMMETRIC
B6*.5: AN ANALYTICAL METHOD FOR DESIGNING MATCHING AND DECOUPLING NETWORKS

G1: RADAR AND RADIO TECHNIQUES I

G1.1: STATISTICAL ANALYSIS AND DETECTION OF SPREAD-F AND FOF2 VALUES USING
Preeti Bhaneja, USRA/NASA-GSFC; Terry Bullett, NCEI/NOAA; Jeff Klenzing, NASA-GSFC
G1.2: TWO-DIMENSIONAL RADAR STUDIES OF POST-MIDNIGHT EQUATORIAL F-REGION
G1.3: CLIMATOLOGY OF LARGE-SCALE TRAVELING IONOSPHERIC DISTURBANCES OBSERVED
E1: CURRENT ISSUES IN SPECTRUM SHARING AND INTERFERENCE I
E1.1: GROWING A SPECTRUM PARADIGM: TOWARD ADAPTIVE AND RECONFIGURABLE
E1.2: INTERFERENCE MONITORING WITH NRDZ-AS-A-SERVICE AT SPECTRUM
E1.3: AN ANALYSIS FRAMEWORK OF SUPPLEMENTAL COVERAGE FROM SPACE (SCS) AND
E1.4: AGGREGATE INTERFERENCE ANALYSIS OF A LEO SATELLITE CONSTELLATION INTO THE
H6*: QUANTUM INSPIRED METHODS IN PLASMA WAVE DYNAMICS I
H6*.1: APPLICATION OF WEYL SYMBOL CALCULUS FOR QUASILINEAR MODELING OF WAVES
H6*.2: QUANTUM GEOMETRY AND TRANSPORT IN COLD MAGNETIZED PLASMAS
H6*.3: TOPOLOGICAL MODE ANALYSIS OF PT-SYMMETRIC ELECTROSTATIC SHEAR DRIVEN
H6*.4: SWITCHING BETWEEN WHISTLER-MODE WAVES INSIDE DENSITY AND MAGNETIC

B9*: MULTIFUNCTIONAL ANTENNAS AND ARRAYS FOR SATELLITE AND WIRELESS COMMUNICATIONS

B9*.1: MINIATURIZED, TRI-BAND (2.4 GHZ, 5.2 GHZ, AND 5.8 GHZ), AND SELF-MATCHED
Pranav Yogesh Mahajan, San Diego State University; Balamurugan Shanmugam, Google LLC; Sanghamitro Das, Satish Kumar Sharma, San Diego State University
B9*.2: A COMPACT CPW-FED CIRCULARLY POLARIZED PLANAR MONOPOLE ANTENNA FOR IOT
Abu Horaira Hridhon, Tutku Karacolak, Washington State University Vancouver
B9*.3: TOWARD BINARY RECONFIGURABLE HOLOGRAPHIC SURFACES
B9*.4: MITIGATING MUTUAL COUPLING IN AN ANTENNA ARRAY IN THE DIGITAL DOMAIN
B9*.5: ADAPTIVE BEAMFORMING WITH A DOUBLE-CROSS ARRAY OF DIPOLE ANTENNAS ON A
Neil Egarguin, University of the Phillipines; David Jackson, Daniel Onofrei, University of Houston
F2: ATMOSPHERIC PROPAGATION AND REMOTE SENSING
F2.1: REMOTE SENSING OF HUMIDITY AND TEMPERATURE FROM X-BAND RADAR
F2.2: IDENTIFYING REGIONS OF LARGE PROPAGATION VARIABILITY VIA PRINCIPAL 112
COMPONENT ANALYSIS
Douglas Pastore, Naval Surface Warfare Center Dahlgren Division; Zach Beever, Johns Hopkins University Applied Physics Laboratory
F2.3: A QUANTITATIVE METHOD FOR COMPARING RF PROPAGATION MODEL OUTPUT
F2.4: VIABILITY OF A GROUND-BASED WIND PROFILING RADAR REMOTE SENSING
F2.5: STATISTICAL DISTRIBUTIONS OF EVAPORATION DUCT HEIGHT AND STRENGTH OVER
RANGE AND THE DIURNAL CYCLE Sarah Wessinger, Naval Research Lab; Andrew Kammerer, Devine Consulting; David Flagg, Qingfang Jiang, Naval Research Lab
F2.6: ASSESSMENT OF A HUMIDITY AND TEMPERATURE RETRIEVAL TECHNIQUE USING
Daniel P. Greenway, Caleb R. Sease, Coastal Carolina University; Qing Wang, Ryan Yamaguchi, Naval Postgraduate School; Erin E. Hackett, Coastal Carolina University

F2.7: IMPACT OF SURFACE TEMPERATURE REPRESENTATION IN A MESOSCALE NUMERICAL
Andrew Kammerer, DeVine Consulting Inc; Sarah Wessinger, Naval Research Laboratory; Jacob Yung, Bay Systems Consulting, Inc; David Flagg, Naval Research Laboratory
J1: NEW TELESCOPES, TECHNIQUES, AND TECHNOLOGIES I
J1.1: RE-CHANNELIZING QUANTIZED POLYPHASE FILTER BANKS
J1.2: EVIDENCE FOR UNCORRECTED GAIN FACTORS IN GALACTIC SYNCHROTRON TEMPLATE
Michael Wilensky, McGill University; Melis Irfan, University of Cambridge; Philip Bull, University of Manchester
J1.3: CYCLIC SPECTROSCOPY IN PRESENT AND UPCOMING RADIO TELESCOPE DATA
J1.4: A 400GBIT ETHERNET CORE ENABLING HIGH DATA RATE STREAMING FROM FPGAS TO
University of California Berkeley
J1.5: PULSAR DETECTION PERFORMANCE USING OVERSAMPLED SPECTROMETER:
J1.6: HIGH-DYNAMIC RANGE RADIO ASTRONOMY SYSTEMS, INTERFERENCE MITIGATION
STRATEGIES, AND A TEST SETUP FOR EXPERIMENTING DYNAMIC SPECTRUM SHARING
Emilio Armas, Connor Westcott, William Dellinger, Nehal Patel, D. Anish Roshi, University of Central Florida; Mitch Burnett, Brigham Young University; Wei Liu, University of California Berkely; Dan Werthimer, University of California Berkeley; Rafael A. Rodríguez-Solís, University of Puerto Rico
J1.7: AN EXPERIMENTAL TEST-BED FOR INVESTIGATING SPECTRUM SHARING STRATEGIES
BETWEEN PASSIVE AND ACTIVE USERS AT A PROTOTYPE NATIONAL RADIO DYNAMIC ZONE (NRDZ)
Arvind Aradhya, University of Colorado, Boulder; David DeBoer, University of California, Berkeley; Oren Collaco, University of Colorado, Boulder; Wael Farah, SETI Institute; Cole Forrester, University of California, Berkeley; Kevin Gifford, University of Colorado, Boulder; David Johnson, University of Utah; Sylvia Llosa, University of Colorado, Boulder; Alexander Pollak, SETI Institute; Bo Pearce, University of Colorado, Boulder; Mark Ruzindana, University of California, Berkeley; Aarushi Sarbhai, University of Utah; Brockton Stover, University of California, Berkeley; Stefan Tschimben, University of Colorado, Boulder; Jacobus Van der Merwe, Kirk Webb, University of Utah; Georgiana Weihe, University of Colorado, Boulder
J1.8: DETECTING VHF SATELLITE EMISSIONS USING THE ORVILLE WIDEBAND IMAGER
J1.9: USING METER-WAVELENGTH LUNAR POLARIMETRY TO DETERMINE THE ACCURACY OF
J1.10: PRECISION DATA ANALYSIS FOR 21 CM COSMOLOGY WITH THE OVRO-LWA STAGE III

B2: NUMERICAL METHODS AND EM IN COMPLEX MEDIA METHOD OF MOMENTS Salim Karimov, The Ohio State University; Sadasiva Rao, Naval Research Lab LONGITUDINAL APERTURES Secil E Dogan, Joel T Johnson, Robert J Burkholder, The Ohio State University JOSEPHSON TRAVELING-WAVE PARAMETRIC AMPLIFIERS Samuel Elkin, Thomas Roth, Purdue University Ryan Banks, Virginia Tech; Quang Nguyen, Amir Zaghloul, CCDC Army Research Laboratory TIME VARYING PLASMAS Hossein Mehrpour Bernety, Mark Cappelli, Stanford University **K1: WEARABLE ANTENNAS AND SENSORS** APPLICATIONS Riley Hollman, Yang Li, Baylor University Amber Nunnally, Erdem Topsakal, Virginia Commonwealth University Sarah Johnson, Erdem Topsakal, Virginia Commonwealth University WAVEGUIDES Connor Jenkins, Asimina Kiourti, The Ohio State University **BIOPOTENTIAL RECORDING** Melany Gutierrez-Hernandez, Sally P. Duarte, Jorge Riera Diaz, John L. Volakis, Florida International University **G2: RADAR AND RADIO TECHNIQUES II** G2.1: DEVELOPMENT AND VALIDATION OF A LIMB-TO-DISK ALGORITHM FOR MAPPING RADIO143 OCCULTATION MEASUREMENTS OF SCINTILLATION TO THE VERTICAL PROPAGATION GEOMETRY Charles Carrano, Keith Groves, William McNeil, Boston College; Endawoke Yizengaw, Paul Straus, Aerospace Corporation **ESTIMATIONS**

Madeline C. Evans, Brian Breitsch, Y. Jade Morton, University of Colorado Boulder

G2.3: TRIDENT: A NOVEL HF RADAR SYSTEM FOR MEASURING TRAVELING IONOSPHERIC	. 146
Ian Collett, Adam Reynolds, Erich Hoover, Scott Thaller, Anastasia Newheart, Camella Nasr, Joe Hughes, Rachel Stutz, Keith Boyer, Malcolm McKellips, Dan Knight, Junk Wilson, Orion Space Solutions, An Arcfield Company; Geoff Crowley, Arcfield	1
G2.4: ON THE USE OF IONOSONDE RETURN PULSE AMPLITUDES	. 147
Matthew Strong, Morris Cohen, Georgia Institute of Technology	
E2: CURRENT ISSUES IN SPECTRUM SHARING AND INTERFERENCE II	
E2.1: A PRELIMINARY COMPARISON OF FAST TECHNIQUES TO MONTE CARLO TECHNIQUES	. 149
E2.2: LATENCY BUDGET FOR SPECTRUM SHARING WITH AIRBORNE RADARS	
E2.3: EXAMINATION OF RADAR INTERFERENCE PROTECTION CRITERIA POWER THRESHOLD	. 151
Robert Achatz, United States Department of Commerce	
H7*: QUANTUM INSPIRED METHODS IN PLASMA WAVE DYNAMICS II	
H7*.1: QUANTIZED TENSOR TRAINS FOR SIMULATIONS OF PLASMA WAVES	. 152
H7*.2: SIMULATING LINEAR PLASMA WAVES ON QUANTUM COMPUTERS	
H7*.3: EFFICIENCY IN MEASUREMENT-BASED NONLINEAR DYNAMICS Joseph Andress, University of Colorado, Boulder	. 154
H7*.4: PROPAGATION OF WHISTLER MODE WAVES IN EARTH'S INNER MAGNETOSPHERE IN	. 155
Raahima Khatun-E-Zannat, Vijay Harid, Mark Golkowski, University of Colorado Denver; Oleksiy Agapitov, Space Sciences Laboratory, University of California, Berkeley; Poorya Hosseini, West Virginia University	
B8*: HIGH POWER ELECTROMAGNETIC ENVIRONMENT EFFECTS	
B8*.1: QUALIFICATION OF THE IMAP X-BAND GAN SOLID STATE POWER AMPLIFIERS FOR NEAR	. 156
B8*.2: THEORETICAL ESTIMATION OF PASSIVE HF SIGNAL FROM A METEORITE PLASMA TRAIL	. 157
B8*.3: HIGH POWER BREAKDOWN EFFECTS IN MICROWAVE COMPONENTS IN THE TITAN	. 159
Avinash Sharma, Matthew Shannon, The Johns Hopkins University Applied Physics Laboratory	

B8*.4: SUBSTITUTING LATTICES TO IMPROVE MASS FRACTION OF AN ANTENNA FOR STRESS
B7*: ADVANCED MODELING TECHNIQUES AND ALGORITHMS IN COMPUTATIONAL ELECTROMAGNETICS
B7*.1: AN ALGORITHM FOR CONVERTING PCB VIA STRUCTURE TO A VOXELIZED MESH FOR
B7*.2: NEURAL NETWORK PREDICTION OF SCATTERING PARAMETERS BASED ON VOXEL
B7*.3: INVESTIGATION OF GUIDED POWER EXPRESSIONS FOR SYMMETRIC DIELECTRIC
B7*.4: AN APPROACH FOR OBTAINING HOURS OF GIC PREDICTIONS FROM A SINGLE, SHORT
B7*.5: UTILIZATION OF DYNAMIC BASIS FUNCTIONS IN KRIGING METHODOLOGY FOR
K2: INTERACTION OF THE HUMAN BODY AND ELECTROMAGNETIC WAVES
K2.1: WEAK AND EXTREMELY LOW FREQUENCY MAGNETIC FIELDS ALTER THE GROWTH
K2.2: ELECTROMAGNETIC FIELD-INDUCED MODULATION OF ANTIOXIDANT RESPONSES IN
K2.3: ASSESSING MR SAFETY OF CEREBRAL STENTS: INSIGHTS INTO RF-INDUCED HEATING
K2.4: REPEATABILITY OF INTERNAL BODY TEMPERATURE MEASUREMENTS VIA MICROWAVE
K2.5: A CONFORMAL MICROWAVE MEASUREMENT SYSTEM FOR IMAGING BURIED ANOMALIES

G3: RADAR AND RADIO TECHNIQUES III

G3.1: ELECTROMAGNETIC EMISSIONS ASSOCIATED WITH THE 2024 PERSEID METEOR
Mickey Batson, Laboratory for Telecommunication Sciences; Nick Donnangelo, MITRE; Alex Mamishev, University of Washington; Robert Moore, University of Florida
G3.2: USING AUTOMATIC DIFFERENTIATION TO SIMPLIFY IONOSPHERIC SPECIFICATION
G3.3: SPATIOTEMPORAL DYNAMICS OF SPORADIC E FORMATIONS AND THEIR IRREGULAR
G3.4: REVIEW OF A NEWLY DEVELOPED MODULAR IONOSONDE OPERATING IN THE
C1: RADIO-COMMUNICATION SYSTEMS AND SIGNAL PROCESSING I
C1.1: TOWARD BUILT-IN SELF-TEST FOR LARGE SCALE ANTENNA ARRAYS: EXPERIMENTAL
C1.2: WLAN PROTOCOLS IDENTIFICATION USING MACHINE LEARNING AND ENSEMBLE
C1.3: IMPACT OF NOTCH FILTERING ON RADAR TARGET DETECTION: PROBLEMS AND
C1.4: NOVEL YAGI-UDA DIRECTION FINDING ANTENNA BACKED BY SOFTWARE DEFINED
H1: WAVES IN SPACE AND LABORATORY PLASMAS
H1.1: WHISTLER-MODE WAVES ON MAGNETIC AND DENSITY SHELVES
H1.2: LIGHTNING PRECURSOR DISCHARGES AND TERRESTRIAL GAMMA RAY FLASHES
H1.3: ELVES AS THE OPTICAL SIGNATURE OF LIGHTNING PRECURSOR DISCHARGES IN THE

H1.4: COMPACT INTRACLOUD DISCHARGES AND THE SOURCES GENERATING THEIR LOW AND HIGH FREQUENCY SIGNATURES Zaid Pervez, Reza Janalizadeh, Victor P. Pasko, Penn State University	, 189
H1.5: POLARIZATION AND SPECTRAL CONTENT OF ELF/VLF TRANSIENTS	
G7*: SPACE WEATHER I	
G7*.1: DETECTING PHASE AND AMPLITUDE SCINTILLATION WITH 1 SECOND SCINTILLATION	. 191
G7*.2: UNRAVELING NEW INDICES FOR THE INTERHEMISPHERIC ASYMMETRY OF EIA AND	. 192
G7*.3: IONOSPHERIC DIAGNOSTICS USING AM RADIO AND NON-DIRECTIONAL BEACON	. 193
G7*.4: PLASMA IRREGULARITIES AT THE EQUATOR (PIE) MISSION CONCEPT	. 194
G7*.5: PHENOMENOLOGY OF SPATIAL SEE VARIATION DEPENDING ON WAVE TYPE	. 195
F6*: RF PROPAGATION IN STABLE ATMOSPHERIC CONDITIONS: RESULTS FROM REDSAW PROJECT	
F6*.1: AN OVERVIEW OF REDSAW AND ITS 2024 FIELD CAMPAIGN	
F6*.2: OVERVIEW OF NAVAL SURFACE WARFARE CENTER DAHLGREN DIVISION (NSWCDD)	. 197
F6*.3: DUAL-POLARIZED MULTI-EMITTER RF PROPAGATION COLLECTION WITH LARGE	. 198
F6*.4: DUCTING CONDITIONS DURING THE 2024 REDSAW CAMPAIGN	. 200
F6*.5: REDSAW DRONE-BASED ELECTROMAGNETIC MEASUREMENTS	. 201

F6*.6: REDSAW TETHERED DRONE-BASED METEOROLOGICAL MEASUREMENTS. Elizabeth Shi, Caglar Yardim, Joe Vinci, Ohio State University; Qing Wang, Ryan Yamaguchi, Jesus Ruiz-Plancarte, Naval Postgraduate School	. 203
F6*.7: REFRACTIVITY STATE CATEGORIZATION BASED ON PHASED-ARRAY OUTPU	. 206
F6*.8: PRELIMINARY ULTRA-WIDEBAND MEASUREMENTS DURING THE RADAR AND	
F6*.9: PRELIMINARY RANGE-DEPENDENT MEASUREMENTS DURING THE RADAR AND	
J4*: MILLIMETER-WAVE TECHNOLOGIES, TECHNIQUES, AND CHALLENGES FOR CMB-S4	
J4*.1: CMB-S4 SCIENCE CASE AND INSTRUMENT OVERVIEW	. 213
J4*.2: SUPERCONDUCTING BOLOMETRIC DETECTOR TECHNOLOGY FOR CMB-S4 Aritoki Suzuki for the CMB-S4 Collaboration, Lawrence Berkleey National Laboratory	. 214
J4*.3: MULTIPLEXED DETECTOR READOUT TECHNOLOGY FOR CMB-S4	. 215
J4*.4: CMB-S4 FEEDHORN AND FOCAL PLANE ASSEMBLY DESIGN Sara Simon, Fermi National Accelerator Laboratory	. 216
J4*.5: LARGE APERTURE TELESCOPE DESIGNS FOR CMB-S4	. 217
J4*.6: LARGE APERTURE TELESCOPE HIGH THROUGHPUT RECEIVER DESIGN	. 218
J4*.7: LARGE APERTURE TELESCOPE SIDELOBE ISSUES AND MITIGATION FOR CMB-S4	. 219
J4*.8: SMALL APERTURE TELESCOPE DESIGNS FOR CMB-S4	. 220
J4*.9: POLARIZED ATMOSPHERIC PROPERTIES AND MODELING FOR CMB-S4	. 221
J4*.10: RADIOFREQUENCY INTERFERENCE ISSUES AND MITIGATION FOR CMB-S4	. 223
B13*: WPT FOR NOVEL AND CHALLENGING APPLICATIONS	
B13*.1: PRELIMINARY STUDY OF INDUCTIVE POWER TRANSFER COMPARED TO CAPACITIVE	. 224
Andrew Valler, Georgian College; Felix Champagne-Lapointe, AWL Electricity; Majid OstadRahimi, Georgian College	

B13*.2: EFFECTS OF WEATHER EVENTS ON WIRELESS POWER RECEIVER ARRAYS
B13*.3: DESIGN AND MODELING OF HIGH POWER DENSITY STACKED COIL FOR WPT IN A
B13*.4: IMPROVING ROBUSTNESS FOR LARGE-SCALE WIRELESS POWER RECEIVER ARRAYS
B13*.5: GET AWAY SPECIAL RADIO AND ANTENNA TRANSPARENCY SATELLITE (GASRATS) PAYLOAD
B13*.6: ELECTRICALLY SMALL ULTRAWIDEBAND ANTENNA FOR WIRELESS POWER TRANSFER
B13*.7: METAMATERIAL ANTENNA DESIGN TO ENHANCE NEAR FIELD INDUCTIVE COUPLING
B13*.8: PRECISE SMALL-SCALE SYSTEM TRACKING USING ANGLE OF ARRIVAL AND TIME
B13*.9: COMPACT DUAL-BAND PLANAR WIRELESS POWER TRANSFER (WPT) SYSTEM
B13*.10: CSCMR WPT SYSTEMS FOR WEARABLE DEVICES
K3*: BRAIN STIMULATION MODELING AND DESIGN
K3*.1: IN VIVO BRAIN ELECTRICAL PROPERTY MAPPING USING VISION TRANSFORMERS AND
K3*.2: REAL-TIME COMPUTATION OF E-FIELD IN TRANSCRANIAL MAGNETIC STIMULATION
K3*.3: A FMM BIDOMAIN BOUNDARY ELEMENT METHOD FOR MODELING
K3*.4: NUMERICAL OPTIMIZATION OF A 3D MULTILAYER DIELECTRIC GEOMETRY FOR MRI

K3*.5: DEEP LEARNING NETWORKS TO ESTIMATE ELECTRIC FIELDS FROM NOISY B1 MAPS
F3: RADAR AND RADIOMETER REMOTE SENSING TECHNOLOGY AND APPLICATIONS
F3.1: SDR-BASED S-BAND RADIOMETER FOR UAS PLATFORMS WITH SPECTRUM MONITORING
F3.2: A GNSS-T AND LIDAR FUSION APPROACH TO GENERATE LARGE SCALE VEGETATION
F3.3: DUAL FREQUENCY IMPROVEMENTS TO THE TIME-SERIES RATIO ALGORITHM FOR
F3.4: RF-PHOTONIC ULTRA-WIDEBAND INSTRUMENT FOR PLANETARY BOUNDARY LAYER
F3.5: V-BAND 2SQCC DIGITAL CORRELATING SPECTROMETER - PROTOTYPE DEVELOPMENT
C2: RADIO-COMMUNICATION SYSTEMS AND SIGNAL PROCESSING II
C2.1: TOWARD A 2-28 GHZ RECONFIGURABLE RF TUNER WITH >70 DB SFDR FOR 2 GHZ IBW
C2.2: EVALUATING THE PERFORMANCE TRADE-OFFS BETWEEN RESISTIVELY-LOADED LTI
C2.3: CHANNEL SCALING LIMITATIONS TO SPURIOUS FREE DYNAMIC RANGE FOR 2-18 GHZ HYBRID DIGITAL ARRAY ARCHITECTURES Jeffrey Massman, Jordan Besnoff, Brad Hall, Pete Delos, Analog Devices
C2.4: COMPACT DEVELOPMENT PLATFORM FOR WIDEBAND DIGITAL TRUE TIME DELAY
C2.5: EVALUATING A CONVOLUTIONAL NEURAL NETWORK CALIBRATION ALGORITHM USING A

H2: SPACE ENVIRONMENT MODELING AND FORECASTING

H2.1: TESTING SPACECRAFT CHARGING PREDICTIONS AS PARKER SOLAR PROBE APPROACHES	257
Delaney Lee-Bellows, David Malaspina, Robert Ergun, Jan Deca, Laboratory for Atmospheric and Space Physics	
H2.2: NRL SPADE-2 MEASUREMENTS OF IONOSPHERIC PLASMA PARAMETERS	258
H2.3: THE ROLE OF COLD OXYGEN IONS IN THE EMIC WAVE GROWTH Shujie Gu, The University of Texas at Dallas; Misa Cowee, Xiangrong Fu, LANL; Lunjin Chen, Xu Liu, Vania Jordanova, The University of Texas at Dallas	259
H2.4: ULF WAVES IN THE SUBAURORAL GEOSPACE	260
H2.5: IMPACT OF MAY 2024 GEOMAGNETIC SUPERSTORM ON THE SUBMARINE CABLES	261
G8*: SPACE WEATHER II	
G8*.1: ADVANCING UNDERSTANDING OF MID-LATITUDE L-BAND SCINTILLATIONS WITH	262
G8*.2: FIRST RESULTS FROM AN ARRAY FOR VLF IMAGING OF THE D-REGION IONOSPHERE	264
G8*.3: GLOBAL ANALYSIS OF MID-LATITUDE IONOSPHERIC TROUGH MORPHOLOGY. Brenna Royersmith, Delores Knipp, University of Colorado Boulder; Gregory Starr, Johns Hopkins University Applied Physics Lab; Jade Morton, University of Colorado Boulder; Sebastijan Mrak, Johns Hopkins University Applied Physics Lab; Qian Will University Corporation for Atmospheric Research	5
G8*.4: THE 12 MAY 2021 STRONG GEOMAGNETIC STORM VIEWED IN THE CONTEXT OF TOTAL	
G8*.5: COMPUTER VISION-GENERATED DATABASE OF PLASMA WAVES IN THE INNER	269
C3*: OVERCOMING PHYSICALLY CONSTRAINED ENVIRONMENTS	
C3*.1: EXPERIMENTALLY OVERCOMING FUNDAMENTAL LTI BOUNDS VIA PERIODIC	270
C3*.2: DESIGN, IMPLEMENTATION, AND EXPERIMENTAL CHARACTERIZATION OF A NON-LTI	272

C3*.3: OPTIMIZING DC-STABILIZED DIRECT ANTENNA MODULATION TRANSMITTERS FOR	273
Miheer Mayekar, Joseph Dusenbury, North Carolina State University; Kurt Schab, Santa Clara University; Jacob Adams, No Carolina State University	orth
C3*.4: LOW-POWER ULF TRANSMITTER DESIGN USING STATIC PERMANENT MAGNET	274
J5*: CALIBRATION & IMAGING OF NEXTGEN RADIO TELESCOPES	
J5*.1: DEVELOPMENT OF NEXT GENERATION VERY LARGE ARRAY TROPOSPHERIC	
of Japan	ory
J5*.2: SEGMENTING RFI USING META'S SEGMENT ANYTHING MODEL	277
Derod Deal, University of Florida; Preshanth Jagannathan, National Radio Astronomy Observatory	
J5*.3: DEVELOPMENT OF A LOW MUTUAL COUPLING ANTENNA FOR FUTURE 21 CM	278
Marc-Olivier R. Lalonde, Daniel C. Jacobs, Arizona State University; James E. Aguirre, University of Pennsylvania	
J5*.4: REFERENCE HOPS CALIBRATION PIPELINE FOR THE EVENT HORIZON TELESCOPE	279
J5*.5: ENABLING DIRECT IMAGING RADIO TELESCOPES AND PRECISION COSMOLOGY WITH	280
J5*.6: HPG: A HIGH PERFORMANCE GRIDDING LIBRARY	281
Martin Pokorny, California Institute of Technology	201
J5*.7: LIBRA: A SCIENTIFIC SOFTWARE LIBRARY OF RADIO ASTRONOMY ALGORITHMS	282
J5*.8: THE VLA SKY SURVEY (VLASS) AND BEYOND: LESSONS, CHALLENGES, AND FUTURE	283
J5*.9: SCIENTIFIC COMPUTING AT SCALE: HOW DO WE APPROACH A PETABYTE SCALE PROBLEM? Srikrishna Sekhar, National Radio Astronomy Observatory	284
J5*.10: RADIO INTERFEROMETRIC IMAGING ON HIGH THROUGHPUT COMPUTING SYSTEMS. Felipe Madsen, Sanjay Bhatnagar, National Radio Astronomy Observatory	285
B4: DEVICES, SYSTEMS, AND APPLICATIONS	
B4.1: CHARACTERIZATION OF DIELECTRIC NONLINEARITY IN HIGH-PERMITTIVITY	286

B4.2: MATERIAL PARAMETER EXTRACTION AND FINE-TUNING TECHNIQUES FOR REDUCING	287
B4.3: DEVELOPMENT OF VOLTAGE MULTIPLIER RECTIFIER FOR ENERGY HARVESTING	288
B4.4: A 10 GHZ PARAMETRIC AMPLIFIER FOR DISTRIBUTED AMPLIFICATION	290
B4.5: IMPROVED RADIO ASTRONOMY INTERFERENCE CHARACTERIZATION USING DEVOPS. Sylvia Llosa, University of Colorado Boulder; Cole Forrester, University of California Berkeley; Georgiana Weihe, Oren Coll. Kevin Gifford, University of Colorado Boulder	
B4.6: DESIGN AND OPTIMIZATION OF 4.7-TESLA RF COILS AND ASSOCIATED CIRCUITS FOR	294
B4.7: A RECONFIGURABLE INTELLIGENT SURFACE USING TRANSPARENT CONDUCTIVE	. 295
B4.8: COMPACT MILLIMETER WAVE BAND BUTTON ANTENNA DESIGN FOR WBAN OFF-BODY	296
B4.9: DESIGN AND VALIDATION OF AN IN-SITU DOWNCONVERSION CIRCUIT. Trevor Van Hoosier, Adam Goad, Austin Egbert, Baylor University; Aravind Venkitasubramony, University of Colorado; Mich. Marques, Orbital Microsystems; David Cox, Charles Baylis, Baylor University; Albin Gasiewski, University of Colorado; Rob Marks, Baylor University	
B4.10: METASURFACE-INFUSED SKY RADIO QUIET ZONE FOR MITIGATION OF RADIO	299
H3*: ACTIVE EXPERIMENTS IN LABORATORY AND SPACE PLASMAS I	
H3*.1: RECONNECTION-DRIVEN ELECTRON ACCELERATION: GUIDE FIELD EFFECTS. Ripudaman Singh Nirwan, Earl Scime, West Virginia University	301
H3*.2: THOMSON SCATTER WITH L BAND RADAR AND POTENTIAL NEW MULTI-FREQUENCY IONOSPHERIC RADAR UTILIZATION J. Brent Parham, MIT Lincoln Laboratory; Ana Banzer, Stanford University; Amoree Hodges, Mark Dickson, MIT Lincoln Laboratory; Philip Erickson, Frank Lind, Ryan Volz, John Swoboda, Haystack Observatory	303
H3*.3: STIMULATED BRILLOUIN SCATTERING FROM SATELLITE TRANSMISSIONS	304
H3*.4: SIMULATION AND THEORETICAL STUDIES ON THE VALIDITY OF USING LANGMUIR	307

H3*.5: THE MAGNETIC IMPRINTS OF CORONAL CURRENTS: REMOTE SENSING OF REMOTE
G9*: STUDIES OF THE GANNON STORM I
G9*.1: SCINTILLATION AND HIGH-RATE TEC OBSERVATIONS AT MID LATITUDES DURING THE
G9*.2: L-BAND SCINTILLATION CHARACTERISTICS DURING THE 2024 GANNON STORM
G9*.3: GANNON STORM SCINTILLATION OBSERVATIONS VIA THE NOAA DATA COLLECTION
G9*.4: UNPRECEDENTED NIGHTSIDE IONOSPHERIC DYNAMICS OBSERVED BY GOLD
G9*.5: ASSIMILATIVE COUPLED MODELING OF THE GANNON SUPERSTORM
F5*: MICROWAVE REMOTE SENSING OF VEGETATION AND OCEAN SALINITY IN HONOR OF ROGER H LANG
F5*.1: THE CONTINUING CONTRIBUTION OF ROGER LANG TO THE MEASUREMENT OF THE
F5*.2: RESONANT-PERTURBATION METHOD APPLIED TO UHF CRYOGENIC DIELECTRIC
F5*.3: OCEAN SALINITY MEASUREMENTS WITH L-BAND PASSIVE AIRBORNE AND GROUND
F5*.4: DEVELOPMENT OF THE SESAR-LITE P-BAND SYNTHETIC APERTURE RADAR

F5*.5: COHERENCE MODELING OF LAND COVER OBSERVATIONS FROM REPEAT PASS
F5*.6: BISTATIC GO SOLUTION TO THE MEAN RCS OF AN OBJECT ABOVE A ROUGH SURFACE:
F5*.7: GNSS-T FOREST TRANSMISSIVITY SIMULATIONS BASED ON LIDAR-DERIVED TREE
F5*.8: MODELLING THE EFFECTIVE VEGETATION OPTICAL DEPTH AND SCATTERING ALBEDO
F5*.9: COHERENT BACKSCATTER FROM A VEGETATION CANOPY - MODEL VS EXPERIMENT
F5*.10: INTERPOLATING SMAP SOIL MOISTURE TO 3 KM USING CYGNSS AND SPIRE
J2: NEW TELESCOPES, TECHNIQUES, AND TECHNOLOGIES II
J2.1: HYDROGEN EPOCH OF REIONIZATION ARRAY YEAR 6 DATA ANALYSIS
J2.2: STATUS OF THE MIST GLOBAL 21-CM EXPERIMENT
J2.3: UPDATES ON THE ARRAY OF LONG BASELINE ANTENNAS FOR TAKING RADIO 332 OBSERVATIONS FROM THE SEVENTY-NINTH PARALLEL
J2.3: UPDATES ON THE ARRAY OF LONG BASELINE ANTENNAS FOR TAKING RADIO
J2.3: UPDATES ON THE ARRAY OF LONG BASELINE ANTENNAS FOR TAKING RADIO
J2.3: UPDATES ON THE ARRAY OF LONG BASELINE ANTENNAS FOR TAKING RADIO

J2.9: EXPLORING THE CROSSTALK PROPERTIES OF THE CHIME TELESCOPE Pranav Sanghavi, Laura Newburgh, Yale University	339
J2.10: DISH SURFACE CHARACTERISATION FOR CHORD AND HIRAX USING METROLOGY AND	340
B3: ANTENNA THEORY AND DESIGN	
B3.1: MONOFILAR HELIX WITH PARABOLOID GROUND PLANE	341
B3.2: IMPLEMENTATION AND VALIDATION OF A NOVEL SAR IMAGING-BASED ANTENNA ARRAY	343
B3.3: DOUBLE-LAYER LIGHTWEIGHT LINEARLY POLARIZED HIGH-GAIN TRANSMITARRAY ANTENNA DESIGN AT KA-BAND BASED ON ULTRA-THIN KAPTON MEMBRANE Wenman Hu, Yahya Rahmat-Samii, University of California, Los Angeles	345
B3.4: RECONFIGURABLE TRANSMITARRAY DESIGN WITH GENERATIVE ADVERSARIAL NETWORK Huy Nguyen, Sensong An, Hung Luyen, University of North Texas	347
B3.5: DESIGN OF AN HF SCIMITAR ANTENNA	348
B3.6: VERIFICATION OF IN-SITU MEASUREMENT OF ANTENNA TRANSMISSION FOR ARRAY CALIBRATION AND DIRECTIONAL MODULATION Jonathan Swindell, Adam Goad, Austin Egbert, Baylor University; Benjamin Kirk, Alex Bouvy, DEVCOM Army Research Laboratory; Charles Baylis, Robert Marks, Baylor University	349
B3.7: A RECONFIGURABLE 2-BIT-PHASE-SHIFTING REFLECTARRAY ANTENNA UTILIZING TWO	350
B3.8: ANTENNAS MADE FROM TRANSPARENT CONDUCTIVE OXIDES REQUIRE MULTIPLE	351
B3.9: DESIGN OF AN ELECTRICALLY SMALL CIRCULARLY POLARIZED SPHERICAL FOLDED	352
B3.10: CPW FED 28/38 GHZ DUAL BAND METASURFACE FLEXIBLE MIMO ANTENNA FOR	354
H4*: ACTIVE EXPERIMENTS IN LABORATORY AND SPACE PLASMAS II	
H4*.1: ANALYZING HISTORICAL LANGMUIR PROBE DATA USING MODERN METHODS.	356

H4*.2: PLASMA IMPEDANCE TOMOGRAPHY (PIT): RESULTS OF MEASUREMENT AND	358
H4*.3: AERO: REMOTE SENSING OF AURORAL RADIO EMISSIONS FROM A SMALL SATELLITE	359
H4*.4: LASER INDUCED FLUORESCENCE MEASUREMENTS OF FLOW VELOCITY IN A	360
H4*.5: PLASMA IMPEDANCE PROBES AND E FIELD SENSOR INSTABILITIES: TWO SIDES OF	361
G10*: STUDIES OF THE GANNON STORM II	
G10*.1: IONOSPHERIC RESPONSE DURING THE 10-12 MAY 2024 GEOMAGNETIC STORM AND ITS	362
G10*.2: EXTREME LOW LATITUDE SCINTILLATION STRUCTURE EVOLUTION	364
G10*.3: MULTI-SCALE ESTIMATION AND PARAMETERIZATION OF SEVERE STORM IMPACTS AT	366
F7*: REMOTE SENSING AND SPECTRUM ALLOCATION FOR SMALL SATELLITES	
F7*.1: DEVELOPMENT AND TESTING OF THE PROTOTYPE CONFIGURABLE REFLECTARRAY	367
F7*.2: REALTIME GEOSPATIAL SPECTRUM SHARING BETWEEN EARTH EXPLORATION	368
F7*.3: A NOVEL RADIOMETRIC SCENE GENERATOR FOR RECONFIGURABLE MICROWAVE	
F7*.4: SPACE-BORNE DOPPLER WEATHER RADAR MODELING FOR RADAR DESIGN EVALUATION	371

B10*: RECONFIGURABLE INTELLIGENT SURFACES FOR SENSING AND IMAGING
B10*.1: NEARFIELD SENSING AND IMAGING WITH A MILLIMETER WAVE RECONFIGURABLE
B10*.2: METASURFACE-BACKED LUNEBURG LENS FOR BACKSCATTER DATA EXFILTRATION
B10*.3: RECONFIGURABLE NONLOCAL METASURFACE FOR TUNABLE FREQUENCY,
QUALITY-FACTOR, AND GEOMETRIC PHASE Yoshiaki Kasahara, The University of Texas at Austin; Adam Overvig, Stevens Institute of Technology; Gengyu Xu, Andrea Alù, The City University of New York
B10*.4: AN EXPERIMENTAL PROOF OF CONCEPT FOR SENSING USING HYBRID
B10*.5: RECONFIGURABLE INTELLIGENT SURFACE-ASSISTED BEAM MANAGEMENT FOR AI
B10*.6: MULTI-MODAL SENSING AIDED RIS COMMUNICATIONS
Tawfik Osman, Aditya Shekhawat, Ahmed Alkhateeb, Georgios Trichopoulos, Arizona State University
B10*.7: A NOVEL COMPUTATIONAL IMAGING METHOD USING RECONFIGURABLE
·
B10*.8: ON RIS BANDWIDTH: BANDWIDTH DISCUSSION AND TRADE-OFFS FOR A DUAL
B10*.9: NOVEL 1-BIT HYBRID RECONFIGURABLE INTELLIGENT SURFACE WITH MITIGATED
QUANTIZATION LOBE
Sajedeh Keshmiri, Mohammadreza F. Imani, Arizona State University
B10*.10: A BROADBAND METASURFACE-BASED POLARIZATION CONVERTER WITH
H5*: ACTIVE EXPERIMENTS IN LABORATORY AND SPACE PLASMAS III
H5*.1: DIRECT COMPARISONS OF WHISTLER MODE EXCITATION BETWEEN AN ELECTRIC
Jesus Perez, UCLA; Seth Dorfman, Space Science Institute; Quinn Marksteiner, Los Alamos National Laboratory; Patrick Priby Basic Plasma Science Facility; Troy Carter, Oak Ridge National Lab; Gian Luca Delzanno, Los Alamos National Laboratory
H5*.2: CHARACTERIZATION OF WHISTLER MODE WAVES LAUNCHED BY PHASED ARRAY
Kyle Hrenyo, William Amatucci, U.S. Naval Research Laboratory; Konstantinos Papadopoulos, University of Maryland

H5*.3: DESIGN AND STUDY OF A TRANSIENT PLASMA ARRAY WITH STATIC MAGNETIC FIELDS	0
H5*.4: HUNTING FOR ELECTROMAGNETIC SOLITONS IN THE LABORATORY	1
GH5*: IONOSPHERIC MODIFICATION I	
GH5*.1: NONLINEAR HF PROPAGATION IN THE IONOSPHERE ABOVE HAARP	2
GH5*.2: BENEFICIAL IMPACT OF ROCKET ENGINE BURNS OVER GROUND VLF	3
GH5*.3: NONLINEAR MODEL EXCITATION BY VLF TRANSMITTERS	4
GH5*.4: VLF SCATTERING AND POLARIZATION AT HAARP	5
GH5*.5: IMPROVING THE MODELING OF ARTIFICIAL PERIODIC INHOMOGENEITIES FOR THE	6
F4: MODELS FOR REMOTE SENSING IN RANDOM COMPLEX MEDIA	
F4.1: SCATTERING COEFFICIENTS OF FORESTED MOUNTAINSIDES AT L BAND	7
F4.2: ESTIMATION OF STATISTICS OF LONG RANGE MILLIMETER-WAVE PROPAGATION IN RAIN	9
F4.3: OFF-AXIS LASER-RADIATION DETECTION USING INTENSITY INTERFEROMETRY:	0
F4.4: SOLUTION OF RADIATIVE TRANSFER EQUATION FOR PLANE-PARALLEL MEDIUM USING A	2
F4.5: DETECTION AND STATISTICAL MODELING OF THE EFFECT OF MIMA MOUNDS ON	4

F4.6: MEASUREMENT OF EXTINCTION RATE OF WAVES PROPAGATING THROUGH
F4.7: ENHANCED ADAPTIVE LEARNING MODEL FOR ACCURATE DUAL-POLARIZATION RADAR
F4.8: RADAR BEAM BLOCKAGE CORRECTION FOR IMPROVED QPE OVER COMPLEX TERRAIN
J6*: DSA-2000
J6*.1: DSA-2000 SYSTEM OVERVIEW
J6*.2: DESIGN AND PERFORMANCE OF THE DSA-2000 ANTENNAS
J6*.3: DSA-2000 FEED AND ANTENNA SYSTEM PERFORMANCE 412 Jonas Flygare, Caltech Owen's Valley Radio Observatory
J6*.4: THE DESIGN OF AN ULTRA LOW-NOISE, AMBIENT-TEMPERATURE AMPLIFIER FOR THE
J6*.5: THE DSA-2000 RADIO CAMERA 414 Martin Pokorny, California Institute of Technology
B12*: SPECTRUM MANAGEMENT AND SECURE COMMUNICATIONS
B12*.1: UNAMBIGUOUS PHASE MODULATION APPROACH FOR SDR LPD WAVEFORMS
B12*.2: WIDEBAND DUAL-CIRCULARLY POLARIZED PHASED ARRAY ANTENNA USING A NOVEL
B12*.3: THE COMPUTATIONAL BURDEN OF NEXT-GEN TERAHERTZ SDR AND ALGORITHMIC
B12*.4: EFFICIENT USE OF THE FREQUENCY SPECTRUM AND SECURE COMMUNICATIONS IN
B12*.5: NETWORKED AI FOR DETECTION CLASSIFICATION AND LOCALIZATION OF RF SIGNAL

F9*: NASA INVESTIGATION OF CONVECTIVE UPDRAFTS (INCUS) EARTH VENTURE MISSION-3
F9*.1: STORM CHASING WITH THE INCUS MISSION
F9*.2: QUANTIFYING UNCERTAINTY IN SPACE-BORNE RADAR ESTIMATES OF CLOUD AND
PRECIPITATION PROPERTIES Derek Posselt, Rachel Storer, Jet Propulsion Laboratory; Rick Schulte, Randy Chase, Colorado State University; Ousmane Sy, Simone Tanelli, Jet Propulsion Laboratory; Susan van den Heever, Colorado State University
F9*.3: POTENTIAL CONTRIBUTIONS OF THE DYNAMICAL MICROWAVE RADIOMETER ON THE
F9*.4: A PRINCIPAL COMPONENT ANALYSIS OF CONVECTIVE ENVIRONMENTS, AND THEIR
F9*.5: TESTING INCUS METHODS EXPERIMENT – SUBORBITAL PRELAUNCH INVESTIGATION
OF CONVECTIVE EVOLUTION (TIME-SLICE) Brenda Dolan, Kristen Rasmussen, Colorado State University; Pavlos Kollias, Stony Brook University; Ed Luke, Brookhaven National Lab; V Chandrasekar, Ivan Arias Hernandez, Colorado State University; Bernat Treserras, McGill University; Susan van den Heever, Rachael Auth, Chelsea Bekenmeier, Jennie Bukowski, Randy Chase, Zoe Douglas, Nick Falk, Megan Franke, Colorado State University; Sean Freeman, University of Alabama Huntsville; Brody Fuchs, WeatherFlow-Tempest; Patrick Gatlin, NASA Marshall; Paul E Johnston, NOAA Physical Science Laboratory; Tom Juliano, Yoonjin Lee, Isabel Maloney, Gabrielle Leung, Peter Marinescu, Allie Mazurek, Jyong-En Miao, Christine Neumaier, Angelie Nieves Jimenez, Colorado State University; Walter Petersen, NASA Marshall Space Flight Center; Derek Posselt, Jet Propulsion Laboratory; Charlie Remmers, Richard Schulte, Colorado State University; Courtney Schumacher, Texas A & M; Julia Shates, Jet Propulsion Laboratory; Lexi Sherman, I. T. Singh, Alyssa Stansfield, Colorado State University; Simone Tanelli, Jet Propulsion Laboratory; Daniel Veloso-Aguila, Ines Vongpaseut, Colorado State University; Christopher Williams, University of Colorado; David Wolff, NASA Wallops Flight Facility
GH6*: IONOSPHERIC MODIFICATION II
GH6*.1: MULTI-WAVE GENERATION STUDIES USING BEAT MODE EXCITATION AT HAARP
GH6*.2: BROADBAND SCATTERING FROM THE HAARP-DISTURBED D-REGION IONOSPHERE
GH6*.3: MAPPING THE SPATIAL DISTRIBUTION OF THE AURORAL ELECTROJET AT HAARP

Logan Musante, Harrison Burch, Robert Moore, University of Florida

J3: NEW TELESCOPES, TECHNIQUES, AND TECHNOLOGIES III
J3.1: F-ENGINE DEVELOPMENT TOWARDS A CHORD PATHFINDER ARRAY
J3.2: NANOSECOND DIFFERENTIAL TIMING USING INEXPENSIVE DIFFERENTIAL GNSS
J3.3: HOLOGRAPHIC BEAM MAPPING FOR CHIME: CURRENT STATUS AND FUTURE
J3.4: VALIDATION OF EDGES SOFTWARE SUITE USING 10 DAYS OF EDGES-3 DATA
J3.5: A DIGITAL CALIBRATION SOURCE FOR 21 CM COSMOLOGY TELESCOPES
B11*: REFLECTARRAYS AND RECONFIGURABLE APERTURES
B11*.1: BANDWIDTH INCREASE OF ACTIVE REFLECTARRAYS
B11*.2: EXPERIMENTAL GENERATION OF BIASING VOLTAGE DISTRIBUTION ALONG A RIS BY
B11*.3: DESIGN OF AN ANTENNA SYNTHESIS ALGORITHM FOR APPLICATION WITH A
B11*.4: ROBUST REFLECTARRAY HEALING ENABLED BY ADJOINT OPTIMIZATION

Muhammad Mubasshir Hossain, Tatiana Valera, Satheesh Bojja Venkatakrishnan, John L. Volakis, Florida International

ANTENNA AND STACKED PHASE SHIFTERS

University